amd64_edac.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  22. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  23. * or higher value'.
  24. *
  25. *FIXME: Produce a better mapping/linearisation.
  26. */
  27. static const struct scrubrate {
  28. u32 scrubval; /* bit pattern for scrub rate */
  29. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  30. } scrubrates[] = {
  31. { 0x01, 1600000000UL},
  32. { 0x02, 800000000UL},
  33. { 0x03, 400000000UL},
  34. { 0x04, 200000000UL},
  35. { 0x05, 100000000UL},
  36. { 0x06, 50000000UL},
  37. { 0x07, 25000000UL},
  38. { 0x08, 12284069UL},
  39. { 0x09, 6274509UL},
  40. { 0x0A, 3121951UL},
  41. { 0x0B, 1560975UL},
  42. { 0x0C, 781440UL},
  43. { 0x0D, 390720UL},
  44. { 0x0E, 195300UL},
  45. { 0x0F, 97650UL},
  46. { 0x10, 48854UL},
  47. { 0x11, 24427UL},
  48. { 0x12, 12213UL},
  49. { 0x13, 6101UL},
  50. { 0x14, 3051UL},
  51. { 0x15, 1523UL},
  52. { 0x16, 761UL},
  53. { 0x00, 0UL}, /* scrubbing off */
  54. };
  55. int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  56. u32 *val, const char *func)
  57. {
  58. int err = 0;
  59. err = pci_read_config_dword(pdev, offset, val);
  60. if (err)
  61. amd64_warn("%s: error reading F%dx%03x.\n",
  62. func, PCI_FUNC(pdev->devfn), offset);
  63. return err;
  64. }
  65. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  66. u32 val, const char *func)
  67. {
  68. int err = 0;
  69. err = pci_write_config_dword(pdev, offset, val);
  70. if (err)
  71. amd64_warn("%s: error writing to F%dx%03x.\n",
  72. func, PCI_FUNC(pdev->devfn), offset);
  73. return err;
  74. }
  75. /*
  76. *
  77. * Depending on the family, F2 DCT reads need special handling:
  78. *
  79. * K8: has a single DCT only
  80. *
  81. * F10h: each DCT has its own set of regs
  82. * DCT0 -> F2x040..
  83. * DCT1 -> F2x140..
  84. *
  85. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  86. *
  87. * F16h: has only 1 DCT
  88. */
  89. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  90. const char *func)
  91. {
  92. if (addr >= 0x100)
  93. return -EINVAL;
  94. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  95. }
  96. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  97. const char *func)
  98. {
  99. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  100. }
  101. /*
  102. * Select DCT to which PCI cfg accesses are routed
  103. */
  104. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  105. {
  106. u32 reg = 0;
  107. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  108. reg &= (pvt->model >= 0x30) ? ~3 : ~1;
  109. reg |= dct;
  110. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  111. }
  112. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  113. const char *func)
  114. {
  115. u8 dct = 0;
  116. /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
  117. if (addr >= 0x140 && addr <= 0x1a0) {
  118. dct = (pvt->model >= 0x30) ? 3 : 1;
  119. addr -= 0x100;
  120. }
  121. f15h_select_dct(pvt, dct);
  122. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  123. }
  124. /*
  125. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  126. * hardware and can involve L2 cache, dcache as well as the main memory. With
  127. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  128. * functionality.
  129. *
  130. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  131. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  132. * bytes/sec for the setting.
  133. *
  134. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  135. * other archs, we might not have access to the caches directly.
  136. */
  137. /*
  138. * scan the scrub rate mapping table for a close or matching bandwidth value to
  139. * issue. If requested is too big, then use last maximum value found.
  140. */
  141. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  142. {
  143. u32 scrubval;
  144. int i;
  145. /*
  146. * map the configured rate (new_bw) to a value specific to the AMD64
  147. * memory controller and apply to register. Search for the first
  148. * bandwidth entry that is greater or equal than the setting requested
  149. * and program that. If at last entry, turn off DRAM scrubbing.
  150. *
  151. * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
  152. * by falling back to the last element in scrubrates[].
  153. */
  154. for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
  155. /*
  156. * skip scrub rates which aren't recommended
  157. * (see F10 BKDG, F3x58)
  158. */
  159. if (scrubrates[i].scrubval < min_rate)
  160. continue;
  161. if (scrubrates[i].bandwidth <= new_bw)
  162. break;
  163. }
  164. scrubval = scrubrates[i].scrubval;
  165. pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
  166. if (scrubval)
  167. return scrubrates[i].bandwidth;
  168. return 0;
  169. }
  170. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  171. {
  172. struct amd64_pvt *pvt = mci->pvt_info;
  173. u32 min_scrubrate = 0x5;
  174. if (pvt->fam == 0xf)
  175. min_scrubrate = 0x0;
  176. /* Erratum #505 for F15h Model 0x00 - Model 0x01, Stepping 0 */
  177. if (pvt->fam == 0x15 && pvt->model <= 0x01 && pvt->stepping < 0x1)
  178. f15h_select_dct(pvt, 0);
  179. return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
  180. }
  181. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  182. {
  183. struct amd64_pvt *pvt = mci->pvt_info;
  184. u32 scrubval = 0;
  185. int i, retval = -EINVAL;
  186. /* Erratum #505 for F15h Model 0x00 - Model 0x01, Stepping 0 */
  187. if (pvt->fam == 0x15 && pvt->model <= 0x01 && pvt->stepping < 0x1)
  188. f15h_select_dct(pvt, 0);
  189. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  190. scrubval = scrubval & 0x001F;
  191. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  192. if (scrubrates[i].scrubval == scrubval) {
  193. retval = scrubrates[i].bandwidth;
  194. break;
  195. }
  196. }
  197. return retval;
  198. }
  199. /*
  200. * returns true if the SysAddr given by sys_addr matches the
  201. * DRAM base/limit associated with node_id
  202. */
  203. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
  204. u8 nid)
  205. {
  206. u64 addr;
  207. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  208. * all ones if the most significant implemented address bit is 1.
  209. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  210. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  211. * Application Programming.
  212. */
  213. addr = sys_addr & 0x000000ffffffffffull;
  214. return ((addr >= get_dram_base(pvt, nid)) &&
  215. (addr <= get_dram_limit(pvt, nid)));
  216. }
  217. /*
  218. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  219. * mem_ctl_info structure for the node that the SysAddr maps to.
  220. *
  221. * On failure, return NULL.
  222. */
  223. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  224. u64 sys_addr)
  225. {
  226. struct amd64_pvt *pvt;
  227. u8 node_id;
  228. u32 intlv_en, bits;
  229. /*
  230. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  231. * 3.4.4.2) registers to map the SysAddr to a node ID.
  232. */
  233. pvt = mci->pvt_info;
  234. /*
  235. * The value of this field should be the same for all DRAM Base
  236. * registers. Therefore we arbitrarily choose to read it from the
  237. * register for node 0.
  238. */
  239. intlv_en = dram_intlv_en(pvt, 0);
  240. if (intlv_en == 0) {
  241. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  242. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  243. goto found;
  244. }
  245. goto err_no_match;
  246. }
  247. if (unlikely((intlv_en != 0x01) &&
  248. (intlv_en != 0x03) &&
  249. (intlv_en != 0x07))) {
  250. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  251. return NULL;
  252. }
  253. bits = (((u32) sys_addr) >> 12) & intlv_en;
  254. for (node_id = 0; ; ) {
  255. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  256. break; /* intlv_sel field matches */
  257. if (++node_id >= DRAM_RANGES)
  258. goto err_no_match;
  259. }
  260. /* sanity test for sys_addr */
  261. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  262. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  263. "range for node %d with node interleaving enabled.\n",
  264. __func__, sys_addr, node_id);
  265. return NULL;
  266. }
  267. found:
  268. return edac_mc_find((int)node_id);
  269. err_no_match:
  270. edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
  271. (unsigned long)sys_addr);
  272. return NULL;
  273. }
  274. /*
  275. * compute the CS base address of the @csrow on the DRAM controller @dct.
  276. * For details see F2x[5C:40] in the processor's BKDG
  277. */
  278. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  279. u64 *base, u64 *mask)
  280. {
  281. u64 csbase, csmask, base_bits, mask_bits;
  282. u8 addr_shift;
  283. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  284. csbase = pvt->csels[dct].csbases[csrow];
  285. csmask = pvt->csels[dct].csmasks[csrow];
  286. base_bits = GENMASK(21, 31) | GENMASK(9, 15);
  287. mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
  288. addr_shift = 4;
  289. /*
  290. * F16h and F15h, models 30h and later need two addr_shift values:
  291. * 8 for high and 6 for low (cf. F16h BKDG).
