xmit.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. static u16 bits_per_symbol[][2] = {
  33. /* 20MHz 40MHz */
  34. { 26, 54 }, /* 0: BPSK */
  35. { 52, 108 }, /* 1: QPSK 1/2 */
  36. { 78, 162 }, /* 2: QPSK 3/4 */
  37. { 104, 216 }, /* 3: 16-QAM 1/2 */
  38. { 156, 324 }, /* 4: 16-QAM 3/4 */
  39. { 208, 432 }, /* 5: 64-QAM 2/3 */
  40. { 234, 486 }, /* 6: 64-QAM 3/4 */
  41. { 260, 540 }, /* 7: 64-QAM 5/6 */
  42. };
  43. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  44. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  45. struct ath_atx_tid *tid, struct sk_buff *skb);
  46. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  47. int tx_flags, struct ath_txq *txq);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok, int sendbar);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head, bool internal);
  53. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len);
  54. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  55. struct ath_tx_status *ts, int nframes, int nbad,
  56. int txok, bool update_rc);
  57. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  58. int seqno);
  59. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  60. struct ath_txq *txq,
  61. struct ath_atx_tid *tid,
  62. struct sk_buff *skb);
  63. enum {
  64. MCS_HT20,
  65. MCS_HT20_SGI,
  66. MCS_HT40,
  67. MCS_HT40_SGI,
  68. };
  69. static int ath_max_4ms_framelen[4][32] = {
  70. [MCS_HT20] = {
  71. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  72. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  73. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  74. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  75. },
  76. [MCS_HT20_SGI] = {
  77. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  78. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  79. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  80. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  81. },
  82. [MCS_HT40] = {
  83. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  84. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  85. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  86. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  87. },
  88. [MCS_HT40_SGI] = {
  89. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  90. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  91. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  92. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  93. }
  94. };
  95. /*********************/
  96. /* Aggregation logic */
  97. /*********************/
  98. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  99. {
  100. struct ath_atx_ac *ac = tid->ac;
  101. if (tid->paused)
  102. return;
  103. if (tid->sched)
  104. return;
  105. tid->sched = true;
  106. list_add_tail(&tid->list, &ac->tid_q);
  107. if (ac->sched)
  108. return;
  109. ac->sched = true;
  110. list_add_tail(&ac->list, &txq->axq_acq);
  111. }
  112. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  113. {
  114. struct ath_txq *txq = tid->ac->txq;
  115. WARN_ON(!tid->paused);
  116. spin_lock_bh(&txq->axq_lock);
  117. tid->paused = false;
  118. if (skb_queue_empty(&tid->buf_q))
  119. goto unlock;
  120. ath_tx_queue_tid(txq, tid);
  121. ath_txq_schedule(sc, txq);
  122. unlock:
  123. spin_unlock_bh(&txq->axq_lock);
  124. }
  125. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  126. {
  127. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  128. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  129. sizeof(tx_info->rate_driver_data));
  130. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  131. }
  132. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  133. {
  134. struct ath_txq *txq = tid->ac->txq;
  135. struct sk_buff *skb;
  136. struct ath_buf *bf;
  137. struct list_head bf_head;
  138. struct ath_tx_status ts;
  139. struct ath_frame_info *fi;
  140. INIT_LIST_HEAD(&bf_head);
  141. memset(&ts, 0, sizeof(ts));
  142. spin_lock_bh(&txq->axq_lock);
  143. while ((skb = __skb_dequeue(&tid->buf_q))) {
  144. fi = get_frame_info(skb);
  145. bf = fi->bf;
  146. spin_unlock_bh(&txq->axq_lock);
  147. if (bf && fi->retries) {
  148. list_add_tail(&bf->list, &bf_head);
  149. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  150. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 1);
  151. } else {
  152. ath_tx_send_normal(sc, txq, NULL, skb);
  153. }
  154. spin_lock_bh(&txq->axq_lock);
  155. }
  156. spin_unlock_bh(&txq->axq_lock);
  157. }
  158. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  159. int seqno)
  160. {
  161. int index, cindex;
  162. index = ATH_BA_INDEX(tid->seq_start, seqno);
  163. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  164. __clear_bit(cindex, tid->tx_buf);
  165. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  166. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  167. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  168. }
  169. }
  170. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  171. u16 seqno)
  172. {
  173. int index, cindex;
  174. index = ATH_BA_INDEX(tid->seq_start, seqno);
  175. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  176. __set_bit(cindex, tid->tx_buf);
  177. if (index >= ((tid->baw_tail - tid->baw_head) &
  178. (ATH_TID_MAX_BUFS - 1))) {
  179. tid->baw_tail = cindex;
  180. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  181. }
  182. }
  183. /*
  184. * TODO: For frame(s) that are in the retry state, we will reuse the
  185. * sequence number(s) without setting the retry bit. The
  186. * alternative is to give up on these and BAR the receiver's window
  187. * forward.
  188. */
  189. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  190. struct ath_atx_tid *tid)
  191. {
  192. struct sk_buff *skb;
  193. struct ath_buf *bf;
  194. struct list_head bf_head;
  195. struct ath_tx_status ts;
  196. struct ath_frame_info *fi;
  197. memset(&ts, 0, sizeof(ts));
  198. INIT_LIST_HEAD(&bf_head);
  199. while ((skb = __skb_dequeue(&tid->buf_q))) {
  200. fi = get_frame_info(skb);
  201. bf = fi->bf;
  202. if (!bf) {
  203. spin_unlock(&txq->axq_lock);
  204. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  205. spin_lock(&txq->axq_lock);
  206. continue;
  207. }
  208. list_add_tail(&bf->list, &bf_head);
  209. if (fi->retries)
  210. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  211. spin_unlock(&txq->axq_lock);
  212. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  213. spin_lock(&txq->axq_lock);
  214. }
  215. tid->seq_next = tid->seq_start;
  216. tid->baw_tail = tid->baw_head;
  217. }
  218. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  219. struct sk_buff *skb)
  220. {
  221. struct ath_frame_info *fi = get_frame_info(skb);
  222. struct ieee80211_hdr *hdr;
  223. TX_STAT_INC(txq->axq_qnum, a_retries);
  224. if (fi->retries++ > 0)
  225. return;
  226. hdr = (struct ieee80211_hdr *)skb->data;
  227. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  228. }
  229. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  230. {
  231. struct ath_buf *bf = NULL;
  232. spin_lock_bh(&sc->tx.txbuflock);
  233. if (unlikely(list_empty(&sc->tx.txbuf))) {
  234. spin_unlock_bh(&sc->tx.txbuflock);
  235. return NULL;
  236. }
  237. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  238. list_del(&bf->list);
  239. spin_unlock_bh(&sc->tx.txbuflock);
  240. return bf;
  241. }
  242. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  243. {
  244. spin_lock_bh(&sc->tx.txbuflock);
  245. list_add_tail(&bf->list, &sc->tx.txbuf);
  246. spin_unlock_bh(&sc->tx.txbuflock);
  247. }
  248. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  249. {
  250. struct ath_buf *tbf;
  251. tbf = ath_tx_get_buffer(sc);
  252. if (WARN_ON(!tbf))
  253. return NULL;
  254. ATH_TXBUF_RESET(tbf);
  255. tbf->bf_mpdu = bf->bf_mpdu;
  256. tbf->bf_buf_addr = bf->bf_buf_addr;
  257. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  258. tbf->bf_state = bf->bf_state;
  259. return tbf;
  260. }
  261. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  262. struct ath_tx_status *ts, int txok,
  263. int *nframes, int *nbad)
  264. {
  265. struct ath_frame_info *fi;
  266. u16 seq_st = 0;
  267. u32 ba[WME_BA_BMP_SIZE >> 5];
  268. int ba_index;
  269. int isaggr = 0;
  270. *nbad = 0;
  271. *nframes = 0;
  272. isaggr = bf_isaggr(bf);
  273. if (isaggr) {
  274. seq_st = ts->ts_seqnum;
  275. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  276. }
  277. while (bf) {
  278. fi = get_frame_info(bf->bf_mpdu);
  279. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  280. (*nframes)++;
  281. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  282. (*nbad)++;
  283. bf = bf->bf_next;
  284. }
  285. }
  286. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  287. struct ath_buf *bf, struct list_head *bf_q,
  288. struct ath_tx_status *ts, int txok, bool retry)
  289. {
  290. struct ath_node *an = NULL;
  291. struct sk_buff *skb;
  292. struct ieee80211_sta *sta;
  293. struct ieee80211_hw *hw = sc->hw;
  294. struct ieee80211_hdr *hdr;
  295. struct ieee80211_tx_info *tx_info;
  296. struct ath_atx_tid *tid = NULL;
  297. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  298. struct list_head bf_head;
  299. struct sk_buff_head bf_pending;
  300. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
  301. u32 ba[WME_BA_BMP_SIZE >> 5];
  302. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  303. bool rc_update = true;
  304. struct ieee80211_tx_rate rates[4];
  305. struct ath_frame_info *fi;
  306. int nframes;
  307. u8 tidno;
  308. bool clear_filter;
  309. skb = bf->bf_mpdu;
  310. hdr = (struct ieee80211_hdr *)skb->data;
  311. tx_info = IEEE80211_SKB_CB(skb);
  312. memcpy(rates, tx_info->control.rates, sizeof(rates));
  313. rcu_read_lock();
  314. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  315. if (!sta) {
  316. rcu_read_unlock();
  317. INIT_LIST_HEAD(&bf_head);
  318. while (bf) {
  319. bf_next = bf->bf_next;
  320. if (!bf->bf_stale || bf_next != NULL)
  321. list_move_tail(&bf->list, &bf_head);
  322. ath_tx_rc_status(sc, bf, ts, 1, 1, 0, false);
  323. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  324. 0, 0);
  325. bf = bf_next;
  326. }
  327. return;
  328. }
  329. an = (struct ath_node *)sta->drv_priv;
  330. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  331. tid = ATH_AN_2_TID(an, tidno);
  332. /*
  333. * The hardware occasionally sends a tx status for the wrong TID.
