i915_gem.c 131 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment, bool mappable);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static int
  58. i915_gem_object_get_pages(struct drm_gem_object *obj,
  59. gfp_t gfpmask);
  60. static void
  61. i915_gem_object_put_pages(struct drm_gem_object *obj);
  62. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  63. int nr_to_scan,
  64. gfp_t gfp_mask);
  65. /* some bookkeeping */
  66. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count++;
  70. dev_priv->mm.object_memory += size;
  71. }
  72. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  73. size_t size)
  74. {
  75. dev_priv->mm.object_count--;
  76. dev_priv->mm.object_memory -= size;
  77. }
  78. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  79. struct drm_gem_object *obj)
  80. {
  81. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  82. dev_priv->mm.gtt_count++;
  83. dev_priv->mm.gtt_memory += obj->size;
  84. if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  85. dev_priv->mm.mappable_gtt_used +=
  86. min_t(size_t, obj->size,
  87. dev_priv->mm.gtt_mappable_end
  88. - obj_priv->gtt_offset);
  89. }
  90. }
  91. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  92. struct drm_gem_object *obj)
  93. {
  94. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  95. dev_priv->mm.gtt_count--;
  96. dev_priv->mm.gtt_memory -= obj->size;
  97. if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  98. dev_priv->mm.mappable_gtt_used -=
  99. min_t(size_t, obj->size,
  100. dev_priv->mm.gtt_mappable_end
  101. - obj_priv->gtt_offset);
  102. }
  103. }
  104. /**
  105. * Update the mappable working set counters. Call _only_ when there is a change
  106. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  107. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  108. */
  109. static void
  110. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  111. struct drm_gem_object *obj,
  112. bool mappable)
  113. {
  114. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  115. if (mappable) {
  116. if (obj_priv->pin_mappable && obj_priv->fault_mappable)
  117. /* Combined state was already mappable. */
  118. return;
  119. dev_priv->mm.gtt_mappable_count++;
  120. dev_priv->mm.gtt_mappable_memory += obj->size;
  121. } else {
  122. if (obj_priv->pin_mappable || obj_priv->fault_mappable)
  123. /* Combined state still mappable. */
  124. return;
  125. dev_priv->mm.gtt_mappable_count--;
  126. dev_priv->mm.gtt_mappable_memory -= obj->size;
  127. }
  128. }
  129. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  130. struct drm_gem_object *obj,
  131. bool mappable)
  132. {
  133. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  134. dev_priv->mm.pin_count++;
  135. dev_priv->mm.pin_memory += obj->size;
  136. if (mappable) {
  137. obj_priv->pin_mappable = true;
  138. i915_gem_info_update_mappable(dev_priv, obj, true);
  139. }
  140. }
  141. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  142. struct drm_gem_object *obj)
  143. {
  144. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  145. dev_priv->mm.pin_count--;
  146. dev_priv->mm.pin_memory -= obj->size;
  147. if (obj_priv->pin_mappable) {
  148. obj_priv->pin_mappable = false;
  149. i915_gem_info_update_mappable(dev_priv, obj, false);
  150. }
  151. }
  152. int
  153. i915_gem_check_is_wedged(struct drm_device *dev)
  154. {
  155. struct drm_i915_private *dev_priv = dev->dev_private;
  156. struct completion *x = &dev_priv->error_completion;
  157. unsigned long flags;
  158. int ret;
  159. if (!atomic_read(&dev_priv->mm.wedged))
  160. return 0;
  161. ret = wait_for_completion_interruptible(x);
  162. if (ret)
  163. return ret;
  164. /* Success, we reset the GPU! */
  165. if (!atomic_read(&dev_priv->mm.wedged))
  166. return 0;
  167. /* GPU is hung, bump the completion count to account for
  168. * the token we just consumed so that we never hit zero and
  169. * end up waiting upon a subsequent completion event that
  170. * will never happen.
  171. */
  172. spin_lock_irqsave(&x->wait.lock, flags);
  173. x->done++;
  174. spin_unlock_irqrestore(&x->wait.lock, flags);
  175. return -EIO;
  176. }
  177. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  178. {
  179. struct drm_i915_private *dev_priv = dev->dev_private;
  180. int ret;
  181. ret = i915_gem_check_is_wedged(dev);
  182. if (ret)
  183. return ret;
  184. ret = mutex_lock_interruptible(&dev->struct_mutex);
  185. if (ret)
  186. return ret;
  187. if (atomic_read(&dev_priv->mm.wedged)) {
  188. mutex_unlock(&dev->struct_mutex);
  189. return -EAGAIN;
  190. }
  191. WARN_ON(i915_verify_lists(dev));
  192. return 0;
  193. }
  194. static inline bool
  195. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  196. {
  197. return obj_priv->gtt_space &&
  198. !obj_priv->active &&
  199. obj_priv->pin_count == 0;
  200. }
  201. int i915_gem_do_init(struct drm_device *dev,
  202. unsigned long start,
  203. unsigned long mappable_end,
  204. unsigned long end)
  205. {
  206. drm_i915_private_t *dev_priv = dev->dev_private;
  207. if (start >= end ||
  208. (start & (PAGE_SIZE - 1)) != 0 ||
  209. (end & (PAGE_SIZE - 1)) != 0) {
  210. return -EINVAL;
  211. }
  212. drm_mm_init(&dev_priv->mm.gtt_space, start,
  213. end - start);
  214. dev_priv->mm.gtt_total = end - start;
  215. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  216. dev_priv->mm.gtt_mappable_end = mappable_end;
  217. return 0;
  218. }
  219. int
  220. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  221. struct drm_file *file_priv)
  222. {
  223. struct drm_i915_gem_init *args = data;
  224. int ret;
  225. mutex_lock(&dev->struct_mutex);
  226. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  227. mutex_unlock(&dev->struct_mutex);
  228. return ret;
  229. }
  230. int
  231. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  232. struct drm_file *file_priv)
  233. {
  234. struct drm_i915_private *dev_priv = dev->dev_private;
  235. struct drm_i915_gem_get_aperture *args = data;
  236. if (!(dev->driver->driver_features & DRIVER_GEM))
  237. return -ENODEV;
  238. mutex_lock(&dev->struct_mutex);
  239. args->aper_size = dev_priv->mm.gtt_total;
  240. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  241. mutex_unlock(&dev->struct_mutex);
  242. return 0;
  243. }
  244. /**
  245. * Creates a new mm object and returns a handle to it.
  246. */
  247. int
  248. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  249. struct drm_file *file_priv)
  250. {
  251. struct drm_i915_gem_create *args = data;
  252. struct drm_gem_object *obj;
  253. int ret;
  254. u32 handle;
  255. args->size = roundup(args->size, PAGE_SIZE);
  256. /* Allocate the new object */
  257. obj = i915_gem_alloc_object(dev, args->size);
  258. if (obj == NULL)
  259. return -ENOMEM;
  260. ret = drm_gem_handle_create(file_priv, obj, &handle);
  261. if (ret) {
  262. drm_gem_object_release(obj);
  263. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  264. kfree(obj);
  265. return ret;
  266. }
  267. /* drop reference from allocate - handle holds it now */
  268. drm_gem_object_unreference(obj);
  269. trace_i915_gem_object_create(obj);
  270. args->handle = handle;
  271. return 0;
  272. }
  273. static bool
  274. i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
  275. {
  276. struct drm_device *dev = obj->base.dev;
  277. drm_i915_private_t *dev_priv = dev->dev_private;
  278. return obj->gtt_space == NULL ||
  279. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  280. }
  281. static inline int
  282. fast_shmem_read(struct page **pages,
  283. loff_t page_base, int page_offset,
  284. char __user *data,
  285. int length)
  286. {
  287. char *vaddr;
  288. int ret;
  289. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  290. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  291. kunmap_atomic(vaddr);
  292. return ret;
  293. }
  294. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  295. {
  296. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  297. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  298. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  299. obj_priv->tiling_mode != I915_TILING_NONE;
  300. }
  301. static inline void
  302. slow_shmem_copy(struct page *dst_page,
  303. int dst_offset,
  304. struct page *src_page,
  305. int src_offset,
  306. int length)
  307. {
  308. char *dst_vaddr, *src_vaddr;
  309. dst_vaddr = kmap(dst_page);
  310. src_vaddr = kmap(src_page);
  311. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  312. kunmap(src_page);
  313. kunmap(dst_page);
  314. }
  315. static inline void
  316. slow_shmem_bit17_copy(struct page *gpu_page,
  317. int gpu_offset,
  318. struct page *cpu_page,
  319. int cpu_offset,
  320. int length,
  321. int is_read)
  322. {
  323. char *gpu_vaddr, *cpu_vaddr;
  324. /* Use the unswizzled path if this page isn't affected. */
  325. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  326. if (is_read)
  327. return slow_shmem_copy(cpu_page, cpu_offset,
  328. gpu_page, gpu_offset, length);
  329. else
  330. return slow_shmem_copy(gpu_page, gpu_offset,
  331. cpu_page, cpu_offset, length);
  332. }
  333. gpu_vaddr = kmap(gpu_page);
  334. cpu_vaddr = kmap(cpu_page);
  335. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  336. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  337. */
  338. while (length > 0) {
  339. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  340. int this_length = min(cacheline_end - gpu_offset, length);
  341. int swizzled_gpu_offset = gpu_offset ^ 64;
  342. if (is_read) {
  343. memcpy(cpu_vaddr + cpu_offset,
  344. gpu_vaddr + swizzled_gpu_offset,
  345. this_length);
  346. } else {
  347. memcpy(gpu_vaddr + swizzled_gpu_offset,
  348. cpu_vaddr + cpu_offset,
  349. this_length);
  350. }
  351. cpu_offset += this_length;
  352. gpu_offset += this_length;
  353. length -= this_length;
  354. }
  355. kunmap(cpu_page);
  356. kunmap(gpu_page);
  357. }
  358. /**
  359. * This is the fast shmem pread path, which attempts to copy_from_user directly
  360. * from the backing pages of the object to the user's address space. On a
  361. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  362. */
  363. static int
  364. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  365. struct drm_i915_gem_pread *args,
  366. struct drm_file *file_priv)
  367. {
  368. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  369. ssize_t remain;
  370. loff_t offset, page_base;
  371. char __user *user_data;
  372. int page_offset, page_length;
  373. user_data = (char __user *) (uintptr_t) args->data_ptr;
  374. remain = args->size;
  375. obj_priv = to_intel_bo(obj);
  376. offset = args->offset;
  377. while (remain > 0) {
  378. /* Operation in this page
  379. *
  380. * page_base = page offset within aperture
  381. * page_offset = offset within page
  382. * page_length = bytes to copy for this page
  383. */
  384. page_base = (offset & ~(PAGE_SIZE-1));
  385. page_offset = offset & (PAGE_SIZE-1);
  386. page_length = remain;
  387. if ((page_offset + remain) > PAGE_SIZE)
  388. page_length = PAGE_SIZE - page_offset;
  389. if (fast_shmem_read(obj_priv->pages,
  390. page_base, page_offset,
  391. user_data, page_length))
  392. return -EFAULT;
  393. remain -= page_length;
  394. user_data += page_length;
  395. offset += page_length;
  396. }
  397. return 0;
  398. }
  399. static int
  400. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  401. {
  402. int ret;
  403. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  404. /* If we've insufficient memory to map in the pages, attempt
  405. * to make some space by throwing out some old buffers.
  406. */
  407. if (ret == -ENOMEM) {
  408. struct drm_device *dev = obj->dev;
  409. ret = i915_gem_evict_something(dev, obj->size,
  410. i915_gem_get_gtt_alignment(obj),
  411. false);
  412. if (ret)
  413. return ret;
  414. ret = i915_gem_object_get_pages(obj, 0);
  415. }
  416. return ret;
  417. }
  418. /**
  419. * This is the fallback shmem pread path, which allocates temporary storage
  420. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  421. * can copy out of the object's backing pages while holding the struct mutex
  422. * and not take page faults.
  423. */
  424. static int
  425. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  426. struct drm_i915_gem_pread *args,
  427. struct drm_file *file_priv)
  428. {
  429. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  430. struct mm_struct *mm = current->mm;
  431. struct page **user_pages;
  432. ssize_t remain;
  433. loff_t offset, pinned_pages, i;
  434. loff_t first_data_page, last_data_page, num_pages;
  435. int shmem_page_index, shmem_page_offset;
  436. int data_page_index, data_page_offset;
  437. int page_length;
  438. int ret;
  439. uint64_t data_ptr = args->data_ptr;
  440. int do_bit17_swizzling;
  441. remain = args->size;
  442. /* Pin the user pages containing the data. We can't fault while
  443. * holding the struct mutex, yet we want to hold it while
  444. * dereferencing the user data.
  445. */
  446. first_data_page = data_ptr / PAGE_SIZE;
  447. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  448. num_pages = last_data_page - first_data_page + 1;
  449. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  450. if (user_pages == NULL)
  451. return -ENOMEM;
  452. mutex_unlock(&dev->struct_mutex);
  453. down_read(&mm->mmap_sem);
  454. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  455. num_pages, 1, 0, user_pages, NULL);
  456. up_read(&mm->mmap_sem);
  457. mutex_lock(&dev->struct_mutex);
  458. if (pinned_pages < num_pages) {
  459. ret = -EFAULT;
  460. goto out;
  461. }
  462. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  463. args->offset,
  464. args->size);
  465. if (ret)
  466. goto out;
  467. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  468. obj_priv = to_intel_bo(obj);
  469. offset = args->offset;
  470. while (remain > 0) {
  471. /* Operation in this page
  472. *
  473. * shmem_page_index = page number within shmem file
  474. * shmem_page_offset = offset within page in shmem file
  475. * data_page_index = page number in get_user_pages return
  476. * data_page_offset = offset with data_page_index page.
  477. * page_length = bytes to copy for this page
  478. */
  479. shmem_page_index = offset / PAGE_SIZE;
  480. shmem_page_offset = offset & ~PAGE_MASK;
  481. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  482. data_page_offset = data_ptr & ~PAGE_MASK;
  483. page_length = remain;
  484. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  485. page_length = PAGE_SIZE - shmem_page_offset;
  486. if ((data_page_offset + page_length) > PAGE_SIZE)
  487. page_length = PAGE_SIZE - data_page_offset;
  488. if (do_bit17_swizzling) {
  489. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  490. shmem_page_offset,
  491. user_pages[data_page_index],
  492. data_page_offset,
  493. page_length,
  494. 1);
  495. } else {
  496. slow_shmem_copy(user_pages[data_page_index],
  497. data_page_offset,
  498. obj_priv->pages[shmem_page_index],
  499. shmem_page_offset,
  500. page_length);
  501. }
  502. remain -= page_length;
  503. data_ptr += page_length;
  504. offset += page_length;
  505. }
  506. out:
  507. for (i = 0; i < pinned_pages; i++) {
  508. SetPageDirty(user_pages[i]);
  509. page_cache_release(user_pages[i]);
  510. }
  511. drm_free_large(user_pages);
  512. return ret;
  513. }
  514. /**
  515. * Reads data from the object referenced by handle.
  516. *
  517. * On error, the contents of *data are undefined.
  518. */
  519. int
  520. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  521. struct drm_file *file_priv)
  522. {
  523. struct drm_i915_gem_pread *args = data;
  524. struct drm_gem_object *obj;
  525. struct drm_i915_gem_object *obj_priv;
  526. int ret = 0;
  527. ret = i915_mutex_lock_interruptible(dev);
  528. if (ret)
  529. return ret;
  530. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  531. if (obj == NULL) {
  532. ret = -ENOENT;
  533. goto unlock;
  534. }
  535. obj_priv = to_intel_bo(obj);
  536. /* Bounds check source. */
  537. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  538. ret = -EINVAL;
  539. goto out;
  540. }
  541. if (args->size == 0)
  542. goto out;
  543. if (!access_ok(VERIFY_WRITE,
  544. (char __user *)(uintptr_t)args->data_ptr,
  545. args->size)) {
  546. ret = -EFAULT;
  547. goto out;
  548. }
  549. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  550. args->size);
  551. if (ret) {
  552. ret = -EFAULT;
  553. goto out;
  554. }
  555. ret = i915_gem_object_get_pages_or_evict(obj);
  556. if (ret)
  557. goto out;
  558. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  559. args->offset,
  560. args->size);
  561. if (ret)
  562. goto out_put;
  563. ret = -EFAULT;
  564. if (!i915_gem_object_needs_bit17_swizzle(obj))
  565. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  566. if (ret == -EFAULT)
  567. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  568. out_put:
  569. i915_gem_object_put_pages(obj);
  570. out:
  571. drm_gem_object_unreference(obj);
  572. unlock:
  573. mutex_unlock(&dev->struct_mutex);
  574. return ret;
  575. }
  576. /* This is the fast write path which cannot handle
  577. * page faults in the source data
  578. */
  579. static inline int
  580. fast_user_write(struct io_mapping *mapping,
  581. loff_t page_base, int page_offset,
  582. char __user *user_data,
  583. int length)
  584. {
  585. char *vaddr_atomic;
  586. unsigned long unwritten;
  587. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  588. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  589. user_data, length);
  590. io_mapping_unmap_atomic(vaddr_atomic);
  591. return unwritten;
  592. }
  593. /* Here's the write path which can sleep for
  594. * page faults
  595. */
  596. static inline void
  597. slow_kernel_write(struct io_mapping *mapping,
  598. loff_t gtt_base, int gtt_offset,
  599. struct page *user_page, int user_offset,
  600. int length)
  601. {
  602. char __iomem *dst_vaddr;
  603. char *src_vaddr;
  604. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  605. src_vaddr = kmap(user_page);
  606. memcpy_toio(dst_vaddr + gtt_offset,
  607. src_vaddr + user_offset,
  608. length);
  609. kunmap(user_page);
  610. io_mapping_unmap(dst_vaddr);
  611. }
  612. static inline int
  613. fast_shmem_write(struct page **pages,
  614. loff_t page_base, int page_offset,
  615. char __user *data,
  616. int length)
  617. {
  618. char *vaddr;
  619. int ret;
  620. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  621. ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  622. kunmap_atomic(vaddr);
  623. return ret;
  624. }
  625. /**
  626. * This is the fast pwrite path, where we copy the data directly from the
  627. * user into the GTT, uncached.
