kvm_main.c 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef CONFIG_X86
  47. #include <asm/msidef.h>
  48. #endif
  49. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  50. #include "coalesced_mmio.h"
  51. #endif
  52. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  53. #include <linux/pci.h>
  54. #include <linux/interrupt.h>
  55. #include "irq.h"
  56. #endif
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. static int msi2intx = 1;
  60. module_param(msi2intx, bool, 0);
  61. DEFINE_SPINLOCK(kvm_lock);
  62. LIST_HEAD(vm_list);
  63. static cpumask_var_t cpus_hardware_enabled;
  64. struct kmem_cache *kvm_vcpu_cache;
  65. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  66. static __read_mostly struct preempt_ops kvm_preempt_ops;
  67. struct dentry *kvm_debugfs_dir;
  68. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  69. unsigned long arg);
  70. static bool kvm_rebooting;
  71. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  72. #ifdef CONFIG_X86
  73. static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
  74. {
  75. int vcpu_id;
  76. struct kvm_vcpu *vcpu;
  77. struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
  78. int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
  79. >> MSI_ADDR_DEST_ID_SHIFT;
  80. int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
  81. >> MSI_DATA_VECTOR_SHIFT;
  82. int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
  83. (unsigned long *)&dev->guest_msi.address_lo);
  84. int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
  85. (unsigned long *)&dev->guest_msi.data);
  86. int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
  87. (unsigned long *)&dev->guest_msi.data);
  88. u32 deliver_bitmask;
  89. BUG_ON(!ioapic);
  90. deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
  91. dest_id, dest_mode);
  92. /* IOAPIC delivery mode value is the same as MSI here */
  93. switch (delivery_mode) {
  94. case IOAPIC_LOWEST_PRIORITY:
  95. vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
  96. deliver_bitmask);
  97. if (vcpu != NULL)
  98. kvm_apic_set_irq(vcpu, vector, trig_mode);
  99. else
  100. printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
  101. break;
  102. case IOAPIC_FIXED:
  103. for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
  104. if (!(deliver_bitmask & (1 << vcpu_id)))
  105. continue;
  106. deliver_bitmask &= ~(1 << vcpu_id);
  107. vcpu = ioapic->kvm->vcpus[vcpu_id];
  108. if (vcpu)
  109. kvm_apic_set_irq(vcpu, vector, trig_mode);
  110. }
  111. break;
  112. default:
  113. printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
  114. }
  115. }
  116. #else
  117. static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
  118. #endif
  119. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  120. int assigned_dev_id)
  121. {
  122. struct list_head *ptr;
  123. struct kvm_assigned_dev_kernel *match;
  124. list_for_each(ptr, head) {
  125. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  126. if (match->assigned_dev_id == assigned_dev_id)
  127. return match;
  128. }
  129. return NULL;
  130. }
  131. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  132. {
  133. struct kvm_assigned_dev_kernel *assigned_dev;
  134. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  135. interrupt_work);
  136. /* This is taken to safely inject irq inside the guest. When
  137. * the interrupt injection (or the ioapic code) uses a
  138. * finer-grained lock, update this
  139. */
  140. mutex_lock(&assigned_dev->kvm->lock);
  141. if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
  142. kvm_set_irq(assigned_dev->kvm,
  143. assigned_dev->irq_source_id,
  144. assigned_dev->guest_irq, 1);
  145. else if (assigned_dev->irq_requested_type &
  146. KVM_ASSIGNED_DEV_GUEST_MSI) {
  147. assigned_device_msi_dispatch(assigned_dev);
  148. enable_irq(assigned_dev->host_irq);
  149. assigned_dev->host_irq_disabled = false;
  150. }
  151. mutex_unlock(&assigned_dev->kvm->lock);
  152. }
  153. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  154. {
  155. struct kvm_assigned_dev_kernel *assigned_dev =
  156. (struct kvm_assigned_dev_kernel *) dev_id;
  157. schedule_work(&assigned_dev->interrupt_work);
  158. disable_irq_nosync(irq);
  159. assigned_dev->host_irq_disabled = true;
  160. return IRQ_HANDLED;
  161. }
  162. /* Ack the irq line for an assigned device */
  163. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  164. {
  165. struct kvm_assigned_dev_kernel *dev;
  166. if (kian->gsi == -1)
  167. return;
  168. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  169. ack_notifier);
  170. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  171. /* The guest irq may be shared so this ack may be
  172. * from another device.
  173. */
  174. if (dev->host_irq_disabled) {
  175. enable_irq(dev->host_irq);
  176. dev->host_irq_disabled = false;
  177. }
  178. }
  179. /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
  180. static void kvm_free_assigned_irq(struct kvm *kvm,
  181. struct kvm_assigned_dev_kernel *assigned_dev)
  182. {
  183. if (!irqchip_in_kernel(kvm))
  184. return;
  185. kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
  186. if (assigned_dev->irq_source_id != -1)
  187. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  188. assigned_dev->irq_source_id = -1;
  189. if (!assigned_dev->irq_requested_type)
  190. return;
  191. /*
  192. * In kvm_free_device_irq, cancel_work_sync return true if:
  193. * 1. work is scheduled, and then cancelled.
  194. * 2. work callback is executed.
  195. *
  196. * The first one ensured that the irq is disabled and no more events
  197. * would happen. But for the second one, the irq may be enabled (e.g.
  198. * for MSI). So we disable irq here to prevent further events.
  199. *
  200. * Notice this maybe result in nested disable if the interrupt type is
  201. * INTx, but it's OK for we are going to free it.
  202. *
  203. * If this function is a part of VM destroy, please ensure that till
  204. * now, the kvm state is still legal for probably we also have to wait
  205. * interrupt_work done.
  206. */
  207. disable_irq_nosync(assigned_dev->host_irq);
  208. cancel_work_sync(&assigned_dev->interrupt_work);
  209. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  210. if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
  211. pci_disable_msi(assigned_dev->dev);
  212. assigned_dev->irq_requested_type = 0;
  213. }
  214. static void kvm_free_assigned_device(struct kvm *kvm,
  215. struct kvm_assigned_dev_kernel
  216. *assigned_dev)
  217. {
  218. kvm_free_assigned_irq(kvm, assigned_dev);
  219. pci_reset_function(assigned_dev->dev);
  220. pci_release_regions(assigned_dev->dev);
  221. pci_disable_device(assigned_dev->dev);
  222. pci_dev_put(assigned_dev->dev);
  223. list_del(&assigned_dev->list);
  224. kfree(assigned_dev);
  225. }
  226. void kvm_free_all_assigned_devices(struct kvm *kvm)
  227. {
  228. struct list_head *ptr, *ptr2;
  229. struct kvm_assigned_dev_kernel *assigned_dev;
  230. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  231. assigned_dev = list_entry(ptr,
  232. struct kvm_assigned_dev_kernel,
  233. list);
  234. kvm_free_assigned_device(kvm, assigned_dev);
  235. }
  236. }
  237. static int assigned_device_update_intx(struct kvm *kvm,
  238. struct kvm_assigned_dev_kernel *adev,
  239. struct kvm_assigned_irq *airq)
  240. {
  241. adev->guest_irq = airq->guest_irq;
  242. adev->ack_notifier.gsi = airq->guest_irq;
  243. if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
  244. return 0;
  245. if (irqchip_in_kernel(kvm)) {
  246. if (!msi2intx &&
  247. (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)) {
  248. free_irq(adev->host_irq, (void *)adev);
  249. pci_disable_msi(adev->dev);
  250. }
  251. if (!capable(CAP_SYS_RAWIO))
  252. return -EPERM;
  253. if (airq->host_irq)
  254. adev->host_irq = airq->host_irq;
  255. else
  256. adev->host_irq = adev->dev->irq;
  257. /* Even though this is PCI, we don't want to use shared
  258. * interrupts. Sharing host devices with guest-assigned devices
  259. * on the same interrupt line is not a happy situation: there
  260. * are going to be long delays in accepting, acking, etc.
  261. */
  262. if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
  263. 0, "kvm_assigned_intx_device", (void *)adev))
  264. return -EIO;
  265. }
  266. adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
  267. KVM_ASSIGNED_DEV_HOST_INTX;
  268. return 0;
  269. }
  270. #ifdef CONFIG_X86
  271. static int assigned_device_update_msi(struct kvm *kvm,
  272. struct kvm_assigned_dev_kernel *adev,
  273. struct kvm_assigned_irq *airq)
  274. {
  275. int r;
  276. if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
  277. /* x86 don't care upper address of guest msi message addr */
  278. adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
  279. adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
  280. adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
  281. adev->guest_msi.data = airq->guest_msi.data;
  282. adev->ack_notifier.gsi = -1;
  283. } else if (msi2intx) {
  284. adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
  285. adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
  286. adev->guest_irq = airq->guest_irq;
  287. adev->ack_notifier.gsi = airq->guest_irq;
  288. } else {
  289. /*
  290. * Guest require to disable device MSI, we disable MSI and
  291. * re-enable INTx by default again. Notice it's only for
  292. * non-msi2intx.