  334. * In this case, the BA status cannot be considered valid and all
  335. * subframes need to be retransmitted
  336. */
  337. if (tidno != ts->tid)
  338. txok = false;
  339. isaggr = bf_isaggr(bf);
  340. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  341. if (isaggr && txok) {
  342. if (ts->ts_flags & ATH9K_TX_BA) {
  343. seq_st = ts->ts_seqnum;
  344. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  345. } else {
  346. /*
  347. * AR5416 can become deaf/mute when BA
  348. * issue happens. Chip needs to be reset.
  349. * But AP code may have sychronization issues
  350. * when perform internal reset in this routine.
  351. * Only enable reset in STA mode for now.
  352. */
  353. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  354. needreset = 1;
  355. }
  356. }
  357. __skb_queue_head_init(&bf_pending);
  358. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  359. while (bf) {
  360. u16 seqno = bf->bf_state.seqno;
  361. txfail = txpending = sendbar = 0;
  362. bf_next = bf->bf_next;
  363. skb = bf->bf_mpdu;
  364. tx_info = IEEE80211_SKB_CB(skb);
  365. fi = get_frame_info(skb);
  366. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  367. /* transmit completion, subframe is
  368. * acked by block ack */
  369. acked_cnt++;
  370. } else if (!isaggr && txok) {
  371. /* transmit completion */
  372. acked_cnt++;
  373. } else {
  374. if ((tid->state & AGGR_CLEANUP) || !retry) {
  375. /*
  376. * cleanup in progress, just fail
  377. * the un-acked sub-frames
  378. */
  379. txfail = 1;
  380. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  381. if (!(ts->ts_status & ATH9K_TXERR_FILT) ||
  382. !an->sleeping)
  383. ath_tx_set_retry(sc, txq, bf->bf_mpdu);
  384. clear_filter = true;
  385. txpending = 1;
  386. } else {
  387. txfail = 1;
  388. sendbar = 1;
  389. txfail_cnt++;
  390. }
  391. }
  392. /*
  393. * Make sure the last desc is reclaimed if it
  394. * not a holding desc.
  395. */
  396. INIT_LIST_HEAD(&bf_head);
  397. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  398. bf_next != NULL || !bf_last->bf_stale)
  399. list_move_tail(&bf->list, &bf_head);
  400. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  401. /*
  402. * complete the acked-ones/xretried ones; update
  403. * block-ack window
  404. */
  405. spin_lock_bh(&txq->axq_lock);
  406. ath_tx_update_baw(sc, tid, seqno);
  407. spin_unlock_bh(&txq->axq_lock);
  408. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  409. memcpy(tx_info->control.rates, rates, sizeof(rates));
  410. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, true);
  411. rc_update = false;
  412. } else {
  413. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, false);
  414. }
  415. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  416. !txfail, sendbar);
  417. } else {
  418. /* retry the un-acked ones */
  419. ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, false);
  420. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
  421. if (bf->bf_next == NULL && bf_last->bf_stale) {
  422. struct ath_buf *tbf;
  423. tbf = ath_clone_txbuf(sc, bf_last);
  424. /*
  425. * Update tx baw and complete the
  426. * frame with failed status if we
  427. * run out of tx buf.
  428. */
  429. if (!tbf) {
  430. spin_lock_bh(&txq->axq_lock);
  431. ath_tx_update_baw(sc, tid, seqno);
  432. spin_unlock_bh(&txq->axq_lock);
  433. ath_tx_rc_status(sc, bf, ts, nframes,
  434. nbad, 0, false);
  435. ath_tx_complete_buf(sc, bf, txq,
  436. &bf_head,
  437. ts, 0, 1);
  438. break;
  439. }
  440. ath9k_hw_cleartxdesc(sc->sc_ah,
  441. tbf->bf_desc);
  442. fi->bf = tbf;
  443. } else {
  444. /*
  445. * Clear descriptor status words for
  446. * software retry
  447. */
  448. ath9k_hw_cleartxdesc(sc->sc_ah,
  449. bf->bf_desc);
  450. }
  451. }
  452. /*
  453. * Put this buffer to the temporary pending
  454. * queue to retain ordering
  455. */
  456. __skb_queue_tail(&bf_pending, skb);
  457. }
  458. bf = bf_next;
  459. }
  460. /* prepend un-acked frames to the beginning of the pending frame queue */
  461. if (!skb_queue_empty(&bf_pending)) {
  462. if (an->sleeping)
  463. ieee80211_sta_set_tim(sta);
  464. spin_lock_bh(&txq->axq_lock);
  465. if (clear_filter)
  466. tid->ac->clear_ps_filter = true;
  467. skb_queue_splice(&bf_pending, &tid->buf_q);
  468. if (!an->sleeping)
  469. ath_tx_queue_tid(txq, tid);
  470. spin_unlock_bh(&txq->axq_lock);
  471. }
  472. if (tid->state & AGGR_CLEANUP) {
  473. ath_tx_flush_tid(sc, tid);
  474. if (tid->baw_head == tid->baw_tail) {
  475. tid->state &= ~AGGR_ADDBA_COMPLETE;
  476. tid->state &= ~AGGR_CLEANUP;
  477. }
  478. }
  479. rcu_read_unlock();
  480. if (needreset)
  481. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  482. }
  483. static bool ath_lookup_legacy(struct ath_buf *bf)
  484. {
  485. struct sk_buff *skb;
  486. struct ieee80211_tx_info *tx_info;
  487. struct ieee80211_tx_rate *rates;
  488. int i;
  489. skb = bf->bf_mpdu;
  490. tx_info = IEEE80211_SKB_CB(skb);
  491. rates = tx_info->control.rates;
  492. for (i = 0; i < 4; i++) {
  493. if (!rates[i].count || rates[i].idx < 0)
  494. break;
  495. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  496. return true;
  497. }
  498. return false;
  499. }
  500. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  501. struct ath_atx_tid *tid)
  502. {
  503. struct sk_buff *skb;
  504. struct ieee80211_tx_info *tx_info;
  505. struct ieee80211_tx_rate *rates;
  506. u32 max_4ms_framelen, frmlen;
  507. u16 aggr_limit, legacy = 0;
  508. int i;
  509. skb = bf->bf_mpdu;
  510. tx_info = IEEE80211_SKB_CB(skb);
  511. rates = tx_info->control.rates;
  512. /*
  513. * Find the lowest frame length among the rate series that will have a
  514. * 4ms transmit duration.
  515. * TODO - TXOP limit needs to be considered.
  516. */
  517. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  518. for (i = 0; i < 4; i++) {
  519. if (rates[i].count) {
  520. int modeidx;
  521. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  522. legacy = 1;
  523. break;
  524. }
  525. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  526. modeidx = MCS_HT40;
  527. else
  528. modeidx = MCS_HT20;
  529. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  530. modeidx++;
  531. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  532. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  533. }
  534. }
  535. /*
  536. * limit aggregate size by the minimum rate if rate selected is
  537. * not a probe rate, if rate selected is a probe rate then
  538. * avoid aggregation of this packet.
  539. */
  540. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  541. return 0;
  542. if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  543. aggr_limit = min((max_4ms_framelen * 3) / 8,
  544. (u32)ATH_AMPDU_LIMIT_MAX);
  545. else
  546. aggr_limit = min(max_4ms_framelen,
  547. (u32)ATH_AMPDU_LIMIT_MAX);
  548. /*
  549. * h/w can accept aggregates up to 16 bit lengths (65535).
  550. * The IE, however can hold up to 65536, which shows up here
  551. * as zero. Ignore 65536 since we are constrained by hw.