  628. */
  629. static int
  630. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  631. struct drm_i915_gem_pwrite *args,
  632. struct drm_file *file_priv)
  633. {
  634. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  635. drm_i915_private_t *dev_priv = dev->dev_private;
  636. ssize_t remain;
  637. loff_t offset, page_base;
  638. char __user *user_data;
  639. int page_offset, page_length;
  640. user_data = (char __user *) (uintptr_t) args->data_ptr;
  641. remain = args->size;
  642. obj_priv = to_intel_bo(obj);
  643. offset = obj_priv->gtt_offset + args->offset;
  644. while (remain > 0) {
  645. /* Operation in this page
  646. *
  647. * page_base = page offset within aperture
  648. * page_offset = offset within page
  649. * page_length = bytes to copy for this page
  650. */
  651. page_base = (offset & ~(PAGE_SIZE-1));
  652. page_offset = offset & (PAGE_SIZE-1);
  653. page_length = remain;
  654. if ((page_offset + remain) > PAGE_SIZE)
  655. page_length = PAGE_SIZE - page_offset;
  656. /* If we get a fault while copying data, then (presumably) our
  657. * source page isn't available. Return the error and we'll
  658. * retry in the slow path.
  659. */
  660. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  661. page_offset, user_data, page_length))
  662. return -EFAULT;
  663. remain -= page_length;
  664. user_data += page_length;
  665. offset += page_length;
  666. }
  667. return 0;
  668. }
  669. /**
  670. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  671. * the memory and maps it using kmap_atomic for copying.
  672. *
  673. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  674. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  675. */
  676. static int
  677. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  678. struct drm_i915_gem_pwrite *args,
  679. struct drm_file *file_priv)
  680. {
  681. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  682. drm_i915_private_t *dev_priv = dev->dev_private;
  683. ssize_t remain;
  684. loff_t gtt_page_base, offset;
  685. loff_t first_data_page, last_data_page, num_pages;
  686. loff_t pinned_pages, i;
  687. struct page **user_pages;
  688. struct mm_struct *mm = current->mm;
  689. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  690. int ret;
  691. uint64_t data_ptr = args->data_ptr;
  692. remain = args->size;
  693. /* Pin the user pages containing the data. We can't fault while
  694. * holding the struct mutex, and all of the pwrite implementations
  695. * want to hold it while dereferencing the user data.
  696. */
  697. first_data_page = data_ptr / PAGE_SIZE;
  698. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  699. num_pages = last_data_page - first_data_page + 1;
  700. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  701. if (user_pages == NULL)
  702. return -ENOMEM;
  703. mutex_unlock(&dev->struct_mutex);
  704. down_read(&mm->mmap_sem);
  705. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  706. num_pages, 0, 0, user_pages, NULL);
  707. up_read(&mm->mmap_sem);
  708. mutex_lock(&dev->struct_mutex);
  709. if (pinned_pages < num_pages) {
  710. ret = -EFAULT;
  711. goto out_unpin_pages;
  712. }
  713. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  714. if (ret)
  715. goto out_unpin_pages;
  716. obj_priv = to_intel_bo(obj);
  717. offset = obj_priv->gtt_offset + args->offset;
  718. while (remain > 0) {
  719. /* Operation in this page
  720. *
  721. * gtt_page_base = page offset within aperture
  722. * gtt_page_offset = offset within page in aperture
  723. * data_page_index = page number in get_user_pages return
  724. * data_page_offset = offset with data_page_index page.
  725. * page_length = bytes to copy for this page
  726. */
  727. gtt_page_base = offset & PAGE_MASK;
  728. gtt_page_offset = offset & ~PAGE_MASK;
  729. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  730. data_page_offset = data_ptr & ~PAGE_MASK;
  731. page_length = remain;
  732. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  733. page_length = PAGE_SIZE - gtt_page_offset;
  734. if ((data_page_offset + page_length) > PAGE_SIZE)
  735. page_length = PAGE_SIZE - data_page_offset;
  736. slow_kernel_write(dev_priv->mm.gtt_mapping,
  737. gtt_page_base, gtt_page_offset,
  738. user_pages[data_page_index],
  739. data_page_offset,
  740. page_length);
  741. remain -= page_length;
  742. offset += page_length;
  743. data_ptr += page_length;
  744. }
  745. out_unpin_pages:
  746. for (i = 0; i < pinned_pages; i++)
  747. page_cache_release(user_pages[i]);
  748. drm_free_large(user_pages);
  749. return ret;
  750. }
  751. /**
  752. * This is the fast shmem pwrite path, which attempts to directly
  753. * copy_from_user into the kmapped pages backing the object.
  754. */
  755. static int
  756. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  757. struct drm_i915_gem_pwrite *args,
  758. struct drm_file *file_priv)
  759. {
  760. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  761. ssize_t remain;
  762. loff_t offset, page_base;
  763. char __user *user_data;
  764. int page_offset, page_length;
  765. user_data = (char __user *) (uintptr_t) args->data_ptr;
  766. remain = args->size;
  767. obj_priv = to_intel_bo(obj);
  768. offset = args->offset;
  769. obj_priv->dirty = 1;
  770. while (remain > 0) {
  771. /* Operation in this page
  772. *
  773. * page_base = page offset within aperture
  774. * page_offset = offset within page
  775. * page_length = bytes to copy for this page
  776. */
  777. page_base = (offset & ~(PAGE_SIZE-1));
  778. page_offset = offset & (PAGE_SIZE-1);
  779. page_length = remain;
  780. if ((page_offset + remain) > PAGE_SIZE)
  781. page_length = PAGE_SIZE - page_offset;
  782. if (fast_shmem_write(obj_priv->pages,
  783. page_base, page_offset,
  784. user_data, page_length))
  785. return -EFAULT;
  786. remain -= page_length;
  787. user_data += page_length;
  788. offset += page_length;
  789. }
  790. return 0;
  791. }
  792. /**
  793. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  794. * the memory and maps it using kmap_atomic for copying.
  795. *
  796. * This avoids taking mmap_sem for faulting on the user's address while the
  797. * struct_mutex is held.
  798. */
  799. static int
  800. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  801. struct drm_i915_gem_pwrite *args,
  802. struct drm_file *file_priv)
  803. {
  804. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  805. struct mm_struct *mm = current->mm;
  806. struct page **user_pages;
  807. ssize_t remain;
  808. loff_t offset, pinned_pages, i;
  809. loff_t first_data_page, last_data_page, num_pages;
  810. int shmem_page_index, shmem_page_offset;
  811. int data_page_index, data_page_offset;
  812. int page_length;
  813. int ret;
  814. uint64_t data_ptr = args->data_ptr;
  815. int do_bit17_swizzling;
  816. remain = args->size;
  817. /* Pin the user pages containing the data. We can't fault while
  818. * holding the struct mutex, and all of the pwrite implementations
  819. * want to hold it while dereferencing the user data.
  820. */
  821. first_data_page = data_ptr / PAGE_SIZE;
  822. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  823. num_pages = last_data_page - first_data_page + 1;
  824. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  825. if (user_pages == NULL)
  826. return -ENOMEM;
  827. mutex_unlock(&dev->struct_mutex);
  828. down_read(&mm->mmap_sem);
  829. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  830. num_pages, 0, 0, user_pages, NULL);
  831. up_read(&mm->mmap_sem);
  832. mutex_lock(&dev->struct_mutex);
  833. if (pinned_pages < num_pages) {
  834. ret = -EFAULT;
  835. goto out;
  836. }
  837. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  838. if (ret)
  839. goto out;
  840. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  841. obj_priv = to_intel_bo(obj);
  842. offset = args->offset;
  843. obj_priv->dirty = 1;
  844. while (remain > 0) {
  845. /* Operation in this page
  846. *
  847. * shmem_page_index = page number within shmem file
  848. * shmem_page_offset = offset within page in shmem file
  849. * data_page_index = page number in get_user_pages return
  850. * data_page_offset = offset with data_page_index page.
  851. * page_length = bytes to copy for this page
  852. */
  853. shmem_page_index = offset / PAGE_SIZE;
  854. shmem_page_offset = offset & ~PAGE_MASK;
  855. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  856. data_page_offset = data_ptr & ~PAGE_MASK;
  857. page_length = remain;
  858. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  859. page_length = PAGE_SIZE - shmem_page_offset;
  860. if ((data_page_offset + page_length) > PAGE_SIZE)
  861. page_length = PAGE_SIZE - data_page_offset;
  862. if (do_bit17_swizzling) {
  863. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  864. shmem_page_offset,
  865. user_pages[data_page_index],
  866. data_page_offset,
  867. page_length,
  868. 0);
  869. } else {
  870. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  871. shmem_page_offset,
  872. user_pages[data_page_index],
  873. data_page_offset,
  874. page_length);
  875. }
  876. remain -= page_length;
  877. data_ptr += page_length;
  878. offset += page_length;
  879. }
  880. out:
  881. for (i = 0; i < pinned_pages; i++)
  882. page_cache_release(user_pages[i]);
  883. drm_free_large(user_pages);
  884. return ret;
  885. }
  886. /**
  887. * Writes data to the object referenced by handle.
  888. *
  889. * On error, the contents of the buffer that were to be modified are undefined.
  890. */
  891. int
  892. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  893. struct drm_file *file)
  894. {
  895. struct drm_i915_gem_pwrite *args = data;
  896. struct drm_gem_object *obj;
  897. struct drm_i915_gem_object *obj_priv;
  898. int ret = 0;
  899. ret = i915_mutex_lock_interruptible(dev);
  900. if (ret)
  901. return ret;
  902. obj = drm_gem_object_lookup(dev, file, args->handle);
  903. if (obj == NULL) {
  904. ret = -ENOENT;
  905. goto unlock;
  906. }
  907. obj_priv = to_intel_bo(obj);
  908. /* Bounds check destination. */
  909. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  910. ret = -EINVAL;
  911. goto out;
  912. }
  913. if (args->size == 0)
  914. goto out;
  915. if (!access_ok(VERIFY_READ,
  916. (char __user *)(uintptr_t)args->data_ptr,
  917. args->size)) {
  918. ret = -EFAULT;
  919. goto out;
  920. }
  921. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  922. args->size);
  923. if (ret) {
  924. ret = -EFAULT;
  925. goto out;
  926. }
  927. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  928. * it would end up going through the fenced access, and we'll get
  929. * different detiling behavior between reading and writing.
  930. * pread/pwrite currently are reading and writing from the CPU
  931. * perspective, requiring manual detiling by the client.
  932. */
  933. if (obj_priv->phys_obj)
  934. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  935. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  936. obj_priv->gtt_space &&
  937. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  938. ret = i915_gem_object_pin(obj, 0, true);
  939. if (ret)
  940. goto out;
  941. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  942. if (ret)
  943. goto out_unpin;
  944. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  945. if (ret == -EFAULT)
  946. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  947. out_unpin:
  948. i915_gem_object_unpin(obj);
  949. } else {
  950. ret = i915_gem_object_get_pages_or_evict(obj);
  951. if (ret)
  952. goto out;
  953. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  954. if (ret)
  955. goto out_put;
  956. ret = -EFAULT;
  957. if (!i915_gem_object_needs_bit17_swizzle(obj))
  958. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  959. if (ret == -EFAULT)
  960. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  961. out_put:
  962. i915_gem_object_put_pages(obj);
  963. }
  964. out:
  965. drm_gem_object_unreference(obj);
  966. unlock:
  967. mutex_unlock(&dev->struct_mutex);
  968. return ret;
  969. }
  970. /**
  971. * Called when user space prepares to use an object with the CPU, either
  972. * through the mmap ioctl's mapping or a GTT mapping.
  973. */
  974. int
  975. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  976. struct drm_file *file_priv)
  977. {
  978. struct drm_i915_private *dev_priv = dev->dev_private;
  979. struct drm_i915_gem_set_domain *args = data;
  980. struct drm_gem_object *obj;
  981. struct drm_i915_gem_object *obj_priv;
  982. uint32_t read_domains = args->read_domains;
  983. uint32_t write_domain = args->write_domain;
  984. int ret;
  985. if (!(dev->driver->driver_features & DRIVER_GEM))
  986. return -ENODEV;
  987. /* Only handle setting domains to types used by the CPU. */
  988. if (write_domain & I915_GEM_GPU_DOMAINS)
  989. return -EINVAL;
  990. if (read_domains & I915_GEM_GPU_DOMAINS)
  991. return -EINVAL;
  992. /* Having something in the write domain implies it's in the read
  993. * domain, and only that read domain. Enforce that in the request.
  994. */
  995. if (write_domain != 0 && read_domains != write_domain)
  996. return -EINVAL;
  997. ret = i915_mutex_lock_interruptible(dev);
  998. if (ret)
  999. return ret;
  1000. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1001. if (obj == NULL) {
  1002. ret = -ENOENT;
  1003. goto unlock;
  1004. }
  1005. obj_priv = to_intel_bo(obj);
  1006. intel_mark_busy(dev, obj);
  1007. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1008. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1009. /* Update the LRU on the fence for the CPU access that's
  1010. * about to occur.
  1011. */
  1012. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1013. struct drm_i915_fence_reg *reg =
  1014. &dev_priv->fence_regs[obj_priv->fence_reg];
  1015. list_move_tail(&reg->lru_list,
  1016. &dev_priv->mm.fence_list);
  1017. }
  1018. /* Silently promote "you're not bound, there was nothing to do"
  1019. * to success, since the client was just asking us to
  1020. * make sure everything was done.
  1021. */
  1022. if (ret == -EINVAL)
  1023. ret = 0;
  1024. } else {
  1025. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1026. }
  1027. /* Maintain LRU order of "inactive" objects */
  1028. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  1029. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1030. drm_gem_object_unreference(obj);
  1031. unlock:
  1032. mutex_unlock(&dev->struct_mutex);
  1033. return ret;
  1034. }
  1035. /**
  1036. * Called when user space has done writes to this buffer
  1037. */
  1038. int
  1039. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1040. struct drm_file *file_priv)
  1041. {
  1042. struct drm_i915_gem_sw_finish *args = data;
  1043. struct drm_gem_object *obj;
  1044. int ret = 0;
  1045. if (!(dev->driver->driver_features & DRIVER_GEM))
  1046. return -ENODEV;
  1047. ret = i915_mutex_lock_interruptible(dev);
  1048. if (ret)
  1049. return ret;
  1050. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1051. if (obj == NULL) {
  1052. ret = -ENOENT;
  1053. goto unlock;
  1054. }
  1055. /* Pinned buffers may be scanout, so flush the cache */
  1056. if (to_intel_bo(obj)->pin_count)
  1057. i915_gem_object_flush_cpu_write_domain(obj);
  1058. drm_gem_object_unreference(obj);
  1059. unlock:
  1060. mutex_unlock(&dev->struct_mutex);
  1061. return ret;
  1062. }
  1063. /**
  1064. * Maps the contents of an object, returning the address it is mapped
  1065. * into.
  1066. *
  1067. * While the mapping holds a reference on the contents of the object, it doesn't
  1068. * imply a ref on the object itself.
  1069. */
  1070. int
  1071. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1072. struct drm_file *file_priv)
  1073. {
  1074. struct drm_i915_private *dev_priv = dev->dev_private;
  1075. struct drm_i915_gem_mmap *args = data;
  1076. struct drm_gem_object *obj;
  1077. loff_t offset;
  1078. unsigned long addr;
  1079. if (!(dev->driver->driver_features & DRIVER_GEM))
  1080. return -ENODEV;
  1081. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1082. if (obj == NULL)
  1083. return -ENOENT;
  1084. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1085. drm_gem_object_unreference_unlocked(obj);
  1086. return -E2BIG;
  1087. }
  1088. offset = args->offset;
  1089. down_write(&current->mm->mmap_sem);
  1090. addr = do_mmap(obj->filp, 0, args->size,
  1091. PROT_READ | PROT_WRITE, MAP_SHARED,
  1092. args->offset);
  1093. up_write(&current->mm->mmap_sem);
  1094. drm_gem_object_unreference_unlocked(obj);
  1095. if (IS_ERR((void *)addr))
  1096. return addr;
  1097. args->addr_ptr = (uint64_t) addr;
  1098. return 0;
  1099. }
  1100. /**
  1101. * i915_gem_fault - fault a page into the GTT
  1102. * vma: VMA in question
  1103. * vmf: fault info
  1104. *
  1105. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1106. * from userspace. The fault handler takes care of binding the object to
  1107. * the GTT (if needed), allocating and programming a fence register (again,
  1108. * only if needed based on whether the old reg is still valid or the object
  1109. * is tiled) and inserting a new PTE into the faulting process.
  1110. *
  1111. * Note that the faulting process may involve evicting existing objects
  1112. * from the GTT and/or fence registers to make room. So performance may
  1113. * suffer if the GTT working set is large or there are few fence registers
  1114. * left.
  1115. */
  1116. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1117. {
  1118. struct drm_gem_object *obj = vma->vm_private_data;
  1119. struct drm_device *dev = obj->dev;
  1120. drm_i915_private_t *dev_priv = dev->dev_private;
  1121. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1122. pgoff_t page_offset;
  1123. unsigned long pfn;
  1124. int ret = 0;
  1125. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1126. /* We don't use vmf->pgoff since that has the fake offset */
  1127. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1128. PAGE_SHIFT;
  1129. /* Now bind it into the GTT if needed */
  1130. mutex_lock(&dev->struct_mutex);
  1131. BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
  1132. if (!i915_gem_object_cpu_accessible(obj_priv))
  1133. i915_gem_object_unbind(obj);
  1134. if (!obj_priv->gtt_space) {
  1135. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1136. if (ret)
  1137. goto unlock;
  1138. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1139. if (ret)
  1140. goto unlock;
  1141. }
  1142. if (!obj_priv->fault_mappable) {
  1143. obj_priv->fault_mappable = true;
  1144. i915_gem_info_update_mappable(dev_priv, obj, true);
  1145. }
  1146. /* Need a new fence register? */
  1147. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1148. ret = i915_gem_object_get_fence_reg(obj, true);
  1149. if (ret)
  1150. goto unlock;
  1151. }
  1152. if (i915_gem_object_is_inactive(obj_priv))
  1153. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1154. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1155. page_offset;
  1156. /* Finally, remap it using the new GTT offset */
  1157. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1158. unlock:
  1159. mutex_unlock(&dev->struct_mutex);
  1160. switch (ret) {
  1161. case 0:
  1162. case -ERESTARTSYS:
  1163. return VM_FAULT_NOPAGE;
  1164. case -ENOMEM:
  1165. case -EAGAIN:
  1166. return VM_FAULT_OOM;
  1167. default:
  1168. return VM_FAULT_SIGBUS;
  1169. }
  1170. }
  1171. /**
  1172. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1173. * @obj: obj in question
  1174. *
  1175. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1176. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1177. * up the object based on the offset and sets up the various memory mapping
  1178. * structures.