  292. */
  293. } else if (pvt->fam == 0x16 ||
  294. (pvt->fam == 0x15 && pvt->model >= 0x30)) {
  295. csbase = pvt->csels[dct].csbases[csrow];
  296. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  297. *base = (csbase & GENMASK(5, 15)) << 6;
  298. *base |= (csbase & GENMASK(19, 30)) << 8;
  299. *mask = ~0ULL;
  300. /* poke holes for the csmask */
  301. *mask &= ~((GENMASK(5, 15) << 6) |
  302. (GENMASK(19, 30) << 8));
  303. *mask |= (csmask & GENMASK(5, 15)) << 6;
  304. *mask |= (csmask & GENMASK(19, 30)) << 8;
  305. return;
  306. } else {
  307. csbase = pvt->csels[dct].csbases[csrow];
  308. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  309. addr_shift = 8;
  310. if (pvt->fam == 0x15)
  311. base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
  312. else
  313. base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
  314. }
  315. *base = (csbase & base_bits) << addr_shift;
  316. *mask = ~0ULL;
  317. /* poke holes for the csmask */
  318. *mask &= ~(mask_bits << addr_shift);
  319. /* OR them in */
  320. *mask |= (csmask & mask_bits) << addr_shift;
  321. }
  322. #define for_each_chip_select(i, dct, pvt) \
  323. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  324. #define chip_select_base(i, dct, pvt) \
  325. pvt->csels[dct].csbases[i]
  326. #define for_each_chip_select_mask(i, dct, pvt) \
  327. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  328. /*
  329. * @input_addr is an InputAddr associated with the node given by mci. Return the
  330. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  331. */
  332. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  333. {
  334. struct amd64_pvt *pvt;
  335. int csrow;
  336. u64 base, mask;
  337. pvt = mci->pvt_info;
  338. for_each_chip_select(csrow, 0, pvt) {
  339. if (!csrow_enabled(csrow, 0, pvt))
  340. continue;
  341. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  342. mask = ~mask;
  343. if ((input_addr & mask) == (base & mask)) {
  344. edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
  345. (unsigned long)input_addr, csrow,
  346. pvt->mc_node_id);
  347. return csrow;
  348. }
  349. }
  350. edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  351. (unsigned long)input_addr, pvt->mc_node_id);
  352. return -1;
  353. }
  354. /*
  355. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  356. * for the node represented by mci. Info is passed back in *hole_base,
  357. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  358. * info is invalid. Info may be invalid for either of the following reasons:
  359. *
  360. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  361. * Address Register does not exist.
  362. *
  363. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  364. * indicating that its contents are not valid.
  365. *
  366. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  367. * complete 32-bit values despite the fact that the bitfields in the DHAR
  368. * only represent bits 31-24 of the base and offset values.
  369. */
  370. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  371. u64 *hole_offset, u64 *hole_size)
  372. {
  373. struct amd64_pvt *pvt = mci->pvt_info;
  374. /* only revE and later have the DRAM Hole Address Register */
  375. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
  376. edac_dbg(1, " revision %d for node %d does not support DHAR\n",
  377. pvt->ext_model, pvt->mc_node_id);
  378. return 1;
  379. }
  380. /* valid for Fam10h and above */
  381. if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  382. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
  383. return 1;
  384. }
  385. if (!dhar_valid(pvt)) {
  386. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
  387. pvt->mc_node_id);
  388. return 1;
  389. }
  390. /* This node has Memory Hoisting */
  391. /* +------------------+--------------------+--------------------+-----
  392. * | memory | DRAM hole | relocated |
  393. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  394. * | | | DRAM hole |
  395. * | | | [0x100000000, |
  396. * | | | (0x100000000+ |
  397. * | | | (0xffffffff-x))] |
  398. * +------------------+--------------------+--------------------+-----
  399. *
  400. * Above is a diagram of physical memory showing the DRAM hole and the
  401. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  402. * starts at address x (the base address) and extends through address
  403. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  404. * addresses in the hole so that they start at 0x100000000.
  405. */
  406. *hole_base = dhar_base(pvt);
  407. *hole_size = (1ULL << 32) - *hole_base;
  408. *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
  409. : k8_dhar_offset(pvt);
  410. edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  411. pvt->mc_node_id, (unsigned long)*hole_base,
  412. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  413. return 0;
  414. }
  415. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  416. /*
  417. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  418. * assumed that sys_addr maps to the node given by mci.
  419. *
  420. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  421. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  422. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  423. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  424. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  425. * These parts of the documentation are unclear. I interpret them as follows:
  426. *
  427. * When node n receives a SysAddr, it processes the SysAddr as follows:
  428. *
  429. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  430. * Limit registers for node n. If the SysAddr is not within the range
  431. * specified by the base and limit values, then node n ignores the Sysaddr
  432. * (since it does not map to node n). Otherwise continue to step 2 below.
  433. *
  434. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  435. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  436. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  437. * hole. If not, skip to step 3 below. Else get the value of the
  438. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  439. * offset defined by this value from the SysAddr.
  440. *
  441. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  442. * Base register for node n. To obtain the DramAddr, subtract the base
  443. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  444. */
  445. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  446. {
  447. struct amd64_pvt *pvt = mci->pvt_info;
  448. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  449. int ret;
  450. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  451. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  452. &hole_size);
  453. if (!ret) {
  454. if ((sys_addr >= (1ULL << 32)) &&
  455. (sys_addr < ((1ULL << 32) + hole_size))) {
  456. /* use DHAR to translate SysAddr to DramAddr */
  457. dram_addr = sys_addr - hole_offset;
  458. edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  459. (unsigned long)sys_addr,
  460. (unsigned long)dram_addr);
  461. return dram_addr;
  462. }
  463. }
  464. /*
  465. * Translate the SysAddr to a DramAddr as shown near the start of
  466. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  467. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  468. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  469. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  470. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  471. * Programmer's Manual Volume 1 Application Programming.
  472. */
  473. dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
  474. edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  475. (unsigned long)sys_addr, (unsigned long)dram_addr);
  476. return dram_addr;
  477. }
  478. /*
  479. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  480. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  481. * for node interleaving.
  482. */
  483. static int num_node_interleave_bits(unsigned intlv_en)
  484. {
  485. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  486. int n;
  487. BUG_ON(intlv_en > 7);
  488. n = intlv_shift_table[intlv_en];
  489. return n;
  490. }
  491. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  492. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  493. {
  494. struct amd64_pvt *pvt;
  495. int intlv_shift;
  496. u64 input_addr;
  497. pvt = mci->pvt_info;
  498. /*
  499. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  500. * concerning translating a DramAddr to an InputAddr.
  501. */
  502. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  503. input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
  504. (dram_addr & 0xfff);
  505. edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  506. intlv_shift, (unsigned long)dram_addr,
  507. (unsigned long)input_addr);
  508. return input_addr;
  509. }
  510. /*
  511. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  512. * assumed that @sys_addr maps to the node given by mci.
  513. */
  514. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  515. {
  516. u64 input_addr;
  517. input_addr =
  518. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  519. edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  520. (unsigned long)sys_addr, (unsigned long)input_addr);
  521. return input_addr;
  522. }
  523. /* Map the Error address to a PAGE and PAGE OFFSET. */
  524. static inline void error_address_to_page_and_offset(u64 error_address,
  525. struct err_info *err)
  526. {
  527. err->page = (u32) (error_address >> PAGE_SHIFT);
  528. err->offset = ((u32) error_address) & ~PAGE_MASK;
  529. }
  530. /*
  531. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  532. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  533. * of a node that detected an ECC memory error. mci represents the node that
  534. * the error address maps to (possibly different from the node that detected
  535. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  536. * error.
  537. */
  538. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  539. {
  540. int csrow;
  541. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  542. if (csrow == -1)
  543. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  544. "address 0x%lx\n", (unsigned long)sys_addr);
  545. return csrow;
  546. }
  547. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  548. /*
  549. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  550. * are ECC capable.