  552. */
  553. if (tid->an->maxampdu)
  554. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  555. return aggr_limit;
  556. }
  557. /*
  558. * Returns the number of delimiters to be added to
  559. * meet the minimum required mpdudensity.
  560. */
  561. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  562. struct ath_buf *bf, u16 frmlen,
  563. bool first_subfrm)
  564. {
  565. #define FIRST_DESC_NDELIMS 60
  566. struct sk_buff *skb = bf->bf_mpdu;
  567. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  568. u32 nsymbits, nsymbols;
  569. u16 minlen;
  570. u8 flags, rix;
  571. int width, streams, half_gi, ndelim, mindelim;
  572. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  573. /* Select standard number of delimiters based on frame length alone */
  574. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  575. /*
  576. * If encryption enabled, hardware requires some more padding between
  577. * subframes.
  578. * TODO - this could be improved to be dependent on the rate.
  579. * The hardware can keep up at lower rates, but not higher rates
  580. */
  581. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  582. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  583. ndelim += ATH_AGGR_ENCRYPTDELIM;
  584. /*
  585. * Add delimiter when using RTS/CTS with aggregation
  586. * and non enterprise AR9003 card
  587. */
  588. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  589. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  590. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  591. /*
  592. * Convert desired mpdu density from microeconds to bytes based
  593. * on highest rate in rate series (i.e. first rate) to determine
  594. * required minimum length for subframe. Take into account
  595. * whether high rate is 20 or 40Mhz and half or full GI.
  596. *
  597. * If there is no mpdu density restriction, no further calculation
  598. * is needed.
  599. */
  600. if (tid->an->mpdudensity == 0)
  601. return ndelim;
  602. rix = tx_info->control.rates[0].idx;
  603. flags = tx_info->control.rates[0].flags;
  604. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  605. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  606. if (half_gi)
  607. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  608. else
  609. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  610. if (nsymbols == 0)
  611. nsymbols = 1;
  612. streams = HT_RC_2_STREAMS(rix);
  613. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  614. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  615. if (frmlen < minlen) {
  616. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  617. ndelim = max(mindelim, ndelim);
  618. }
  619. return ndelim;
  620. }
  621. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  622. struct ath_txq *txq,
  623. struct ath_atx_tid *tid,
  624. struct list_head *bf_q,
  625. int *aggr_len)
  626. {
  627. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  628. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  629. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  630. u16 aggr_limit = 0, al = 0, bpad = 0,
  631. al_delta, h_baw = tid->baw_size / 2;
  632. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  633. struct ieee80211_tx_info *tx_info;
  634. struct ath_frame_info *fi;
  635. struct sk_buff *skb;
  636. u16 seqno;
  637. do {
  638. skb = skb_peek(&tid->buf_q);
  639. fi = get_frame_info(skb);
  640. bf = fi->bf;
  641. if (!fi->bf)
  642. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  643. if (!bf)
  644. continue;
  645. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  646. seqno = bf->bf_state.seqno;
  647. if (!bf_first)
  648. bf_first = bf;
  649. /* do not step over block-ack window */
  650. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  651. status = ATH_AGGR_BAW_CLOSED;
  652. break;
  653. }
  654. if (!rl) {
  655. aggr_limit = ath_lookup_rate(sc, bf, tid);
  656. rl = 1;
  657. }
  658. /* do not exceed aggregation limit */
  659. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  660. if (nframes &&
  661. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  662. ath_lookup_legacy(bf))) {
  663. status = ATH_AGGR_LIMITED;
  664. break;
  665. }
  666. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  667. if (nframes && ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  668. !(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS)))
  669. break;
  670. /* do not exceed subframe limit */
  671. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  672. status = ATH_AGGR_LIMITED;
  673. break;
  674. }
  675. /* add padding for previous frame to aggregation length */
  676. al += bpad + al_delta;
  677. /*
  678. * Get the delimiters needed to meet the MPDU
  679. * density for this node.
  680. */
  681. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  682. !nframes);
  683. bpad = PADBYTES(al_delta) + (ndelim << 2);
  684. nframes++;
  685. bf->bf_next = NULL;
  686. /* link buffers of this frame to the aggregate */
  687. if (!fi->retries)
  688. ath_tx_addto_baw(sc, tid, seqno);
  689. bf->bf_state.ndelim = ndelim;
  690. __skb_unlink(skb, &tid->buf_q);
  691. list_add_tail(&bf->list, bf_q);
  692. if (bf_prev)
  693. bf_prev->bf_next = bf;
  694. bf_prev = bf;
  695. } while (!skb_queue_empty(&tid->buf_q));
  696. *aggr_len = al;
  697. return status;
  698. #undef PADBYTES
  699. }
  700. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, int len)
  701. {
  702. struct ath_hw *ah = sc->sc_ah;
  703. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  704. struct ath_buf *bf_first = bf;
  705. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  706. bool clrdmask = !!(tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT);
  707. u32 ds_next;
  708. ath_buf_set_rate(sc, bf, len);
  709. while (bf) {
  710. if (bf->bf_next)
  711. ds_next = bf->bf_next->bf_daddr;
  712. else
  713. ds_next = 0;
  714. ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, clrdmask);
  715. if (!aggr)
  716. ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
  717. else if (!bf->bf_next)
  718. ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_desc);
  719. else {
  720. if (bf == bf_first)
  721. ath9k_hw_set11n_aggr_first(sc->sc_ah,
  722. bf->bf_desc, len);
  723. ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc,
  724. bf->bf_state.ndelim);
  725. }
  726. ath9k_hw_set_desc_link(ah, bf->bf_desc, ds_next);
  727. bf = bf->bf_next;
  728. }
  729. }
  730. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  731. struct ath_atx_tid *tid)
  732. {
  733. struct ath_buf *bf;
  734. enum ATH_AGGR_STATUS status;
  735. struct ieee80211_tx_info *tx_info;
  736. struct list_head bf_q;
  737. int aggr_len;
  738. do {
  739. if (skb_queue_empty(&tid->buf_q))
  740. return;
  741. INIT_LIST_HEAD(&bf_q);
  742. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  743. /*
  744. * no frames picked up to be aggregated;
  745. * block-ack window is not open.
  746. */
  747. if (list_empty(&bf_q))
  748. break;
  749. bf = list_first_entry(&bf_q, struct ath_buf, list);
  750. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  751. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  752. if (tid->ac->clear_ps_filter) {
  753. tid->ac->clear_ps_filter = false;
  754. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  755. } else {
  756. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  757. }
  758. /* if only one frame, send as non-aggregate */
  759. if (bf == bf->bf_lastbf) {
  760. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  761. bf->bf_state.bf_type = BUF_AMPDU;
  762. } else {
  763. TX_STAT_INC(txq->axq_qnum, a_aggr);
  764. }
  765. ath_tx_fill_desc(sc, bf, aggr_len);
  766. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  767. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  768. status != ATH_AGGR_BAW_CLOSED);
  769. }
  770. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  771. u16 tid, u16 *ssn)
  772. {
  773. struct ath_atx_tid *txtid;
  774. struct ath_node *an;
  775. an = (struct ath_node *)sta->drv_priv;
  776. txtid = ATH_AN_2_TID(an, tid);
  777. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  778. return -EAGAIN;
  779. txtid->state |= AGGR_ADDBA_PROGRESS;
  780. txtid->paused = true;
  781. *ssn = txtid->seq_start = txtid->seq_next;
  782. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  783. txtid->baw_head = txtid->baw_tail = 0;
  784. return 0;
  785. }
  786. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  787. {
  788. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  789. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  790. struct ath_txq *txq = txtid->ac->txq;
  791. if (txtid->state & AGGR_CLEANUP)
  792. return;
  793. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  794. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  795. return;
  796. }
  797. spin_lock_bh(&txq->axq_lock);
  798. txtid->paused = true;
  799. /*
  800. * If frames are still being transmitted for this TID, they will be
  801. * cleaned up during tx completion. To prevent race conditions, this
  802. * TID can only be reused after all in-progress subframes have been
  803. * completed.