  1179. *
  1180. * This routine allocates and attaches a fake offset for @obj.
  1181. */
  1182. static int
  1183. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1184. {
  1185. struct drm_device *dev = obj->dev;
  1186. struct drm_gem_mm *mm = dev->mm_private;
  1187. struct drm_map_list *list;
  1188. struct drm_local_map *map;
  1189. int ret = 0;
  1190. /* Set the object up for mmap'ing */
  1191. list = &obj->map_list;
  1192. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1193. if (!list->map)
  1194. return -ENOMEM;
  1195. map = list->map;
  1196. map->type = _DRM_GEM;
  1197. map->size = obj->size;
  1198. map->handle = obj;
  1199. /* Get a DRM GEM mmap offset allocated... */
  1200. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1201. obj->size / PAGE_SIZE, 0, 0);
  1202. if (!list->file_offset_node) {
  1203. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1204. ret = -ENOSPC;
  1205. goto out_free_list;
  1206. }
  1207. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1208. obj->size / PAGE_SIZE, 0);
  1209. if (!list->file_offset_node) {
  1210. ret = -ENOMEM;
  1211. goto out_free_list;
  1212. }
  1213. list->hash.key = list->file_offset_node->start;
  1214. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1215. if (ret) {
  1216. DRM_ERROR("failed to add to map hash\n");
  1217. goto out_free_mm;
  1218. }
  1219. return 0;
  1220. out_free_mm:
  1221. drm_mm_put_block(list->file_offset_node);
  1222. out_free_list:
  1223. kfree(list->map);
  1224. list->map = NULL;
  1225. return ret;
  1226. }
  1227. /**
  1228. * i915_gem_release_mmap - remove physical page mappings
  1229. * @obj: obj in question
  1230. *
  1231. * Preserve the reservation of the mmapping with the DRM core code, but
  1232. * relinquish ownership of the pages back to the system.
  1233. *
  1234. * It is vital that we remove the page mapping if we have mapped a tiled
  1235. * object through the GTT and then lose the fence register due to
  1236. * resource pressure. Similarly if the object has been moved out of the
  1237. * aperture, than pages mapped into userspace must be revoked. Removing the
  1238. * mapping will then trigger a page fault on the next user access, allowing
  1239. * fixup by i915_gem_fault().
  1240. */
  1241. void
  1242. i915_gem_release_mmap(struct drm_gem_object *obj)
  1243. {
  1244. struct drm_device *dev = obj->dev;
  1245. struct drm_i915_private *dev_priv = dev->dev_private;
  1246. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1247. if (unlikely(obj->map_list.map && dev->dev_mapping))
  1248. unmap_mapping_range(dev->dev_mapping,
  1249. (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
  1250. obj->size, 1);
  1251. if (obj_priv->fault_mappable) {
  1252. obj_priv->fault_mappable = false;
  1253. i915_gem_info_update_mappable(dev_priv, obj, false);
  1254. }
  1255. }
  1256. static void
  1257. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1258. {
  1259. struct drm_device *dev = obj->dev;
  1260. struct drm_gem_mm *mm = dev->mm_private;
  1261. struct drm_map_list *list = &obj->map_list;
  1262. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1263. drm_mm_put_block(list->file_offset_node);
  1264. kfree(list->map);
  1265. list->map = NULL;
  1266. }
  1267. /**
  1268. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1269. * @obj: object to check
  1270. *
  1271. * Return the required GTT alignment for an object, taking into account
  1272. * potential fence register mapping if needed.
  1273. */
  1274. static uint32_t
  1275. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1276. {
  1277. struct drm_device *dev = obj->dev;
  1278. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1279. int start, i;
  1280. /*
  1281. * Minimum alignment is 4k (GTT page size), but might be greater
  1282. * if a fence register is needed for the object.
  1283. */
  1284. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1285. return 4096;
  1286. /*
  1287. * Previous chips need to be aligned to the size of the smallest
  1288. * fence register that can contain the object.
  1289. */
  1290. if (INTEL_INFO(dev)->gen == 3)
  1291. start = 1024*1024;
  1292. else
  1293. start = 512*1024;
  1294. for (i = start; i < obj->size; i <<= 1)
  1295. ;
  1296. return i;
  1297. }
  1298. /**
  1299. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1300. * @dev: DRM device
  1301. * @data: GTT mapping ioctl data
  1302. * @file_priv: GEM object info
  1303. *
  1304. * Simply returns the fake offset to userspace so it can mmap it.
  1305. * The mmap call will end up in drm_gem_mmap(), which will set things
  1306. * up so we can get faults in the handler above.
  1307. *
  1308. * The fault handler will take care of binding the object into the GTT
  1309. * (since it may have been evicted to make room for something), allocating
  1310. * a fence register, and mapping the appropriate aperture address into
  1311. * userspace.
  1312. */
  1313. int
  1314. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1315. struct drm_file *file_priv)
  1316. {
  1317. struct drm_i915_private *dev_priv = dev->dev_private;
  1318. struct drm_i915_gem_mmap_gtt *args = data;
  1319. struct drm_gem_object *obj;
  1320. struct drm_i915_gem_object *obj_priv;
  1321. int ret;
  1322. if (!(dev->driver->driver_features & DRIVER_GEM))
  1323. return -ENODEV;
  1324. ret = i915_mutex_lock_interruptible(dev);
  1325. if (ret)
  1326. return ret;
  1327. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1328. if (obj == NULL) {
  1329. ret = -ENOENT;
  1330. goto unlock;
  1331. }
  1332. obj_priv = to_intel_bo(obj);
  1333. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1334. ret = -E2BIG;
  1335. goto unlock;
  1336. }
  1337. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1338. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1339. ret = -EINVAL;
  1340. goto out;
  1341. }
  1342. if (!obj->map_list.map) {
  1343. ret = i915_gem_create_mmap_offset(obj);
  1344. if (ret)
  1345. goto out;
  1346. }
  1347. args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
  1348. out:
  1349. drm_gem_object_unreference(obj);
  1350. unlock:
  1351. mutex_unlock(&dev->struct_mutex);
  1352. return ret;
  1353. }
  1354. static void
  1355. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1356. {
  1357. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1358. int page_count = obj->size / PAGE_SIZE;
  1359. int i;
  1360. BUG_ON(obj_priv->pages_refcount == 0);
  1361. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1362. if (--obj_priv->pages_refcount != 0)
  1363. return;
  1364. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1365. i915_gem_object_save_bit_17_swizzle(obj);
  1366. if (obj_priv->madv == I915_MADV_DONTNEED)
  1367. obj_priv->dirty = 0;
  1368. for (i = 0; i < page_count; i++) {
  1369. if (obj_priv->dirty)
  1370. set_page_dirty(obj_priv->pages[i]);
  1371. if (obj_priv->madv == I915_MADV_WILLNEED)
  1372. mark_page_accessed(obj_priv->pages[i]);
  1373. page_cache_release(obj_priv->pages[i]);
  1374. }
  1375. obj_priv->dirty = 0;
  1376. drm_free_large(obj_priv->pages);
  1377. obj_priv->pages = NULL;
  1378. }
  1379. static uint32_t
  1380. i915_gem_next_request_seqno(struct drm_device *dev,
  1381. struct intel_ring_buffer *ring)
  1382. {
  1383. drm_i915_private_t *dev_priv = dev->dev_private;
  1384. ring->outstanding_lazy_request = true;
  1385. return dev_priv->next_seqno;
  1386. }
  1387. static void
  1388. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1389. struct intel_ring_buffer *ring)
  1390. {
  1391. struct drm_device *dev = obj->dev;
  1392. struct drm_i915_private *dev_priv = dev->dev_private;
  1393. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1394. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1395. BUG_ON(ring == NULL);
  1396. obj_priv->ring = ring;
  1397. /* Add a reference if we're newly entering the active list. */
  1398. if (!obj_priv->active) {
  1399. drm_gem_object_reference(obj);
  1400. obj_priv->active = 1;
  1401. }
  1402. /* Move from whatever list we were on to the tail of execution. */
  1403. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1404. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1405. obj_priv->last_rendering_seqno = seqno;
  1406. }
  1407. static void
  1408. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1409. {
  1410. struct drm_device *dev = obj->dev;
  1411. drm_i915_private_t *dev_priv = dev->dev_private;
  1412. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1413. BUG_ON(!obj_priv->active);
  1414. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1415. list_del_init(&obj_priv->ring_list);
  1416. obj_priv->last_rendering_seqno = 0;
  1417. }
  1418. /* Immediately discard the backing storage */
  1419. static void
  1420. i915_gem_object_truncate(struct drm_gem_object *obj)
  1421. {
  1422. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1423. struct inode *inode;
  1424. /* Our goal here is to return as much of the memory as
  1425. * is possible back to the system as we are called from OOM.
  1426. * To do this we must instruct the shmfs to drop all of its
  1427. * backing pages, *now*. Here we mirror the actions taken
  1428. * when by shmem_delete_inode() to release the backing store.
  1429. */
  1430. inode = obj->filp->f_path.dentry->d_inode;
  1431. truncate_inode_pages(inode->i_mapping, 0);
  1432. if (inode->i_op->truncate_range)
  1433. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1434. obj_priv->madv = __I915_MADV_PURGED;
  1435. }
  1436. static inline int
  1437. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1438. {
  1439. return obj_priv->madv == I915_MADV_DONTNEED;
  1440. }
  1441. static void
  1442. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1443. {
  1444. struct drm_device *dev = obj->dev;
  1445. drm_i915_private_t *dev_priv = dev->dev_private;
  1446. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1447. if (obj_priv->pin_count != 0)
  1448. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1449. else
  1450. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1451. list_del_init(&obj_priv->ring_list);
  1452. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1453. obj_priv->last_rendering_seqno = 0;
  1454. obj_priv->ring = NULL;
  1455. if (obj_priv->active) {
  1456. obj_priv->active = 0;
  1457. drm_gem_object_unreference(obj);
  1458. }
  1459. WARN_ON(i915_verify_lists(dev));
  1460. }
  1461. static void
  1462. i915_gem_process_flushing_list(struct drm_device *dev,
  1463. uint32_t flush_domains,
  1464. struct intel_ring_buffer *ring)
  1465. {
  1466. drm_i915_private_t *dev_priv = dev->dev_private;
  1467. struct drm_i915_gem_object *obj_priv, *next;
  1468. list_for_each_entry_safe(obj_priv, next,
  1469. &ring->gpu_write_list,
  1470. gpu_write_list) {
  1471. struct drm_gem_object *obj = &obj_priv->base;
  1472. if (obj->write_domain & flush_domains) {
  1473. uint32_t old_write_domain = obj->write_domain;
  1474. obj->write_domain = 0;
  1475. list_del_init(&obj_priv->gpu_write_list);
  1476. i915_gem_object_move_to_active(obj, ring);
  1477. /* update the fence lru list */
  1478. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1479. struct drm_i915_fence_reg *reg =
  1480. &dev_priv->fence_regs[obj_priv->fence_reg];
  1481. list_move_tail(&reg->lru_list,
  1482. &dev_priv->mm.fence_list);
  1483. }
  1484. trace_i915_gem_object_change_domain(obj,
  1485. obj->read_domains,
  1486. old_write_domain);
  1487. }
  1488. }
  1489. }
  1490. int
  1491. i915_add_request(struct drm_device *dev,
  1492. struct drm_file *file,
  1493. struct drm_i915_gem_request *request,
  1494. struct intel_ring_buffer *ring)
  1495. {
  1496. drm_i915_private_t *dev_priv = dev->dev_private;
  1497. struct drm_i915_file_private *file_priv = NULL;
  1498. uint32_t seqno;
  1499. int was_empty;
  1500. int ret;
  1501. BUG_ON(request == NULL);
  1502. if (file != NULL)
  1503. file_priv = file->driver_priv;
  1504. ret = ring->add_request(ring, &seqno);
  1505. if (ret)
  1506. return ret;
  1507. ring->outstanding_lazy_request = false;
  1508. request->seqno = seqno;
  1509. request->ring = ring;
  1510. request->emitted_jiffies = jiffies;
  1511. was_empty = list_empty(&ring->request_list);
  1512. list_add_tail(&request->list, &ring->request_list);
  1513. if (file_priv) {
  1514. spin_lock(&file_priv->mm.lock);
  1515. request->file_priv = file_priv;
  1516. list_add_tail(&request->client_list,
  1517. &file_priv->mm.request_list);
  1518. spin_unlock(&file_priv->mm.lock);
  1519. }
  1520. if (!dev_priv->mm.suspended) {
  1521. mod_timer(&dev_priv->hangcheck_timer,
  1522. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1523. if (was_empty)
  1524. queue_delayed_work(dev_priv->wq,
  1525. &dev_priv->mm.retire_work, HZ);
  1526. }
  1527. return 0;
  1528. }
  1529. /**
  1530. * Command execution barrier
  1531. *
  1532. * Ensures that all commands in the ring are finished
  1533. * before signalling the CPU
  1534. */
  1535. static void
  1536. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1537. {
  1538. uint32_t flush_domains = 0;
  1539. /* The sampler always gets flushed on i965 (sigh) */
  1540. if (INTEL_INFO(dev)->gen >= 4)
  1541. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1542. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1543. }
  1544. static inline void
  1545. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1546. {
  1547. struct drm_i915_file_private *file_priv = request->file_priv;
  1548. if (!file_priv)
  1549. return;
  1550. spin_lock(&file_priv->mm.lock);
  1551. list_del(&request->client_list);
  1552. request->file_priv = NULL;
  1553. spin_unlock(&file_priv->mm.lock);
  1554. }
  1555. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1556. struct intel_ring_buffer *ring)
  1557. {
  1558. while (!list_empty(&ring->request_list)) {
  1559. struct drm_i915_gem_request *request;
  1560. request = list_first_entry(&ring->request_list,
  1561. struct drm_i915_gem_request,
  1562. list);
  1563. list_del(&request->list);
  1564. i915_gem_request_remove_from_client(request);
  1565. kfree(request);
  1566. }
  1567. while (!list_empty(&ring->active_list)) {
  1568. struct drm_i915_gem_object *obj_priv;
  1569. obj_priv = list_first_entry(&ring->active_list,
  1570. struct drm_i915_gem_object,
  1571. ring_list);
  1572. obj_priv->base.write_domain = 0;
  1573. list_del_init(&obj_priv->gpu_write_list);
  1574. i915_gem_object_move_to_inactive(&obj_priv->base);
  1575. }
  1576. }
  1577. void i915_gem_reset(struct drm_device *dev)
  1578. {
  1579. struct drm_i915_private *dev_priv = dev->dev_private;
  1580. struct drm_i915_gem_object *obj_priv;
  1581. int i;
  1582. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1583. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1584. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1585. /* Remove anything from the flushing lists. The GPU cache is likely
  1586. * to be lost on reset along with the data, so simply move the
  1587. * lost bo to the inactive list.
  1588. */
  1589. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1590. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1591. struct drm_i915_gem_object,
  1592. mm_list);
  1593. obj_priv->base.write_domain = 0;
  1594. list_del_init(&obj_priv->gpu_write_list);
  1595. i915_gem_object_move_to_inactive(&obj_priv->base);
  1596. }
  1597. /* Move everything out of the GPU domains to ensure we do any
  1598. * necessary invalidation upon reuse.
  1599. */
  1600. list_for_each_entry(obj_priv,
  1601. &dev_priv->mm.inactive_list,
  1602. mm_list)
  1603. {
  1604. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1605. }
  1606. /* The fence registers are invalidated so clear them out */
  1607. for (i = 0; i < 16; i++) {
  1608. struct drm_i915_fence_reg *reg;
  1609. reg = &dev_priv->fence_regs[i];
  1610. if (!reg->obj)
  1611. continue;
  1612. i915_gem_clear_fence_reg(reg->obj);
  1613. }
  1614. }
  1615. /**
  1616. * This function clears the request list as sequence numbers are passed.
  1617. */
  1618. static void
  1619. i915_gem_retire_requests_ring(struct drm_device *dev,
  1620. struct intel_ring_buffer *ring)
  1621. {
  1622. drm_i915_private_t *dev_priv = dev->dev_private;
  1623. uint32_t seqno;
  1624. if (!ring->status_page.page_addr ||
  1625. list_empty(&ring->request_list))
  1626. return;
  1627. WARN_ON(i915_verify_lists(dev));
  1628. seqno = ring->get_seqno(ring);
  1629. while (!list_empty(&ring->request_list)) {
  1630. struct drm_i915_gem_request *request;
  1631. request = list_first_entry(&ring->request_list,
  1632. struct drm_i915_gem_request,
  1633. list);
  1634. if (!i915_seqno_passed(seqno, request->seqno))
  1635. break;
  1636. trace_i915_gem_request_retire(dev, request->seqno);
  1637. list_del(&request->list);
  1638. i915_gem_request_remove_from_client(request);
  1639. kfree(request);
  1640. }
  1641. /* Move any buffers on the active list that are no longer referenced
  1642. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1643. */
  1644. while (!list_empty(&ring->active_list)) {
  1645. struct drm_gem_object *obj;
  1646. struct drm_i915_gem_object *obj_priv;
  1647. obj_priv = list_first_entry(&ring->active_list,
  1648. struct drm_i915_gem_object,
  1649. ring_list);
  1650. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1651. break;
  1652. obj = &obj_priv->base;
  1653. if (obj->write_domain != 0)
  1654. i915_gem_object_move_to_flushing(obj);
  1655. else
  1656. i915_gem_object_move_to_inactive(obj);
  1657. }
  1658. if (unlikely (dev_priv->trace_irq_seqno &&
  1659. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1660. ring->user_irq_put(ring);
  1661. dev_priv->trace_irq_seqno = 0;
  1662. }
  1663. WARN_ON(i915_verify_lists(dev));
  1664. }
  1665. void
  1666. i915_gem_retire_requests(struct drm_device *dev)
  1667. {
  1668. drm_i915_private_t *dev_priv = dev->dev_private;
  1669. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1670. struct drm_i915_gem_object *obj_priv, *tmp;
  1671. /* We must be careful that during unbind() we do not
  1672. * accidentally infinitely recurse into retire requests.