  551. */
  552. static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
  553. {
  554. u8 bit;
  555. unsigned long edac_cap = EDAC_FLAG_NONE;
  556. bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
  557. ? 19
  558. : 17;
  559. if (pvt->dclr0 & BIT(bit))
  560. edac_cap = EDAC_FLAG_SECDED;
  561. return edac_cap;
  562. }
  563. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
  564. static void amd64_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
  565. {
  566. edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  567. edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  568. (dclr & BIT(16)) ? "un" : "",
  569. (dclr & BIT(19)) ? "yes" : "no");
  570. edac_dbg(1, " PAR/ERR parity: %s\n",
  571. (dclr & BIT(8)) ? "enabled" : "disabled");
  572. if (pvt->fam == 0x10)
  573. edac_dbg(1, " DCT 128bit mode width: %s\n",
  574. (dclr & BIT(11)) ? "128b" : "64b");
  575. edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  576. (dclr & BIT(12)) ? "yes" : "no",
  577. (dclr & BIT(13)) ? "yes" : "no",
  578. (dclr & BIT(14)) ? "yes" : "no",
  579. (dclr & BIT(15)) ? "yes" : "no");
  580. }
  581. /* Display and decode various NB registers for debug purposes. */
  582. static void dump_misc_regs(struct amd64_pvt *pvt)
  583. {
  584. edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  585. edac_dbg(1, " NB two channel DRAM capable: %s\n",
  586. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  587. edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
  588. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  589. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  590. amd64_dump_dramcfg_low(pvt, pvt->dclr0, 0);
  591. edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  592. edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
  593. pvt->dhar, dhar_base(pvt),
  594. (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
  595. : f10_dhar_offset(pvt));
  596. edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  597. amd64_debug_display_dimm_sizes(pvt, 0);
  598. /* everything below this point is Fam10h and above */
  599. if (pvt->fam == 0xf)
  600. return;
  601. amd64_debug_display_dimm_sizes(pvt, 1);
  602. amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  603. /* Only if NOT ganged does dclr1 have valid info */
  604. if (!dct_ganging_enabled(pvt))
  605. amd64_dump_dramcfg_low(pvt, pvt->dclr1, 1);
  606. }
  607. /*
  608. * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  609. */
  610. static void prep_chip_selects(struct amd64_pvt *pvt)
  611. {
  612. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  613. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  614. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  615. } else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
  616. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
  617. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
  618. } else {
  619. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  620. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  621. }
  622. }
  623. /*
  624. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  625. */
  626. static void read_dct_base_mask(struct amd64_pvt *pvt)
  627. {
  628. int cs;
  629. prep_chip_selects(pvt);
  630. for_each_chip_select(cs, 0, pvt) {
  631. int reg0 = DCSB0 + (cs * 4);
  632. int reg1 = DCSB1 + (cs * 4);
  633. u32 *base0 = &pvt->csels[0].csbases[cs];
  634. u32 *base1 = &pvt->csels[1].csbases[cs];
  635. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  636. edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
  637. cs, *base0, reg0);
  638. if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
  639. continue;
  640. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  641. edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
  642. cs, *base1, reg1);
  643. }
  644. for_each_chip_select_mask(cs, 0, pvt) {
  645. int reg0 = DCSM0 + (cs * 4);
  646. int reg1 = DCSM1 + (cs * 4);
  647. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  648. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  649. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  650. edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
  651. cs, *mask0, reg0);
  652. if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
  653. continue;
  654. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  655. edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
  656. cs, *mask1, reg1);
  657. }
  658. }
  659. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  660. {
  661. enum mem_type type;
  662. /* F15h supports only DDR3 */
  663. if (pvt->fam >= 0x15)
  664. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  665. else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
  666. if (pvt->dchr0 & DDR3_MODE)
  667. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  668. else
  669. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  670. } else {
  671. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  672. }
  673. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  674. return type;
  675. }
  676. /* Get the number of DCT channels the memory controller is using. */
  677. static int k8_early_channel_count(struct amd64_pvt *pvt)
  678. {
  679. int flag;
  680. if (pvt->ext_model >= K8_REV_F)
  681. /* RevF (NPT) and later */
  682. flag = pvt->dclr0 & WIDTH_128;
  683. else
  684. /* RevE and earlier */
  685. flag = pvt->dclr0 & REVE_WIDTH_128;
  686. /* not used */
  687. pvt->dclr1 = 0;
  688. return (flag) ? 2 : 1;
  689. }
  690. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  691. static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
  692. {
  693. u64 addr;
  694. u8 start_bit = 1;
  695. u8 end_bit = 47;
  696. if (pvt->fam == 0xf) {
  697. start_bit = 3;
  698. end_bit = 39;
  699. }
  700. addr = m->addr & GENMASK(start_bit, end_bit);
  701. /*
  702. * Erratum 637 workaround
  703. */
  704. if (pvt->fam == 0x15) {
  705. struct amd64_pvt *pvt;
  706. u64 cc6_base, tmp_addr;
  707. u32 tmp;
  708. u16 mce_nid;
  709. u8 intlv_en;
  710. if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
  711. return addr;
  712. mce_nid = amd_get_nb_id(m->extcpu);
  713. pvt = mcis[mce_nid]->pvt_info;
  714. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  715. intlv_en = tmp >> 21 & 0x7;
  716. /* add [47:27] + 3 trailing bits */
  717. cc6_base = (tmp & GENMASK(0, 20)) << 3;
  718. /* reverse and add DramIntlvEn */
  719. cc6_base |= intlv_en ^ 0x7;
  720. /* pin at [47:24] */
  721. cc6_base <<= 24;
  722. if (!intlv_en)
  723. return cc6_base | (addr & GENMASK(0, 23));
  724. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  725. /* faster log2 */
  726. tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
  727. /* OR DramIntlvSel into bits [14:12] */
  728. tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
  729. /* add remaining [11:0] bits from original MC4_ADDR */
  730. tmp_addr |= addr & GENMASK(0, 11);
  731. return cc6_base | tmp_addr;
  732. }
  733. return addr;
  734. }
  735. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  736. unsigned int device,
  737. struct pci_dev *related)
  738. {
  739. struct pci_dev *dev = NULL;
  740. while ((dev = pci_get_device(vendor, device, dev))) {
  741. if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
  742. (dev->bus->number == related->bus->number) &&
  743. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  744. break;
  745. }
  746. return dev;
  747. }
  748. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  749. {
  750. struct amd_northbridge *nb;
  751. struct pci_dev *f1 = NULL;
  752. unsigned int pci_func;
  753. int off = range << 3;
  754. u32 llim;
  755. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  756. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  757. if (pvt->fam == 0xf)
  758. return;
  759. if (!dram_rw(pvt, range))
  760. return;
  761. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  762. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  763. /* F15h: factor in CC6 save area by reading dst node's limit reg */
  764. if (pvt->fam != 0x15)
  765. return;
  766. nb = node_to_amd_nb(dram_dst_node(pvt, range));
  767. if (WARN_ON(!nb))
  768. return;
  769. pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
  770. : PCI_DEVICE_ID_AMD_15H_NB_F1;
  771. f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
  772. if (WARN_ON(!f1))
  773. return;
  774. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  775. pvt->ranges[range].lim.lo &= GENMASK(0, 15);
  776. /* {[39:27],111b} */
  777. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  778. pvt->ranges[range].lim.hi &= GENMASK(0, 7);
  779. /* [47:40] */
  780. pvt->ranges[range].lim.hi |= llim >> 13;
  781. pci_dev_put(f1);
  782. }
  783. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  784. struct err_info *err)
  785. {
  786. struct amd64_pvt *pvt = mci->pvt_info;
  787. error_address_to_page_and_offset(sys_addr, err);
  788. /*
  789. * Find out which node the error address belongs to. This may be
  790. * different from the node that detected the error.
  791. */
  792. err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
  793. if (!err->src_mci) {
  794. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  795. (unsigned long)sys_addr);
  796. err->err_code = ERR_NODE;
  797. return;
  798. }
  799. /* Now map the sys_addr to a CSROW */
  800. err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
  801. if (err->csrow < 0) {
  802. err->err_code = ERR_CSROW;
  803. return;
  804. }
  805. /* CHIPKILL enabled */
  806. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  807. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  808. if (err->channel < 0) {
  809. /*
  810. * Syndrome didn't map, so we don't know which of the
  811. * 2 DIMMs is in error. So we need to ID 'both' of them
  812. * as suspect.
  813. */
  814. amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
  815. "possible error reporting race\n",
  816. err->syndrome);
  817. err->err_code = ERR_CHANNEL;
  818. return;
  819. }
  820. } else {
  821. /*
  822. * non-chipkill ecc mode
  823. *
  824. * The k8 documentation is unclear about how to determine the
  825. * channel number when using non-chipkill memory. This method
  826. * was obtained from email communication with someone at AMD.
  827. * (Wish the email was placed in this comment - norsk)
  828. */
  829. err->channel = ((sys_addr & BIT(3)) != 0);
  830. }
  831. }
  832. static int ddr2_cs_size(unsigned i, bool dct_width)
  833. {
  834. unsigned shift = 0;
  835. if (i <= 2)
  836. shift = i;
  837. else if (!(i & 0x1))
  838. shift = i >> 1;
  839. else
  840. shift = (i + 1) >> 1;
  841. return 128 << (shift + !!dct_width);
  842. }
  843. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  844. unsigned cs_mode)
  845. {
  846. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  847. if (pvt->ext_model >= K8_REV_F) {
  848. WARN_ON(cs_mode > 11);
  849. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  850. }
  851. else if (pvt->ext_model >= K8_REV_D) {
  852. unsigned diff;
  853. WARN_ON(cs_mode > 10);
  854. /*
  855. * the below calculation, besides trying to win an obfuscated C
  856. * contest, maps cs_mode values to DIMM chip select sizes. The
  857. * mappings are:
  858. *
  859. * cs_mode CS size (mb)
  860. * ======= ============
  861. * 0 32
  862. * 1 64
  863. * 2 128
  864. * 3 128
  865. * 4 256
  866. * 5 512
  867. * 6 256
  868. * 7 512
  869. * 8 1024
  870. * 9 1024
  871. * 10 2048
  872. *
  873. * Basically, it calculates a value with which to shift the
  874. * smallest CS size of 32MB.
  875. *
  876. * ddr[23]_cs_size have a similar purpose.
  877. */
  878. diff = cs_mode/3 + (unsigned)(cs_mode > 5);
  879. return 32 << (cs_mode - diff);
  880. }
  881. else {
  882. WARN_ON(cs_mode > 6);
  883. return 32 << cs_mode;
  884. }
  885. }
  886. /*
  887. * Get the number of DCT channels in use.
  888. *
  889. * Return:
  890. * number of Memory Channels in operation
  891. * Pass back:
  892. * contents of the DCL0_LOW register
  893. */
  894. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  895. {
  896. int i, j, channels = 0;
  897. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  898. if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
  899. return 2;
  900. /*
  901. * Need to check if in unganged mode: In such, there are 2 channels,
  902. * but they are not in 128 bit mode and thus the above 'dclr0' status
  903. * bit will be OFF.
  904. *
  905. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  906. * their CSEnable bit on. If so, then SINGLE DIMM case.