  804. */
  805. if (txtid->baw_head != txtid->baw_tail)
  806. txtid->state |= AGGR_CLEANUP;
  807. else
  808. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  809. spin_unlock_bh(&txq->axq_lock);
  810. ath_tx_flush_tid(sc, txtid);
  811. }
  812. bool ath_tx_aggr_sleep(struct ath_softc *sc, struct ath_node *an)
  813. {
  814. struct ath_atx_tid *tid;
  815. struct ath_atx_ac *ac;
  816. struct ath_txq *txq;
  817. bool buffered = false;
  818. int tidno;
  819. for (tidno = 0, tid = &an->tid[tidno];
  820. tidno < WME_NUM_TID; tidno++, tid++) {
  821. if (!tid->sched)
  822. continue;
  823. ac = tid->ac;
  824. txq = ac->txq;
  825. spin_lock_bh(&txq->axq_lock);
  826. if (!skb_queue_empty(&tid->buf_q))
  827. buffered = true;
  828. tid->sched = false;
  829. list_del(&tid->list);
  830. if (ac->sched) {
  831. ac->sched = false;
  832. list_del(&ac->list);
  833. }
  834. spin_unlock_bh(&txq->axq_lock);
  835. }
  836. return buffered;
  837. }
  838. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  839. {
  840. struct ath_atx_tid *tid;
  841. struct ath_atx_ac *ac;
  842. struct ath_txq *txq;
  843. int tidno;
  844. for (tidno = 0, tid = &an->tid[tidno];
  845. tidno < WME_NUM_TID; tidno++, tid++) {
  846. ac = tid->ac;
  847. txq = ac->txq;
  848. spin_lock_bh(&txq->axq_lock);
  849. ac->clear_ps_filter = true;
  850. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  851. ath_tx_queue_tid(txq, tid);
  852. ath_txq_schedule(sc, txq);
  853. }
  854. spin_unlock_bh(&txq->axq_lock);
  855. }
  856. }
  857. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  858. {
  859. struct ath_atx_tid *txtid;
  860. struct ath_node *an;
  861. an = (struct ath_node *)sta->drv_priv;
  862. if (sc->sc_flags & SC_OP_TXAGGR) {
  863. txtid = ATH_AN_2_TID(an, tid);
  864. txtid->baw_size =
  865. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  866. txtid->state |= AGGR_ADDBA_COMPLETE;
  867. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  868. ath_tx_resume_tid(sc, txtid);
  869. }
  870. }
  871. /********************/
  872. /* Queue Management */
  873. /********************/
  874. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  875. struct ath_txq *txq)
  876. {
  877. struct ath_atx_ac *ac, *ac_tmp;
  878. struct ath_atx_tid *tid, *tid_tmp;
  879. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  880. list_del(&ac->list);
  881. ac->sched = false;
  882. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  883. list_del(&tid->list);
  884. tid->sched = false;
  885. ath_tid_drain(sc, txq, tid);
  886. }
  887. }
  888. }
  889. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  890. {
  891. struct ath_hw *ah = sc->sc_ah;
  892. struct ath_common *common = ath9k_hw_common(ah);
  893. struct ath9k_tx_queue_info qi;
  894. static const int subtype_txq_to_hwq[] = {
  895. [WME_AC_BE] = ATH_TXQ_AC_BE,
  896. [WME_AC_BK] = ATH_TXQ_AC_BK,
  897. [WME_AC_VI] = ATH_TXQ_AC_VI,
  898. [WME_AC_VO] = ATH_TXQ_AC_VO,
  899. };
  900. int axq_qnum, i;
  901. memset(&qi, 0, sizeof(qi));
  902. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  903. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  904. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  905. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  906. qi.tqi_physCompBuf = 0;
  907. /*
  908. * Enable interrupts only for EOL and DESC conditions.
  909. * We mark tx descriptors to receive a DESC interrupt
  910. * when a tx queue gets deep; otherwise waiting for the
  911. * EOL to reap descriptors. Note that this is done to
  912. * reduce interrupt load and this only defers reaping
  913. * descriptors, never transmitting frames. Aside from
  914. * reducing interrupts this also permits more concurrency.
  915. * The only potential downside is if the tx queue backs
  916. * up in which case the top half of the kernel may backup
  917. * due to a lack of tx descriptors.
  918. *
  919. * The UAPSD queue is an exception, since we take a desc-
  920. * based intr on the EOSP frames.
  921. */
  922. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  923. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  924. TXQ_FLAG_TXERRINT_ENABLE;
  925. } else {
  926. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  927. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  928. else
  929. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  930. TXQ_FLAG_TXDESCINT_ENABLE;
  931. }
  932. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  933. if (axq_qnum == -1) {
  934. /*
  935. * NB: don't print a message, this happens
  936. * normally on parts with too few tx queues
  937. */
  938. return NULL;
  939. }
  940. if (axq_qnum >= ARRAY_SIZE(sc->tx.txq)) {
  941. ath_err(common, "qnum %u out of range, max %zu!\n",
  942. axq_qnum, ARRAY_SIZE(sc->tx.txq));
  943. ath9k_hw_releasetxqueue(ah, axq_qnum);
  944. return NULL;
  945. }
  946. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  947. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  948. txq->axq_qnum = axq_qnum;
  949. txq->mac80211_qnum = -1;
  950. txq->axq_link = NULL;
  951. INIT_LIST_HEAD(&txq->axq_q);
  952. INIT_LIST_HEAD(&txq->axq_acq);
  953. spin_lock_init(&txq->axq_lock);
  954. txq->axq_depth = 0;
  955. txq->axq_ampdu_depth = 0;
  956. txq->axq_tx_inprogress = false;
  957. sc->tx.txqsetup |= 1<<axq_qnum;
  958. txq->txq_headidx = txq->txq_tailidx = 0;
  959. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  960. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  961. }
  962. return &sc->tx.txq[axq_qnum];
  963. }
  964. int ath_txq_update(struct ath_softc *sc, int qnum,
  965. struct ath9k_tx_queue_info *qinfo)
  966. {
  967. struct ath_hw *ah = sc->sc_ah;
  968. int error = 0;
  969. struct ath9k_tx_queue_info qi;
  970. if (qnum == sc->beacon.beaconq) {
  971. /*
  972. * XXX: for beacon queue, we just save the parameter.
  973. * It will be picked up by ath_beaconq_config when
  974. * it's necessary.
  975. */
  976. sc->beacon.beacon_qi = *qinfo;
  977. return 0;
  978. }
  979. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  980. ath9k_hw_get_txq_props(ah, qnum, &qi);
  981. qi.tqi_aifs = qinfo->tqi_aifs;
  982. qi.tqi_cwmin = qinfo->tqi_cwmin;
  983. qi.tqi_cwmax = qinfo->tqi_cwmax;
  984. qi.tqi_burstTime = qinfo->tqi_burstTime;
  985. qi.tqi_readyTime = qinfo->tqi_readyTime;
  986. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  987. ath_err(ath9k_hw_common(sc->sc_ah),
  988. "Unable to update hardware queue %u!\n", qnum);
  989. error = -EIO;
  990. } else {
  991. ath9k_hw_resettxqueue(ah, qnum);
  992. }
  993. return error;
  994. }
  995. int ath_cabq_update(struct ath_softc *sc)
  996. {
  997. struct ath9k_tx_queue_info qi;
  998. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  999. int qnum = sc->beacon.cabq->axq_qnum;
  1000. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1001. /*
  1002. * Ensure the readytime % is within the bounds.
  1003. */
  1004. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1005. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1006. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1007. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1008. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1009. sc->config.cabqReadytime) / 100;
  1010. ath_txq_update(sc, qnum, &qi);
  1011. return 0;
  1012. }
  1013. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1014. {
  1015. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1016. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1017. }
  1018. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1019. struct list_head *list, bool retry_tx)
  1020. __releases(txq->axq_lock)
  1021. __acquires(txq->axq_lock)
  1022. {
  1023. struct ath_buf *bf, *lastbf;
  1024. struct list_head bf_head;
  1025. struct ath_tx_status ts;
  1026. memset(&ts, 0, sizeof(ts));
  1027. INIT_LIST_HEAD(&bf_head);
  1028. while (!list_empty(list)) {
  1029. bf = list_first_entry(list, struct ath_buf, list);
  1030. if (bf->bf_stale) {
  1031. list_del(&bf->list);
  1032. ath_tx_return_buffer(sc, bf);
  1033. continue;
  1034. }
  1035. lastbf = bf->bf_lastbf;
  1036. list_cut_position(&bf_head, list, &lastbf->list);
  1037. txq->axq_depth--;
  1038. if (bf_is_ampdu_not_probing(bf))
  1039. txq->axq_ampdu_depth--;
  1040. spin_unlock_bh(&txq->axq_lock);
  1041. if (bf_isampdu(bf))
  1042. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1043. retry_tx);
  1044. else
  1045. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  1046. spin_lock_bh(&txq->axq_lock);
  1047. }
  1048. }
  1049. /*
  1050. * Drain a given TX queue (could be Beacon or Data)
  1051. *
  1052. * This assumes output has been stopped and
  1053. * we do not need to block ath_tx_tasklet.