  293. */
  294. assigned_device_update_intx(kvm, adev, airq);
  295. return 0;
  296. }
  297. if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
  298. return 0;
  299. if (irqchip_in_kernel(kvm)) {
  300. if (!msi2intx) {
  301. if (adev->irq_requested_type &
  302. KVM_ASSIGNED_DEV_HOST_INTX)
  303. free_irq(adev->host_irq, (void *)adev);
  304. r = pci_enable_msi(adev->dev);
  305. if (r)
  306. return r;
  307. }
  308. adev->host_irq = adev->dev->irq;
  309. if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
  310. "kvm_assigned_msi_device", (void *)adev))
  311. return -EIO;
  312. }
  313. if (!msi2intx)
  314. adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
  315. adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
  316. return 0;
  317. }
  318. #endif
  319. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  320. struct kvm_assigned_irq
  321. *assigned_irq)
  322. {
  323. int r = 0;
  324. struct kvm_assigned_dev_kernel *match;
  325. u32 current_flags = 0, changed_flags;
  326. mutex_lock(&kvm->lock);
  327. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  328. assigned_irq->assigned_dev_id);
  329. if (!match) {
  330. mutex_unlock(&kvm->lock);
  331. return -EINVAL;
  332. }
  333. if (!match->irq_requested_type) {
  334. INIT_WORK(&match->interrupt_work,
  335. kvm_assigned_dev_interrupt_work_handler);
  336. if (irqchip_in_kernel(kvm)) {
  337. /* Register ack nofitier */
  338. match->ack_notifier.gsi = -1;
  339. match->ack_notifier.irq_acked =
  340. kvm_assigned_dev_ack_irq;
  341. kvm_register_irq_ack_notifier(kvm,
  342. &match->ack_notifier);
  343. /* Request IRQ source ID */
  344. r = kvm_request_irq_source_id(kvm);
  345. if (r < 0)
  346. goto out_release;
  347. else
  348. match->irq_source_id = r;
  349. #ifdef CONFIG_X86
  350. /* Determine host device irq type, we can know the
  351. * result from dev->msi_enabled */
  352. if (msi2intx)
  353. pci_enable_msi(match->dev);
  354. #endif
  355. }
  356. }
  357. if ((match->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) &&
  358. (match->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_MSI))
  359. current_flags |= KVM_DEV_IRQ_ASSIGN_ENABLE_MSI;
  360. changed_flags = assigned_irq->flags ^ current_flags;
  361. if ((changed_flags & KVM_DEV_IRQ_ASSIGN_MSI_ACTION) ||
  362. (msi2intx && match->dev->msi_enabled)) {
  363. #ifdef CONFIG_X86
  364. r = assigned_device_update_msi(kvm, match, assigned_irq);
  365. if (r) {
  366. printk(KERN_WARNING "kvm: failed to enable "
  367. "MSI device!\n");
  368. goto out_release;
  369. }
  370. #else
  371. r = -ENOTTY;
  372. #endif
  373. } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
  374. /* Host device IRQ 0 means don't support INTx */
  375. if (!msi2intx) {
  376. printk(KERN_WARNING
  377. "kvm: wait device to enable MSI!\n");
  378. r = 0;
  379. } else {
  380. printk(KERN_WARNING
  381. "kvm: failed to enable MSI device!\n");
  382. r = -ENOTTY;
  383. goto out_release;
  384. }
  385. } else {
  386. /* Non-sharing INTx mode */
  387. r = assigned_device_update_intx(kvm, match, assigned_irq);
  388. if (r) {
  389. printk(KERN_WARNING "kvm: failed to enable "
  390. "INTx device!\n");
  391. goto out_release;
  392. }
  393. }
  394. mutex_unlock(&kvm->lock);
  395. return r;
  396. out_release:
  397. mutex_unlock(&kvm->lock);
  398. kvm_free_assigned_device(kvm, match);
  399. return r;
  400. }
  401. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  402. struct kvm_assigned_pci_dev *assigned_dev)
  403. {
  404. int r = 0;
  405. struct kvm_assigned_dev_kernel *match;
  406. struct pci_dev *dev;
  407. down_read(&kvm->slots_lock);
  408. mutex_lock(&kvm->lock);
  409. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  410. assigned_dev->assigned_dev_id);
  411. if (match) {
  412. /* device already assigned */
  413. r = -EINVAL;
  414. goto out;
  415. }
  416. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  417. if (match == NULL) {
  418. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  419. __func__);
  420. r = -ENOMEM;
  421. goto out;
  422. }
  423. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  424. assigned_dev->devfn);
  425. if (!dev) {
  426. printk(KERN_INFO "%s: host device not found\n", __func__);
  427. r = -EINVAL;
  428. goto out_free;
  429. }
  430. if (pci_enable_device(dev)) {
  431. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  432. r = -EBUSY;
  433. goto out_put;
  434. }
  435. r = pci_request_regions(dev, "kvm_assigned_device");
  436. if (r) {
  437. printk(KERN_INFO "%s: Could not get access to device regions\n",
  438. __func__);
  439. goto out_disable;
  440. }
  441. pci_reset_function(dev);
  442. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  443. match->host_busnr = assigned_dev->busnr;
  444. match->host_devfn = assigned_dev->devfn;
  445. match->flags = assigned_dev->flags;
  446. match->dev = dev;
  447. match->irq_source_id = -1;
  448. match->kvm = kvm;
  449. list_add(&match->list, &kvm->arch.assigned_dev_head);
  450. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  451. if (!kvm->arch.iommu_domain) {
  452. r = kvm_iommu_map_guest(kvm);
  453. if (r)
  454. goto out_list_del;
  455. }
  456. r = kvm_assign_device(kvm, match);
  457. if (r)
  458. goto out_list_del;
  459. }
  460. out:
  461. mutex_unlock(&kvm->lock);
  462. up_read(&kvm->slots_lock);
  463. return r;
  464. out_list_del:
  465. list_del(&match->list);
  466. pci_release_regions(dev);
  467. out_disable:
  468. pci_disable_device(dev);
  469. out_put:
  470. pci_dev_put(dev);
  471. out_free:
  472. kfree(match);
  473. mutex_unlock(&kvm->lock);
  474. up_read(&kvm->slots_lock);
  475. return r;
  476. }
  477. #endif
  478. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  479. static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
  480. struct kvm_assigned_pci_dev *assigned_dev)
  481. {
  482. int r = 0;
  483. struct kvm_assigned_dev_kernel *match;
  484. mutex_lock(&kvm->lock);
  485. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  486. assigned_dev->assigned_dev_id);
  487. if (!match) {
  488. printk(KERN_INFO "%s: device hasn't been assigned before, "
  489. "so cannot be deassigned\n", __func__);
  490. r = -EINVAL;
  491. goto out;
  492. }
  493. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
  494. kvm_deassign_device(kvm, match);
  495. kvm_free_assigned_device(kvm, match);
  496. out:
  497. mutex_unlock(&kvm->lock);
  498. return r;
  499. }
  500. #endif
  501. static inline int valid_vcpu(int n)
  502. {
  503. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  504. }
  505. inline int kvm_is_mmio_pfn(pfn_t pfn)
  506. {
  507. if (pfn_valid(pfn))
  508. return PageReserved(pfn_to_page(pfn));
  509. return true;
  510. }
  511. /*
  512. * Switches to specified vcpu, until a matching vcpu_put()
  513. */
  514. void vcpu_load(struct kvm_vcpu *vcpu)
  515. {
  516. int cpu;
  517. mutex_lock(&vcpu->mutex);
  518. cpu = get_cpu();
  519. preempt_notifier_register(&vcpu->preempt_notifier);
  520. kvm_arch_vcpu_load(vcpu, cpu);
  521. put_cpu();
  522. }
  523. void vcpu_put(struct kvm_vcpu *vcpu)
  524. {
  525. preempt_disable();
  526. kvm_arch_vcpu_put(vcpu);
  527. preempt_notifier_unregister(&vcpu->preempt_notifier);
  528. preempt_enable();
  529. mutex_unlock(&vcpu->mutex);
  530. }
  531. static void ack_flush(void *_completed)
  532. {
  533. }
  534. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  535. {
  536. int i, cpu, me;
  537. cpumask_var_t cpus;
  538. bool called = true;
  539. struct kvm_vcpu *vcpu;
  540. if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
  541. cpumask_clear(cpus);
  542. me = get_cpu();
  543. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  544. vcpu = kvm->vcpus[i];
  545. if (!vcpu)
  546. continue;
  547. if (test_and_set_bit(req, &vcpu->requests))
  548. continue;
  549. cpu = vcpu->cpu;
  550. if (cpus != NULL && cpu != -1 && cpu != me)
  551. cpumask_set_cpu(cpu, cpus);
  552. }
  553. if (unlikely(cpus == NULL))
  554. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  555. else if (!cpumask_empty(cpus))
  556. smp_call_function_many(cpus, ack_flush, NULL, 1);
  557. else
  558. called = false;
  559. put_cpu();
  560. free_cpumask_var(cpus);
  561. return called;
  562. }
  563. void kvm_flush_remote_tlbs(struct kvm *kvm)
  564. {
  565. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  566. ++kvm->stat.remote_tlb_flush;
  567. }
  568. void kvm_reload_remote_mmus(struct kvm *kvm)
  569. {
  570. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  571. }
  572. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  573. {
  574. struct page *page;