  907. */
  908. edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
  909. /*
  910. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  911. * is more than just one DIMM present in unganged mode. Need to check
  912. * both controllers since DIMMs can be placed in either one.
  913. */
  914. for (i = 0; i < 2; i++) {
  915. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  916. for (j = 0; j < 4; j++) {
  917. if (DBAM_DIMM(j, dbam) > 0) {
  918. channels++;
  919. break;
  920. }
  921. }
  922. }
  923. if (channels > 2)
  924. channels = 2;
  925. amd64_info("MCT channel count: %d\n", channels);
  926. return channels;
  927. }
  928. static int ddr3_cs_size(unsigned i, bool dct_width)
  929. {
  930. unsigned shift = 0;
  931. int cs_size = 0;
  932. if (i == 0 || i == 3 || i == 4)
  933. cs_size = -1;
  934. else if (i <= 2)
  935. shift = i;
  936. else if (i == 12)
  937. shift = 7;
  938. else if (!(i & 0x1))
  939. shift = i >> 1;
  940. else
  941. shift = (i + 1) >> 1;
  942. if (cs_size != -1)
  943. cs_size = (128 * (1 << !!dct_width)) << shift;
  944. return cs_size;
  945. }
  946. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  947. unsigned cs_mode)
  948. {
  949. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  950. WARN_ON(cs_mode > 11);
  951. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  952. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  953. else
  954. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  955. }
  956. /*
  957. * F15h supports only 64bit DCT interfaces
  958. */
  959. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  960. unsigned cs_mode)
  961. {
  962. WARN_ON(cs_mode > 12);
  963. return ddr3_cs_size(cs_mode, false);
  964. }
  965. /*
  966. * F16h and F15h model 30h have only limited cs_modes.
  967. */
  968. static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  969. unsigned cs_mode)
  970. {
  971. WARN_ON(cs_mode > 12);
  972. if (cs_mode == 6 || cs_mode == 8 ||
  973. cs_mode == 9 || cs_mode == 12)
  974. return -1;
  975. else
  976. return ddr3_cs_size(cs_mode, false);
  977. }
  978. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  979. {
  980. if (pvt->fam == 0xf)
  981. return;
  982. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  983. edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  984. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  985. edac_dbg(0, " DCTs operate in %s mode\n",
  986. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  987. if (!dct_ganging_enabled(pvt))
  988. edac_dbg(0, " Address range split per DCT: %s\n",
  989. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  990. edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
  991. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  992. (dct_memory_cleared(pvt) ? "yes" : "no"));
  993. edac_dbg(0, " channel interleave: %s, "
  994. "interleave bits selector: 0x%x\n",
  995. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  996. dct_sel_interleave_addr(pvt));
  997. }
  998. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  999. }
  1000. /*
  1001. * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
  1002. * 2.10.12 Memory Interleaving Modes).
  1003. */
  1004. static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1005. u8 intlv_en, int num_dcts_intlv,
  1006. u32 dct_sel)
  1007. {
  1008. u8 channel = 0;
  1009. u8 select;
  1010. if (!(intlv_en))
  1011. return (u8)(dct_sel);
  1012. if (num_dcts_intlv == 2) {
  1013. select = (sys_addr >> 8) & 0x3;
  1014. channel = select ? 0x3 : 0;
  1015. } else if (num_dcts_intlv == 4)
  1016. channel = (sys_addr >> 8) & 0x7;
  1017. return channel;
  1018. }
  1019. /*
  1020. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1021. * Interleaving Modes.
  1022. */
  1023. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1024. bool hi_range_sel, u8 intlv_en)
  1025. {
  1026. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  1027. if (dct_ganging_enabled(pvt))
  1028. return 0;
  1029. if (hi_range_sel)
  1030. return dct_sel_high;
  1031. /*
  1032. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1033. */
  1034. if (dct_interleave_enabled(pvt)) {
  1035. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1036. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1037. if (!intlv_addr)
  1038. return sys_addr >> 6 & 1;
  1039. if (intlv_addr & 0x2) {
  1040. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1041. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1042. return ((sys_addr >> shift) & 1) ^ temp;
  1043. }
  1044. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1045. }
  1046. if (dct_high_range_enabled(pvt))
  1047. return ~dct_sel_high & 1;
  1048. return 0;
  1049. }
  1050. /* Convert the sys_addr to the normalized DCT address */
  1051. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
  1052. u64 sys_addr, bool hi_rng,
  1053. u32 dct_sel_base_addr)
  1054. {
  1055. u64 chan_off;
  1056. u64 dram_base = get_dram_base(pvt, range);
  1057. u64 hole_off = f10_dhar_offset(pvt);
  1058. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1059. if (hi_rng) {
  1060. /*
  1061. * if
  1062. * base address of high range is below 4Gb
  1063. * (bits [47:27] at [31:11])
  1064. * DRAM address space on this DCT is hoisted above 4Gb &&
  1065. * sys_addr > 4Gb
  1066. *
  1067. * remove hole offset from sys_addr
  1068. * else
  1069. * remove high range offset from sys_addr
  1070. */
  1071. if ((!(dct_sel_base_addr >> 16) ||
  1072. dct_sel_base_addr < dhar_base(pvt)) &&
  1073. dhar_valid(pvt) &&
  1074. (sys_addr >= BIT_64(32)))
  1075. chan_off = hole_off;
  1076. else
  1077. chan_off = dct_sel_base_off;
  1078. } else {
  1079. /*
  1080. * if
  1081. * we have a valid hole &&
  1082. * sys_addr > 4Gb
  1083. *
  1084. * remove hole
  1085. * else
  1086. * remove dram base to normalize to DCT address
  1087. */
  1088. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1089. chan_off = hole_off;
  1090. else
  1091. chan_off = dram_base;
  1092. }
  1093. return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
  1094. }
  1095. /*
  1096. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1097. * spare row
  1098. */
  1099. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1100. {
  1101. int tmp_cs;
  1102. if (online_spare_swap_done(pvt, dct) &&
  1103. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1104. for_each_chip_select(tmp_cs, dct, pvt) {
  1105. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1106. csrow = tmp_cs;
  1107. break;
  1108. }
  1109. }
  1110. }
  1111. return csrow;
  1112. }
  1113. /*
  1114. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1115. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1116. *
  1117. * Return:
  1118. * -EINVAL: NOT FOUND
  1119. * 0..csrow = Chip-Select Row
  1120. */
  1121. static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
  1122. {
  1123. struct mem_ctl_info *mci;
  1124. struct amd64_pvt *pvt;
  1125. u64 cs_base, cs_mask;
  1126. int cs_found = -EINVAL;
  1127. int csrow;
  1128. mci = mcis[nid];
  1129. if (!mci)
  1130. return cs_found;
  1131. pvt = mci->pvt_info;
  1132. edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1133. for_each_chip_select(csrow, dct, pvt) {
  1134. if (!csrow_enabled(csrow, dct, pvt))
  1135. continue;
  1136. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1137. edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1138. csrow, cs_base, cs_mask);
  1139. cs_mask = ~cs_mask;
  1140. edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
  1141. (in_addr & cs_mask), (cs_base & cs_mask));
  1142. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1143. if (pvt->fam == 0x15 && pvt->model >= 0x30) {
  1144. cs_found = csrow;
  1145. break;
  1146. }
  1147. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1148. edac_dbg(1, " MATCH csrow=%d\n", cs_found);
  1149. break;
  1150. }
  1151. }
  1152. return cs_found;
  1153. }
  1154. /*
  1155. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1156. * swapped with a region located at the bottom of memory so that the GPU can use
  1157. * the interleaved region and thus two channels.
  1158. */
  1159. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1160. {
  1161. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1162. if (pvt->fam == 0x10) {
  1163. /* only revC3 and revE have that feature */
  1164. if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
  1165. return sys_addr;
  1166. }
  1167. amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
  1168. if (!(swap_reg & 0x1))
  1169. return sys_addr;
  1170. swap_base = (swap_reg >> 3) & 0x7f;
  1171. swap_limit = (swap_reg >> 11) & 0x7f;
  1172. rgn_size = (swap_reg >> 20) & 0x7f;
  1173. tmp_addr = sys_addr >> 27;
  1174. if (!(sys_addr >> 34) &&
  1175. (((tmp_addr >= swap_base) &&
  1176. (tmp_addr <= swap_limit)) ||
  1177. (tmp_addr < rgn_size)))
  1178. return sys_addr ^ (u64)swap_base << 27;
  1179. return sys_addr;
  1180. }
  1181. /* For a given @dram_range, check if @sys_addr falls within it. */
  1182. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1183. u64 sys_addr, int *chan_sel)
  1184. {
  1185. int cs_found = -EINVAL;
  1186. u64 chan_addr;
  1187. u32 dct_sel_base;
  1188. u8 channel;
  1189. bool high_range = false;
  1190. u8 node_id = dram_dst_node(pvt, range);
  1191. u8 intlv_en = dram_intlv_en(pvt, range);
  1192. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1193. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1194. range, sys_addr, get_dram_limit(pvt, range));
  1195. if (dhar_valid(pvt) &&
  1196. dhar_base(pvt) <= sys_addr &&
  1197. sys_addr < BIT_64(32)) {
  1198. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1199. sys_addr);
  1200. return -EINVAL;
  1201. }
  1202. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1203. return -EINVAL;
  1204. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1205. dct_sel_base = dct_sel_baseaddr(pvt);
  1206. /*
  1207. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1208. * select between DCT0 and DCT1.