  1054. */
  1055. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1056. {
  1057. spin_lock_bh(&txq->axq_lock);
  1058. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1059. int idx = txq->txq_tailidx;
  1060. while (!list_empty(&txq->txq_fifo[idx])) {
  1061. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1062. retry_tx);
  1063. INCR(idx, ATH_TXFIFO_DEPTH);
  1064. }
  1065. txq->txq_tailidx = idx;
  1066. }
  1067. txq->axq_link = NULL;
  1068. txq->axq_tx_inprogress = false;
  1069. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1070. /* flush any pending frames if aggregation is enabled */
  1071. if ((sc->sc_flags & SC_OP_TXAGGR) && !retry_tx)
  1072. ath_txq_drain_pending_buffers(sc, txq);
  1073. spin_unlock_bh(&txq->axq_lock);
  1074. }
  1075. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1076. {
  1077. struct ath_hw *ah = sc->sc_ah;
  1078. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1079. struct ath_txq *txq;
  1080. int i, npend = 0;
  1081. if (sc->sc_flags & SC_OP_INVALID)
  1082. return true;
  1083. ath9k_hw_abort_tx_dma(ah);
  1084. /* Check if any queue remains active */
  1085. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1086. if (!ATH_TXQ_SETUP(sc, i))
  1087. continue;
  1088. npend += ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum);
  1089. }
  1090. if (npend)
  1091. ath_err(common, "Failed to stop TX DMA!\n");
  1092. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1093. if (!ATH_TXQ_SETUP(sc, i))
  1094. continue;
  1095. /*
  1096. * The caller will resume queues with ieee80211_wake_queues.
  1097. * Mark the queue as not stopped to prevent ath_tx_complete
  1098. * from waking the queue too early.
  1099. */
  1100. txq = &sc->tx.txq[i];
  1101. txq->stopped = false;
  1102. ath_draintxq(sc, txq, retry_tx);
  1103. }
  1104. return !npend;
  1105. }
  1106. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1107. {
  1108. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1109. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1110. }
  1111. /* For each axq_acq entry, for each tid, try to schedule packets
  1112. * for transmit until ampdu_depth has reached min Q depth.
  1113. */
  1114. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1115. {
  1116. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1117. struct ath_atx_tid *tid, *last_tid;
  1118. if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
  1119. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1120. return;
  1121. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1122. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1123. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1124. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1125. list_del(&ac->list);
  1126. ac->sched = false;
  1127. while (!list_empty(&ac->tid_q)) {
  1128. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1129. list);
  1130. list_del(&tid->list);
  1131. tid->sched = false;
  1132. if (tid->paused)
  1133. continue;
  1134. ath_tx_sched_aggr(sc, txq, tid);
  1135. /*
  1136. * add tid to round-robin queue if more frames
  1137. * are pending for the tid
  1138. */
  1139. if (!skb_queue_empty(&tid->buf_q))
  1140. ath_tx_queue_tid(txq, tid);
  1141. if (tid == last_tid ||
  1142. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1143. break;
  1144. }
  1145. if (!list_empty(&ac->tid_q)) {
  1146. if (!ac->sched) {
  1147. ac->sched = true;
  1148. list_add_tail(&ac->list, &txq->axq_acq);
  1149. }
  1150. }
  1151. if (ac == last_ac ||
  1152. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1153. return;
  1154. }
  1155. }
  1156. /***********/
  1157. /* TX, DMA */
  1158. /***********/
  1159. /*
  1160. * Insert a chain of ath_buf (descriptors) on a txq and
  1161. * assume the descriptors are already chained together by caller.
  1162. */
  1163. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1164. struct list_head *head, bool internal)
  1165. {
  1166. struct ath_hw *ah = sc->sc_ah;
  1167. struct ath_common *common = ath9k_hw_common(ah);
  1168. struct ath_buf *bf, *bf_last;
  1169. bool puttxbuf = false;
  1170. bool edma;
  1171. /*
  1172. * Insert the frame on the outbound list and
  1173. * pass it on to the hardware.
  1174. */
  1175. if (list_empty(head))
  1176. return;
  1177. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1178. bf = list_first_entry(head, struct ath_buf, list);
  1179. bf_last = list_entry(head->prev, struct ath_buf, list);
  1180. ath_dbg(common, ATH_DBG_QUEUE,
  1181. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1182. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1183. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1184. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1185. puttxbuf = true;
  1186. } else {
  1187. list_splice_tail_init(head, &txq->axq_q);
  1188. if (txq->axq_link) {
  1189. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1190. ath_dbg(common, ATH_DBG_XMIT,
  1191. "link[%u] (%p)=%llx (%p)\n",
  1192. txq->axq_qnum, txq->axq_link,
  1193. ito64(bf->bf_daddr), bf->bf_desc);
  1194. } else if (!edma)
  1195. puttxbuf = true;
  1196. txq->axq_link = bf_last->bf_desc;
  1197. }
  1198. if (puttxbuf) {
  1199. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1200. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1201. ath_dbg(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n",
  1202. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1203. }
  1204. if (!edma) {
  1205. TX_STAT_INC(txq->axq_qnum, txstart);
  1206. ath9k_hw_txstart(ah, txq->axq_qnum);
  1207. }
  1208. if (!internal) {
  1209. txq->axq_depth++;
  1210. if (bf_is_ampdu_not_probing(bf))
  1211. txq->axq_ampdu_depth++;
  1212. }
  1213. }
  1214. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1215. struct sk_buff *skb, struct ath_tx_control *txctl)
  1216. {
  1217. struct ath_frame_info *fi = get_frame_info(skb);
  1218. struct list_head bf_head;
  1219. struct ath_buf *bf;
  1220. /*
  1221. * Do not queue to h/w when any of the following conditions is true:
  1222. * - there are pending frames in software queue
  1223. * - the TID is currently paused for ADDBA/BAR request
  1224. * - seqno is not within block-ack window
  1225. * - h/w queue depth exceeds low water mark
  1226. */
  1227. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1228. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1229. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1230. /*
  1231. * Add this frame to software queue for scheduling later
  1232. * for aggregation.
  1233. */
  1234. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1235. __skb_queue_tail(&tid->buf_q, skb);
  1236. if (!txctl->an || !txctl->an->sleeping)
  1237. ath_tx_queue_tid(txctl->txq, tid);
  1238. return;
  1239. }
  1240. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1241. if (!bf)
  1242. return;
  1243. bf->bf_state.bf_type = BUF_AMPDU;
  1244. INIT_LIST_HEAD(&bf_head);
  1245. list_add(&bf->list, &bf_head);
  1246. /* Add sub-frame to BAW */
  1247. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1248. /* Queue to h/w without aggregation */
  1249. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1250. bf->bf_lastbf = bf;
  1251. ath_tx_fill_desc(sc, bf, fi->framelen);
  1252. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1253. }
  1254. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1255. struct ath_atx_tid *tid, struct sk_buff *skb)
  1256. {
  1257. struct ath_frame_info *fi = get_frame_info(skb);
  1258. struct list_head bf_head;
  1259. struct ath_buf *bf;
  1260. bf = fi->bf;
  1261. if (!bf)
  1262. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1263. if (!bf)
  1264. return;
  1265. INIT_LIST_HEAD(&bf_head);
  1266. list_add_tail(&bf->list, &bf_head);
  1267. bf->bf_state.bf_type = 0;
  1268. /* update starting sequence number for subsequent ADDBA request */
  1269. if (tid)
  1270. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  1271. bf->bf_lastbf = bf;
  1272. ath_tx_fill_desc(sc, bf, fi->framelen);
  1273. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1274. TX_STAT_INC(txq->axq_qnum, queued);
  1275. }
  1276. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1277. {
  1278. struct ieee80211_hdr *hdr;
  1279. enum ath9k_pkt_type htype;
  1280. __le16 fc;
  1281. hdr = (struct ieee80211_hdr *)skb->data;
  1282. fc = hdr->frame_control;
  1283. if (ieee80211_is_beacon(fc))
  1284. htype = ATH9K_PKT_TYPE_BEACON;
  1285. else if (ieee80211_is_probe_resp(fc))
  1286. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1287. else if (ieee80211_is_atim(fc))
  1288. htype = ATH9K_PKT_TYPE_ATIM;
  1289. else if (ieee80211_is_pspoll(fc))
  1290. htype = ATH9K_PKT_TYPE_PSPOLL;
  1291. else
  1292. htype = ATH9K_PKT_TYPE_NORMAL;
  1293. return htype;
  1294. }
  1295. static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
  1296. int framelen)
  1297. {
  1298. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1299. struct ieee80211_sta *sta = tx_info->control.sta;
  1300. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1301. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1302. struct ath_frame_info *fi = get_frame_info(skb);
  1303. struct ath_node *an = NULL;
  1304. enum ath9k_key_type keytype;
  1305. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1306. if (sta)
  1307. an = (struct ath_node *) sta->drv_priv;
  1308. memset(fi, 0, sizeof(*fi));
  1309. if (hw_key)
  1310. fi->keyix = hw_key->hw_key_idx;
  1311. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1312. fi->keyix = an->ps_key;
  1313. else
  1314. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1315. fi->keytype = keytype;
  1316. fi->framelen = framelen;
  1317. }
  1318. static int setup_tx_flags(struct sk_buff *skb)
  1319. {
  1320. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1321. int flags = 0;
  1322. flags |= ATH9K_TXDESC_INTREQ;
  1323. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1324. flags |= ATH9K_TXDESC_NOACK;
  1325. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1326. flags |= ATH9K_TXDESC_LDPC;
  1327. return flags;
  1328. }
  1329. /*
  1330. * rix - rate index
  1331. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  1332. * width - 0 for 20 MHz, 1 for 40 MHz
  1333. * half_gi - to use 4us v/s 3.6 us for symbol time
  1334. */
  1335. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  1336. int width, int half_gi, bool shortPreamble)
  1337. {
  1338. u32 nbits, nsymbits, duration, nsymbols;
  1339. int streams;
  1340. /* find number of symbols: PLCP + data */
  1341. streams = HT_RC_2_STREAMS(rix);
  1342. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  1343. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  1344. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  1345. if (!half_gi)
  1346. duration = SYMBOL_TIME(nsymbols);
  1347. else
  1348. duration = SYMBOL_TIME_HALFGI(nsymbols);
  1349. /* addup duration for legacy/ht training and signal fields */
  1350. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  1351. return duration;
  1352. }
  1353. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1354. {
  1355. struct ath_hw *ah = sc->sc_ah;
  1356. struct ath9k_channel *curchan = ah->curchan;
  1357. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1358. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1359. (chainmask == 0x7) && (rate < 0x90))
  1360. return 0x3;
  1361. else
  1362. return chainmask;
  1363. }
  1364. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len)
  1365. {
  1366. struct ath_hw *ah = sc->sc_ah;
  1367. struct ath9k_11n_rate_series series[4];
  1368. struct sk_buff *skb;
  1369. struct ieee80211_tx_info *tx_info;
  1370. struct ieee80211_tx_rate *rates;
  1371. const struct ieee80211_rate *rate;
  1372. struct ieee80211_hdr *hdr;
  1373. int i, flags = 0;
  1374. u8 rix = 0, ctsrate = 0;
  1375. bool is_pspoll;
  1376. memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
  1377. skb = bf->bf_mpdu;
  1378. tx_info = IEEE80211_SKB_CB(skb);
  1379. rates = tx_info->control.rates;
  1380. hdr = (struct ieee80211_hdr *)skb->data;
  1381. is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
  1382. /*
  1383. * We check if Short Preamble is needed for the CTS rate by
  1384. * checking the BSS's global flag.