  1673. * Currently:
  1674. * retire -> free -> unbind -> wait -> retire_ring
  1675. */
  1676. list_for_each_entry_safe(obj_priv, tmp,
  1677. &dev_priv->mm.deferred_free_list,
  1678. mm_list)
  1679. i915_gem_free_object_tail(&obj_priv->base);
  1680. }
  1681. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1682. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1683. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1684. }
  1685. static void
  1686. i915_gem_retire_work_handler(struct work_struct *work)
  1687. {
  1688. drm_i915_private_t *dev_priv;
  1689. struct drm_device *dev;
  1690. dev_priv = container_of(work, drm_i915_private_t,
  1691. mm.retire_work.work);
  1692. dev = dev_priv->dev;
  1693. /* Come back later if the device is busy... */
  1694. if (!mutex_trylock(&dev->struct_mutex)) {
  1695. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1696. return;
  1697. }
  1698. i915_gem_retire_requests(dev);
  1699. if (!dev_priv->mm.suspended &&
  1700. (!list_empty(&dev_priv->render_ring.request_list) ||
  1701. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1702. !list_empty(&dev_priv->blt_ring.request_list)))
  1703. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1704. mutex_unlock(&dev->struct_mutex);
  1705. }
  1706. int
  1707. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1708. bool interruptible, struct intel_ring_buffer *ring)
  1709. {
  1710. drm_i915_private_t *dev_priv = dev->dev_private;
  1711. u32 ier;
  1712. int ret = 0;
  1713. BUG_ON(seqno == 0);
  1714. if (atomic_read(&dev_priv->mm.wedged))
  1715. return -EAGAIN;
  1716. if (ring->outstanding_lazy_request) {
  1717. struct drm_i915_gem_request *request;
  1718. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1719. if (request == NULL)
  1720. return -ENOMEM;
  1721. ret = i915_add_request(dev, NULL, request, ring);
  1722. if (ret) {
  1723. kfree(request);
  1724. return ret;
  1725. }
  1726. seqno = request->seqno;
  1727. }
  1728. BUG_ON(seqno == dev_priv->next_seqno);
  1729. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1730. if (HAS_PCH_SPLIT(dev))
  1731. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1732. else
  1733. ier = I915_READ(IER);
  1734. if (!ier) {
  1735. DRM_ERROR("something (likely vbetool) disabled "
  1736. "interrupts, re-enabling\n");
  1737. i915_driver_irq_preinstall(dev);
  1738. i915_driver_irq_postinstall(dev);
  1739. }
  1740. trace_i915_gem_request_wait_begin(dev, seqno);
  1741. ring->waiting_seqno = seqno;
  1742. ring->user_irq_get(ring);
  1743. if (interruptible)
  1744. ret = wait_event_interruptible(ring->irq_queue,
  1745. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1746. || atomic_read(&dev_priv->mm.wedged));
  1747. else
  1748. wait_event(ring->irq_queue,
  1749. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1750. || atomic_read(&dev_priv->mm.wedged));
  1751. ring->user_irq_put(ring);
  1752. ring->waiting_seqno = 0;
  1753. trace_i915_gem_request_wait_end(dev, seqno);
  1754. }
  1755. if (atomic_read(&dev_priv->mm.wedged))
  1756. ret = -EAGAIN;
  1757. if (ret && ret != -ERESTARTSYS)
  1758. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1759. __func__, ret, seqno, ring->get_seqno(ring),
  1760. dev_priv->next_seqno);
  1761. /* Directly dispatch request retiring. While we have the work queue
  1762. * to handle this, the waiter on a request often wants an associated
  1763. * buffer to have made it to the inactive list, and we would need
  1764. * a separate wait queue to handle that.
  1765. */
  1766. if (ret == 0)
  1767. i915_gem_retire_requests_ring(dev, ring);
  1768. return ret;
  1769. }
  1770. /**
  1771. * Waits for a sequence number to be signaled, and cleans up the
  1772. * request and object lists appropriately for that event.
  1773. */
  1774. static int
  1775. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1776. struct intel_ring_buffer *ring)
  1777. {
  1778. return i915_do_wait_request(dev, seqno, 1, ring);
  1779. }
  1780. static void
  1781. i915_gem_flush_ring(struct drm_device *dev,
  1782. struct drm_file *file_priv,
  1783. struct intel_ring_buffer *ring,
  1784. uint32_t invalidate_domains,
  1785. uint32_t flush_domains)
  1786. {
  1787. ring->flush(ring, invalidate_domains, flush_domains);
  1788. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1789. }
  1790. static void
  1791. i915_gem_flush(struct drm_device *dev,
  1792. struct drm_file *file_priv,
  1793. uint32_t invalidate_domains,
  1794. uint32_t flush_domains,
  1795. uint32_t flush_rings)
  1796. {
  1797. drm_i915_private_t *dev_priv = dev->dev_private;
  1798. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1799. drm_agp_chipset_flush(dev);
  1800. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1801. if (flush_rings & RING_RENDER)
  1802. i915_gem_flush_ring(dev, file_priv,
  1803. &dev_priv->render_ring,
  1804. invalidate_domains, flush_domains);
  1805. if (flush_rings & RING_BSD)
  1806. i915_gem_flush_ring(dev, file_priv,
  1807. &dev_priv->bsd_ring,
  1808. invalidate_domains, flush_domains);
  1809. if (flush_rings & RING_BLT)
  1810. i915_gem_flush_ring(dev, file_priv,
  1811. &dev_priv->blt_ring,
  1812. invalidate_domains, flush_domains);
  1813. }
  1814. }
  1815. /**
  1816. * Ensures that all rendering to the object has completed and the object is
  1817. * safe to unbind from the GTT or access from the CPU.
  1818. */
  1819. static int
  1820. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1821. bool interruptible)
  1822. {
  1823. struct drm_device *dev = obj->dev;
  1824. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1825. int ret;
  1826. /* This function only exists to support waiting for existing rendering,
  1827. * not for emitting required flushes.
  1828. */
  1829. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1830. /* If there is rendering queued on the buffer being evicted, wait for
  1831. * it.
  1832. */
  1833. if (obj_priv->active) {
  1834. ret = i915_do_wait_request(dev,
  1835. obj_priv->last_rendering_seqno,
  1836. interruptible,
  1837. obj_priv->ring);
  1838. if (ret)
  1839. return ret;
  1840. }
  1841. return 0;
  1842. }
  1843. /**
  1844. * Unbinds an object from the GTT aperture.
  1845. */
  1846. int
  1847. i915_gem_object_unbind(struct drm_gem_object *obj)
  1848. {
  1849. struct drm_device *dev = obj->dev;
  1850. struct drm_i915_private *dev_priv = dev->dev_private;
  1851. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1852. int ret = 0;
  1853. if (obj_priv->gtt_space == NULL)
  1854. return 0;
  1855. if (obj_priv->pin_count != 0) {
  1856. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1857. return -EINVAL;
  1858. }
  1859. /* blow away mappings if mapped through GTT */
  1860. i915_gem_release_mmap(obj);
  1861. /* Move the object to the CPU domain to ensure that
  1862. * any possible CPU writes while it's not in the GTT
  1863. * are flushed when we go to remap it. This will
  1864. * also ensure that all pending GPU writes are finished
  1865. * before we unbind.
  1866. */
  1867. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1868. if (ret == -ERESTARTSYS)
  1869. return ret;
  1870. /* Continue on if we fail due to EIO, the GPU is hung so we
  1871. * should be safe and we need to cleanup or else we might
  1872. * cause memory corruption through use-after-free.
  1873. */
  1874. if (ret) {
  1875. i915_gem_clflush_object(obj);
  1876. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1877. }
  1878. /* release the fence reg _after_ flushing */
  1879. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1880. i915_gem_clear_fence_reg(obj);
  1881. drm_unbind_agp(obj_priv->agp_mem);
  1882. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1883. i915_gem_object_put_pages(obj);
  1884. BUG_ON(obj_priv->pages_refcount);
  1885. i915_gem_info_remove_gtt(dev_priv, obj);
  1886. list_del_init(&obj_priv->mm_list);
  1887. drm_mm_put_block(obj_priv->gtt_space);
  1888. obj_priv->gtt_space = NULL;
  1889. obj_priv->gtt_offset = 0;
  1890. if (i915_gem_object_is_purgeable(obj_priv))
  1891. i915_gem_object_truncate(obj);
  1892. trace_i915_gem_object_unbind(obj);
  1893. return ret;
  1894. }
  1895. static int i915_ring_idle(struct drm_device *dev,
  1896. struct intel_ring_buffer *ring)
  1897. {
  1898. if (list_empty(&ring->gpu_write_list))
  1899. return 0;
  1900. i915_gem_flush_ring(dev, NULL, ring,
  1901. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1902. return i915_wait_request(dev,
  1903. i915_gem_next_request_seqno(dev, ring),
  1904. ring);
  1905. }
  1906. int
  1907. i915_gpu_idle(struct drm_device *dev)
  1908. {
  1909. drm_i915_private_t *dev_priv = dev->dev_private;
  1910. bool lists_empty;
  1911. int ret;
  1912. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1913. list_empty(&dev_priv->render_ring.active_list) &&
  1914. list_empty(&dev_priv->bsd_ring.active_list) &&
  1915. list_empty(&dev_priv->blt_ring.active_list));
  1916. if (lists_empty)
  1917. return 0;
  1918. /* Flush everything onto the inactive list. */
  1919. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1920. if (ret)
  1921. return ret;
  1922. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1923. if (ret)
  1924. return ret;
  1925. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1926. if (ret)
  1927. return ret;
  1928. return 0;
  1929. }
  1930. static int
  1931. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1932. gfp_t gfpmask)
  1933. {
  1934. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1935. int page_count, i;
  1936. struct address_space *mapping;
  1937. struct inode *inode;
  1938. struct page *page;
  1939. BUG_ON(obj_priv->pages_refcount
  1940. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1941. if (obj_priv->pages_refcount++ != 0)
  1942. return 0;
  1943. /* Get the list of pages out of our struct file. They'll be pinned
  1944. * at this point until we release them.
  1945. */
  1946. page_count = obj->size / PAGE_SIZE;
  1947. BUG_ON(obj_priv->pages != NULL);
  1948. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1949. if (obj_priv->pages == NULL) {
  1950. obj_priv->pages_refcount--;
  1951. return -ENOMEM;
  1952. }
  1953. inode = obj->filp->f_path.dentry->d_inode;
  1954. mapping = inode->i_mapping;
  1955. for (i = 0; i < page_count; i++) {
  1956. page = read_cache_page_gfp(mapping, i,
  1957. GFP_HIGHUSER |
  1958. __GFP_COLD |
  1959. __GFP_RECLAIMABLE |
  1960. gfpmask);
  1961. if (IS_ERR(page))
  1962. goto err_pages;
  1963. obj_priv->pages[i] = page;
  1964. }
  1965. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1966. i915_gem_object_do_bit_17_swizzle(obj);
  1967. return 0;
  1968. err_pages:
  1969. while (i--)
  1970. page_cache_release(obj_priv->pages[i]);
  1971. drm_free_large(obj_priv->pages);
  1972. obj_priv->pages = NULL;
  1973. obj_priv->pages_refcount--;
  1974. return PTR_ERR(page);
  1975. }
  1976. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1977. {
  1978. struct drm_gem_object *obj = reg->obj;
  1979. struct drm_device *dev = obj->dev;
  1980. drm_i915_private_t *dev_priv = dev->dev_private;
  1981. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1982. int regnum = obj_priv->fence_reg;
  1983. uint64_t val;
  1984. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1985. 0xfffff000) << 32;
  1986. val |= obj_priv->gtt_offset & 0xfffff000;
  1987. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1988. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1989. if (obj_priv->tiling_mode == I915_TILING_Y)
  1990. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1991. val |= I965_FENCE_REG_VALID;
  1992. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1993. }
  1994. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1995. {
  1996. struct drm_gem_object *obj = reg->obj;
  1997. struct drm_device *dev = obj->dev;
  1998. drm_i915_private_t *dev_priv = dev->dev_private;
  1999. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2000. int regnum = obj_priv->fence_reg;
  2001. uint64_t val;
  2002. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  2003. 0xfffff000) << 32;
  2004. val |= obj_priv->gtt_offset & 0xfffff000;
  2005. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2006. if (obj_priv->tiling_mode == I915_TILING_Y)
  2007. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2008. val |= I965_FENCE_REG_VALID;
  2009. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  2010. }
  2011. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  2012. {
  2013. struct drm_gem_object *obj = reg->obj;
  2014. struct drm_device *dev = obj->dev;
  2015. drm_i915_private_t *dev_priv = dev->dev_private;
  2016. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2017. int regnum = obj_priv->fence_reg;
  2018. int tile_width;
  2019. uint32_t fence_reg, val;
  2020. uint32_t pitch_val;
  2021. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  2022. (obj_priv->gtt_offset & (obj->size - 1))) {
  2023. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  2024. __func__, obj_priv->gtt_offset, obj->size);
  2025. return;
  2026. }
  2027. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2028. HAS_128_BYTE_Y_TILING(dev))
  2029. tile_width = 128;
  2030. else
  2031. tile_width = 512;
  2032. /* Note: pitch better be a power of two tile widths */
  2033. pitch_val = obj_priv->stride / tile_width;
  2034. pitch_val = ffs(pitch_val) - 1;
  2035. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2036. HAS_128_BYTE_Y_TILING(dev))
  2037. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2038. else
  2039. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2040. val = obj_priv->gtt_offset;
  2041. if (obj_priv->tiling_mode == I915_TILING_Y)
  2042. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2043. val |= I915_FENCE_SIZE_BITS(obj->size);
  2044. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2045. val |= I830_FENCE_REG_VALID;
  2046. if (regnum < 8)
  2047. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  2048. else
  2049. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  2050. I915_WRITE(fence_reg, val);
  2051. }
  2052. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  2053. {
  2054. struct drm_gem_object *obj = reg->obj;
  2055. struct drm_device *dev = obj->dev;
  2056. drm_i915_private_t *dev_priv = dev->dev_private;
  2057. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2058. int regnum = obj_priv->fence_reg;
  2059. uint32_t val;
  2060. uint32_t pitch_val;
  2061. uint32_t fence_size_bits;
  2062. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2063. (obj_priv->gtt_offset & (obj->size - 1))) {
  2064. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2065. __func__, obj_priv->gtt_offset);
  2066. return;
  2067. }
  2068. pitch_val = obj_priv->stride / 128;
  2069. pitch_val = ffs(pitch_val) - 1;
  2070. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2071. val = obj_priv->gtt_offset;
  2072. if (obj_priv->tiling_mode == I915_TILING_Y)
  2073. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2074. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  2075. WARN_ON(fence_size_bits & ~0x00000f00);
  2076. val |= fence_size_bits;
  2077. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2078. val |= I830_FENCE_REG_VALID;
  2079. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2080. }
  2081. static int i915_find_fence_reg(struct drm_device *dev,
  2082. bool interruptible)
  2083. {
  2084. struct drm_i915_fence_reg *reg = NULL;
  2085. struct drm_i915_gem_object *obj_priv = NULL;
  2086. struct drm_i915_private *dev_priv = dev->dev_private;
  2087. struct drm_gem_object *obj = NULL;
  2088. int i, avail, ret;
  2089. /* First try to find a free reg */
  2090. avail = 0;
  2091. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2092. reg = &dev_priv->fence_regs[i];
  2093. if (!reg->obj)
  2094. return i;
  2095. obj_priv = to_intel_bo(reg->obj);
  2096. if (!obj_priv->pin_count)
  2097. avail++;
  2098. }
  2099. if (avail == 0)
  2100. return -ENOSPC;
  2101. /* None available, try to steal one or wait for a user to finish */
  2102. i = I915_FENCE_REG_NONE;
  2103. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2104. lru_list) {
  2105. obj = reg->obj;
  2106. obj_priv = to_intel_bo(obj);
  2107. if (obj_priv->pin_count)
  2108. continue;
  2109. /* found one! */
  2110. i = obj_priv->fence_reg;
  2111. break;
  2112. }
  2113. BUG_ON(i == I915_FENCE_REG_NONE);
  2114. /* We only have a reference on obj from the active list. put_fence_reg
  2115. * might drop that one, causing a use-after-free in it. So hold a
  2116. * private reference to obj like the other callers of put_fence_reg
  2117. * (set_tiling ioctl) do. */
  2118. drm_gem_object_reference(obj);
  2119. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2120. drm_gem_object_unreference(obj);
  2121. if (ret != 0)
  2122. return ret;
  2123. return i;
  2124. }
  2125. /**
  2126. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2127. * @obj: object to map through a fence reg
  2128. *
  2129. * When mapping objects through the GTT, userspace wants to be able to write
  2130. * to them without having to worry about swizzling if the object is tiled.
  2131. *
  2132. * This function walks the fence regs looking for a free one for @obj,
  2133. * stealing one if it can't find any.
  2134. *
  2135. * It then sets up the reg based on the object's properties: address, pitch
  2136. * and tiling format.
  2137. */
  2138. int
  2139. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2140. bool interruptible)
  2141. {
  2142. struct drm_device *dev = obj->dev;
  2143. struct drm_i915_private *dev_priv = dev->dev_private;
  2144. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2145. struct drm_i915_fence_reg *reg = NULL;
  2146. int ret;
  2147. /* Just update our place in the LRU if our fence is getting used. */
  2148. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2149. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2150. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2151. return 0;
  2152. }
  2153. switch (obj_priv->tiling_mode) {
  2154. case I915_TILING_NONE:
  2155. WARN(1, "allocating a fence for non-tiled object?\n");
  2156. break;
  2157. case I915_TILING_X:
  2158. if (!obj_priv->stride)
  2159. return -EINVAL;
  2160. WARN((obj_priv->stride & (512 - 1)),
  2161. "object 0x%08x is X tiled but has non-512B pitch\n",
  2162. obj_priv->gtt_offset);
  2163. break;
  2164. case I915_TILING_Y:
  2165. if (!obj_priv->stride)
  2166. return -EINVAL;
  2167. WARN((obj_priv->stride & (128 - 1)),
  2168. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2169. obj_priv->gtt_offset);
  2170. break;
  2171. }
  2172. ret = i915_find_fence_reg(dev, interruptible);
  2173. if (ret < 0)
  2174. return ret;
  2175. obj_priv->fence_reg = ret;
  2176. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2177. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2178. reg->obj = obj;
  2179. switch (INTEL_INFO(dev)->gen) {
  2180. case 6:
  2181. sandybridge_write_fence_reg(reg);
  2182. break;
  2183. case 5:
  2184. case 4:
  2185. i965_write_fence_reg(reg);
  2186. break;
  2187. case 3:
  2188. i915_write_fence_reg(reg);
  2189. break;
  2190. case 2:
  2191. i830_write_fence_reg(reg);
  2192. break;
  2193. }
  2194. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2195. obj_priv->tiling_mode);
  2196. return 0;
  2197. }
  2198. /**
  2199. * i915_gem_clear_fence_reg - clear out fence register info
  2200. * @obj: object to clear
  2201. *
  2202. * Zeroes out the fence register itself and clears out the associated
  2203. * data structures in dev_priv and obj_priv.