  1209. */
  1210. if (dct_high_range_enabled(pvt) &&
  1211. !dct_ganging_enabled(pvt) &&
  1212. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1213. high_range = true;
  1214. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1215. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1216. high_range, dct_sel_base);
  1217. /* Remove node interleaving, see F1x120 */
  1218. if (intlv_en)
  1219. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1220. (chan_addr & 0xfff);
  1221. /* remove channel interleave */
  1222. if (dct_interleave_enabled(pvt) &&
  1223. !dct_high_range_enabled(pvt) &&
  1224. !dct_ganging_enabled(pvt)) {
  1225. if (dct_sel_interleave_addr(pvt) != 1) {
  1226. if (dct_sel_interleave_addr(pvt) == 0x3)
  1227. /* hash 9 */
  1228. chan_addr = ((chan_addr >> 10) << 9) |
  1229. (chan_addr & 0x1ff);
  1230. else
  1231. /* A[6] or hash 6 */
  1232. chan_addr = ((chan_addr >> 7) << 6) |
  1233. (chan_addr & 0x3f);
  1234. } else
  1235. /* A[12] */
  1236. chan_addr = ((chan_addr >> 13) << 12) |
  1237. (chan_addr & 0xfff);
  1238. }
  1239. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1240. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1241. if (cs_found >= 0)
  1242. *chan_sel = channel;
  1243. return cs_found;
  1244. }
  1245. static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1246. u64 sys_addr, int *chan_sel)
  1247. {
  1248. int cs_found = -EINVAL;
  1249. int num_dcts_intlv = 0;
  1250. u64 chan_addr, chan_offset;
  1251. u64 dct_base, dct_limit;
  1252. u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
  1253. u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
  1254. u64 dhar_offset = f10_dhar_offset(pvt);
  1255. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1256. u8 node_id = dram_dst_node(pvt, range);
  1257. u8 intlv_en = dram_intlv_en(pvt, range);
  1258. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
  1259. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
  1260. dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
  1261. dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
  1262. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1263. range, sys_addr, get_dram_limit(pvt, range));
  1264. if (!(get_dram_base(pvt, range) <= sys_addr) &&
  1265. !(get_dram_limit(pvt, range) >= sys_addr))
  1266. return -EINVAL;
  1267. if (dhar_valid(pvt) &&
  1268. dhar_base(pvt) <= sys_addr &&
  1269. sys_addr < BIT_64(32)) {
  1270. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1271. sys_addr);
  1272. return -EINVAL;
  1273. }
  1274. /* Verify sys_addr is within DCT Range. */
  1275. dct_base = (dct_sel_baseaddr(pvt) << 27);
  1276. dct_limit = (((dct_cont_limit_reg >> 11) & 0x1FFF) << 27) | 0x7FFFFFF;
  1277. if (!(dct_cont_base_reg & BIT(0)) &&
  1278. !(dct_base <= sys_addr && dct_limit >= sys_addr))
  1279. return -EINVAL;
  1280. /* Verify number of dct's that participate in channel interleaving. */
  1281. num_dcts_intlv = (int) hweight8(intlv_en);
  1282. if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
  1283. return -EINVAL;
  1284. channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
  1285. num_dcts_intlv, dct_sel);
  1286. /* Verify we stay within the MAX number of channels allowed */
  1287. if (channel > 4 || channel < 0)
  1288. return -EINVAL;
  1289. leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
  1290. /* Get normalized DCT addr */
  1291. if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
  1292. chan_offset = dhar_offset;
  1293. else
  1294. chan_offset = dct_base;
  1295. chan_addr = sys_addr - chan_offset;
  1296. /* remove channel interleave */
  1297. if (num_dcts_intlv == 2) {
  1298. if (intlv_addr == 0x4)
  1299. chan_addr = ((chan_addr >> 9) << 8) |
  1300. (chan_addr & 0xff);
  1301. else if (intlv_addr == 0x5)
  1302. chan_addr = ((chan_addr >> 10) << 9) |
  1303. (chan_addr & 0x1ff);
  1304. else
  1305. return -EINVAL;
  1306. } else if (num_dcts_intlv == 4) {
  1307. if (intlv_addr == 0x4)
  1308. chan_addr = ((chan_addr >> 10) << 8) |
  1309. (chan_addr & 0xff);
  1310. else if (intlv_addr == 0x5)
  1311. chan_addr = ((chan_addr >> 11) << 9) |
  1312. (chan_addr & 0x1ff);
  1313. else
  1314. return -EINVAL;
  1315. }
  1316. if (dct_offset_en) {
  1317. amd64_read_pci_cfg(pvt->F1,
  1318. DRAM_CONT_HIGH_OFF + (int) channel * 4,
  1319. &tmp);
  1320. chan_addr += ((tmp >> 11) & 0xfff) << 27;
  1321. }
  1322. f15h_select_dct(pvt, channel);
  1323. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1324. /*
  1325. * Find Chip select:
  1326. * if channel = 3, then alias it to 1. This is because, in F15 M30h,
  1327. * there is support for 4 DCT's, but only 2 are currently functional.
  1328. * They are DCT0 and DCT3. But we have read all registers of DCT3 into
  1329. * pvt->csels[1]. So we need to use '1' here to get correct info.
  1330. * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
  1331. */
  1332. alias_channel = (channel == 3) ? 1 : channel;
  1333. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
  1334. if (cs_found >= 0)
  1335. *chan_sel = alias_channel;
  1336. return cs_found;
  1337. }
  1338. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
  1339. u64 sys_addr,
  1340. int *chan_sel)
  1341. {
  1342. int cs_found = -EINVAL;
  1343. unsigned range;
  1344. for (range = 0; range < DRAM_RANGES; range++) {
  1345. if (!dram_rw(pvt, range))
  1346. continue;
  1347. if (pvt->fam == 0x15 && pvt->model >= 0x30)
  1348. cs_found = f15_m30h_match_to_this_node(pvt, range,
  1349. sys_addr,
  1350. chan_sel);
  1351. else if ((get_dram_base(pvt, range) <= sys_addr) &&
  1352. (get_dram_limit(pvt, range) >= sys_addr)) {
  1353. cs_found = f1x_match_to_this_node(pvt, range,
  1354. sys_addr, chan_sel);
  1355. if (cs_found >= 0)
  1356. break;
  1357. }
  1358. }
  1359. return cs_found;
  1360. }
  1361. /*
  1362. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1363. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1364. *
  1365. * The @sys_addr is usually an error address received from the hardware
  1366. * (MCX_ADDR).
  1367. */
  1368. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1369. struct err_info *err)
  1370. {
  1371. struct amd64_pvt *pvt = mci->pvt_info;
  1372. error_address_to_page_and_offset(sys_addr, err);
  1373. err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
  1374. if (err->csrow < 0) {
  1375. err->err_code = ERR_CSROW;
  1376. return;
  1377. }
  1378. /*
  1379. * We need the syndromes for channel detection only when we're
  1380. * ganged. Otherwise @chan should already contain the channel at
  1381. * this point.
  1382. */
  1383. if (dct_ganging_enabled(pvt))
  1384. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1385. }
  1386. /*
  1387. * debug routine to display the memory sizes of all logical DIMMs and its
  1388. * CSROWs
  1389. */
  1390. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1391. {
  1392. int dimm, size0, size1;
  1393. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1394. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1395. if (pvt->fam == 0xf) {
  1396. /* K8 families < revF not supported yet */
  1397. if (pvt->ext_model < K8_REV_F)
  1398. return;
  1399. else
  1400. WARN_ON(ctrl != 0);
  1401. }
  1402. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1403. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1404. : pvt->csels[0].csbases;
  1405. edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1406. ctrl, dbam);
  1407. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1408. /* Dump memory sizes for DIMM and its CSROWs */
  1409. for (dimm = 0; dimm < 4; dimm++) {
  1410. size0 = 0;
  1411. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1412. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1413. DBAM_DIMM(dimm, dbam));
  1414. size1 = 0;
  1415. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1416. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1417. DBAM_DIMM(dimm, dbam));
  1418. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1419. dimm * 2, size0,
  1420. dimm * 2 + 1, size1);
  1421. }
  1422. }
  1423. static struct amd64_family_type amd64_family_types[] = {
  1424. [K8_CPUS] = {
  1425. .ctl_name = "K8",
  1426. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1427. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1428. .ops = {
  1429. .early_channel_count = k8_early_channel_count,
  1430. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1431. .dbam_to_cs = k8_dbam_to_chip_select,
  1432. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1433. }
  1434. },
  1435. [F10_CPUS] = {
  1436. .ctl_name = "F10h",
  1437. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1438. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1439. .ops = {
  1440. .early_channel_count = f1x_early_channel_count,
  1441. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1442. .dbam_to_cs = f10_dbam_to_chip_select,
  1443. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1444. }
  1445. },
  1446. [F15_CPUS] = {
  1447. .ctl_name = "F15h",
  1448. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1449. .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
  1450. .ops = {
  1451. .early_channel_count = f1x_early_channel_count,
  1452. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1453. .dbam_to_cs = f15_dbam_to_chip_select,
  1454. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1455. }
  1456. },
  1457. [F15_M30H_CPUS] = {
  1458. .ctl_name = "F15h_M30h",
  1459. .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
  1460. .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
  1461. .ops = {
  1462. .early_channel_count = f1x_early_channel_count,
  1463. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1464. .dbam_to_cs = f16_dbam_to_chip_select,
  1465. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1466. }
  1467. },
  1468. [F16_CPUS] = {
  1469. .ctl_name = "F16h",
  1470. .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
  1471. .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
  1472. .ops = {
  1473. .early_channel_count = f1x_early_channel_count,
  1474. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1475. .dbam_to_cs = f16_dbam_to_chip_select,
  1476. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1477. }
  1478. },
  1479. };
  1480. /*
  1481. * These are tables of eigenvectors (one per line) which can be used for the
  1482. * construction of the syndrome tables. The modified syndrome search algorithm
  1483. * uses those to find the symbol in error and thus the DIMM.