  1385. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1386. */
  1387. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  1388. ctsrate = rate->hw_value;
  1389. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  1390. ctsrate |= rate->hw_value_short;
  1391. for (i = 0; i < 4; i++) {
  1392. bool is_40, is_sgi, is_sp;
  1393. int phy;
  1394. if (!rates[i].count || (rates[i].idx < 0))
  1395. continue;
  1396. rix = rates[i].idx;
  1397. series[i].Tries = rates[i].count;
  1398. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  1399. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1400. flags |= ATH9K_TXDESC_RTSENA;
  1401. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  1402. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1403. flags |= ATH9K_TXDESC_CTSENA;
  1404. }
  1405. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  1406. series[i].RateFlags |= ATH9K_RATESERIES_2040;
  1407. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  1408. series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  1409. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  1410. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  1411. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1412. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  1413. /* MCS rates */
  1414. series[i].Rate = rix | 0x80;
  1415. series[i].ChSel = ath_txchainmask_reduction(sc,
  1416. ah->txchainmask, series[i].Rate);
  1417. series[i].PktDuration = ath_pkt_duration(sc, rix, len,
  1418. is_40, is_sgi, is_sp);
  1419. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  1420. series[i].RateFlags |= ATH9K_RATESERIES_STBC;
  1421. continue;
  1422. }
  1423. /* legacy rates */
  1424. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  1425. !(rate->flags & IEEE80211_RATE_ERP_G))
  1426. phy = WLAN_RC_PHY_CCK;
  1427. else
  1428. phy = WLAN_RC_PHY_OFDM;
  1429. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  1430. series[i].Rate = rate->hw_value;
  1431. if (rate->hw_value_short) {
  1432. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  1433. series[i].Rate |= rate->hw_value_short;
  1434. } else {
  1435. is_sp = false;
  1436. }
  1437. if (bf->bf_state.bfs_paprd)
  1438. series[i].ChSel = ah->txchainmask;
  1439. else
  1440. series[i].ChSel = ath_txchainmask_reduction(sc,
  1441. ah->txchainmask, series[i].Rate);
  1442. series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1443. phy, rate->bitrate * 100, len, rix, is_sp);
  1444. }
  1445. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1446. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  1447. flags &= ~ATH9K_TXDESC_RTSENA;
  1448. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1449. if (flags & ATH9K_TXDESC_RTSENA)
  1450. flags &= ~ATH9K_TXDESC_CTSENA;
  1451. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  1452. ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
  1453. bf->bf_lastbf->bf_desc,
  1454. !is_pspoll, ctsrate,
  1455. 0, series, 4, flags);
  1456. }
  1457. /*
  1458. * Assign a descriptor (and sequence number if necessary,
  1459. * and map buffer for DMA. Frees skb on error
  1460. */
  1461. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1462. struct ath_txq *txq,
  1463. struct ath_atx_tid *tid,
  1464. struct sk_buff *skb)
  1465. {
  1466. struct ath_hw *ah = sc->sc_ah;
  1467. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1468. struct ath_frame_info *fi = get_frame_info(skb);
  1469. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1470. struct ath_buf *bf;
  1471. struct ath_desc *ds;
  1472. int frm_type;
  1473. u16 seqno;
  1474. bf = ath_tx_get_buffer(sc);
  1475. if (!bf) {
  1476. ath_dbg(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1477. goto error;
  1478. }
  1479. ATH_TXBUF_RESET(bf);
  1480. if (tid) {
  1481. seqno = tid->seq_next;
  1482. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1483. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1484. bf->bf_state.seqno = seqno;
  1485. }
  1486. bf->bf_flags = setup_tx_flags(skb);
  1487. bf->bf_mpdu = skb;
  1488. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1489. skb->len, DMA_TO_DEVICE);
  1490. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1491. bf->bf_mpdu = NULL;
  1492. bf->bf_buf_addr = 0;
  1493. ath_err(ath9k_hw_common(sc->sc_ah),
  1494. "dma_mapping_error() on TX\n");
  1495. ath_tx_return_buffer(sc, bf);
  1496. goto error;
  1497. }
  1498. frm_type = get_hw_packet_type(skb);
  1499. ds = bf->bf_desc;
  1500. ath9k_hw_set11n_txdesc(ah, ds, fi->framelen, frm_type, MAX_RATE_POWER,
  1501. fi->keyix, fi->keytype, bf->bf_flags);
  1502. ath9k_hw_filltxdesc(ah, ds,
  1503. skb->len, /* segment length */
  1504. true, /* first segment */
  1505. true, /* last segment */
  1506. ds, /* first descriptor */
  1507. bf->bf_buf_addr,
  1508. txq->axq_qnum);
  1509. fi->bf = bf;
  1510. return bf;
  1511. error:
  1512. dev_kfree_skb_any(skb);
  1513. return NULL;
  1514. }
  1515. /* FIXME: tx power */
  1516. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1517. struct ath_tx_control *txctl)
  1518. {
  1519. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1520. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1521. struct ath_atx_tid *tid = NULL;
  1522. struct ath_buf *bf;
  1523. u8 tidno;
  1524. spin_lock_bh(&txctl->txq->axq_lock);
  1525. if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an &&
  1526. ieee80211_is_data_qos(hdr->frame_control)) {
  1527. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1528. IEEE80211_QOS_CTL_TID_MASK;
  1529. tid = ATH_AN_2_TID(txctl->an, tidno);
  1530. WARN_ON(tid->ac->txq != txctl->txq);
  1531. }
  1532. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1533. /*
  1534. * Try aggregation if it's a unicast data frame
  1535. * and the destination is HT capable.