  575. int r;
  576. mutex_init(&vcpu->mutex);
  577. vcpu->cpu = -1;
  578. vcpu->kvm = kvm;
  579. vcpu->vcpu_id = id;
  580. init_waitqueue_head(&vcpu->wq);
  581. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  582. if (!page) {
  583. r = -ENOMEM;
  584. goto fail;
  585. }
  586. vcpu->run = page_address(page);
  587. r = kvm_arch_vcpu_init(vcpu);
  588. if (r < 0)
  589. goto fail_free_run;
  590. return 0;
  591. fail_free_run:
  592. free_page((unsigned long)vcpu->run);
  593. fail:
  594. return r;
  595. }
  596. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  597. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  598. {
  599. kvm_arch_vcpu_uninit(vcpu);
  600. free_page((unsigned long)vcpu->run);
  601. }
  602. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  603. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  604. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  605. {
  606. return container_of(mn, struct kvm, mmu_notifier);
  607. }
  608. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  609. struct mm_struct *mm,
  610. unsigned long address)
  611. {
  612. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  613. int need_tlb_flush;
  614. /*
  615. * When ->invalidate_page runs, the linux pte has been zapped
  616. * already but the page is still allocated until
  617. * ->invalidate_page returns. So if we increase the sequence
  618. * here the kvm page fault will notice if the spte can't be
  619. * established because the page is going to be freed. If
  620. * instead the kvm page fault establishes the spte before
  621. * ->invalidate_page runs, kvm_unmap_hva will release it
  622. * before returning.
  623. *
  624. * The sequence increase only need to be seen at spin_unlock
  625. * time, and not at spin_lock time.
  626. *
  627. * Increasing the sequence after the spin_unlock would be
  628. * unsafe because the kvm page fault could then establish the
  629. * pte after kvm_unmap_hva returned, without noticing the page
  630. * is going to be freed.
  631. */
  632. spin_lock(&kvm->mmu_lock);
  633. kvm->mmu_notifier_seq++;
  634. need_tlb_flush = kvm_unmap_hva(kvm, address);
  635. spin_unlock(&kvm->mmu_lock);
  636. /* we've to flush the tlb before the pages can be freed */
  637. if (need_tlb_flush)
  638. kvm_flush_remote_tlbs(kvm);
  639. }
  640. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  641. struct mm_struct *mm,
  642. unsigned long start,
  643. unsigned long end)
  644. {
  645. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  646. int need_tlb_flush = 0;
  647. spin_lock(&kvm->mmu_lock);
  648. /*
  649. * The count increase must become visible at unlock time as no
  650. * spte can be established without taking the mmu_lock and
  651. * count is also read inside the mmu_lock critical section.
  652. */
  653. kvm->mmu_notifier_count++;
  654. for (; start < end; start += PAGE_SIZE)
  655. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  656. spin_unlock(&kvm->mmu_lock);
  657. /* we've to flush the tlb before the pages can be freed */
  658. if (need_tlb_flush)
  659. kvm_flush_remote_tlbs(kvm);
  660. }
  661. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  662. struct mm_struct *mm,
  663. unsigned long start,
  664. unsigned long end)
  665. {
  666. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  667. spin_lock(&kvm->mmu_lock);
  668. /*
  669. * This sequence increase will notify the kvm page fault that
  670. * the page that is going to be mapped in the spte could have
  671. * been freed.
  672. */
  673. kvm->mmu_notifier_seq++;
  674. /*
  675. * The above sequence increase must be visible before the
  676. * below count decrease but both values are read by the kvm
  677. * page fault under mmu_lock spinlock so we don't need to add
  678. * a smb_wmb() here in between the two.
  679. */
  680. kvm->mmu_notifier_count--;
  681. spin_unlock(&kvm->mmu_lock);
  682. BUG_ON(kvm->mmu_notifier_count < 0);
  683. }
  684. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  685. struct mm_struct *mm,
  686. unsigned long address)
  687. {
  688. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  689. int young;
  690. spin_lock(&kvm->mmu_lock);
  691. young = kvm_age_hva(kvm, address);
  692. spin_unlock(&kvm->mmu_lock);
  693. if (young)
  694. kvm_flush_remote_tlbs(kvm);
  695. return young;
  696. }
  697. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  698. struct mm_struct *mm)
  699. {
  700. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  701. kvm_arch_flush_shadow(kvm);
  702. }
  703. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  704. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  705. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  706. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  707. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  708. .release = kvm_mmu_notifier_release,
  709. };
  710. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  711. static struct kvm *kvm_create_vm(void)
  712. {
  713. struct kvm *kvm = kvm_arch_create_vm();
  714. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  715. struct page *page;
  716. #endif
  717. if (IS_ERR(kvm))
  718. goto out;
  719. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  720. INIT_LIST_HEAD(&kvm->irq_routing);
  721. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  722. #endif
  723. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  724. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  725. if (!page) {
  726. kfree(kvm);
  727. return ERR_PTR(-ENOMEM);
  728. }
  729. kvm->coalesced_mmio_ring =
  730. (struct kvm_coalesced_mmio_ring *)page_address(page);
  731. #endif
  732. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  733. {
  734. int err;
  735. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  736. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  737. if (err) {
  738. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  739. put_page(page);
  740. #endif
  741. kfree(kvm);
  742. return ERR_PTR(err);
  743. }
  744. }
  745. #endif
  746. kvm->mm = current->mm;
  747. atomic_inc(&kvm->mm->mm_count);
  748. spin_lock_init(&kvm->mmu_lock);
  749. kvm_io_bus_init(&kvm->pio_bus);
  750. mutex_init(&kvm->lock);
  751. kvm_io_bus_init(&kvm->mmio_bus);
  752. init_rwsem(&kvm->slots_lock);
  753. atomic_set(&kvm->users_count, 1);
  754. spin_lock(&kvm_lock);
  755. list_add(&kvm->vm_list, &vm_list);
  756. spin_unlock(&kvm_lock);
  757. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  758. kvm_coalesced_mmio_init(kvm);
  759. #endif
  760. out:
  761. return kvm;
  762. }
  763. /*
  764. * Free any memory in @free but not in @dont.
  765. */
  766. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  767. struct kvm_memory_slot *dont)
  768. {
  769. if (!dont || free->rmap != dont->rmap)
  770. vfree(free->rmap);
  771. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  772. vfree(free->dirty_bitmap);
  773. if (!dont || free->lpage_info != dont->lpage_info)
  774. vfree(free->lpage_info);
  775. free->npages = 0;
  776. free->dirty_bitmap = NULL;
  777. free->rmap = NULL;
  778. free->lpage_info = NULL;
  779. }
  780. void kvm_free_physmem(struct kvm *kvm)
  781. {
  782. int i;
  783. for (i = 0; i < kvm->nmemslots; ++i)
  784. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  785. }
  786. static void kvm_destroy_vm(struct kvm *kvm)
  787. {
  788. struct mm_struct *mm = kvm->mm;
  789. kvm_arch_sync_events(kvm);
  790. spin_lock(&kvm_lock);
  791. list_del(&kvm->vm_list);
  792. spin_unlock(&kvm_lock);
  793. kvm_free_irq_routing(kvm);
  794. kvm_io_bus_destroy(&kvm->pio_bus);
  795. kvm_io_bus_destroy(&kvm->mmio_bus);
  796. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  797. if (kvm->coalesced_mmio_ring != NULL)
  798. free_page((unsigned long)kvm->coalesced_mmio_ring);
  799. #endif
  800. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  801. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  802. #endif
  803. kvm_arch_destroy_vm(kvm);
  804. mmdrop(mm);
  805. }
  806. void kvm_get_kvm(struct kvm *kvm)
  807. {
  808. atomic_inc(&kvm->users_count);
  809. }
  810. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  811. void kvm_put_kvm(struct kvm *kvm)
  812. {
  813. if (atomic_dec_and_test(&kvm->users_count))
  814. kvm_destroy_vm(kvm);
  815. }
  816. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  817. static int kvm_vm_release(struct inode *inode, struct file *filp)
  818. {
  819. struct kvm *kvm = filp->private_data;
  820. kvm_put_kvm(kvm);
  821. return 0;
  822. }
  823. /*
  824. * Allocate some memory and give it an address in the guest physical address
  825. * space.