  1484. *
  1485. * Algorithm courtesy of Ross LaFetra from AMD.
  1486. */
  1487. static const u16 x4_vectors[] = {
  1488. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1489. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1490. 0x0001, 0x0002, 0x0004, 0x0008,
  1491. 0x1013, 0x3032, 0x4044, 0x8088,
  1492. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1493. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1494. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1495. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1496. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1497. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1498. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1499. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1500. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1501. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1502. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1503. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1504. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1505. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1506. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1507. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1508. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1509. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1510. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1511. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1512. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1513. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1514. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1515. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1516. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1517. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1518. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1519. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1520. 0x4807, 0xc40e, 0x130c, 0x3208,
  1521. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1522. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1523. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1524. };
  1525. static const u16 x8_vectors[] = {
  1526. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1527. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1528. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1529. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1530. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1531. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1532. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1533. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1534. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1535. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1536. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1537. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1538. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1539. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1540. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1541. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1542. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1543. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1544. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1545. };
  1546. static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
  1547. unsigned v_dim)
  1548. {
  1549. unsigned int i, err_sym;
  1550. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1551. u16 s = syndrome;
  1552. unsigned v_idx = err_sym * v_dim;
  1553. unsigned v_end = (err_sym + 1) * v_dim;
  1554. /* walk over all 16 bits of the syndrome */
  1555. for (i = 1; i < (1U << 16); i <<= 1) {
  1556. /* if bit is set in that eigenvector... */
  1557. if (v_idx < v_end && vectors[v_idx] & i) {
  1558. u16 ev_comp = vectors[v_idx++];
  1559. /* ... and bit set in the modified syndrome, */
  1560. if (s & i) {
  1561. /* remove it. */
  1562. s ^= ev_comp;
  1563. if (!s)
  1564. return err_sym;
  1565. }
  1566. } else if (s & i)
  1567. /* can't get to zero, move to next symbol */
  1568. break;
  1569. }
  1570. }
  1571. edac_dbg(0, "syndrome(%x) not found\n", syndrome);
  1572. return -1;
  1573. }
  1574. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1575. {
  1576. if (sym_size == 4)
  1577. switch (err_sym) {
  1578. case 0x20:
  1579. case 0x21:
  1580. return 0;
  1581. break;
  1582. case 0x22:
  1583. case 0x23:
  1584. return 1;
  1585. break;
  1586. default:
  1587. return err_sym >> 4;
  1588. break;
  1589. }
  1590. /* x8 symbols */
  1591. else
  1592. switch (err_sym) {
  1593. /* imaginary bits not in a DIMM */
  1594. case 0x10:
  1595. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1596. err_sym);
  1597. return -1;
  1598. break;
  1599. case 0x11:
  1600. return 0;
  1601. break;
  1602. case 0x12:
  1603. return 1;
  1604. break;
  1605. default:
  1606. return err_sym >> 3;
  1607. break;
  1608. }
  1609. return -1;
  1610. }
  1611. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1612. {
  1613. struct amd64_pvt *pvt = mci->pvt_info;
  1614. int err_sym = -1;
  1615. if (pvt->ecc_sym_sz == 8)
  1616. err_sym = decode_syndrome(syndrome, x8_vectors,
  1617. ARRAY_SIZE(x8_vectors),
  1618. pvt->ecc_sym_sz);
  1619. else if (pvt->ecc_sym_sz == 4)
  1620. err_sym = decode_syndrome(syndrome, x4_vectors,
  1621. ARRAY_SIZE(x4_vectors),
  1622. pvt->ecc_sym_sz);
  1623. else {
  1624. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1625. return err_sym;
  1626. }
  1627. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1628. }
  1629. static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
  1630. u8 ecc_type)
  1631. {
  1632. enum hw_event_mc_err_type err_type;
  1633. const char *string;
  1634. if (ecc_type == 2)
  1635. err_type = HW_EVENT_ERR_CORRECTED;
  1636. else if (ecc_type == 1)
  1637. err_type = HW_EVENT_ERR_UNCORRECTED;
  1638. else {
  1639. WARN(1, "Something is rotten in the state of Denmark.\n");
  1640. return;
  1641. }
  1642. switch (err->err_code) {
  1643. case DECODE_OK:
  1644. string = "";
  1645. break;
  1646. case ERR_NODE:
  1647. string = "Failed to map error addr to a node";
  1648. break;
  1649. case ERR_CSROW:
  1650. string = "Failed to map error addr to a csrow";
  1651. break;
  1652. case ERR_CHANNEL:
  1653. string = "unknown syndrome - possible error reporting race";
  1654. break;
  1655. default:
  1656. string = "WTF error";
  1657. break;
  1658. }
  1659. edac_mc_handle_error(err_type, mci, 1,
  1660. err->page, err->offset, err->syndrome,
  1661. err->csrow, err->channel, -1,
  1662. string, "");
  1663. }
  1664. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1665. struct mce *m)
  1666. {
  1667. struct amd64_pvt *pvt = mci->pvt_info;
  1668. u8 ecc_type = (m->status >> 45) & 0x3;
  1669. u8 xec = XEC(m->status, 0x1f);
  1670. u16 ec = EC(m->status);
  1671. u64 sys_addr;
  1672. struct err_info err;
  1673. /* Bail out early if this was an 'observed' error */
  1674. if (PP(ec) == NBSL_PP_OBS)
  1675. return;
  1676. /* Do only ECC errors */
  1677. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1678. return;
  1679. memset(&err, 0, sizeof(err));
  1680. sys_addr = get_error_address(pvt, m);
  1681. if (ecc_type == 2)
  1682. err.syndrome = extract_syndrome(m->status);
  1683. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
  1684. __log_bus_error(mci, &err, ecc_type);
  1685. }
  1686. void amd64_decode_bus_error(int node_id, struct mce *m)
  1687. {
  1688. __amd64_decode_bus_error(mcis[node_id], m);
  1689. }
  1690. /*
  1691. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1692. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1693. */
  1694. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1695. {
  1696. /* Reserve the ADDRESS MAP Device */
  1697. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1698. if (!pvt->F1) {
  1699. amd64_err("error address map device not found: "
  1700. "vendor %x device 0x%x (broken BIOS?)\n",
  1701. PCI_VENDOR_ID_AMD, f1_id);
  1702. return -ENODEV;
  1703. }
  1704. /* Reserve the MISC Device */
  1705. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1706. if (!pvt->F3) {
  1707. pci_dev_put(pvt->F1);
  1708. pvt->F1 = NULL;
  1709. amd64_err("error F3 device not found: "
  1710. "vendor %x device 0x%x (broken BIOS?)\n",
  1711. PCI_VENDOR_ID_AMD, f3_id);
  1712. return -ENODEV;
  1713. }
  1714. edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
  1715. edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
  1716. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  1717. return 0;
  1718. }
  1719. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1720. {
  1721. pci_dev_put(pvt->F1);
  1722. pci_dev_put(pvt->F3);
  1723. }
  1724. /*
  1725. * Retrieve the hardware registers of the memory controller (this includes the
  1726. * 'Address Map' and 'Misc' device regs)
  1727. */
  1728. static void read_mc_regs(struct amd64_pvt *pvt)
  1729. {
  1730. unsigned range;
  1731. u64 msr_val;
  1732. u32 tmp;
  1733. /*
  1734. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1735. * those are Read-As-Zero
  1736. */
  1737. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1738. edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1739. /* check first whether TOP_MEM2 is enabled */
  1740. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1741. if (msr_val & (1U << 21)) {
  1742. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1743. edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1744. } else
  1745. edac_dbg(0, " TOP_MEM2 disabled\n");
  1746. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1747. read_dram_ctl_register(pvt);
  1748. for (range = 0; range < DRAM_RANGES; range++) {
  1749. u8 rw;
  1750. /* read settings for this DRAM range */
  1751. read_dram_base_limit_regs(pvt, range);
  1752. rw = dram_rw(pvt, range);
  1753. if (!rw)
  1754. continue;
  1755. edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1756. range,
  1757. get_dram_base(pvt, range),
  1758. get_dram_limit(pvt, range));
  1759. edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1760. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1761. (rw & 0x1) ? "R" : "-",
  1762. (rw & 0x2) ? "W" : "-",
  1763. dram_intlv_sel(pvt, range),
  1764. dram_dst_node(pvt, range));
  1765. }
  1766. read_dct_base_mask(pvt);
  1767. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1768. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1769. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1770. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1771. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1772. if (!dct_ganging_enabled(pvt)) {
  1773. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1774. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1775. }
  1776. pvt->ecc_sym_sz = 4;
  1777. if (pvt->fam >= 0x10) {
  1778. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1779. if (pvt->fam != 0x16)
  1780. /* F16h has only DCT0 */
  1781. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1782. /* F10h, revD and later can do x8 ECC too */
  1783. if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
  1784. pvt->ecc_sym_sz = 8;
  1785. }
  1786. dump_misc_regs(pvt);
  1787. }
  1788. /*
  1789. * NOTE: CPU Revision Dependent code
  1790. *
  1791. * Input:
  1792. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1793. * k8 private pointer to -->
  1794. * DRAM Bank Address mapping register
  1795. * node_id
  1796. * DCL register where dual_channel_active is
  1797. *
  1798. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1799. *
  1800. * Bits: CSROWs
  1801. * 0-3 CSROWs 0 and 1
  1802. * 4-7 CSROWs 2 and 3
  1803. * 8-11 CSROWs 4 and 5
  1804. * 12-15 CSROWs 6 and 7
  1805. *
  1806. * Values range from: 0 to 15
  1807. * The meaning of the values depends on CPU revision and dual-channel state,
  1808. * see relevant BKDG more info.