  1536. */
  1537. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1538. } else {
  1539. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1540. if (!bf)
  1541. goto out;
  1542. bf->bf_state.bfs_paprd = txctl->paprd;
  1543. if (bf->bf_state.bfs_paprd)
  1544. ar9003_hw_set_paprd_txdesc(sc->sc_ah, bf->bf_desc,
  1545. bf->bf_state.bfs_paprd);
  1546. if (txctl->paprd)
  1547. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1548. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1549. }
  1550. out:
  1551. spin_unlock_bh(&txctl->txq->axq_lock);
  1552. }
  1553. /* Upon failure caller should free skb */
  1554. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1555. struct ath_tx_control *txctl)
  1556. {
  1557. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1558. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1559. struct ieee80211_sta *sta = info->control.sta;
  1560. struct ieee80211_vif *vif = info->control.vif;
  1561. struct ath_softc *sc = hw->priv;
  1562. struct ath_txq *txq = txctl->txq;
  1563. int padpos, padsize;
  1564. int frmlen = skb->len + FCS_LEN;
  1565. int q;
  1566. /* NOTE: sta can be NULL according to net/mac80211.h */
  1567. if (sta)
  1568. txctl->an = (struct ath_node *)sta->drv_priv;
  1569. if (info->control.hw_key)
  1570. frmlen += info->control.hw_key->icv_len;
  1571. /*
  1572. * As a temporary workaround, assign seq# here; this will likely need
  1573. * to be cleaned up to work better with Beacon transmission and virtual
  1574. * BSSes.
  1575. */
  1576. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1577. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1578. sc->tx.seq_no += 0x10;
  1579. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1580. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1581. }
  1582. /* Add the padding after the header if this is not already done */
  1583. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1584. padsize = padpos & 3;
  1585. if (padsize && skb->len > padpos) {
  1586. if (skb_headroom(skb) < padsize)
  1587. return -ENOMEM;
  1588. skb_push(skb, padsize);
  1589. memmove(skb->data, skb->data + padsize, padpos);
  1590. }
  1591. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1592. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1593. !ieee80211_is_data(hdr->frame_control))
  1594. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1595. setup_frame_info(hw, skb, frmlen);
  1596. /*
  1597. * At this point, the vif, hw_key and sta pointers in the tx control
  1598. * info are no longer valid (overwritten by the ath_frame_info data.
  1599. */
  1600. q = skb_get_queue_mapping(skb);
  1601. spin_lock_bh(&txq->axq_lock);
  1602. if (txq == sc->tx.txq_map[q] &&
  1603. ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1604. ieee80211_stop_queue(sc->hw, q);
  1605. txq->stopped = 1;
  1606. }
  1607. spin_unlock_bh(&txq->axq_lock);
  1608. ath_tx_start_dma(sc, skb, txctl);
  1609. return 0;
  1610. }
  1611. /*****************/
  1612. /* TX Completion */
  1613. /*****************/
  1614. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1615. int tx_flags, struct ath_txq *txq)
  1616. {
  1617. struct ieee80211_hw *hw = sc->hw;
  1618. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1619. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1620. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1621. int q, padpos, padsize;
  1622. ath_dbg(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1623. if (tx_flags & ATH_TX_BAR)
  1624. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1625. if (!(tx_flags & ATH_TX_ERROR))
  1626. /* Frame was ACKed */
  1627. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1628. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1629. padsize = padpos & 3;
  1630. if (padsize && skb->len>padpos+padsize) {
  1631. /*
  1632. * Remove MAC header padding before giving the frame back to
  1633. * mac80211.
  1634. */
  1635. memmove(skb->data + padsize, skb->data, padpos);
  1636. skb_pull(skb, padsize);
  1637. }
  1638. if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
  1639. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1640. ath_dbg(common, ATH_DBG_PS,
  1641. "Going back to sleep after having received TX status (0x%lx)\n",
  1642. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1643. PS_WAIT_FOR_CAB |
  1644. PS_WAIT_FOR_PSPOLL_DATA |
  1645. PS_WAIT_FOR_TX_ACK));
  1646. }
  1647. q = skb_get_queue_mapping(skb);
  1648. if (txq == sc->tx.txq_map[q]) {
  1649. spin_lock_bh(&txq->axq_lock);
  1650. if (WARN_ON(--txq->pending_frames < 0))
  1651. txq->pending_frames = 0;
  1652. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1653. ieee80211_wake_queue(sc->hw, q);
  1654. txq->stopped = 0;
  1655. }
  1656. spin_unlock_bh(&txq->axq_lock);
  1657. }
  1658. ieee80211_tx_status(hw, skb);
  1659. }
  1660. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1661. struct ath_txq *txq, struct list_head *bf_q,
  1662. struct ath_tx_status *ts, int txok, int sendbar)
  1663. {
  1664. struct sk_buff *skb = bf->bf_mpdu;
  1665. unsigned long flags;
  1666. int tx_flags = 0;
  1667. if (sendbar)
  1668. tx_flags = ATH_TX_BAR;
  1669. if (!txok)
  1670. tx_flags |= ATH_TX_ERROR;
  1671. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1672. bf->bf_buf_addr = 0;
  1673. if (bf->bf_state.bfs_paprd) {
  1674. if (time_after(jiffies,
  1675. bf->bf_state.bfs_paprd_timestamp +
  1676. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1677. dev_kfree_skb_any(skb);
  1678. else
  1679. complete(&sc->paprd_complete);
  1680. } else {
  1681. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1682. ath_tx_complete(sc, skb, tx_flags, txq);
  1683. }
  1684. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1685. * accidentally reference it later.
  1686. */
  1687. bf->bf_mpdu = NULL;
  1688. /*
  1689. * Return the list of ath_buf of this mpdu to free queue
  1690. */
  1691. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1692. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1693. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1694. }
  1695. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1696. struct ath_tx_status *ts, int nframes, int nbad,
  1697. int txok, bool update_rc)
  1698. {
  1699. struct sk_buff *skb = bf->bf_mpdu;
  1700. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1701. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1702. struct ieee80211_hw *hw = sc->hw;
  1703. struct ath_hw *ah = sc->sc_ah;
  1704. u8 i, tx_rateindex;
  1705. if (txok)
  1706. tx_info->status.ack_signal = ts->ts_rssi;
  1707. tx_rateindex = ts->ts_rateindex;
  1708. WARN_ON(tx_rateindex >= hw->max_rates);
  1709. if (ts->ts_status & ATH9K_TXERR_FILT)
  1710. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1711. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc) {
  1712. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1713. BUG_ON(nbad > nframes);
  1714. tx_info->status.ampdu_len = nframes;
  1715. tx_info->status.ampdu_ack_len = nframes - nbad;
  1716. }
  1717. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1718. (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
  1719. /*
  1720. * If an underrun error is seen assume it as an excessive
  1721. * retry only if max frame trigger level has been reached
  1722. * (2 KB for single stream, and 4 KB for dual stream).
  1723. * Adjust the long retry as if the frame was tried
  1724. * hw->max_rate_tries times to affect how rate control updates
  1725. * PER for the failed rate.
  1726. * In case of congestion on the bus penalizing this type of
  1727. * underruns should help hardware actually transmit new frames
  1728. * successfully by eventually preferring slower rates.
  1729. * This itself should also alleviate congestion on the bus.
  1730. */
  1731. if (ieee80211_is_data(hdr->frame_control) &&
  1732. (ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1733. ATH9K_TX_DELIM_UNDERRUN)) &&
  1734. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1735. tx_info->status.rates[tx_rateindex].count =
  1736. hw->max_rate_tries;
  1737. }
  1738. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1739. tx_info->status.rates[i].count = 0;
  1740. tx_info->status.rates[i].idx = -1;
  1741. }
  1742. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1743. }
  1744. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1745. struct ath_tx_status *ts, struct ath_buf *bf,
  1746. struct list_head *bf_head)
  1747. __releases(txq->axq_lock)
  1748. __acquires(txq->axq_lock)
  1749. {
  1750. int txok;
  1751. txq->axq_depth--;
  1752. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1753. txq->axq_tx_inprogress = false;
  1754. if (bf_is_ampdu_not_probing(bf))
  1755. txq->axq_ampdu_depth--;
  1756. spin_unlock_bh(&txq->axq_lock);
  1757. if (!bf_isampdu(bf)) {
  1758. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok, true);
  1759. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok, 0);
  1760. } else
  1761. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1762. spin_lock_bh(&txq->axq_lock);
  1763. if (sc->sc_flags & SC_OP_TXAGGR)
  1764. ath_txq_schedule(sc, txq);
  1765. }
  1766. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1767. {
  1768. struct ath_hw *ah = sc->sc_ah;
  1769. struct ath_common *common = ath9k_hw_common(ah);
  1770. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1771. struct list_head bf_head;
  1772. struct ath_desc *ds;
  1773. struct ath_tx_status ts;
  1774. int status;
  1775. ath_dbg(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1776. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1777. txq->axq_link);
  1778. spin_lock_bh(&txq->axq_lock);
  1779. for (;;) {
  1780. if (work_pending(&sc->hw_reset_work))
  1781. break;
  1782. if (list_empty(&txq->axq_q)) {
  1783. txq->axq_link = NULL;
  1784. if (sc->sc_flags & SC_OP_TXAGGR)
  1785. ath_txq_schedule(sc, txq);
  1786. break;
  1787. }
  1788. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1789. /*
  1790. * There is a race condition that a BH gets scheduled
  1791. * after sw writes TxE and before hw re-load the last
  1792. * descriptor to get the newly chained one.