  826. *
  827. * Discontiguous memory is allowed, mostly for framebuffers.
  828. *
  829. * Must be called holding mmap_sem for write.
  830. */
  831. int __kvm_set_memory_region(struct kvm *kvm,
  832. struct kvm_userspace_memory_region *mem,
  833. int user_alloc)
  834. {
  835. int r;
  836. gfn_t base_gfn;
  837. unsigned long npages;
  838. unsigned long i;
  839. struct kvm_memory_slot *memslot;
  840. struct kvm_memory_slot old, new;
  841. r = -EINVAL;
  842. /* General sanity checks */
  843. if (mem->memory_size & (PAGE_SIZE - 1))
  844. goto out;
  845. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  846. goto out;
  847. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  848. goto out;
  849. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  850. goto out;
  851. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  852. goto out;
  853. memslot = &kvm->memslots[mem->slot];
  854. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  855. npages = mem->memory_size >> PAGE_SHIFT;
  856. if (!npages)
  857. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  858. new = old = *memslot;
  859. new.base_gfn = base_gfn;
  860. new.npages = npages;
  861. new.flags = mem->flags;
  862. /* Disallow changing a memory slot's size. */
  863. r = -EINVAL;
  864. if (npages && old.npages && npages != old.npages)
  865. goto out_free;
  866. /* Check for overlaps */
  867. r = -EEXIST;
  868. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  869. struct kvm_memory_slot *s = &kvm->memslots[i];
  870. if (s == memslot)
  871. continue;
  872. if (!((base_gfn + npages <= s->base_gfn) ||
  873. (base_gfn >= s->base_gfn + s->npages)))
  874. goto out_free;
  875. }
  876. /* Free page dirty bitmap if unneeded */
  877. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  878. new.dirty_bitmap = NULL;
  879. r = -ENOMEM;
  880. /* Allocate if a slot is being created */
  881. #ifndef CONFIG_S390
  882. if (npages && !new.rmap) {
  883. new.rmap = vmalloc(npages * sizeof(struct page *));
  884. if (!new.rmap)
  885. goto out_free;
  886. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  887. new.user_alloc = user_alloc;
  888. /*
  889. * hva_to_rmmap() serialzies with the mmu_lock and to be
  890. * safe it has to ignore memslots with !user_alloc &&
  891. * !userspace_addr.
  892. */
  893. if (user_alloc)
  894. new.userspace_addr = mem->userspace_addr;
  895. else
  896. new.userspace_addr = 0;
  897. }
  898. if (npages && !new.lpage_info) {
  899. int largepages = npages / KVM_PAGES_PER_HPAGE;
  900. if (npages % KVM_PAGES_PER_HPAGE)
  901. largepages++;
  902. if (base_gfn % KVM_PAGES_PER_HPAGE)
  903. largepages++;
  904. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  905. if (!new.lpage_info)
  906. goto out_free;
  907. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  908. if (base_gfn % KVM_PAGES_PER_HPAGE)
  909. new.lpage_info[0].write_count = 1;
  910. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  911. new.lpage_info[largepages-1].write_count = 1;
  912. }
  913. /* Allocate page dirty bitmap if needed */
  914. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  915. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  916. new.dirty_bitmap = vmalloc(dirty_bytes);
  917. if (!new.dirty_bitmap)
  918. goto out_free;
  919. memset(new.dirty_bitmap, 0, dirty_bytes);
  920. }
  921. #endif /* not defined CONFIG_S390 */
  922. if (!npages)
  923. kvm_arch_flush_shadow(kvm);
  924. spin_lock(&kvm->mmu_lock);
  925. if (mem->slot >= kvm->nmemslots)
  926. kvm->nmemslots = mem->slot + 1;
  927. *memslot = new;
  928. spin_unlock(&kvm->mmu_lock);
  929. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  930. if (r) {
  931. spin_lock(&kvm->mmu_lock);
  932. *memslot = old;
  933. spin_unlock(&kvm->mmu_lock);
  934. goto out_free;
  935. }
  936. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  937. /* Slot deletion case: we have to update the current slot */
  938. if (!npages)
  939. *memslot = old;
  940. #ifdef CONFIG_DMAR
  941. /* map the pages in iommu page table */
  942. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  943. if (r)
  944. goto out;
  945. #endif
  946. return 0;
  947. out_free:
  948. kvm_free_physmem_slot(&new, &old);
  949. out:
  950. return r;
  951. }
  952. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  953. int kvm_set_memory_region(struct kvm *kvm,
  954. struct kvm_userspace_memory_region *mem,
  955. int user_alloc)
  956. {
  957. int r;
  958. down_write(&kvm->slots_lock);
  959. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  960. up_write(&kvm->slots_lock);
  961. return r;
  962. }
  963. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  964. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  965. struct
  966. kvm_userspace_memory_region *mem,
  967. int user_alloc)
  968. {
  969. if (mem->slot >= KVM_MEMORY_SLOTS)
  970. return -EINVAL;
  971. return kvm_set_memory_region(kvm, mem, user_alloc);
  972. }
  973. int kvm_get_dirty_log(struct kvm *kvm,
  974. struct kvm_dirty_log *log, int *is_dirty)
  975. {
  976. struct kvm_memory_slot *memslot;
  977. int r, i;
  978. int n;
  979. unsigned long any = 0;
  980. r = -EINVAL;
  981. if (log->slot >= KVM_MEMORY_SLOTS)
  982. goto out;
  983. memslot = &kvm->memslots[log->slot];
  984. r = -ENOENT;
  985. if (!memslot->dirty_bitmap)
  986. goto out;
  987. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  988. for (i = 0; !any && i < n/sizeof(long); ++i)
  989. any = memslot->dirty_bitmap[i];
  990. r = -EFAULT;
  991. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  992. goto out;
  993. if (any)
  994. *is_dirty = 1;
  995. r = 0;
  996. out:
  997. return r;
  998. }
  999. int is_error_page(struct page *page)
  1000. {
  1001. return page == bad_page;
  1002. }
  1003. EXPORT_SYMBOL_GPL(is_error_page);
  1004. int is_error_pfn(pfn_t pfn)
  1005. {
  1006. return pfn == bad_pfn;
  1007. }
  1008. EXPORT_SYMBOL_GPL(is_error_pfn);
  1009. static inline unsigned long bad_hva(void)
  1010. {
  1011. return PAGE_OFFSET;
  1012. }
  1013. int kvm_is_error_hva(unsigned long addr)
  1014. {
  1015. return addr == bad_hva();
  1016. }
  1017. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  1018. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  1019. {
  1020. int i;
  1021. for (i = 0; i < kvm->nmemslots; ++i) {
  1022. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1023. if (gfn >= memslot->base_gfn
  1024. && gfn < memslot->base_gfn + memslot->npages)
  1025. return memslot;
  1026. }
  1027. return NULL;
  1028. }
  1029. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  1030. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1031. {
  1032. gfn = unalias_gfn(kvm, gfn);
  1033. return gfn_to_memslot_unaliased(kvm, gfn);
  1034. }
  1035. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1036. {
  1037. int i;
  1038. gfn = unalias_gfn(kvm, gfn);
  1039. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1040. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1041. if (gfn >= memslot->base_gfn
  1042. && gfn < memslot->base_gfn + memslot->npages)
  1043. return 1;
  1044. }
  1045. return 0;
  1046. }
  1047. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1048. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1049. {
  1050. struct kvm_memory_slot *slot;
  1051. gfn = unalias_gfn(kvm, gfn);
  1052. slot = gfn_to_memslot_unaliased(kvm, gfn);
  1053. if (!slot)
  1054. return bad_hva();
  1055. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  1056. }
  1057. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1058. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1059. {
  1060. struct page *page[1];
  1061. unsigned long addr;
  1062. int npages;
  1063. pfn_t pfn;
  1064. might_sleep();
  1065. addr = gfn_to_hva(kvm, gfn);
  1066. if (kvm_is_error_hva(addr)) {
  1067. get_page(bad_page);
  1068. return page_to_pfn(bad_page);
  1069. }
  1070. npages = get_user_pages_fast(addr, 1, 1, page);
  1071. if (unlikely(npages != 1)) {
  1072. struct vm_area_struct *vma;
  1073. down_read(&current->mm->mmap_sem);
  1074. vma = find_vma(current->mm, addr);
  1075. if (vma == NULL || addr < vma->vm_start ||
  1076. !(vma->vm_flags & VM_PFNMAP)) {