  1809. *
  1810. * The memory controller provides for total of only 8 CSROWs in its current
  1811. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1812. * single channel or two (2) DIMMs in dual channel mode.
  1813. *
  1814. * The following code logic collapses the various tables for CSROW based on CPU
  1815. * revision.
  1816. *
  1817. * Returns:
  1818. * The number of PAGE_SIZE pages on the specified CSROW number it
  1819. * encompasses
  1820. *
  1821. */
  1822. static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1823. {
  1824. u32 cs_mode, nr_pages;
  1825. u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
  1826. /*
  1827. * The math on this doesn't look right on the surface because x/2*4 can
  1828. * be simplified to x*2 but this expression makes use of the fact that
  1829. * it is integral math where 1/2=0. This intermediate value becomes the
  1830. * number of bits to shift the DBAM register to extract the proper CSROW
  1831. * field.
  1832. */
  1833. cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
  1834. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
  1835. edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
  1836. csrow_nr, dct, cs_mode);
  1837. edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
  1838. return nr_pages;
  1839. }
  1840. /*
  1841. * Initialize the array of csrow attribute instances, based on the values
  1842. * from pci config hardware registers.
  1843. */
  1844. static int init_csrows(struct mem_ctl_info *mci)
  1845. {
  1846. struct amd64_pvt *pvt = mci->pvt_info;
  1847. struct csrow_info *csrow;
  1848. struct dimm_info *dimm;
  1849. enum edac_type edac_mode;
  1850. enum mem_type mtype;
  1851. int i, j, empty = 1;
  1852. int nr_pages = 0;
  1853. u32 val;
  1854. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  1855. pvt->nbcfg = val;
  1856. edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1857. pvt->mc_node_id, val,
  1858. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  1859. /*
  1860. * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
  1861. */
  1862. for_each_chip_select(i, 0, pvt) {
  1863. bool row_dct0 = !!csrow_enabled(i, 0, pvt);
  1864. bool row_dct1 = false;
  1865. if (pvt->fam != 0xf)
  1866. row_dct1 = !!csrow_enabled(i, 1, pvt);
  1867. if (!row_dct0 && !row_dct1)
  1868. continue;
  1869. csrow = mci->csrows[i];
  1870. empty = 0;
  1871. edac_dbg(1, "MC node: %d, csrow: %d\n",
  1872. pvt->mc_node_id, i);
  1873. if (row_dct0) {
  1874. nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
  1875. csrow->channels[0]->dimm->nr_pages = nr_pages;
  1876. }
  1877. /* K8 has only one DCT */
  1878. if (pvt->fam != 0xf && row_dct1) {
  1879. int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);
  1880. csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
  1881. nr_pages += row_dct1_pages;
  1882. }
  1883. mtype = amd64_determine_memory_type(pvt, i);
  1884. edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
  1885. /*
  1886. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1887. */
  1888. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  1889. edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
  1890. EDAC_S4ECD4ED : EDAC_SECDED;
  1891. else
  1892. edac_mode = EDAC_NONE;
  1893. for (j = 0; j < pvt->channel_count; j++) {
  1894. dimm = csrow->channels[j]->dimm;
  1895. dimm->mtype = mtype;
  1896. dimm->edac_mode = edac_mode;
  1897. }
  1898. }
  1899. return empty;
  1900. }
  1901. /* get all cores on this DCT */
  1902. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
  1903. {
  1904. int cpu;
  1905. for_each_online_cpu(cpu)
  1906. if (amd_get_nb_id(cpu) == nid)
  1907. cpumask_set_cpu(cpu, mask);
  1908. }
  1909. /* check MCG_CTL on all the cpus on this node */
  1910. static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
  1911. {
  1912. cpumask_var_t mask;
  1913. int cpu, nbe;
  1914. bool ret = false;
  1915. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1916. amd64_warn("%s: Error allocating mask\n", __func__);
  1917. return false;
  1918. }
  1919. get_cpus_on_this_dct_cpumask(mask, nid);
  1920. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1921. for_each_cpu(cpu, mask) {
  1922. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1923. nbe = reg->l & MSR_MCGCTL_NBE;
  1924. edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1925. cpu, reg->q,
  1926. (nbe ? "enabled" : "disabled"));
  1927. if (!nbe)
  1928. goto out;
  1929. }
  1930. ret = true;
  1931. out:
  1932. free_cpumask_var(mask);
  1933. return ret;
  1934. }
  1935. static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
  1936. {
  1937. cpumask_var_t cmask;
  1938. int cpu;
  1939. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1940. amd64_warn("%s: error allocating mask\n", __func__);
  1941. return false;
  1942. }
  1943. get_cpus_on_this_dct_cpumask(cmask, nid);
  1944. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1945. for_each_cpu(cpu, cmask) {
  1946. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1947. if (on) {
  1948. if (reg->l & MSR_MCGCTL_NBE)
  1949. s->flags.nb_mce_enable = 1;
  1950. reg->l |= MSR_MCGCTL_NBE;
  1951. } else {
  1952. /*
  1953. * Turn off NB MCE reporting only when it was off before
  1954. */
  1955. if (!s->flags.nb_mce_enable)
  1956. reg->l &= ~MSR_MCGCTL_NBE;
  1957. }
  1958. }
  1959. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1960. free_cpumask_var(cmask);
  1961. return 0;
  1962. }
  1963. static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  1964. struct pci_dev *F3)
  1965. {
  1966. bool ret = true;
  1967. u32 value, mask = 0x3; /* UECC/CECC enable */
  1968. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1969. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1970. return false;
  1971. }
  1972. amd64_read_pci_cfg(F3, NBCTL, &value);
  1973. s->old_nbctl = value & mask;
  1974. s->nbctl_valid = true;
  1975. value |= mask;
  1976. amd64_write_pci_cfg(F3, NBCTL, value);
  1977. amd64_read_pci_cfg(F3, NBCFG, &value);
  1978. edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1979. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1980. if (!(value & NBCFG_ECC_ENABLE)) {
  1981. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1982. s->flags.nb_ecc_prev = 0;
  1983. /* Attempt to turn on DRAM ECC Enable */
  1984. value |= NBCFG_ECC_ENABLE;
  1985. amd64_write_pci_cfg(F3, NBCFG, value);
  1986. amd64_read_pci_cfg(F3, NBCFG, &value);
  1987. if (!(value & NBCFG_ECC_ENABLE)) {
  1988. amd64_warn("Hardware rejected DRAM ECC enable,"
  1989. "check memory DIMM configuration.\n");
  1990. ret = false;
  1991. } else {
  1992. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1993. }
  1994. } else {
  1995. s->flags.nb_ecc_prev = 1;
  1996. }
  1997. edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1998. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1999. return ret;
  2000. }
  2001. static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  2002. struct pci_dev *F3)
  2003. {
  2004. u32 value, mask = 0x3; /* UECC/CECC enable */
  2005. if (!s->nbctl_valid)
  2006. return;
  2007. amd64_read_pci_cfg(F3, NBCTL, &value);
  2008. value &= ~mask;
  2009. value |= s->old_nbctl;
  2010. amd64_write_pci_cfg(F3, NBCTL, value);
  2011. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  2012. if (!s->flags.nb_ecc_prev) {
  2013. amd64_read_pci_cfg(F3, NBCFG, &value);
  2014. value &= ~NBCFG_ECC_ENABLE;
  2015. amd64_write_pci_cfg(F3, NBCFG, value);
  2016. }
  2017. /* restore the NB Enable MCGCTL bit */
  2018. if (toggle_ecc_err_reporting(s, nid, OFF))
  2019. amd64_warn("Error restoring NB MCGCTL settings!\n");
  2020. }
  2021. /*
  2022. * EDAC requires that the BIOS have ECC enabled before
  2023. * taking over the processing of ECC errors. A command line
  2024. * option allows to force-enable hardware ECC later in
  2025. * enable_ecc_error_reporting().