  2204. */
  2205. static void
  2206. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2207. {
  2208. struct drm_device *dev = obj->dev;
  2209. drm_i915_private_t *dev_priv = dev->dev_private;
  2210. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2211. struct drm_i915_fence_reg *reg =
  2212. &dev_priv->fence_regs[obj_priv->fence_reg];
  2213. uint32_t fence_reg;
  2214. switch (INTEL_INFO(dev)->gen) {
  2215. case 6:
  2216. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2217. (obj_priv->fence_reg * 8), 0);
  2218. break;
  2219. case 5:
  2220. case 4:
  2221. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2222. break;
  2223. case 3:
  2224. if (obj_priv->fence_reg >= 8)
  2225. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2226. else
  2227. case 2:
  2228. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2229. I915_WRITE(fence_reg, 0);
  2230. break;
  2231. }
  2232. reg->obj = NULL;
  2233. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2234. list_del_init(&reg->lru_list);
  2235. }
  2236. /**
  2237. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2238. * to the buffer to finish, and then resets the fence register.
  2239. * @obj: tiled object holding a fence register.
  2240. * @bool: whether the wait upon the fence is interruptible
  2241. *
  2242. * Zeroes out the fence register itself and clears out the associated
  2243. * data structures in dev_priv and obj_priv.
  2244. */
  2245. int
  2246. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2247. bool interruptible)
  2248. {
  2249. struct drm_device *dev = obj->dev;
  2250. struct drm_i915_private *dev_priv = dev->dev_private;
  2251. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2252. struct drm_i915_fence_reg *reg;
  2253. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2254. return 0;
  2255. /* If we've changed tiling, GTT-mappings of the object
  2256. * need to re-fault to ensure that the correct fence register
  2257. * setup is in place.
  2258. */
  2259. i915_gem_release_mmap(obj);
  2260. /* On the i915, GPU access to tiled buffers is via a fence,
  2261. * therefore we must wait for any outstanding access to complete
  2262. * before clearing the fence.
  2263. */
  2264. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2265. if (reg->gpu) {
  2266. int ret;
  2267. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2268. if (ret)
  2269. return ret;
  2270. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2271. if (ret)
  2272. return ret;
  2273. reg->gpu = false;
  2274. }
  2275. i915_gem_object_flush_gtt_write_domain(obj);
  2276. i915_gem_clear_fence_reg(obj);
  2277. return 0;
  2278. }
  2279. /**
  2280. * Finds free space in the GTT aperture and binds the object there.
  2281. */
  2282. static int
  2283. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  2284. unsigned alignment,
  2285. bool mappable)
  2286. {
  2287. struct drm_device *dev = obj->dev;
  2288. drm_i915_private_t *dev_priv = dev->dev_private;
  2289. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2290. struct drm_mm_node *free_space;
  2291. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2292. int ret;
  2293. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2294. DRM_ERROR("Attempting to bind a purgeable object\n");
  2295. return -EINVAL;
  2296. }
  2297. if (alignment == 0)
  2298. alignment = i915_gem_get_gtt_alignment(obj);
  2299. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2300. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2301. return -EINVAL;
  2302. }
  2303. /* If the object is bigger than the entire aperture, reject it early
  2304. * before evicting everything in a vain attempt to find space.
  2305. */
  2306. if (obj->size >
  2307. (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2308. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2309. return -E2BIG;
  2310. }
  2311. search_free:
  2312. if (mappable)
  2313. free_space =
  2314. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2315. obj->size, alignment, 0,
  2316. dev_priv->mm.gtt_mappable_end,
  2317. 0);
  2318. else
  2319. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2320. obj->size, alignment, 0);
  2321. if (free_space != NULL) {
  2322. if (mappable)
  2323. obj_priv->gtt_space =
  2324. drm_mm_get_block_range_generic(free_space,
  2325. obj->size,
  2326. alignment, 0,
  2327. dev_priv->mm.gtt_mappable_end,
  2328. 0);
  2329. else
  2330. obj_priv->gtt_space =
  2331. drm_mm_get_block(free_space, obj->size,
  2332. alignment);
  2333. }
  2334. if (obj_priv->gtt_space == NULL) {
  2335. /* If the gtt is empty and we're still having trouble
  2336. * fitting our object in, we're out of memory.
  2337. */
  2338. ret = i915_gem_evict_something(dev, obj->size, alignment,
  2339. mappable);
  2340. if (ret)
  2341. return ret;
  2342. goto search_free;
  2343. }
  2344. ret = i915_gem_object_get_pages(obj, gfpmask);
  2345. if (ret) {
  2346. drm_mm_put_block(obj_priv->gtt_space);
  2347. obj_priv->gtt_space = NULL;
  2348. if (ret == -ENOMEM) {
  2349. /* first try to clear up some space from the GTT */
  2350. ret = i915_gem_evict_something(dev, obj->size,
  2351. alignment, mappable);
  2352. if (ret) {
  2353. /* now try to shrink everyone else */
  2354. if (gfpmask) {
  2355. gfpmask = 0;
  2356. goto search_free;
  2357. }
  2358. return ret;
  2359. }
  2360. goto search_free;
  2361. }
  2362. return ret;
  2363. }
  2364. /* Create an AGP memory structure pointing at our pages, and bind it
  2365. * into the GTT.
  2366. */
  2367. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2368. obj_priv->pages,
  2369. obj->size >> PAGE_SHIFT,
  2370. obj_priv->gtt_space->start,
  2371. obj_priv->agp_type);
  2372. if (obj_priv->agp_mem == NULL) {
  2373. i915_gem_object_put_pages(obj);
  2374. drm_mm_put_block(obj_priv->gtt_space);
  2375. obj_priv->gtt_space = NULL;
  2376. ret = i915_gem_evict_something(dev, obj->size, alignment,
  2377. mappable);
  2378. if (ret)
  2379. return ret;
  2380. goto search_free;
  2381. }
  2382. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2383. /* keep track of bounds object by adding it to the inactive list */
  2384. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2385. i915_gem_info_add_gtt(dev_priv, obj);
  2386. /* Assert that the object is not currently in any GPU domain. As it
  2387. * wasn't in the GTT, there shouldn't be any way it could have been in
  2388. * a GPU cache
  2389. */
  2390. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2391. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2392. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
  2393. return 0;
  2394. }
  2395. void
  2396. i915_gem_clflush_object(struct drm_gem_object *obj)
  2397. {
  2398. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2399. /* If we don't have a page list set up, then we're not pinned
  2400. * to GPU, and we can ignore the cache flush because it'll happen
  2401. * again at bind time.
  2402. */
  2403. if (obj_priv->pages == NULL)
  2404. return;
  2405. trace_i915_gem_object_clflush(obj);
  2406. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2407. }
  2408. /** Flushes any GPU write domain for the object if it's dirty. */
  2409. static int
  2410. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2411. bool pipelined)
  2412. {
  2413. struct drm_device *dev = obj->dev;
  2414. uint32_t old_write_domain;
  2415. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2416. return 0;
  2417. /* Queue the GPU write cache flushing we need. */
  2418. old_write_domain = obj->write_domain;
  2419. i915_gem_flush_ring(dev, NULL,
  2420. to_intel_bo(obj)->ring,
  2421. 0, obj->write_domain);
  2422. BUG_ON(obj->write_domain);
  2423. trace_i915_gem_object_change_domain(obj,
  2424. obj->read_domains,
  2425. old_write_domain);
  2426. if (pipelined)
  2427. return 0;
  2428. return i915_gem_object_wait_rendering(obj, true);
  2429. }
  2430. /** Flushes the GTT write domain for the object if it's dirty. */
  2431. static void
  2432. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2433. {
  2434. uint32_t old_write_domain;
  2435. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2436. return;
  2437. /* No actual flushing is required for the GTT write domain. Writes
  2438. * to it immediately go to main memory as far as we know, so there's
  2439. * no chipset flush. It also doesn't land in render cache.
  2440. */
  2441. old_write_domain = obj->write_domain;
  2442. obj->write_domain = 0;
  2443. trace_i915_gem_object_change_domain(obj,
  2444. obj->read_domains,
  2445. old_write_domain);
  2446. }
  2447. /** Flushes the CPU write domain for the object if it's dirty. */
  2448. static void
  2449. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2450. {
  2451. struct drm_device *dev = obj->dev;
  2452. uint32_t old_write_domain;
  2453. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2454. return;
  2455. i915_gem_clflush_object(obj);
  2456. drm_agp_chipset_flush(dev);
  2457. old_write_domain = obj->write_domain;
  2458. obj->write_domain = 0;
  2459. trace_i915_gem_object_change_domain(obj,
  2460. obj->read_domains,
  2461. old_write_domain);
  2462. }
  2463. /**
  2464. * Moves a single object to the GTT read, and possibly write domain.
  2465. *
  2466. * This function returns when the move is complete, including waiting on
  2467. * flushes to occur.
  2468. */
  2469. int
  2470. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2471. {
  2472. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2473. uint32_t old_write_domain, old_read_domains;
  2474. int ret;
  2475. /* Not valid to be called on unbound objects. */
  2476. if (obj_priv->gtt_space == NULL)
  2477. return -EINVAL;
  2478. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2479. if (ret != 0)
  2480. return ret;
  2481. i915_gem_object_flush_cpu_write_domain(obj);
  2482. if (write) {
  2483. ret = i915_gem_object_wait_rendering(obj, true);
  2484. if (ret)
  2485. return ret;
  2486. }
  2487. old_write_domain = obj->write_domain;
  2488. old_read_domains = obj->read_domains;
  2489. /* It should now be out of any other write domains, and we can update
  2490. * the domain values for our changes.
  2491. */
  2492. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2493. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2494. if (write) {
  2495. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2496. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2497. obj_priv->dirty = 1;
  2498. }
  2499. trace_i915_gem_object_change_domain(obj,
  2500. old_read_domains,
  2501. old_write_domain);
  2502. return 0;
  2503. }
  2504. /*
  2505. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2506. * wait, as in modesetting process we're not supposed to be interrupted.
  2507. */
  2508. int
  2509. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2510. bool pipelined)
  2511. {
  2512. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2513. uint32_t old_read_domains;
  2514. int ret;
  2515. /* Not valid to be called on unbound objects. */
  2516. if (obj_priv->gtt_space == NULL)
  2517. return -EINVAL;
  2518. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2519. if (ret)
  2520. return ret;
  2521. /* Currently, we are always called from an non-interruptible context. */
  2522. if (!pipelined) {
  2523. ret = i915_gem_object_wait_rendering(obj, false);
  2524. if (ret)
  2525. return ret;
  2526. }
  2527. i915_gem_object_flush_cpu_write_domain(obj);
  2528. old_read_domains = obj->read_domains;
  2529. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2530. trace_i915_gem_object_change_domain(obj,
  2531. old_read_domains,
  2532. obj->write_domain);
  2533. return 0;
  2534. }
  2535. /**
  2536. * Moves a single object to the CPU read, and possibly write domain.
  2537. *
  2538. * This function returns when the move is complete, including waiting on
  2539. * flushes to occur.
  2540. */
  2541. static int
  2542. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2543. {
  2544. uint32_t old_write_domain, old_read_domains;
  2545. int ret;
  2546. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2547. if (ret != 0)
  2548. return ret;
  2549. i915_gem_object_flush_gtt_write_domain(obj);
  2550. /* If we have a partially-valid cache of the object in the CPU,
  2551. * finish invalidating it and free the per-page flags.
  2552. */
  2553. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2554. if (write) {
  2555. ret = i915_gem_object_wait_rendering(obj, true);
  2556. if (ret)
  2557. return ret;
  2558. }
  2559. old_write_domain = obj->write_domain;
  2560. old_read_domains = obj->read_domains;
  2561. /* Flush the CPU cache if it's still invalid. */
  2562. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2563. i915_gem_clflush_object(obj);
  2564. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2565. }
  2566. /* It should now be out of any other write domains, and we can update
  2567. * the domain values for our changes.
  2568. */
  2569. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2570. /* If we're writing through the CPU, then the GPU read domains will
  2571. * need to be invalidated at next use.
  2572. */
  2573. if (write) {
  2574. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2575. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2576. }
  2577. trace_i915_gem_object_change_domain(obj,
  2578. old_read_domains,
  2579. old_write_domain);
  2580. return 0;
  2581. }
  2582. /*
  2583. * Set the next domain for the specified object. This
  2584. * may not actually perform the necessary flushing/invaliding though,
  2585. * as that may want to be batched with other set_domain operations
  2586. *
  2587. * This is (we hope) the only really tricky part of gem. The goal
  2588. * is fairly simple -- track which caches hold bits of the object
  2589. * and make sure they remain coherent. A few concrete examples may
  2590. * help to explain how it works. For shorthand, we use the notation
  2591. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2592. * a pair of read and write domain masks.
  2593. *
  2594. * Case 1: the batch buffer
  2595. *
  2596. * 1. Allocated
  2597. * 2. Written by CPU
  2598. * 3. Mapped to GTT
  2599. * 4. Read by GPU
  2600. * 5. Unmapped from GTT
  2601. * 6. Freed
  2602. *
  2603. * Let's take these a step at a time
  2604. *
  2605. * 1. Allocated
  2606. * Pages allocated from the kernel may still have
  2607. * cache contents, so we set them to (CPU, CPU) always.
  2608. * 2. Written by CPU (using pwrite)
  2609. * The pwrite function calls set_domain (CPU, CPU) and
  2610. * this function does nothing (as nothing changes)
  2611. * 3. Mapped by GTT
  2612. * This function asserts that the object is not
  2613. * currently in any GPU-based read or write domains
  2614. * 4. Read by GPU
  2615. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2616. * As write_domain is zero, this function adds in the
  2617. * current read domains (CPU+COMMAND, 0).
  2618. * flush_domains is set to CPU.
  2619. * invalidate_domains is set to COMMAND
  2620. * clflush is run to get data out of the CPU caches
  2621. * then i915_dev_set_domain calls i915_gem_flush to
  2622. * emit an MI_FLUSH and drm_agp_chipset_flush
  2623. * 5. Unmapped from GTT
  2624. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2625. * flush_domains and invalidate_domains end up both zero
  2626. * so no flushing/invalidating happens
  2627. * 6. Freed
  2628. * yay, done
  2629. *
  2630. * Case 2: The shared render buffer
  2631. *
  2632. * 1. Allocated
  2633. * 2. Mapped to GTT
  2634. * 3. Read/written by GPU
  2635. * 4. set_domain to (CPU,CPU)
  2636. * 5. Read/written by CPU
  2637. * 6. Read/written by GPU
  2638. *
  2639. * 1. Allocated
  2640. * Same as last example, (CPU, CPU)
  2641. * 2. Mapped to GTT
  2642. * Nothing changes (assertions find that it is not in the GPU)
  2643. * 3. Read/written by GPU
  2644. * execbuffer calls set_domain (RENDER, RENDER)
  2645. * flush_domains gets CPU
  2646. * invalidate_domains gets GPU
  2647. * clflush (obj)
  2648. * MI_FLUSH and drm_agp_chipset_flush
  2649. * 4. set_domain (CPU, CPU)
  2650. * flush_domains gets GPU
  2651. * invalidate_domains gets CPU
  2652. * wait_rendering (obj) to make sure all drawing is complete.
  2653. * This will include an MI_FLUSH to get the data from GPU
  2654. * to memory
  2655. * clflush (obj) to invalidate the CPU cache
  2656. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2657. * 5. Read/written by CPU
  2658. * cache lines are loaded and dirtied
  2659. * 6. Read written by GPU
  2660. * Same as last GPU access
  2661. *
  2662. * Case 3: The constant buffer
  2663. *
  2664. * 1. Allocated
  2665. * 2. Written by CPU
  2666. * 3. Read by GPU
  2667. * 4. Updated (written) by CPU again
  2668. * 5. Read by GPU
  2669. *
  2670. * 1. Allocated
  2671. * (CPU, CPU)
  2672. * 2. Written by CPU
  2673. * (CPU, CPU)
  2674. * 3. Read by GPU
  2675. * (CPU+RENDER, 0)
  2676. * flush_domains = CPU
  2677. * invalidate_domains = RENDER
  2678. * clflush (obj)
  2679. * MI_FLUSH
  2680. * drm_agp_chipset_flush
  2681. * 4. Updated (written) by CPU again
  2682. * (CPU, CPU)
  2683. * flush_domains = 0 (no previous write domain)
  2684. * invalidate_domains = 0 (no new read domains)
  2685. * 5. Read by GPU
  2686. * (CPU+RENDER, 0)
  2687. * flush_domains = CPU
  2688. * invalidate_domains = RENDER
  2689. * clflush (obj)
  2690. * MI_FLUSH
  2691. * drm_agp_chipset_flush
  2692. */
  2693. static void
  2694. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2695. struct intel_ring_buffer *ring)
  2696. {
  2697. struct drm_device *dev = obj->dev;
  2698. struct drm_i915_private *dev_priv = dev->dev_private;
  2699. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2700. uint32_t invalidate_domains = 0;
  2701. uint32_t flush_domains = 0;
  2702. /*
  2703. * If the object isn't moving to a new write domain,
  2704. * let the object stay in multiple read domains
  2705. */
  2706. if (obj->pending_write_domain == 0)
  2707. obj->pending_read_domains |= obj->read_domains;
  2708. /*
  2709. * Flush the current write domain if
  2710. * the new read domains don't match. Invalidate
  2711. * any read domains which differ from the old
  2712. * write domain
  2713. */
  2714. if (obj->write_domain &&
  2715. obj->write_domain != obj->pending_read_domains) {
  2716. flush_domains |= obj->write_domain;
  2717. invalidate_domains |=
  2718. obj->pending_read_domains & ~obj->write_domain;
  2719. }
  2720. /*
  2721. * Invalidate any read caches which may have
  2722. * stale data. That is, any new read domains.
  2723. */
  2724. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2725. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2726. i915_gem_clflush_object(obj);
  2727. /* The actual obj->write_domain will be updated with
  2728. * pending_write_domain after we emit the accumulated flush for all
  2729. * of our domain changes in execbuffers (which clears objects'
  2730. * write_domains). So if we have a current write domain that we
  2731. * aren't changing, set pending_write_domain to that.