  1077. up_read(&current->mm->mmap_sem);
  1078. get_page(bad_page);
  1079. return page_to_pfn(bad_page);
  1080. }
  1081. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1082. up_read(&current->mm->mmap_sem);
  1083. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1084. } else
  1085. pfn = page_to_pfn(page[0]);
  1086. return pfn;
  1087. }
  1088. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1089. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1090. {
  1091. pfn_t pfn;
  1092. pfn = gfn_to_pfn(kvm, gfn);
  1093. if (!kvm_is_mmio_pfn(pfn))
  1094. return pfn_to_page(pfn);
  1095. WARN_ON(kvm_is_mmio_pfn(pfn));
  1096. get_page(bad_page);
  1097. return bad_page;
  1098. }
  1099. EXPORT_SYMBOL_GPL(gfn_to_page);
  1100. void kvm_release_page_clean(struct page *page)
  1101. {
  1102. kvm_release_pfn_clean(page_to_pfn(page));
  1103. }
  1104. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1105. void kvm_release_pfn_clean(pfn_t pfn)
  1106. {
  1107. if (!kvm_is_mmio_pfn(pfn))
  1108. put_page(pfn_to_page(pfn));
  1109. }
  1110. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1111. void kvm_release_page_dirty(struct page *page)
  1112. {
  1113. kvm_release_pfn_dirty(page_to_pfn(page));
  1114. }
  1115. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1116. void kvm_release_pfn_dirty(pfn_t pfn)
  1117. {
  1118. kvm_set_pfn_dirty(pfn);
  1119. kvm_release_pfn_clean(pfn);
  1120. }
  1121. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1122. void kvm_set_page_dirty(struct page *page)
  1123. {
  1124. kvm_set_pfn_dirty(page_to_pfn(page));
  1125. }
  1126. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1127. void kvm_set_pfn_dirty(pfn_t pfn)
  1128. {
  1129. if (!kvm_is_mmio_pfn(pfn)) {
  1130. struct page *page = pfn_to_page(pfn);
  1131. if (!PageReserved(page))
  1132. SetPageDirty(page);
  1133. }
  1134. }
  1135. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1136. void kvm_set_pfn_accessed(pfn_t pfn)
  1137. {
  1138. if (!kvm_is_mmio_pfn(pfn))
  1139. mark_page_accessed(pfn_to_page(pfn));
  1140. }
  1141. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1142. void kvm_get_pfn(pfn_t pfn)
  1143. {
  1144. if (!kvm_is_mmio_pfn(pfn))
  1145. get_page(pfn_to_page(pfn));
  1146. }
  1147. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1148. static int next_segment(unsigned long len, int offset)
  1149. {
  1150. if (len > PAGE_SIZE - offset)
  1151. return PAGE_SIZE - offset;
  1152. else
  1153. return len;
  1154. }
  1155. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1156. int len)
  1157. {
  1158. int r;
  1159. unsigned long addr;
  1160. addr = gfn_to_hva(kvm, gfn);
  1161. if (kvm_is_error_hva(addr))
  1162. return -EFAULT;
  1163. r = copy_from_user(data, (void __user *)addr + offset, len);
  1164. if (r)
  1165. return -EFAULT;
  1166. return 0;
  1167. }
  1168. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1169. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1170. {
  1171. gfn_t gfn = gpa >> PAGE_SHIFT;
  1172. int seg;
  1173. int offset = offset_in_page(gpa);
  1174. int ret;
  1175. while ((seg = next_segment(len, offset)) != 0) {
  1176. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1177. if (ret < 0)
  1178. return ret;
  1179. offset = 0;
  1180. len -= seg;
  1181. data += seg;
  1182. ++gfn;
  1183. }
  1184. return 0;
  1185. }
  1186. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1187. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1188. unsigned long len)
  1189. {
  1190. int r;
  1191. unsigned long addr;
  1192. gfn_t gfn = gpa >> PAGE_SHIFT;
  1193. int offset = offset_in_page(gpa);
  1194. addr = gfn_to_hva(kvm, gfn);
  1195. if (kvm_is_error_hva(addr))
  1196. return -EFAULT;
  1197. pagefault_disable();
  1198. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1199. pagefault_enable();
  1200. if (r)
  1201. return -EFAULT;
  1202. return 0;
  1203. }
  1204. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1205. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1206. int offset, int len)
  1207. {
  1208. int r;
  1209. unsigned long addr;
  1210. addr = gfn_to_hva(kvm, gfn);
  1211. if (kvm_is_error_hva(addr))
  1212. return -EFAULT;
  1213. r = copy_to_user((void __user *)addr + offset, data, len);
  1214. if (r)
  1215. return -EFAULT;
  1216. mark_page_dirty(kvm, gfn);
  1217. return 0;
  1218. }
  1219. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1220. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1221. unsigned long len)
  1222. {
  1223. gfn_t gfn = gpa >> PAGE_SHIFT;
  1224. int seg;
  1225. int offset = offset_in_page(gpa);
  1226. int ret;
  1227. while ((seg = next_segment(len, offset)) != 0) {
  1228. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1229. if (ret < 0)
  1230. return ret;
  1231. offset = 0;
  1232. len -= seg;
  1233. data += seg;
  1234. ++gfn;
  1235. }
  1236. return 0;
  1237. }
  1238. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1239. {
  1240. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1241. }
  1242. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1243. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1244. {
  1245. gfn_t gfn = gpa >> PAGE_SHIFT;
  1246. int seg;
  1247. int offset = offset_in_page(gpa);
  1248. int ret;
  1249. while ((seg = next_segment(len, offset)) != 0) {
  1250. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1251. if (ret < 0)
  1252. return ret;
  1253. offset = 0;
  1254. len -= seg;
  1255. ++gfn;
  1256. }
  1257. return 0;
  1258. }
  1259. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1260. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1261. {
  1262. struct kvm_memory_slot *memslot;
  1263. gfn = unalias_gfn(kvm, gfn);
  1264. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1265. if (memslot && memslot->dirty_bitmap) {
  1266. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1267. /* avoid RMW */
  1268. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1269. set_bit(rel_gfn, memslot->dirty_bitmap);
  1270. }
  1271. }
  1272. /*
  1273. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1274. */
  1275. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1276. {
  1277. DEFINE_WAIT(wait);
  1278. for (;;) {
  1279. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1280. if (kvm_cpu_has_interrupt(vcpu) ||
  1281. kvm_cpu_has_pending_timer(vcpu) ||
  1282. kvm_arch_vcpu_runnable(vcpu)) {
  1283. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1284. break;
  1285. }
  1286. if (signal_pending(current))
  1287. break;
  1288. vcpu_put(vcpu);
  1289. schedule();
  1290. vcpu_load(vcpu);
  1291. }
  1292. finish_wait(&vcpu->wq, &wait);
  1293. }
  1294. void kvm_resched(struct kvm_vcpu *vcpu)
  1295. {
  1296. if (!need_resched())
  1297. return;
  1298. cond_resched();
  1299. }
  1300. EXPORT_SYMBOL_GPL(kvm_resched);
  1301. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1302. {
  1303. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1304. struct page *page;
  1305. if (vmf->pgoff == 0)
  1306. page = virt_to_page(vcpu->run);
  1307. #ifdef CONFIG_X86
  1308. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1309. page = virt_to_page(vcpu->arch.pio_data);
  1310. #endif
  1311. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1312. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1313. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1314. #endif
  1315. else
  1316. return VM_FAULT_SIGBUS;
  1317. get_page(page);
  1318. vmf->page = page;
  1319. return 0;
  1320. }
  1321. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1322. .fault = kvm_vcpu_fault,
  1323. };
  1324. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1325. {
  1326. vma->vm_ops = &kvm_vcpu_vm_ops;
  1327. return 0;
  1328. }
  1329. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1330. {
  1331. struct kvm_vcpu *vcpu = filp->private_data;
  1332. kvm_put_kvm(vcpu->kvm);
  1333. return 0;
  1334. }
  1335. static struct file_operations kvm_vcpu_fops = {
  1336. .release = kvm_vcpu_release,
  1337. .unlocked_ioctl = kvm_vcpu_ioctl,
  1338. .compat_ioctl = kvm_vcpu_ioctl,
  1339. .mmap = kvm_vcpu_mmap,
  1340. };
  1341. /*
  1342. * Allocates an inode for the vcpu.