  1793. * Software must keep the last DONE descriptor as a
  1794. * holding descriptor - software does so by marking
  1795. * it with the STALE flag.
  1796. */
  1797. bf_held = NULL;
  1798. if (bf->bf_stale) {
  1799. bf_held = bf;
  1800. if (list_is_last(&bf_held->list, &txq->axq_q))
  1801. break;
  1802. bf = list_entry(bf_held->list.next, struct ath_buf,
  1803. list);
  1804. }
  1805. lastbf = bf->bf_lastbf;
  1806. ds = lastbf->bf_desc;
  1807. memset(&ts, 0, sizeof(ts));
  1808. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1809. if (status == -EINPROGRESS)
  1810. break;
  1811. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1812. /*
  1813. * Remove ath_buf's of the same transmit unit from txq,
  1814. * however leave the last descriptor back as the holding
  1815. * descriptor for hw.
  1816. */
  1817. lastbf->bf_stale = true;
  1818. INIT_LIST_HEAD(&bf_head);
  1819. if (!list_is_singular(&lastbf->list))
  1820. list_cut_position(&bf_head,
  1821. &txq->axq_q, lastbf->list.prev);
  1822. if (bf_held) {
  1823. list_del(&bf_held->list);
  1824. ath_tx_return_buffer(sc, bf_held);
  1825. }
  1826. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1827. }
  1828. spin_unlock_bh(&txq->axq_lock);
  1829. }
  1830. static void ath_tx_complete_poll_work(struct work_struct *work)
  1831. {
  1832. struct ath_softc *sc = container_of(work, struct ath_softc,
  1833. tx_complete_work.work);
  1834. struct ath_txq *txq;
  1835. int i;
  1836. bool needreset = false;
  1837. #ifdef CONFIG_ATH9K_DEBUGFS
  1838. sc->tx_complete_poll_work_seen++;
  1839. #endif
  1840. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1841. if (ATH_TXQ_SETUP(sc, i)) {
  1842. txq = &sc->tx.txq[i];
  1843. spin_lock_bh(&txq->axq_lock);
  1844. if (txq->axq_depth) {
  1845. if (txq->axq_tx_inprogress) {
  1846. needreset = true;
  1847. spin_unlock_bh(&txq->axq_lock);
  1848. break;
  1849. } else {
  1850. txq->axq_tx_inprogress = true;
  1851. }
  1852. }
  1853. spin_unlock_bh(&txq->axq_lock);
  1854. }
  1855. if (needreset) {
  1856. ath_dbg(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1857. "tx hung, resetting the chip\n");
  1858. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  1859. }
  1860. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1861. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1862. }
  1863. void ath_tx_tasklet(struct ath_softc *sc)
  1864. {
  1865. int i;
  1866. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1867. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1868. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1869. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1870. ath_tx_processq(sc, &sc->tx.txq[i]);
  1871. }
  1872. }
  1873. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1874. {
  1875. struct ath_tx_status ts;
  1876. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1877. struct ath_hw *ah = sc->sc_ah;
  1878. struct ath_txq *txq;
  1879. struct ath_buf *bf, *lastbf;
  1880. struct list_head bf_head;
  1881. int status;
  1882. for (;;) {
  1883. if (work_pending(&sc->hw_reset_work))
  1884. break;
  1885. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1886. if (status == -EINPROGRESS)
  1887. break;
  1888. if (status == -EIO) {
  1889. ath_dbg(common, ATH_DBG_XMIT,
  1890. "Error processing tx status\n");
  1891. break;
  1892. }
  1893. /* Skip beacon completions */
  1894. if (ts.qid == sc->beacon.beaconq)
  1895. continue;
  1896. txq = &sc->tx.txq[ts.qid];
  1897. spin_lock_bh(&txq->axq_lock);
  1898. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1899. spin_unlock_bh(&txq->axq_lock);
  1900. return;
  1901. }
  1902. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1903. struct ath_buf, list);
  1904. lastbf = bf->bf_lastbf;
  1905. INIT_LIST_HEAD(&bf_head);
  1906. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1907. &lastbf->list);
  1908. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1909. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1910. if (!list_empty(&txq->axq_q)) {
  1911. struct list_head bf_q;
  1912. INIT_LIST_HEAD(&bf_q);
  1913. txq->axq_link = NULL;
  1914. list_splice_tail_init(&txq->axq_q, &bf_q);
  1915. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1916. }
  1917. }
  1918. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1919. spin_unlock_bh(&txq->axq_lock);
  1920. }
  1921. }
  1922. /*****************/
  1923. /* Init, Cleanup */
  1924. /*****************/
  1925. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1926. {
  1927. struct ath_descdma *dd = &sc->txsdma;
  1928. u8 txs_len = sc->sc_ah->caps.txs_len;
  1929. dd->dd_desc_len = size * txs_len;
  1930. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1931. &dd->dd_desc_paddr, GFP_KERNEL);
  1932. if (!dd->dd_desc)
  1933. return -ENOMEM;
  1934. return 0;
  1935. }
  1936. static int ath_tx_edma_init(struct ath_softc *sc)
  1937. {
  1938. int err;
  1939. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1940. if (!err)
  1941. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1942. sc->txsdma.dd_desc_paddr,
  1943. ATH_TXSTATUS_RING_SIZE);
  1944. return err;
  1945. }
  1946. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1947. {
  1948. struct ath_descdma *dd = &sc->txsdma;
  1949. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1950. dd->dd_desc_paddr);
  1951. }
  1952. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1953. {
  1954. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1955. int error = 0;
  1956. spin_lock_init(&sc->tx.txbuflock);
  1957. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1958. "tx", nbufs, 1, 1);
  1959. if (error != 0) {
  1960. ath_err(common,
  1961. "Failed to allocate tx descriptors: %d\n", error);
  1962. goto err;
  1963. }
  1964. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1965. "beacon", ATH_BCBUF, 1, 1);
  1966. if (error != 0) {
  1967. ath_err(common,
  1968. "Failed to allocate beacon descriptors: %d\n", error);
  1969. goto err;
  1970. }
  1971. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1972. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1973. error = ath_tx_edma_init(sc);
  1974. if (error)
  1975. goto err;
  1976. }
  1977. err:
  1978. if (error != 0)
  1979. ath_tx_cleanup(sc);
  1980. return error;
  1981. }
  1982. void ath_tx_cleanup(struct ath_softc *sc)
  1983. {
  1984. if (sc->beacon.bdma.dd_desc_len != 0)
  1985. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1986. if (sc->tx.txdma.dd_desc_len != 0)
  1987. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1988. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1989. ath_tx_edma_cleanup(sc);
  1990. }
  1991. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1992. {
  1993. struct ath_atx_tid *tid;
  1994. struct ath_atx_ac *ac;
  1995. int tidno, acno;
  1996. for (tidno = 0, tid = &an->tid[tidno];
  1997. tidno < WME_NUM_TID;
  1998. tidno++, tid++) {
  1999. tid->an = an;
  2000. tid->tidno = tidno;
  2001. tid->seq_start = tid->seq_next = 0;
  2002. tid->baw_size = WME_MAX_BA;
  2003. tid->baw_head = tid->baw_tail = 0;
  2004. tid->sched = false;
  2005. tid->paused = false;
  2006. tid->state &= ~AGGR_CLEANUP;
  2007. __skb_queue_head_init(&tid->buf_q);
  2008. acno = TID_TO_WME_AC(tidno);
  2009. tid->ac = &an->ac[acno];
  2010. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2011. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2012. }
  2013. for (acno = 0, ac = &an->ac[acno];
  2014. acno < WME_NUM_AC; acno++, ac++) {
  2015. ac->sched = false;
  2016. ac->txq = sc->tx.txq_map[acno];
  2017. INIT_LIST_HEAD(&ac->tid_q);
  2018. }
  2019. }
  2020. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2021. {
  2022. struct ath_atx_ac *ac;
  2023. struct ath_atx_tid *tid;
  2024. struct ath_txq *txq;
  2025. int tidno;
  2026. for (tidno = 0, tid = &an->tid[tidno];
  2027. tidno < WME_NUM_TID; tidno++, tid++) {
  2028. ac = tid->ac;
  2029. txq = ac->txq;
  2030. spin_lock_bh(&txq->axq_lock);
  2031. if (tid->sched) {
  2032. list_del(&tid->list);
  2033. tid->sched = false;
  2034. }
  2035. if (ac->sched) {
  2036. list_del(&ac->list);
  2037. tid->ac->sched = false;
  2038. }
  2039. ath_tid_drain(sc, txq, tid);
  2040. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2041. tid->state &= ~AGGR_CLEANUP;
  2042. spin_unlock_bh(&txq->axq_lock);
  2043. }
  2044. }