  2732. */
  2733. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2734. obj->pending_write_domain = obj->write_domain;
  2735. dev->invalidate_domains |= invalidate_domains;
  2736. dev->flush_domains |= flush_domains;
  2737. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2738. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2739. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2740. dev_priv->mm.flush_rings |= ring->id;
  2741. }
  2742. /**
  2743. * Moves the object from a partially CPU read to a full one.
  2744. *
  2745. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2746. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2747. */
  2748. static void
  2749. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2750. {
  2751. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2752. if (!obj_priv->page_cpu_valid)
  2753. return;
  2754. /* If we're partially in the CPU read domain, finish moving it in.
  2755. */
  2756. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2757. int i;
  2758. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2759. if (obj_priv->page_cpu_valid[i])
  2760. continue;
  2761. drm_clflush_pages(obj_priv->pages + i, 1);
  2762. }
  2763. }
  2764. /* Free the page_cpu_valid mappings which are now stale, whether
  2765. * or not we've got I915_GEM_DOMAIN_CPU.
  2766. */
  2767. kfree(obj_priv->page_cpu_valid);
  2768. obj_priv->page_cpu_valid = NULL;
  2769. }
  2770. /**
  2771. * Set the CPU read domain on a range of the object.
  2772. *
  2773. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2774. * not entirely valid. The page_cpu_valid member of the object flags which
  2775. * pages have been flushed, and will be respected by
  2776. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2777. * of the whole object.
  2778. *
  2779. * This function returns when the move is complete, including waiting on
  2780. * flushes to occur.
  2781. */
  2782. static int
  2783. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2784. uint64_t offset, uint64_t size)
  2785. {
  2786. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2787. uint32_t old_read_domains;
  2788. int i, ret;
  2789. if (offset == 0 && size == obj->size)
  2790. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2791. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2792. if (ret != 0)
  2793. return ret;
  2794. i915_gem_object_flush_gtt_write_domain(obj);
  2795. /* If we're already fully in the CPU read domain, we're done. */
  2796. if (obj_priv->page_cpu_valid == NULL &&
  2797. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2798. return 0;
  2799. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2800. * newly adding I915_GEM_DOMAIN_CPU
  2801. */
  2802. if (obj_priv->page_cpu_valid == NULL) {
  2803. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2804. GFP_KERNEL);
  2805. if (obj_priv->page_cpu_valid == NULL)
  2806. return -ENOMEM;
  2807. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2808. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2809. /* Flush the cache on any pages that are still invalid from the CPU's
  2810. * perspective.
  2811. */
  2812. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2813. i++) {
  2814. if (obj_priv->page_cpu_valid[i])
  2815. continue;
  2816. drm_clflush_pages(obj_priv->pages + i, 1);
  2817. obj_priv->page_cpu_valid[i] = 1;
  2818. }
  2819. /* It should now be out of any other write domains, and we can update
  2820. * the domain values for our changes.
  2821. */
  2822. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2823. old_read_domains = obj->read_domains;
  2824. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2825. trace_i915_gem_object_change_domain(obj,
  2826. old_read_domains,
  2827. obj->write_domain);
  2828. return 0;
  2829. }
  2830. /**
  2831. * Pin an object to the GTT and evaluate the relocations landing in it.
  2832. */
  2833. static int
  2834. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2835. struct drm_file *file_priv,
  2836. struct drm_i915_gem_exec_object2 *entry)
  2837. {
  2838. struct drm_device *dev = obj->base.dev;
  2839. drm_i915_private_t *dev_priv = dev->dev_private;
  2840. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2841. struct drm_gem_object *target_obj = NULL;
  2842. uint32_t target_handle = 0;
  2843. int i, ret = 0;
  2844. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2845. for (i = 0; i < entry->relocation_count; i++) {
  2846. struct drm_i915_gem_relocation_entry reloc;
  2847. uint32_t target_offset;
  2848. if (__copy_from_user_inatomic(&reloc,
  2849. user_relocs+i,
  2850. sizeof(reloc))) {
  2851. ret = -EFAULT;
  2852. break;
  2853. }
  2854. if (reloc.target_handle != target_handle) {
  2855. drm_gem_object_unreference(target_obj);
  2856. target_obj = drm_gem_object_lookup(dev, file_priv,
  2857. reloc.target_handle);
  2858. if (target_obj == NULL) {
  2859. ret = -ENOENT;
  2860. break;
  2861. }
  2862. target_handle = reloc.target_handle;
  2863. }
  2864. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2865. #if WATCH_RELOC
  2866. DRM_INFO("%s: obj %p offset %08x target %d "
  2867. "read %08x write %08x gtt %08x "
  2868. "presumed %08x delta %08x\n",
  2869. __func__,
  2870. obj,
  2871. (int) reloc.offset,
  2872. (int) reloc.target_handle,
  2873. (int) reloc.read_domains,
  2874. (int) reloc.write_domain,
  2875. (int) target_offset,
  2876. (int) reloc.presumed_offset,
  2877. reloc.delta);
  2878. #endif
  2879. /* The target buffer should have appeared before us in the
  2880. * exec_object list, so it should have a GTT space bound by now.
  2881. */
  2882. if (target_offset == 0) {
  2883. DRM_ERROR("No GTT space found for object %d\n",
  2884. reloc.target_handle);
  2885. ret = -EINVAL;
  2886. break;
  2887. }
  2888. /* Validate that the target is in a valid r/w GPU domain */
  2889. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2890. DRM_ERROR("reloc with multiple write domains: "
  2891. "obj %p target %d offset %d "
  2892. "read %08x write %08x",
  2893. obj, reloc.target_handle,
  2894. (int) reloc.offset,
  2895. reloc.read_domains,
  2896. reloc.write_domain);
  2897. ret = -EINVAL;
  2898. break;
  2899. }
  2900. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2901. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2902. DRM_ERROR("reloc with read/write CPU domains: "
  2903. "obj %p target %d offset %d "
  2904. "read %08x write %08x",
  2905. obj, reloc.target_handle,
  2906. (int) reloc.offset,
  2907. reloc.read_domains,
  2908. reloc.write_domain);
  2909. ret = -EINVAL;
  2910. break;
  2911. }
  2912. if (reloc.write_domain && target_obj->pending_write_domain &&
  2913. reloc.write_domain != target_obj->pending_write_domain) {
  2914. DRM_ERROR("Write domain conflict: "
  2915. "obj %p target %d offset %d "
  2916. "new %08x old %08x\n",
  2917. obj, reloc.target_handle,
  2918. (int) reloc.offset,
  2919. reloc.write_domain,
  2920. target_obj->pending_write_domain);
  2921. ret = -EINVAL;
  2922. break;
  2923. }
  2924. target_obj->pending_read_domains |= reloc.read_domains;
  2925. target_obj->pending_write_domain |= reloc.write_domain;
  2926. /* If the relocation already has the right value in it, no
  2927. * more work needs to be done.
  2928. */
  2929. if (target_offset == reloc.presumed_offset)
  2930. continue;
  2931. /* Check that the relocation address is valid... */
  2932. if (reloc.offset > obj->base.size - 4) {
  2933. DRM_ERROR("Relocation beyond object bounds: "
  2934. "obj %p target %d offset %d size %d.\n",
  2935. obj, reloc.target_handle,
  2936. (int) reloc.offset, (int) obj->base.size);
  2937. ret = -EINVAL;
  2938. break;
  2939. }
  2940. if (reloc.offset & 3) {
  2941. DRM_ERROR("Relocation not 4-byte aligned: "
  2942. "obj %p target %d offset %d.\n",
  2943. obj, reloc.target_handle,
  2944. (int) reloc.offset);
  2945. ret = -EINVAL;
  2946. break;
  2947. }
  2948. /* and points to somewhere within the target object. */
  2949. if (reloc.delta >= target_obj->size) {
  2950. DRM_ERROR("Relocation beyond target object bounds: "
  2951. "obj %p target %d delta %d size %d.\n",
  2952. obj, reloc.target_handle,
  2953. (int) reloc.delta, (int) target_obj->size);
  2954. ret = -EINVAL;
  2955. break;
  2956. }
  2957. reloc.delta += target_offset;
  2958. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2959. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2960. char *vaddr;
  2961. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2962. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2963. kunmap_atomic(vaddr);
  2964. } else {
  2965. uint32_t __iomem *reloc_entry;
  2966. void __iomem *reloc_page;
  2967. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2968. if (ret)
  2969. break;
  2970. /* Map the page containing the relocation we're going to perform. */
  2971. reloc.offset += obj->gtt_offset;
  2972. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2973. reloc.offset & PAGE_MASK);
  2974. reloc_entry = (uint32_t __iomem *)
  2975. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2976. iowrite32(reloc.delta, reloc_entry);
  2977. io_mapping_unmap_atomic(reloc_page);
  2978. }
  2979. /* and update the user's relocation entry */
  2980. reloc.presumed_offset = target_offset;
  2981. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2982. &reloc.presumed_offset,
  2983. sizeof(reloc.presumed_offset))) {
  2984. ret = -EFAULT;
  2985. break;
  2986. }
  2987. }
  2988. drm_gem_object_unreference(target_obj);
  2989. return ret;
  2990. }
  2991. static int
  2992. i915_gem_execbuffer_pin(struct drm_device *dev,
  2993. struct drm_file *file,
  2994. struct drm_gem_object **object_list,
  2995. struct drm_i915_gem_exec_object2 *exec_list,
  2996. int count)
  2997. {
  2998. struct drm_i915_private *dev_priv = dev->dev_private;
  2999. int ret, i, retry;
  3000. /* attempt to pin all of the buffers into the GTT */
  3001. for (retry = 0; retry < 2; retry++) {
  3002. ret = 0;
  3003. for (i = 0; i < count; i++) {
  3004. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  3005. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3006. bool need_fence =
  3007. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  3008. obj->tiling_mode != I915_TILING_NONE;
  3009. /* g33/pnv can't fence buffers in the unmappable part */
  3010. bool need_mappable =
  3011. entry->relocation_count ? true : need_fence;
  3012. /* Check fence reg constraints and rebind if necessary */
  3013. if (need_fence &&
  3014. !i915_gem_object_fence_offset_ok(&obj->base,
  3015. obj->tiling_mode)) {
  3016. ret = i915_gem_object_unbind(&obj->base);
  3017. if (ret)
  3018. break;
  3019. }
  3020. ret = i915_gem_object_pin(&obj->base,
  3021. entry->alignment,
  3022. need_mappable);
  3023. if (ret)
  3024. break;
  3025. /*
  3026. * Pre-965 chips need a fence register set up in order
  3027. * to properly handle blits to/from tiled surfaces.
  3028. */
  3029. if (need_fence) {
  3030. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  3031. if (ret) {
  3032. i915_gem_object_unpin(&obj->base);
  3033. break;
  3034. }
  3035. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  3036. }
  3037. entry->offset = obj->gtt_offset;
  3038. }
  3039. while (i--)
  3040. i915_gem_object_unpin(object_list[i]);
  3041. if (ret == 0)
  3042. break;
  3043. if (ret != -ENOSPC || retry)
  3044. return ret;
  3045. ret = i915_gem_evict_everything(dev);
  3046. if (ret)
  3047. return ret;
  3048. }
  3049. return 0;
  3050. }
  3051. /* Throttle our rendering by waiting until the ring has completed our requests
  3052. * emitted over 20 msec ago.
  3053. *
  3054. * Note that if we were to use the current jiffies each time around the loop,
  3055. * we wouldn't escape the function with any frames outstanding if the time to
  3056. * render a frame was over 20ms.
  3057. *
  3058. * This should get us reasonable parallelism between CPU and GPU but also
  3059. * relatively low latency when blocking on a particular request to finish.
  3060. */
  3061. static int
  3062. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3063. {
  3064. struct drm_i915_private *dev_priv = dev->dev_private;
  3065. struct drm_i915_file_private *file_priv = file->driver_priv;
  3066. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3067. struct drm_i915_gem_request *request;
  3068. struct intel_ring_buffer *ring = NULL;
  3069. u32 seqno = 0;
  3070. int ret;
  3071. spin_lock(&file_priv->mm.lock);
  3072. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3073. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3074. break;
  3075. ring = request->ring;
  3076. seqno = request->seqno;
  3077. }
  3078. spin_unlock(&file_priv->mm.lock);
  3079. if (seqno == 0)
  3080. return 0;
  3081. ret = 0;
  3082. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3083. /* And wait for the seqno passing without holding any locks and
  3084. * causing extra latency for others. This is safe as the irq
  3085. * generation is designed to be run atomically and so is
  3086. * lockless.
  3087. */
  3088. ring->user_irq_get(ring);
  3089. ret = wait_event_interruptible(ring->irq_queue,
  3090. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3091. || atomic_read(&dev_priv->mm.wedged));
  3092. ring->user_irq_put(ring);
  3093. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3094. ret = -EIO;
  3095. }
  3096. if (ret == 0)
  3097. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3098. return ret;
  3099. }
  3100. static int
  3101. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3102. uint64_t exec_offset)
  3103. {
  3104. uint32_t exec_start, exec_len;
  3105. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3106. exec_len = (uint32_t) exec->batch_len;
  3107. if ((exec_start | exec_len) & 0x7)
  3108. return -EINVAL;
  3109. if (!exec_start)
  3110. return -EINVAL;
  3111. return 0;
  3112. }
  3113. static int
  3114. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3115. int count)
  3116. {
  3117. int i;
  3118. for (i = 0; i < count; i++) {
  3119. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3120. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3121. if (!access_ok(VERIFY_READ, ptr, length))
  3122. return -EFAULT;
  3123. /* we may also need to update the presumed offsets */
  3124. if (!access_ok(VERIFY_WRITE, ptr, length))
  3125. return -EFAULT;
  3126. if (fault_in_pages_readable(ptr, length))
  3127. return -EFAULT;
  3128. }
  3129. return 0;
  3130. }
  3131. static int
  3132. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3133. struct drm_file *file,
  3134. struct drm_i915_gem_execbuffer2 *args,
  3135. struct drm_i915_gem_exec_object2 *exec_list)
  3136. {
  3137. drm_i915_private_t *dev_priv = dev->dev_private;
  3138. struct drm_gem_object **object_list = NULL;
  3139. struct drm_gem_object *batch_obj;
  3140. struct drm_clip_rect *cliprects = NULL;
  3141. struct drm_i915_gem_request *request = NULL;
  3142. int ret, i, flips;
  3143. uint64_t exec_offset;
  3144. struct intel_ring_buffer *ring = NULL;
  3145. ret = i915_gem_check_is_wedged(dev);
  3146. if (ret)
  3147. return ret;
  3148. ret = validate_exec_list(exec_list, args->buffer_count);
  3149. if (ret)
  3150. return ret;
  3151. #if WATCH_EXEC
  3152. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3153. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3154. #endif
  3155. switch (args->flags & I915_EXEC_RING_MASK) {
  3156. case I915_EXEC_DEFAULT:
  3157. case I915_EXEC_RENDER:
  3158. ring = &dev_priv->render_ring;
  3159. break;
  3160. case I915_EXEC_BSD:
  3161. if (!HAS_BSD(dev)) {
  3162. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3163. return -EINVAL;
  3164. }
  3165. ring = &dev_priv->bsd_ring;
  3166. break;
  3167. case I915_EXEC_BLT:
  3168. if (!HAS_BLT(dev)) {
  3169. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3170. return -EINVAL;
  3171. }
  3172. ring = &dev_priv->blt_ring;
  3173. break;
  3174. default:
  3175. DRM_ERROR("execbuf with unknown ring: %d\n",
  3176. (int)(args->flags & I915_EXEC_RING_MASK));
  3177. return -EINVAL;
  3178. }
  3179. if (args->buffer_count < 1) {
  3180. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3181. return -EINVAL;
  3182. }
  3183. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3184. if (object_list == NULL) {
  3185. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3186. args->buffer_count);
  3187. ret = -ENOMEM;
  3188. goto pre_mutex_err;
  3189. }
  3190. if (args->num_cliprects != 0) {
  3191. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3192. GFP_KERNEL);
  3193. if (cliprects == NULL) {
  3194. ret = -ENOMEM;
  3195. goto pre_mutex_err;
  3196. }
  3197. ret = copy_from_user(cliprects,
  3198. (struct drm_clip_rect __user *)
  3199. (uintptr_t) args->cliprects_ptr,
  3200. sizeof(*cliprects) * args->num_cliprects);
  3201. if (ret != 0) {
  3202. DRM_ERROR("copy %d cliprects failed: %d\n",
  3203. args->num_cliprects, ret);
  3204. ret = -EFAULT;
  3205. goto pre_mutex_err;
  3206. }
  3207. }
  3208. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3209. if (request == NULL) {
  3210. ret = -ENOMEM;
  3211. goto pre_mutex_err;
  3212. }
  3213. ret = i915_mutex_lock_interruptible(dev);
  3214. if (ret)
  3215. goto pre_mutex_err;
  3216. if (dev_priv->mm.suspended) {
  3217. mutex_unlock(&dev->struct_mutex);
  3218. ret = -EBUSY;
  3219. goto pre_mutex_err;
  3220. }
  3221. /* Look up object handles */
  3222. for (i = 0; i < args->buffer_count; i++) {
  3223. struct drm_i915_gem_object *obj_priv;
  3224. object_list[i] = drm_gem_object_lookup(dev, file,
  3225. exec_list[i].handle);
  3226. if (object_list[i] == NULL) {
  3227. DRM_ERROR("Invalid object handle %d at index %d\n",
  3228. exec_list[i].handle, i);
  3229. /* prevent error path from reading uninitialized data */
  3230. args->buffer_count = i + 1;
  3231. ret = -ENOENT;
  3232. goto err;
  3233. }
  3234. obj_priv = to_intel_bo(object_list[i]);
  3235. if (obj_priv->in_execbuffer) {
  3236. DRM_ERROR("Object %p appears more than once in object list\n",
  3237. object_list[i]);
  3238. /* prevent error path from reading uninitialized data */
  3239. args->buffer_count = i + 1;
  3240. ret = -EINVAL;
  3241. goto err;
  3242. }
  3243. obj_priv->in_execbuffer = true;
  3244. }
  3245. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3246. ret = i915_gem_execbuffer_pin(dev, file,
  3247. object_list, exec_list,
  3248. args->buffer_count);
  3249. if (ret)
  3250. goto err;
  3251. /* The objects are in their final locations, apply the relocations. */
  3252. for (i = 0; i < args->buffer_count; i++) {
  3253. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3254. obj->base.pending_read_domains = 0;
  3255. obj->base.pending_write_domain = 0;
  3256. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3257. if (ret)
  3258. goto err;
  3259. }
  3260. /* Set the pending read domains for the batch buffer to COMMAND */
  3261. batch_obj = object_list[args->buffer_count-1];
  3262. if (batch_obj->pending_write_domain) {
  3263. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3264. ret = -EINVAL;
  3265. goto err;
  3266. }
  3267. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3268. /* Sanity check the batch buffer */
  3269. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3270. ret = i915_gem_check_execbuffer(args, exec_offset);
  3271. if (ret != 0) {
  3272. DRM_ERROR("execbuf with invalid offset/length\n");
  3273. goto err;
  3274. }
  3275. /* Zero the global flush/invalidate flags. These
  3276. * will be modified as new domains are computed
  3277. * for each object
  3278. */
  3279. dev->invalidate_domains = 0;
  3280. dev->flush_domains = 0;
  3281. dev_priv->mm.flush_rings = 0;
  3282. for (i = 0; i < args->buffer_count; i++)
  3283. i915_gem_object_set_to_gpu_domain(object_list[i], ring);
  3284. if (dev->invalidate_domains | dev->flush_domains) {
  3285. #if WATCH_EXEC
  3286. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3287. __func__,
  3288. dev->invalidate_domains,
  3289. dev->flush_domains);
  3290. #endif
  3291. i915_gem_flush(dev, file,
  3292. dev->invalidate_domains,
  3293. dev->flush_domains,
  3294. dev_priv->mm.flush_rings);
  3295. }
  3296. #if WATCH_COHERENCY
  3297. for (i = 0; i < args->buffer_count; i++) {
  3298. i915_gem_object_check_coherency(object_list[i],
  3299. exec_list[i].handle);
  3300. }
  3301. #endif
  3302. #if WATCH_EXEC
  3303. i915_gem_dump_object(batch_obj,
  3304. args->batch_len,
  3305. __func__,
  3306. ~0);
  3307. #endif
  3308. /* Check for any pending flips. As we only maintain a flip queue depth
  3309. * of 1, we can simply insert a WAIT for the next display flip prior
  3310. * to executing the batch and avoid stalling the CPU.