  1343. */
  1344. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1345. {
  1346. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1347. if (fd < 0)
  1348. kvm_put_kvm(vcpu->kvm);
  1349. return fd;
  1350. }
  1351. /*
  1352. * Creates some virtual cpus. Good luck creating more than one.
  1353. */
  1354. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1355. {
  1356. int r;
  1357. struct kvm_vcpu *vcpu;
  1358. if (!valid_vcpu(n))
  1359. return -EINVAL;
  1360. vcpu = kvm_arch_vcpu_create(kvm, n);
  1361. if (IS_ERR(vcpu))
  1362. return PTR_ERR(vcpu);
  1363. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1364. r = kvm_arch_vcpu_setup(vcpu);
  1365. if (r)
  1366. return r;
  1367. mutex_lock(&kvm->lock);
  1368. if (kvm->vcpus[n]) {
  1369. r = -EEXIST;
  1370. goto vcpu_destroy;
  1371. }
  1372. kvm->vcpus[n] = vcpu;
  1373. mutex_unlock(&kvm->lock);
  1374. /* Now it's all set up, let userspace reach it */
  1375. kvm_get_kvm(kvm);
  1376. r = create_vcpu_fd(vcpu);
  1377. if (r < 0)
  1378. goto unlink;
  1379. return r;
  1380. unlink:
  1381. mutex_lock(&kvm->lock);
  1382. kvm->vcpus[n] = NULL;
  1383. vcpu_destroy:
  1384. mutex_unlock(&kvm->lock);
  1385. kvm_arch_vcpu_destroy(vcpu);
  1386. return r;
  1387. }
  1388. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1389. {
  1390. if (sigset) {
  1391. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1392. vcpu->sigset_active = 1;
  1393. vcpu->sigset = *sigset;
  1394. } else
  1395. vcpu->sigset_active = 0;
  1396. return 0;
  1397. }
  1398. static long kvm_vcpu_ioctl(struct file *filp,
  1399. unsigned int ioctl, unsigned long arg)
  1400. {
  1401. struct kvm_vcpu *vcpu = filp->private_data;
  1402. void __user *argp = (void __user *)arg;
  1403. int r;
  1404. struct kvm_fpu *fpu = NULL;
  1405. struct kvm_sregs *kvm_sregs = NULL;
  1406. if (vcpu->kvm->mm != current->mm)
  1407. return -EIO;
  1408. switch (ioctl) {
  1409. case KVM_RUN:
  1410. r = -EINVAL;
  1411. if (arg)
  1412. goto out;
  1413. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1414. break;
  1415. case KVM_GET_REGS: {
  1416. struct kvm_regs *kvm_regs;
  1417. r = -ENOMEM;
  1418. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1419. if (!kvm_regs)
  1420. goto out;
  1421. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1422. if (r)
  1423. goto out_free1;
  1424. r = -EFAULT;
  1425. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1426. goto out_free1;
  1427. r = 0;
  1428. out_free1:
  1429. kfree(kvm_regs);
  1430. break;
  1431. }
  1432. case KVM_SET_REGS: {
  1433. struct kvm_regs *kvm_regs;
  1434. r = -ENOMEM;
  1435. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1436. if (!kvm_regs)
  1437. goto out;
  1438. r = -EFAULT;
  1439. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1440. goto out_free2;
  1441. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1442. if (r)
  1443. goto out_free2;
  1444. r = 0;
  1445. out_free2:
  1446. kfree(kvm_regs);
  1447. break;
  1448. }
  1449. case KVM_GET_SREGS: {
  1450. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1451. r = -ENOMEM;
  1452. if (!kvm_sregs)
  1453. goto out;
  1454. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1455. if (r)
  1456. goto out;
  1457. r = -EFAULT;
  1458. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1459. goto out;
  1460. r = 0;
  1461. break;
  1462. }
  1463. case KVM_SET_SREGS: {
  1464. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1465. r = -ENOMEM;
  1466. if (!kvm_sregs)
  1467. goto out;
  1468. r = -EFAULT;
  1469. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1470. goto out;
  1471. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1472. if (r)
  1473. goto out;
  1474. r = 0;
  1475. break;
  1476. }
  1477. case KVM_GET_MP_STATE: {
  1478. struct kvm_mp_state mp_state;
  1479. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1480. if (r)
  1481. goto out;
  1482. r = -EFAULT;
  1483. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1484. goto out;
  1485. r = 0;
  1486. break;
  1487. }
  1488. case KVM_SET_MP_STATE: {
  1489. struct kvm_mp_state mp_state;
  1490. r = -EFAULT;
  1491. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1492. goto out;
  1493. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1494. if (r)
  1495. goto out;
  1496. r = 0;
  1497. break;
  1498. }
  1499. case KVM_TRANSLATE: {
  1500. struct kvm_translation tr;
  1501. r = -EFAULT;
  1502. if (copy_from_user(&tr, argp, sizeof tr))
  1503. goto out;
  1504. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1505. if (r)
  1506. goto out;
  1507. r = -EFAULT;
  1508. if (copy_to_user(argp, &tr, sizeof tr))
  1509. goto out;
  1510. r = 0;
  1511. break;
  1512. }
  1513. case KVM_SET_GUEST_DEBUG: {
  1514. struct kvm_guest_debug dbg;
  1515. r = -EFAULT;
  1516. if (copy_from_user(&dbg, argp, sizeof dbg))
  1517. goto out;
  1518. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1519. if (r)
  1520. goto out;
  1521. r = 0;
  1522. break;
  1523. }
  1524. case KVM_SET_SIGNAL_MASK: {
  1525. struct kvm_signal_mask __user *sigmask_arg = argp;
  1526. struct kvm_signal_mask kvm_sigmask;
  1527. sigset_t sigset, *p;
  1528. p = NULL;
  1529. if (argp) {
  1530. r = -EFAULT;
  1531. if (copy_from_user(&kvm_sigmask, argp,
  1532. sizeof kvm_sigmask))
  1533. goto out;
  1534. r = -EINVAL;
  1535. if (kvm_sigmask.len != sizeof sigset)
  1536. goto out;
  1537. r = -EFAULT;
  1538. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1539. sizeof sigset))
  1540. goto out;
  1541. p = &sigset;
  1542. }
  1543. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1544. break;
  1545. }
  1546. case KVM_GET_FPU: {
  1547. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1548. r = -ENOMEM;
  1549. if (!fpu)
  1550. goto out;
  1551. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1552. if (r)
  1553. goto out;
  1554. r = -EFAULT;
  1555. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1556. goto out;
  1557. r = 0;
  1558. break;
  1559. }
  1560. case KVM_SET_FPU: {
  1561. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1562. r = -ENOMEM;
  1563. if (!fpu)
  1564. goto out;
  1565. r = -EFAULT;
  1566. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1567. goto out;
  1568. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1569. if (r)
  1570. goto out;
  1571. r = 0;
  1572. break;
  1573. }
  1574. default:
  1575. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1576. }
  1577. out:
  1578. kfree(fpu);
  1579. kfree(kvm_sregs);
  1580. return r;
  1581. }
  1582. static long kvm_vm_ioctl(struct file *filp,
  1583. unsigned int ioctl, unsigned long arg)
  1584. {
  1585. struct kvm *kvm = filp->private_data;
  1586. void __user *argp = (void __user *)arg;
  1587. int r;
  1588. if (kvm->mm != current->mm)
  1589. return -EIO;
  1590. switch (ioctl) {
  1591. case KVM_CREATE_VCPU:
  1592. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1593. if (r < 0)
  1594. goto out;
  1595. break;
  1596. case KVM_SET_USER_MEMORY_REGION: {
  1597. struct kvm_userspace_memory_region kvm_userspace_mem;
  1598. r = -EFAULT;
  1599. if (copy_from_user(&kvm_userspace_mem, argp,
  1600. sizeof kvm_userspace_mem))
  1601. goto out;
  1602. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1603. if (r)
  1604. goto out;
  1605. break;
  1606. }
  1607. case KVM_GET_DIRTY_LOG: {
  1608. struct kvm_dirty_log log;
  1609. r = -EFAULT;
  1610. if (copy_from_user(&log, argp, sizeof log))
  1611. goto out;
  1612. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1613. if (r)
  1614. goto out;
  1615. break;
  1616. }
  1617. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1618. case KVM_REGISTER_COALESCED_MMIO: {