  3311. */
  3312. flips = 0;
  3313. for (i = 0; i < args->buffer_count; i++) {
  3314. if (object_list[i]->write_domain)
  3315. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3316. }
  3317. if (flips) {
  3318. int plane, flip_mask;
  3319. for (plane = 0; flips >> plane; plane++) {
  3320. if (((flips >> plane) & 1) == 0)
  3321. continue;
  3322. if (plane)
  3323. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3324. else
  3325. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3326. ret = intel_ring_begin(ring, 2);
  3327. if (ret)
  3328. goto err;
  3329. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3330. intel_ring_emit(ring, MI_NOOP);
  3331. intel_ring_advance(ring);
  3332. }
  3333. }
  3334. /* Exec the batchbuffer */
  3335. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3336. if (ret) {
  3337. DRM_ERROR("dispatch failed %d\n", ret);
  3338. goto err;
  3339. }
  3340. for (i = 0; i < args->buffer_count; i++) {
  3341. struct drm_gem_object *obj = object_list[i];
  3342. obj->read_domains = obj->pending_read_domains;
  3343. obj->write_domain = obj->pending_write_domain;
  3344. i915_gem_object_move_to_active(obj, ring);
  3345. if (obj->write_domain) {
  3346. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3347. obj_priv->dirty = 1;
  3348. list_move_tail(&obj_priv->gpu_write_list,
  3349. &ring->gpu_write_list);
  3350. intel_mark_busy(dev, obj);
  3351. }
  3352. trace_i915_gem_object_change_domain(obj,
  3353. obj->read_domains,
  3354. obj->write_domain);
  3355. }
  3356. /*
  3357. * Ensure that the commands in the batch buffer are
  3358. * finished before the interrupt fires
  3359. */
  3360. i915_retire_commands(dev, ring);
  3361. if (i915_add_request(dev, file, request, ring))
  3362. ring->outstanding_lazy_request = true;
  3363. else
  3364. request = NULL;
  3365. err:
  3366. for (i = 0; i < args->buffer_count; i++) {
  3367. if (object_list[i] == NULL)
  3368. break;
  3369. to_intel_bo(object_list[i])->in_execbuffer = false;
  3370. drm_gem_object_unreference(object_list[i]);
  3371. }
  3372. mutex_unlock(&dev->struct_mutex);
  3373. pre_mutex_err:
  3374. drm_free_large(object_list);
  3375. kfree(cliprects);
  3376. kfree(request);
  3377. return ret;
  3378. }
  3379. /*
  3380. * Legacy execbuffer just creates an exec2 list from the original exec object
  3381. * list array and passes it to the real function.
  3382. */
  3383. int
  3384. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3385. struct drm_file *file_priv)
  3386. {
  3387. struct drm_i915_gem_execbuffer *args = data;
  3388. struct drm_i915_gem_execbuffer2 exec2;
  3389. struct drm_i915_gem_exec_object *exec_list = NULL;
  3390. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3391. int ret, i;
  3392. #if WATCH_EXEC
  3393. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3394. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3395. #endif
  3396. if (args->buffer_count < 1) {
  3397. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3398. return -EINVAL;
  3399. }
  3400. /* Copy in the exec list from userland */
  3401. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3402. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3403. if (exec_list == NULL || exec2_list == NULL) {
  3404. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3405. args->buffer_count);
  3406. drm_free_large(exec_list);
  3407. drm_free_large(exec2_list);
  3408. return -ENOMEM;
  3409. }
  3410. ret = copy_from_user(exec_list,
  3411. (struct drm_i915_relocation_entry __user *)
  3412. (uintptr_t) args->buffers_ptr,
  3413. sizeof(*exec_list) * args->buffer_count);
  3414. if (ret != 0) {
  3415. DRM_ERROR("copy %d exec entries failed %d\n",
  3416. args->buffer_count, ret);
  3417. drm_free_large(exec_list);
  3418. drm_free_large(exec2_list);
  3419. return -EFAULT;
  3420. }
  3421. for (i = 0; i < args->buffer_count; i++) {
  3422. exec2_list[i].handle = exec_list[i].handle;
  3423. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3424. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3425. exec2_list[i].alignment = exec_list[i].alignment;
  3426. exec2_list[i].offset = exec_list[i].offset;
  3427. if (INTEL_INFO(dev)->gen < 4)
  3428. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3429. else
  3430. exec2_list[i].flags = 0;
  3431. }
  3432. exec2.buffers_ptr = args->buffers_ptr;
  3433. exec2.buffer_count = args->buffer_count;
  3434. exec2.batch_start_offset = args->batch_start_offset;
  3435. exec2.batch_len = args->batch_len;
  3436. exec2.DR1 = args->DR1;
  3437. exec2.DR4 = args->DR4;
  3438. exec2.num_cliprects = args->num_cliprects;
  3439. exec2.cliprects_ptr = args->cliprects_ptr;
  3440. exec2.flags = I915_EXEC_RENDER;
  3441. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3442. if (!ret) {
  3443. /* Copy the new buffer offsets back to the user's exec list. */
  3444. for (i = 0; i < args->buffer_count; i++)
  3445. exec_list[i].offset = exec2_list[i].offset;
  3446. /* ... and back out to userspace */
  3447. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3448. (uintptr_t) args->buffers_ptr,
  3449. exec_list,
  3450. sizeof(*exec_list) * args->buffer_count);
  3451. if (ret) {
  3452. ret = -EFAULT;
  3453. DRM_ERROR("failed to copy %d exec entries "
  3454. "back to user (%d)\n",
  3455. args->buffer_count, ret);
  3456. }
  3457. }
  3458. drm_free_large(exec_list);
  3459. drm_free_large(exec2_list);
  3460. return ret;
  3461. }
  3462. int
  3463. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3464. struct drm_file *file_priv)
  3465. {
  3466. struct drm_i915_gem_execbuffer2 *args = data;
  3467. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3468. int ret;
  3469. #if WATCH_EXEC
  3470. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3471. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3472. #endif
  3473. if (args->buffer_count < 1) {
  3474. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3475. return -EINVAL;
  3476. }
  3477. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3478. if (exec2_list == NULL) {
  3479. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3480. args->buffer_count);
  3481. return -ENOMEM;
  3482. }
  3483. ret = copy_from_user(exec2_list,
  3484. (struct drm_i915_relocation_entry __user *)
  3485. (uintptr_t) args->buffers_ptr,
  3486. sizeof(*exec2_list) * args->buffer_count);
  3487. if (ret != 0) {
  3488. DRM_ERROR("copy %d exec entries failed %d\n",
  3489. args->buffer_count, ret);
  3490. drm_free_large(exec2_list);
  3491. return -EFAULT;
  3492. }
  3493. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3494. if (!ret) {
  3495. /* Copy the new buffer offsets back to the user's exec list. */
  3496. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3497. (uintptr_t) args->buffers_ptr,
  3498. exec2_list,
  3499. sizeof(*exec2_list) * args->buffer_count);
  3500. if (ret) {
  3501. ret = -EFAULT;
  3502. DRM_ERROR("failed to copy %d exec entries "
  3503. "back to user (%d)\n",
  3504. args->buffer_count, ret);
  3505. }
  3506. }
  3507. drm_free_large(exec2_list);
  3508. return ret;
  3509. }
  3510. int
  3511. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
  3512. bool mappable)
  3513. {
  3514. struct drm_device *dev = obj->dev;
  3515. struct drm_i915_private *dev_priv = dev->dev_private;
  3516. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3517. int ret;
  3518. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3519. WARN_ON(i915_verify_lists(dev));
  3520. if (obj_priv->gtt_space != NULL) {
  3521. if (alignment == 0)
  3522. alignment = i915_gem_get_gtt_alignment(obj);
  3523. if (obj_priv->gtt_offset & (alignment - 1) ||
  3524. (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
  3525. WARN(obj_priv->pin_count,
  3526. "bo is already pinned with incorrect alignment:"
  3527. " offset=%x, req.alignment=%x\n",
  3528. obj_priv->gtt_offset, alignment);
  3529. ret = i915_gem_object_unbind(obj);
  3530. if (ret)
  3531. return ret;
  3532. }
  3533. }
  3534. if (obj_priv->gtt_space == NULL) {
  3535. ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
  3536. if (ret)
  3537. return ret;
  3538. }
  3539. obj_priv->pin_count++;
  3540. /* If the object is not active and not pending a flush,
  3541. * remove it from the inactive list
  3542. */
  3543. if (obj_priv->pin_count == 1) {
  3544. i915_gem_info_add_pin(dev_priv, obj, mappable);
  3545. if (!obj_priv->active)
  3546. list_move_tail(&obj_priv->mm_list,
  3547. &dev_priv->mm.pinned_list);
  3548. }
  3549. BUG_ON(!obj_priv->pin_mappable && mappable);
  3550. WARN_ON(i915_verify_lists(dev));
  3551. return 0;
  3552. }
  3553. void
  3554. i915_gem_object_unpin(struct drm_gem_object *obj)
  3555. {
  3556. struct drm_device *dev = obj->dev;
  3557. drm_i915_private_t *dev_priv = dev->dev_private;
  3558. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3559. WARN_ON(i915_verify_lists(dev));
  3560. obj_priv->pin_count--;
  3561. BUG_ON(obj_priv->pin_count < 0);
  3562. BUG_ON(obj_priv->gtt_space == NULL);
  3563. /* If the object is no longer pinned, and is
  3564. * neither active nor being flushed, then stick it on
  3565. * the inactive list
  3566. */
  3567. if (obj_priv->pin_count == 0) {
  3568. if (!obj_priv->active)
  3569. list_move_tail(&obj_priv->mm_list,
  3570. &dev_priv->mm.inactive_list);
  3571. i915_gem_info_remove_pin(dev_priv, obj);
  3572. }
  3573. WARN_ON(i915_verify_lists(dev));
  3574. }
  3575. int
  3576. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3577. struct drm_file *file_priv)
  3578. {
  3579. struct drm_i915_gem_pin *args = data;
  3580. struct drm_gem_object *obj;
  3581. struct drm_i915_gem_object *obj_priv;
  3582. int ret;
  3583. ret = i915_mutex_lock_interruptible(dev);
  3584. if (ret)
  3585. return ret;
  3586. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3587. if (obj == NULL) {
  3588. ret = -ENOENT;
  3589. goto unlock;
  3590. }
  3591. obj_priv = to_intel_bo(obj);
  3592. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3593. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3594. ret = -EINVAL;
  3595. goto out;
  3596. }
  3597. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3598. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3599. args->handle);
  3600. ret = -EINVAL;
  3601. goto out;
  3602. }
  3603. obj_priv->user_pin_count++;
  3604. obj_priv->pin_filp = file_priv;
  3605. if (obj_priv->user_pin_count == 1) {
  3606. ret = i915_gem_object_pin(obj, args->alignment, true);
  3607. if (ret)
  3608. goto out;
  3609. }
  3610. /* XXX - flush the CPU caches for pinned objects
  3611. * as the X server doesn't manage domains yet
  3612. */
  3613. i915_gem_object_flush_cpu_write_domain(obj);
  3614. args->offset = obj_priv->gtt_offset;
  3615. out:
  3616. drm_gem_object_unreference(obj);
  3617. unlock:
  3618. mutex_unlock(&dev->struct_mutex);
  3619. return ret;
  3620. }
  3621. int
  3622. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3623. struct drm_file *file_priv)
  3624. {
  3625. struct drm_i915_gem_pin *args = data;
  3626. struct drm_gem_object *obj;
  3627. struct drm_i915_gem_object *obj_priv;
  3628. int ret;
  3629. ret = i915_mutex_lock_interruptible(dev);
  3630. if (ret)
  3631. return ret;
  3632. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3633. if (obj == NULL) {
  3634. ret = -ENOENT;
  3635. goto unlock;
  3636. }
  3637. obj_priv = to_intel_bo(obj);
  3638. if (obj_priv->pin_filp != file_priv) {
  3639. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3640. args->handle);
  3641. ret = -EINVAL;
  3642. goto out;
  3643. }
  3644. obj_priv->user_pin_count--;
  3645. if (obj_priv->user_pin_count == 0) {
  3646. obj_priv->pin_filp = NULL;
  3647. i915_gem_object_unpin(obj);
  3648. }
  3649. out:
  3650. drm_gem_object_unreference(obj);
  3651. unlock:
  3652. mutex_unlock(&dev->struct_mutex);
  3653. return ret;
  3654. }
  3655. int
  3656. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3657. struct drm_file *file_priv)
  3658. {
  3659. struct drm_i915_gem_busy *args = data;
  3660. struct drm_gem_object *obj;
  3661. struct drm_i915_gem_object *obj_priv;
  3662. int ret;
  3663. ret = i915_mutex_lock_interruptible(dev);
  3664. if (ret)
  3665. return ret;
  3666. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3667. if (obj == NULL) {
  3668. ret = -ENOENT;
  3669. goto unlock;
  3670. }
  3671. obj_priv = to_intel_bo(obj);
  3672. /* Count all active objects as busy, even if they are currently not used
  3673. * by the gpu. Users of this interface expect objects to eventually
  3674. * become non-busy without any further actions, therefore emit any
  3675. * necessary flushes here.
  3676. */
  3677. args->busy = obj_priv->active;
  3678. if (args->busy) {
  3679. /* Unconditionally flush objects, even when the gpu still uses this
  3680. * object. Userspace calling this function indicates that it wants to
  3681. * use this buffer rather sooner than later, so issuing the required
  3682. * flush earlier is beneficial.
  3683. */
  3684. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3685. i915_gem_flush_ring(dev, file_priv,
  3686. obj_priv->ring,
  3687. 0, obj->write_domain);
  3688. /* Update the active list for the hardware's current position.
  3689. * Otherwise this only updates on a delayed timer or when irqs
  3690. * are actually unmasked, and our working set ends up being
  3691. * larger than required.
  3692. */
  3693. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3694. args->busy = obj_priv->active;
  3695. }
  3696. drm_gem_object_unreference(obj);
  3697. unlock:
  3698. mutex_unlock(&dev->struct_mutex);
  3699. return ret;
  3700. }
  3701. int
  3702. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3703. struct drm_file *file_priv)
  3704. {
  3705. return i915_gem_ring_throttle(dev, file_priv);
  3706. }
  3707. int
  3708. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3709. struct drm_file *file_priv)
  3710. {
  3711. struct drm_i915_gem_madvise *args = data;
  3712. struct drm_gem_object *obj;
  3713. struct drm_i915_gem_object *obj_priv;
  3714. int ret;
  3715. switch (args->madv) {
  3716. case I915_MADV_DONTNEED:
  3717. case I915_MADV_WILLNEED:
  3718. break;
  3719. default:
  3720. return -EINVAL;
  3721. }
  3722. ret = i915_mutex_lock_interruptible(dev);
  3723. if (ret)
  3724. return ret;
  3725. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3726. if (obj == NULL) {
  3727. ret = -ENOENT;
  3728. goto unlock;
  3729. }
  3730. obj_priv = to_intel_bo(obj);
  3731. if (obj_priv->pin_count) {
  3732. ret = -EINVAL;
  3733. goto out;
  3734. }
  3735. if (obj_priv->madv != __I915_MADV_PURGED)
  3736. obj_priv->madv = args->madv;
  3737. /* if the object is no longer bound, discard its backing storage */
  3738. if (i915_gem_object_is_purgeable(obj_priv) &&
  3739. obj_priv->gtt_space == NULL)
  3740. i915_gem_object_truncate(obj);
  3741. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3742. out:
  3743. drm_gem_object_unreference(obj);
  3744. unlock:
  3745. mutex_unlock(&dev->struct_mutex);
  3746. return ret;
  3747. }
  3748. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3749. size_t size)
  3750. {
  3751. struct drm_i915_private *dev_priv = dev->dev_private;
  3752. struct drm_i915_gem_object *obj;
  3753. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3754. if (obj == NULL)
  3755. return NULL;
  3756. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3757. kfree(obj);
  3758. return NULL;
  3759. }
  3760. i915_gem_info_add_obj(dev_priv, size);
  3761. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3762. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3763. obj->agp_type = AGP_USER_MEMORY;
  3764. obj->base.driver_private = NULL;
  3765. obj->fence_reg = I915_FENCE_REG_NONE;
  3766. INIT_LIST_HEAD(&obj->mm_list);
  3767. INIT_LIST_HEAD(&obj->ring_list);
  3768. INIT_LIST_HEAD(&obj->gpu_write_list);
  3769. obj->madv = I915_MADV_WILLNEED;
  3770. return &obj->base;
  3771. }
  3772. int i915_gem_init_object(struct drm_gem_object *obj)
  3773. {
  3774. BUG();
  3775. return 0;
  3776. }
  3777. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3778. {
  3779. struct drm_device *dev = obj->dev;
  3780. drm_i915_private_t *dev_priv = dev->dev_private;
  3781. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3782. int ret;
  3783. ret = i915_gem_object_unbind(obj);
  3784. if (ret == -ERESTARTSYS) {
  3785. list_move(&obj_priv->mm_list,
  3786. &dev_priv->mm.deferred_free_list);
  3787. return;
  3788. }
  3789. if (obj->map_list.map)
  3790. i915_gem_free_mmap_offset(obj);
  3791. drm_gem_object_release(obj);
  3792. i915_gem_info_remove_obj(dev_priv, obj->size);
  3793. kfree(obj_priv->page_cpu_valid);
  3794. kfree(obj_priv->bit_17);
  3795. kfree(obj_priv);
  3796. }
  3797. void i915_gem_free_object(struct drm_gem_object *obj)
  3798. {
  3799. struct drm_device *dev = obj->dev;
  3800. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3801. trace_i915_gem_object_destroy(obj);
  3802. while (obj_priv->pin_count > 0)
  3803. i915_gem_object_unpin(obj);
  3804. if (obj_priv->phys_obj)
  3805. i915_gem_detach_phys_object(dev, obj);
  3806. i915_gem_free_object_tail(obj);
  3807. }
  3808. int
  3809. i915_gem_idle(struct drm_device *dev)
  3810. {
  3811. drm_i915_private_t *dev_priv = dev->dev_private;
  3812. int ret;
  3813. mutex_lock(&dev->struct_mutex);
  3814. if (dev_priv->mm.suspended) {
  3815. mutex_unlock(&dev->struct_mutex);
  3816. return 0;
  3817. }
  3818. ret = i915_gpu_idle(dev);
  3819. if (ret) {
  3820. mutex_unlock(&dev->struct_mutex);
  3821. return ret;
  3822. }
  3823. /* Under UMS, be paranoid and evict. */
  3824. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3825. ret = i915_gem_evict_inactive(dev);
  3826. if (ret) {
  3827. mutex_unlock(&dev->struct_mutex);
  3828. return ret;
  3829. }
  3830. }
  3831. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3832. * We need to replace this with a semaphore, or something.
  3833. * And not confound mm.suspended!
  3834. */
  3835. dev_priv->mm.suspended = 1;
  3836. del_timer_sync(&dev_priv->hangcheck_timer);
  3837. i915_kernel_lost_context(dev);
  3838. i915_gem_cleanup_ringbuffer(dev);
  3839. mutex_unlock(&dev->struct_mutex);
  3840. /* Cancel the retire work handler, which should be idle now. */
  3841. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3842. return 0;
  3843. }
  3844. /*
  3845. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3846. * over cache flushing.
  3847. */
  3848. static int
  3849. i915_gem_init_pipe_control(struct drm_device *dev)
  3850. {
  3851. drm_i915_private_t *dev_priv = dev->dev_private;
  3852. struct drm_gem_object *obj;
  3853. struct drm_i915_gem_object *obj_priv;
  3854. int ret;
  3855. obj = i915_gem_alloc_object(dev, 4096);
  3856. if (obj == NULL) {
  3857. DRM_ERROR("Failed to allocate seqno page\n");
  3858. ret = -ENOMEM;
  3859. goto err;
  3860. }
  3861. obj_priv = to_intel_bo(obj);
  3862. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3863. ret = i915_gem_object_pin(obj, 4096, true);
  3864. if (ret)
  3865. goto err_unref;
  3866. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3867. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3868. if (dev_priv->seqno_page == NULL)
  3869. goto err_unpin;
  3870. dev_priv->seqno_obj = obj;
  3871. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3872. return 0;
  3873. err_unpin:
  3874. i915_gem_object_unpin(obj);
  3875. err_unref:
  3876. drm_gem_object_unreference(obj);
  3877. err:
  3878. return ret;
  3879. }
  3880. static void
  3881. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3882. {
  3883. drm_i915_private_t *dev_priv = dev->dev_private;
  3884. struct drm_gem_object *obj;
  3885. struct drm_i915_gem_object *obj_priv;
  3886. obj = dev_priv->seqno_obj;
  3887. obj_priv = to_intel_bo(obj);
  3888. kunmap(obj_priv->pages[0]);
  3889. i915_gem_object_unpin(obj);
  3890. drm_gem_object_unreference(obj);
  3891. dev_priv->seqno_obj = NULL;
  3892. dev_priv->seqno_page = NULL;
  3893. }
  3894. int
  3895. i915_gem_init_ringbuffer(struct drm_device *dev)
  3896. {
  3897. drm_i915_private_t *dev_priv = dev->dev_private;
  3898. int ret;
  3899. if (HAS_PIPE_CONTROL(dev)) {
  3900. ret = i915_gem_init_pipe_control(dev);
  3901. if (ret)
  3902. return ret;
  3903. }
  3904. ret = intel_init_render_ring_buffer(dev);
  3905. if (ret)
  3906. goto cleanup_pipe_control;
  3907. if (HAS_BSD(dev)) {
  3908. ret = intel_init_bsd_ring_buffer(dev);
  3909. if (ret)
  3910. goto cleanup_render_ring;
  3911. }
  3912. if (HAS_BLT(dev)) {
  3913. ret = intel_init_blt_ring_buffer(dev);
  3914. if (ret)
  3915. goto cleanup_bsd_ring;
  3916. }
  3917. dev_priv->next_seqno = 1;
  3918. return 0;
  3919. cleanup_bsd_ring:
  3920. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3921. cleanup_render_ring:
  3922. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3923. cleanup_pipe_control:
  3924. if (HAS_PIPE_CONTROL(dev))
  3925. i915_gem_cleanup_pipe_control(dev);
  3926. return ret;
  3927. }
  3928. void
  3929. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3930. {
  3931. drm_i915_private_t *dev_priv = dev->dev_private;
  3932. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3933. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3934. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3935. if (HAS_PIPE_CONTROL(dev))
  3936. i915_gem_cleanup_pipe_control(dev);
  3937. }
  3938. int
  3939. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3940. struct drm_file *file_priv)
  3941. {
  3942. drm_i915_private_t *dev_priv = dev->dev_private;
  3943. int ret;
  3944. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3945. return 0;
  3946. if (atomic_read(&dev_priv->mm.wedged)) {
  3947. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3948. atomic_set(&dev_priv->mm.wedged, 0);
  3949. }
  3950. mutex_lock(&dev->struct_mutex);
  3951. dev_priv->mm.suspended = 0;
  3952. ret = i915_gem_init_ringbuffer(dev);
  3953. if (ret != 0) {
  3954. mutex_unlock(&dev->struct_mutex);
  3955. return ret;
  3956. }
  3957. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3958. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3959. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3960. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3961. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3962. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3963. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3964. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3965. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3966. mutex_unlock(&dev->struct_mutex);
  3967. ret = drm_irq_install(dev);
  3968. if (ret)
  3969. goto cleanup_ringbuffer;
  3970. return 0;
  3971. cleanup_ringbuffer:
  3972. mutex_lock(&dev->struct_mutex);
  3973. i915_gem_cleanup_ringbuffer(dev);
  3974. dev_priv->mm.suspended = 1;
  3975. mutex_unlock(&dev->struct_mutex);
  3976. return ret;
  3977. }
  3978. int
  3979. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3980. struct drm_file *file_priv)
  3981. {
  3982. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3983. return 0;
  3984. drm_irq_uninstall(dev);
  3985. return i915_gem_idle(dev);
  3986. }
  3987. void
  3988. i915_gem_lastclose(struct drm_device *dev)
  3989. {
  3990. int ret;
  3991. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3992. return;
  3993. ret = i915_gem_idle(dev);
  3994. if (ret)
  3995. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3996. }
  3997. static void
  3998. init_ring_lists(struct intel_ring_buffer *ring)
  3999. {
  4000. INIT_LIST_HEAD(&ring->active_list);
  4001. INIT_LIST_HEAD(&ring->request_list);
  4002. INIT_LIST_HEAD(&ring->gpu_write_list);
  4003. }
  4004. void
  4005. i915_gem_load(struct drm_device *dev)
  4006. {
  4007. int i;
  4008. drm_i915_private_t *dev_priv = dev->dev_private;
  4009. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4010. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4011. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4012. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4013. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4014. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4015. init_ring_lists(&dev_priv->render_ring);
  4016. init_ring_lists(&dev_priv->bsd_ring);
  4017. init_ring_lists(&dev_priv->blt_ring);
  4018. for (i = 0; i < 16; i++)
  4019. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4020. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4021. i915_gem_retire_work_handler);
  4022. init_completion(&dev_priv->error_completion);
  4023. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4024. if (IS_GEN3(dev)) {
  4025. u32 tmp = I915_READ(MI_ARB_STATE);
  4026. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4027. /* arb state is a masked write, so set bit + bit in mask */
  4028. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4029. I915_WRITE(MI_ARB_STATE, tmp);
  4030. }
  4031. }
  4032. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4033. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4034. dev_priv->fence_reg_start = 3;
  4035. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4036. dev_priv->num_fence_regs = 16;
  4037. else
  4038. dev_priv->num_fence_regs = 8;
  4039. /* Initialize fence registers to zero */
  4040. switch (INTEL_INFO(dev)->gen) {
  4041. case 6:
  4042. for (i = 0; i < 16; i++)
  4043. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4044. break;
  4045. case 5:
  4046. case 4:
  4047. for (i = 0; i < 16; i++)
  4048. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4049. break;
  4050. case 3:
  4051. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4052. for (i = 0; i < 8; i++)
  4053. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4054. case 2:
  4055. for (i = 0; i < 8; i++)
  4056. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4057. break;
  4058. }
  4059. i915_gem_detect_bit_6_swizzle(dev);
  4060. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4061. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4062. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4063. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4064. }
  4065. /*
  4066. * Create a physically contiguous memory object for this object
  4067. * e.g. for cursor + overlay regs
  4068. */
  4069. static int i915_gem_init_phys_object(struct drm_device *dev,
  4070. int id, int size, int align)
  4071. {
  4072. drm_i915_private_t *dev_priv = dev->dev_private;
  4073. struct drm_i915_gem_phys_object *phys_obj;
  4074. int ret;
  4075. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4076. return 0;
  4077. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4078. if (!phys_obj)
  4079. return -ENOMEM;
  4080. phys_obj->id = id;
  4081. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4082. if (!phys_obj->handle) {
  4083. ret = -ENOMEM;
  4084. goto kfree_obj;
  4085. }
  4086. #ifdef CONFIG_X86
  4087. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4088. #endif
  4089. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4090. return 0;
  4091. kfree_obj:
  4092. kfree(phys_obj);
  4093. return ret;
  4094. }
  4095. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4096. {
  4097. drm_i915_private_t *dev_priv = dev->dev_private;
  4098. struct drm_i915_gem_phys_object *phys_obj;
  4099. if (!dev_priv->mm.phys_objs[id - 1])
  4100. return;
  4101. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4102. if (phys_obj->cur_obj) {
  4103. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4104. }
  4105. #ifdef CONFIG_X86
  4106. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4107. #endif
  4108. drm_pci_free(dev, phys_obj->handle);
  4109. kfree(phys_obj);
  4110. dev_priv->mm.phys_objs[id - 1] = NULL;
  4111. }
  4112. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4113. {
  4114. int i;
  4115. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4116. i915_gem_free_phys_object(dev, i);
  4117. }
  4118. void i915_gem_detach_phys_object(struct drm_device *dev,
  4119. struct drm_gem_object *obj)
  4120. {
  4121. struct drm_i915_gem_object *obj_priv;
  4122. int i;
  4123. int ret;
  4124. int page_count;
  4125. obj_priv = to_intel_bo(obj);
  4126. if (!obj_priv->phys_obj)
  4127. return;
  4128. ret = i915_gem_object_get_pages(obj, 0);
  4129. if (ret)
  4130. goto out;
  4131. page_count = obj->size / PAGE_SIZE;
  4132. for (i = 0; i < page_count; i++) {
  4133. char *dst = kmap_atomic(obj_priv->pages[i]);
  4134. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4135. memcpy(dst, src, PAGE_SIZE);
  4136. kunmap_atomic(dst);
  4137. }
  4138. drm_clflush_pages(obj_priv->pages, page_count);
  4139. drm_agp_chipset_flush(dev);
  4140. i915_gem_object_put_pages(obj);
  4141. out:
  4142. obj_priv->phys_obj->cur_obj = NULL;
  4143. obj_priv->phys_obj = NULL;
  4144. }
  4145. int
  4146. i915_gem_attach_phys_object(struct drm_device *dev,
  4147. struct drm_gem_object *obj,
  4148. int id,
  4149. int align)
  4150. {
  4151. drm_i915_private_t *dev_priv = dev->dev_private;
  4152. struct drm_i915_gem_object *obj_priv;
  4153. int ret = 0;
  4154. int page_count;
  4155. int i;
  4156. if (id > I915_MAX_PHYS_OBJECT)
  4157. return -EINVAL;
  4158. obj_priv = to_intel_bo(obj);
  4159. if (obj_priv->phys_obj) {
  4160. if (obj_priv->phys_obj->id == id)
  4161. return 0;
  4162. i915_gem_detach_phys_object(dev, obj);
  4163. }
  4164. /* create a new object */
  4165. if (!dev_priv->mm.phys_objs[id - 1]) {
  4166. ret = i915_gem_init_phys_object(dev, id,
  4167. obj->size, align);
  4168. if (ret) {
  4169. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4170. goto out;
  4171. }
  4172. }
  4173. /* bind to the object */
  4174. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4175. obj_priv->phys_obj->cur_obj = obj;
  4176. ret = i915_gem_object_get_pages(obj, 0);
  4177. if (ret) {
  4178. DRM_ERROR("failed to get page list\n");
  4179. goto out;
  4180. }
  4181. page_count = obj->size / PAGE_SIZE;
  4182. for (i = 0; i < page_count; i++) {
  4183. char *src = kmap_atomic(obj_priv->pages[i]);
  4184. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4185. memcpy(dst, src, PAGE_SIZE);
  4186. kunmap_atomic(src);
  4187. }
  4188. i915_gem_object_put_pages(obj);
  4189. return 0;
  4190. out:
  4191. return ret;
  4192. }
  4193. static int
  4194. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4195. struct drm_i915_gem_pwrite *args,
  4196. struct drm_file *file_priv)
  4197. {
  4198. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4199. void *obj_addr;
  4200. int ret;
  4201. char __user *user_data;
  4202. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4203. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4204. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4205. ret = copy_from_user(obj_addr, user_data, args->size);
  4206. if (ret)
  4207. return -EFAULT;
  4208. drm_agp_chipset_flush(dev);
  4209. return 0;
  4210. }
  4211. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4212. {
  4213. struct drm_i915_file_private *file_priv = file->driver_priv;
  4214. /* Clean up our request list when the client is going away, so that
  4215. * later retire_requests won't dereference our soon-to-be-gone
  4216. * file_priv.
  4217. */
  4218. spin_lock(&file_priv->mm.lock);
  4219. while (!list_empty(&file_priv->mm.request_list)) {
  4220. struct drm_i915_gem_request *request;
  4221. request = list_first_entry(&file_priv->mm.request_list,
  4222. struct drm_i915_gem_request,
  4223. client_list);
  4224. list_del(&request->client_list);
  4225. request->file_priv = NULL;
  4226. }
  4227. spin_unlock(&file_priv->mm.lock);
  4228. }
  4229. static int
  4230. i915_gpu_is_active(struct drm_device *dev)
  4231. {
  4232. drm_i915_private_t *dev_priv = dev->dev_private;
  4233. int lists_empty;
  4234. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4235. list_empty(&dev_priv->mm.active_list);
  4236. return !lists_empty;
  4237. }
  4238. static int
  4239. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4240. int nr_to_scan,
  4241. gfp_t gfp_mask)
  4242. {
  4243. struct drm_i915_private *dev_priv =
  4244. container_of(shrinker,
  4245. struct drm_i915_private,
  4246. mm.inactive_shrinker);
  4247. struct drm_device *dev = dev_priv->dev;
  4248. struct drm_i915_gem_object *obj, *next;
  4249. int cnt;
  4250. if (!mutex_trylock(&dev->struct_mutex))
  4251. return nr_to_scan ? 0 : -1;
  4252. /* "fast-path" to count number of available objects */
  4253. if (nr_to_scan == 0) {
  4254. cnt = 0;
  4255. list_for_each_entry(obj,
  4256. &dev_priv->mm.inactive_list,
  4257. mm_list)
  4258. cnt++;
  4259. mutex_unlock(&dev->struct_mutex);
  4260. return cnt / 100 * sysctl_vfs_cache_pressure;
  4261. }
  4262. rescan:
  4263. /* first scan for clean buffers */
  4264. i915_gem_retire_requests(dev);
  4265. list_for_each_entry_safe(obj, next,
  4266. &dev_priv->mm.inactive_list,
  4267. mm_list) {
  4268. if (i915_gem_object_is_purgeable(obj)) {
  4269. i915_gem_object_unbind(&obj->base);
  4270. if (--nr_to_scan == 0)
  4271. break;
  4272. }
  4273. }
  4274. /* second pass, evict/count anything still on the inactive list */
  4275. cnt = 0;
  4276. list_for_each_entry_safe(obj, next,
  4277. &dev_priv->mm.inactive_list,
  4278. mm_list) {
  4279. if (nr_to_scan) {
  4280. i915_gem_object_unbind(&obj->base);
  4281. nr_to_scan--;
  4282. } else
  4283. cnt++;
  4284. }
  4285. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4286. /*
  4287. * We are desperate for pages, so as a last resort, wait
  4288. * for the GPU to finish and discard whatever we can.
  4289. * This has a dramatic impact to reduce the number of
  4290. * OOM-killer events whilst running the GPU aggressively.
  4291. */
  4292. if (i915_gpu_idle(dev) == 0)
  4293. goto rescan;
  4294. }
  4295. mutex_unlock(&dev->struct_mutex);
  4296. return cnt / 100 * sysctl_vfs_cache_pressure;
  4297. }