  1619. struct kvm_coalesced_mmio_zone zone;
  1620. r = -EFAULT;
  1621. if (copy_from_user(&zone, argp, sizeof zone))
  1622. goto out;
  1623. r = -ENXIO;
  1624. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1625. if (r)
  1626. goto out;
  1627. r = 0;
  1628. break;
  1629. }
  1630. case KVM_UNREGISTER_COALESCED_MMIO: {
  1631. struct kvm_coalesced_mmio_zone zone;
  1632. r = -EFAULT;
  1633. if (copy_from_user(&zone, argp, sizeof zone))
  1634. goto out;
  1635. r = -ENXIO;
  1636. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1637. if (r)
  1638. goto out;
  1639. r = 0;
  1640. break;
  1641. }
  1642. #endif
  1643. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1644. case KVM_ASSIGN_PCI_DEVICE: {
  1645. struct kvm_assigned_pci_dev assigned_dev;
  1646. r = -EFAULT;
  1647. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1648. goto out;
  1649. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1650. if (r)
  1651. goto out;
  1652. break;
  1653. }
  1654. case KVM_ASSIGN_IRQ: {
  1655. struct kvm_assigned_irq assigned_irq;
  1656. r = -EFAULT;
  1657. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1658. goto out;
  1659. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1660. if (r)
  1661. goto out;
  1662. break;
  1663. }
  1664. #endif
  1665. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  1666. case KVM_DEASSIGN_PCI_DEVICE: {
  1667. struct kvm_assigned_pci_dev assigned_dev;
  1668. r = -EFAULT;
  1669. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1670. goto out;
  1671. r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
  1672. if (r)
  1673. goto out;
  1674. break;
  1675. }
  1676. #endif
  1677. #ifdef KVM_CAP_IRQ_ROUTING
  1678. case KVM_SET_GSI_ROUTING: {
  1679. struct kvm_irq_routing routing;
  1680. struct kvm_irq_routing __user *urouting;
  1681. struct kvm_irq_routing_entry *entries;
  1682. r = -EFAULT;
  1683. if (copy_from_user(&routing, argp, sizeof(routing)))
  1684. goto out;
  1685. r = -EINVAL;
  1686. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  1687. goto out;
  1688. if (routing.flags)
  1689. goto out;
  1690. r = -ENOMEM;
  1691. entries = vmalloc(routing.nr * sizeof(*entries));
  1692. if (!entries)
  1693. goto out;
  1694. r = -EFAULT;
  1695. urouting = argp;
  1696. if (copy_from_user(entries, urouting->entries,
  1697. routing.nr * sizeof(*entries)))
  1698. goto out_free_irq_routing;
  1699. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  1700. routing.flags);
  1701. out_free_irq_routing:
  1702. vfree(entries);
  1703. break;
  1704. }
  1705. #endif
  1706. default:
  1707. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1708. }
  1709. out:
  1710. return r;
  1711. }
  1712. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1713. {
  1714. struct page *page[1];
  1715. unsigned long addr;
  1716. int npages;
  1717. gfn_t gfn = vmf->pgoff;
  1718. struct kvm *kvm = vma->vm_file->private_data;
  1719. addr = gfn_to_hva(kvm, gfn);
  1720. if (kvm_is_error_hva(addr))
  1721. return VM_FAULT_SIGBUS;
  1722. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1723. NULL);
  1724. if (unlikely(npages != 1))
  1725. return VM_FAULT_SIGBUS;
  1726. vmf->page = page[0];
  1727. return 0;
  1728. }
  1729. static struct vm_operations_struct kvm_vm_vm_ops = {
  1730. .fault = kvm_vm_fault,
  1731. };
  1732. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1733. {
  1734. vma->vm_ops = &kvm_vm_vm_ops;
  1735. return 0;
  1736. }
  1737. static struct file_operations kvm_vm_fops = {
  1738. .release = kvm_vm_release,
  1739. .unlocked_ioctl = kvm_vm_ioctl,
  1740. .compat_ioctl = kvm_vm_ioctl,
  1741. .mmap = kvm_vm_mmap,
  1742. };
  1743. static int kvm_dev_ioctl_create_vm(void)
  1744. {
  1745. int fd;
  1746. struct kvm *kvm;
  1747. kvm = kvm_create_vm();
  1748. if (IS_ERR(kvm))
  1749. return PTR_ERR(kvm);
  1750. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1751. if (fd < 0)
  1752. kvm_put_kvm(kvm);
  1753. return fd;
  1754. }
  1755. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1756. {
  1757. switch (arg) {
  1758. case KVM_CAP_USER_MEMORY:
  1759. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1760. return 1;
  1761. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1762. case KVM_CAP_IRQ_ROUTING:
  1763. return 1;
  1764. #endif
  1765. default:
  1766. break;
  1767. }
  1768. return kvm_dev_ioctl_check_extension(arg);
  1769. }
  1770. static long kvm_dev_ioctl(struct file *filp,
  1771. unsigned int ioctl, unsigned long arg)
  1772. {
  1773. long r = -EINVAL;
  1774. switch (ioctl) {
  1775. case KVM_GET_API_VERSION:
  1776. r = -EINVAL;
  1777. if (arg)
  1778. goto out;
  1779. r = KVM_API_VERSION;
  1780. break;
  1781. case KVM_CREATE_VM:
  1782. r = -EINVAL;
  1783. if (arg)
  1784. goto out;
  1785. r = kvm_dev_ioctl_create_vm();
  1786. break;
  1787. case KVM_CHECK_EXTENSION:
  1788. r = kvm_dev_ioctl_check_extension_generic(arg);
  1789. break;
  1790. case KVM_GET_VCPU_MMAP_SIZE:
  1791. r = -EINVAL;
  1792. if (arg)
  1793. goto out;
  1794. r = PAGE_SIZE; /* struct kvm_run */
  1795. #ifdef CONFIG_X86
  1796. r += PAGE_SIZE; /* pio data page */
  1797. #endif
  1798. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1799. r += PAGE_SIZE; /* coalesced mmio ring page */
  1800. #endif
  1801. break;
  1802. case KVM_TRACE_ENABLE:
  1803. case KVM_TRACE_PAUSE:
  1804. case KVM_TRACE_DISABLE:
  1805. r = kvm_trace_ioctl(ioctl, arg);
  1806. break;
  1807. default:
  1808. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1809. }
  1810. out:
  1811. return r;
  1812. }
  1813. static struct file_operations kvm_chardev_ops = {
  1814. .unlocked_ioctl = kvm_dev_ioctl,
  1815. .compat_ioctl = kvm_dev_ioctl,
  1816. };
  1817. static struct miscdevice kvm_dev = {
  1818. KVM_MINOR,
  1819. "kvm",
  1820. &kvm_chardev_ops,
  1821. };
  1822. static void hardware_enable(void *junk)
  1823. {
  1824. int cpu = raw_smp_processor_id();
  1825. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1826. return;
  1827. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1828. kvm_arch_hardware_enable(NULL);
  1829. }
  1830. static void hardware_disable(void *junk)
  1831. {
  1832. int cpu = raw_smp_processor_id();
  1833. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1834. return;
  1835. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1836. kvm_arch_hardware_disable(NULL);
  1837. }
  1838. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1839. void *v)
  1840. {
  1841. int cpu = (long)v;
  1842. val &= ~CPU_TASKS_FROZEN;
  1843. switch (val) {
  1844. case CPU_DYING:
  1845. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1846. cpu);
  1847. hardware_disable(NULL);
  1848. break;
  1849. case CPU_UP_CANCELED:
  1850. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1851. cpu);
  1852. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1853. break;
  1854. case CPU_ONLINE:
  1855. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1856. cpu);
  1857. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1858. break;
  1859. }
  1860. return NOTIFY_OK;
  1861. }
  1862. asmlinkage void kvm_handle_fault_on_reboot(void)
  1863. {
  1864. if (kvm_rebooting)
  1865. /* spin while reset goes on */
  1866. while (true)
  1867. ;
  1868. /* Fault while not rebooting. We want the trace. */
  1869. BUG();
  1870. }
  1871. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1872. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1873. void *v)
  1874. {
  1875. if (val == SYS_RESTART) {
  1876. /*
  1877. * Some (well, at least mine) BIOSes hang on reboot if
  1878. * in vmx root mode.
  1879. */
  1880. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1881. kvm_rebooting = true;
  1882. on_each_cpu(hardware_disable, NULL, 1);
  1883. }
  1884. return NOTIFY_OK;
  1885. }
  1886. static struct notifier_block kvm_reboot_notifier = {
  1887. .notifier_call = kvm_reboot,
  1888. .priority = 0,
  1889. };
  1890. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1891. {
  1892. memset(bus, 0, sizeof(*bus));
  1893. }
  1894. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1895. {
  1896. int i;
  1897. for (i = 0; i < bus->dev_count; i++) {
  1898. struct kvm_io_device *pos = bus->devs[i];
  1899. kvm_iodevice_destructor(pos);
  1900. }
  1901. }
  1902. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1903. gpa_t addr, int len, int is_write)
  1904. {
  1905. int i;
  1906. for (i = 0; i < bus->dev_count; i++) {
  1907. struct kvm_io_device *pos = bus->devs[i];
  1908. if (pos->in_range(pos, addr, len, is_write))
  1909. return pos;
  1910. }
  1911. return NULL;
  1912. }
  1913. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1914. {
  1915. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1916. bus->devs[bus->dev_count++] = dev;
  1917. }
  1918. static struct notifier_block kvm_cpu_notifier = {
  1919. .notifier_call = kvm_cpu_hotplug,
  1920. .priority = 20, /* must be > scheduler priority */
  1921. };
  1922. static int vm_stat_get(void *_offset, u64 *val)
  1923. {
  1924. unsigned offset = (long)_offset;
  1925. struct kvm *kvm;
  1926. *val = 0;
  1927. spin_lock(&kvm_lock);
  1928. list_for_each_entry(kvm, &vm_list, vm_list)
  1929. *val += *(u32 *)((void *)kvm + offset);
  1930. spin_unlock(&kvm_lock);
  1931. return 0;
  1932. }
  1933. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1934. static int vcpu_stat_get(void *_offset, u64 *val)
  1935. {
  1936. unsigned offset = (long)_offset;
  1937. struct kvm *kvm;
  1938. struct kvm_vcpu *vcpu;
  1939. int i;
  1940. *val = 0;
  1941. spin_lock(&kvm_lock);
  1942. list_for_each_entry(kvm, &vm_list, vm_list)
  1943. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1944. vcpu = kvm->vcpus[i];
  1945. if (vcpu)
  1946. *val += *(u32 *)((void *)vcpu + offset);
  1947. }
  1948. spin_unlock(&kvm_lock);
  1949. return 0;
  1950. }
  1951. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1952. static struct file_operations *stat_fops[] = {
  1953. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1954. [KVM_STAT_VM] = &vm_stat_fops,
  1955. };
  1956. static void kvm_init_debug(void)
  1957. {
  1958. struct kvm_stats_debugfs_item *p;
  1959. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1960. for (p = debugfs_entries; p->name; ++p)
  1961. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1962. (void *)(long)p->offset,
  1963. stat_fops[p->kind]);
  1964. }
  1965. static void kvm_exit_debug(void)
  1966. {
  1967. struct kvm_stats_debugfs_item *p;
  1968. for (p = debugfs_entries; p->name; ++p)
  1969. debugfs_remove(p->dentry);
  1970. debugfs_remove(kvm_debugfs_dir);
  1971. }
  1972. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1973. {
  1974. hardware_disable(NULL);
  1975. return 0;
  1976. }
  1977. static int kvm_resume(struct sys_device *dev)
  1978. {
  1979. hardware_enable(NULL);
  1980. return 0;
  1981. }
  1982. static struct sysdev_class kvm_sysdev_class = {
  1983. .name = "kvm",
  1984. .suspend = kvm_suspend,
  1985. .resume = kvm_resume,
  1986. };
  1987. static struct sys_device kvm_sysdev = {
  1988. .id = 0,
  1989. .cls = &kvm_sysdev_class,
  1990. };
  1991. struct page *bad_page;
  1992. pfn_t bad_pfn;
  1993. static inline
  1994. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1995. {
  1996. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1997. }
  1998. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1999. {
  2000. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2001. kvm_arch_vcpu_load(vcpu, cpu);
  2002. }
  2003. static void kvm_sched_out(struct preempt_notifier *pn,
  2004. struct task_struct *next)
  2005. {
  2006. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2007. kvm_arch_vcpu_put(vcpu);
  2008. }
  2009. int kvm_init(void *opaque, unsigned int vcpu_size,
  2010. struct module *module)
  2011. {
  2012. int r;
  2013. int cpu;
  2014. kvm_init_debug();
  2015. r = kvm_arch_init(opaque);
  2016. if (r)
  2017. goto out_fail;
  2018. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2019. if (bad_page == NULL) {
  2020. r = -ENOMEM;
  2021. goto out;
  2022. }
  2023. bad_pfn = page_to_pfn(bad_page);
  2024. if (!alloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2025. r = -ENOMEM;
  2026. goto out_free_0;
  2027. }
  2028. r = kvm_arch_hardware_setup();
  2029. if (r < 0)
  2030. goto out_free_0a;
  2031. for_each_online_cpu(cpu) {
  2032. smp_call_function_single(cpu,
  2033. kvm_arch_check_processor_compat,
  2034. &r, 1);
  2035. if (r < 0)
  2036. goto out_free_1;
  2037. }
  2038. on_each_cpu(hardware_enable, NULL, 1);
  2039. r = register_cpu_notifier(&kvm_cpu_notifier);
  2040. if (r)
  2041. goto out_free_2;
  2042. register_reboot_notifier(&kvm_reboot_notifier);
  2043. r = sysdev_class_register(&kvm_sysdev_class);
  2044. if (r)
  2045. goto out_free_3;
  2046. r = sysdev_register(&kvm_sysdev);
  2047. if (r)
  2048. goto out_free_4;
  2049. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2050. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2051. __alignof__(struct kvm_vcpu),
  2052. 0, NULL);
  2053. if (!kvm_vcpu_cache) {
  2054. r = -ENOMEM;
  2055. goto out_free_5;
  2056. }
  2057. kvm_chardev_ops.owner = module;
  2058. kvm_vm_fops.owner = module;
  2059. kvm_vcpu_fops.owner = module;
  2060. r = misc_register(&kvm_dev);
  2061. if (r) {
  2062. printk(KERN_ERR "kvm: misc device register failed\n");
  2063. goto out_free;
  2064. }
  2065. kvm_preempt_ops.sched_in = kvm_sched_in;
  2066. kvm_preempt_ops.sched_out = kvm_sched_out;
  2067. #ifndef CONFIG_X86
  2068. msi2intx = 0;
  2069. #endif
  2070. return 0;
  2071. out_free:
  2072. kmem_cache_destroy(kvm_vcpu_cache);
  2073. out_free_5:
  2074. sysdev_unregister(&kvm_sysdev);
  2075. out_free_4:
  2076. sysdev_class_unregister(&kvm_sysdev_class);
  2077. out_free_3:
  2078. unregister_reboot_notifier(&kvm_reboot_notifier);
  2079. unregister_cpu_notifier(&kvm_cpu_notifier);
  2080. out_free_2:
  2081. on_each_cpu(hardware_disable, NULL, 1);
  2082. out_free_1:
  2083. kvm_arch_hardware_unsetup();
  2084. out_free_0a:
  2085. free_cpumask_var(cpus_hardware_enabled);
  2086. out_free_0:
  2087. __free_page(bad_page);
  2088. out:
  2089. kvm_arch_exit();
  2090. kvm_exit_debug();
  2091. out_fail:
  2092. return r;
  2093. }
  2094. EXPORT_SYMBOL_GPL(kvm_init);
  2095. void kvm_exit(void)
  2096. {
  2097. kvm_trace_cleanup();
  2098. misc_deregister(&kvm_dev);
  2099. kmem_cache_destroy(kvm_vcpu_cache);
  2100. sysdev_unregister(&kvm_sysdev);
  2101. sysdev_class_unregister(&kvm_sysdev_class);
  2102. unregister_reboot_notifier(&kvm_reboot_notifier);
  2103. unregister_cpu_notifier(&kvm_cpu_notifier);
  2104. on_each_cpu(hardware_disable, NULL, 1);
  2105. kvm_arch_hardware_unsetup();
  2106. kvm_arch_exit();
  2107. kvm_exit_debug();
  2108. free_cpumask_var(cpus_hardware_enabled);
  2109. __free_page(bad_page);
  2110. }
  2111. EXPORT_SYMBOL_GPL(kvm_exit);