  2026. */
  2027. static const char *ecc_msg =
  2028. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2029. " Either enable ECC checking or force module loading by setting "
  2030. "'ecc_enable_override'.\n"
  2031. " (Note that use of the override may cause unknown side effects.)\n";
  2032. static bool ecc_enabled(struct pci_dev *F3, u16 nid)
  2033. {
  2034. u32 value;
  2035. u8 ecc_en = 0;
  2036. bool nb_mce_en = false;
  2037. amd64_read_pci_cfg(F3, NBCFG, &value);
  2038. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  2039. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  2040. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  2041. if (!nb_mce_en)
  2042. amd64_notice("NB MCE bank disabled, set MSR "
  2043. "0x%08x[4] on node %d to enable.\n",
  2044. MSR_IA32_MCG_CTL, nid);
  2045. if (!ecc_en || !nb_mce_en) {
  2046. amd64_notice("%s", ecc_msg);
  2047. return false;
  2048. }
  2049. return true;
  2050. }
  2051. static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  2052. {
  2053. struct amd64_pvt *pvt = mci->pvt_info;
  2054. int rc;
  2055. rc = amd64_create_sysfs_dbg_files(mci);
  2056. if (rc < 0)
  2057. return rc;
  2058. if (pvt->fam >= 0x10) {
  2059. rc = amd64_create_sysfs_inject_files(mci);
  2060. if (rc < 0)
  2061. return rc;
  2062. }
  2063. return 0;
  2064. }
  2065. static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
  2066. {
  2067. struct amd64_pvt *pvt = mci->pvt_info;
  2068. amd64_remove_sysfs_dbg_files(mci);
  2069. if (pvt->fam >= 0x10)
  2070. amd64_remove_sysfs_inject_files(mci);
  2071. }
  2072. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  2073. struct amd64_family_type *fam)
  2074. {
  2075. struct amd64_pvt *pvt = mci->pvt_info;
  2076. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2077. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2078. if (pvt->nbcap & NBCAP_SECDED)
  2079. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2080. if (pvt->nbcap & NBCAP_CHIPKILL)
  2081. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2082. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2083. mci->mod_name = EDAC_MOD_STR;
  2084. mci->mod_ver = EDAC_AMD64_VERSION;
  2085. mci->ctl_name = fam->ctl_name;
  2086. mci->dev_name = pci_name(pvt->F2);
  2087. mci->ctl_page_to_phys = NULL;
  2088. /* memory scrubber interface */
  2089. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2090. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2091. }
  2092. /*
  2093. * returns a pointer to the family descriptor on success, NULL otherwise.
  2094. */
  2095. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  2096. {
  2097. struct amd64_family_type *fam_type = NULL;
  2098. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2099. pvt->stepping = boot_cpu_data.x86_mask;
  2100. pvt->model = boot_cpu_data.x86_model;
  2101. pvt->fam = boot_cpu_data.x86;
  2102. switch (pvt->fam) {
  2103. case 0xf:
  2104. fam_type = &amd64_family_types[K8_CPUS];
  2105. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  2106. break;
  2107. case 0x10:
  2108. fam_type = &amd64_family_types[F10_CPUS];
  2109. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  2110. break;
  2111. case 0x15:
  2112. if (pvt->model == 0x30) {
  2113. fam_type = &amd64_family_types[F15_M30H_CPUS];
  2114. pvt->ops = &amd64_family_types[F15_M30H_CPUS].ops;
  2115. break;
  2116. }
  2117. fam_type = &amd64_family_types[F15_CPUS];
  2118. pvt->ops = &amd64_family_types[F15_CPUS].ops;
  2119. break;
  2120. case 0x16:
  2121. fam_type = &amd64_family_types[F16_CPUS];
  2122. pvt->ops = &amd64_family_types[F16_CPUS].ops;
  2123. break;
  2124. default:
  2125. amd64_err("Unsupported family!\n");
  2126. return NULL;
  2127. }
  2128. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  2129. (pvt->fam == 0xf ?
  2130. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2131. : "revE or earlier ")
  2132. : ""), pvt->mc_node_id);
  2133. return fam_type;
  2134. }
  2135. static int amd64_init_one_instance(struct pci_dev *F2)
  2136. {
  2137. struct amd64_pvt *pvt = NULL;
  2138. struct amd64_family_type *fam_type = NULL;
  2139. struct mem_ctl_info *mci = NULL;
  2140. struct edac_mc_layer layers[2];
  2141. int err = 0, ret;
  2142. u16 nid = amd_get_node_id(F2);
  2143. ret = -ENOMEM;
  2144. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2145. if (!pvt)
  2146. goto err_ret;
  2147. pvt->mc_node_id = nid;
  2148. pvt->F2 = F2;
  2149. ret = -EINVAL;
  2150. fam_type = amd64_per_family_init(pvt);
  2151. if (!fam_type)
  2152. goto err_free;
  2153. ret = -ENODEV;
  2154. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2155. if (err)
  2156. goto err_free;
  2157. read_mc_regs(pvt);
  2158. /*
  2159. * We need to determine how many memory channels there are. Then use
  2160. * that information for calculating the size of the dynamic instance
  2161. * tables in the 'mci' structure.
  2162. */
  2163. ret = -EINVAL;
  2164. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2165. if (pvt->channel_count < 0)
  2166. goto err_siblings;
  2167. ret = -ENOMEM;
  2168. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  2169. layers[0].size = pvt->csels[0].b_cnt;
  2170. layers[0].is_virt_csrow = true;
  2171. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  2172. layers[1].size = pvt->channel_count;
  2173. layers[1].is_virt_csrow = false;
  2174. mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
  2175. if (!mci)
  2176. goto err_siblings;
  2177. mci->pvt_info = pvt;
  2178. mci->pdev = &pvt->F2->dev;
  2179. setup_mci_misc_attrs(mci, fam_type);
  2180. if (init_csrows(mci))
  2181. mci->edac_cap = EDAC_FLAG_NONE;
  2182. ret = -ENODEV;
  2183. if (edac_mc_add_mc(mci)) {
  2184. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2185. goto err_add_mc;
  2186. }
  2187. if (set_mc_sysfs_attrs(mci)) {
  2188. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2189. goto err_add_sysfs;
  2190. }
  2191. /* register stuff with EDAC MCE */
  2192. if (report_gart_errors)
  2193. amd_report_gart_errors(true);
  2194. amd_register_ecc_decoder(amd64_decode_bus_error);
  2195. mcis[nid] = mci;
  2196. atomic_inc(&drv_instances);
  2197. return 0;
  2198. err_add_sysfs:
  2199. edac_mc_del_mc(mci->pdev);
  2200. err_add_mc:
  2201. edac_mc_free(mci);
  2202. err_siblings:
  2203. free_mc_sibling_devs(pvt);
  2204. err_free:
  2205. kfree(pvt);
  2206. err_ret:
  2207. return ret;
  2208. }
  2209. static int amd64_probe_one_instance(struct pci_dev *pdev,
  2210. const struct pci_device_id *mc_type)
  2211. {
  2212. u16 nid = amd_get_node_id(pdev);
  2213. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2214. struct ecc_settings *s;
  2215. int ret = 0;
  2216. ret = pci_enable_device(pdev);
  2217. if (ret < 0) {
  2218. edac_dbg(0, "ret=%d\n", ret);
  2219. return -EIO;
  2220. }
  2221. ret = -ENOMEM;
  2222. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2223. if (!s)
  2224. goto err_out;
  2225. ecc_stngs[nid] = s;
  2226. if (!ecc_enabled(F3, nid)) {
  2227. ret = -ENODEV;
  2228. if (!ecc_enable_override)
  2229. goto err_enable;
  2230. amd64_warn("Forcing ECC on!\n");
  2231. if (!enable_ecc_error_reporting(s, nid, F3))
  2232. goto err_enable;
  2233. }
  2234. ret = amd64_init_one_instance(pdev);
  2235. if (ret < 0) {
  2236. amd64_err("Error probing instance: %d\n", nid);
  2237. restore_ecc_error_reporting(s, nid, F3);
  2238. }
  2239. return ret;
  2240. err_enable:
  2241. kfree(s);
  2242. ecc_stngs[nid] = NULL;
  2243. err_out:
  2244. return ret;
  2245. }
  2246. static void amd64_remove_one_instance(struct pci_dev *pdev)
  2247. {
  2248. struct mem_ctl_info *mci;
  2249. struct amd64_pvt *pvt;
  2250. u16 nid = amd_get_node_id(pdev);
  2251. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2252. struct ecc_settings *s = ecc_stngs[nid];
  2253. mci = find_mci_by_dev(&pdev->dev);
  2254. WARN_ON(!mci);
  2255. del_mc_sysfs_attrs(mci);
  2256. /* Remove from EDAC CORE tracking list */
  2257. mci = edac_mc_del_mc(&pdev->dev);
  2258. if (!mci)
  2259. return;
  2260. pvt = mci->pvt_info;
  2261. restore_ecc_error_reporting(s, nid, F3);
  2262. free_mc_sibling_devs(pvt);
  2263. /* unregister from EDAC MCE */
  2264. amd_report_gart_errors(false);
  2265. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2266. kfree(ecc_stngs[nid]);
  2267. ecc_stngs[nid] = NULL;
  2268. /* Free the EDAC CORE resources */
  2269. mci->pvt_info = NULL;
  2270. mcis[nid] = NULL;
  2271. kfree(pvt);
  2272. edac_mc_free(mci);
  2273. }
  2274. /*
  2275. * This table is part of the interface for loading drivers for PCI devices. The
  2276. * PCI core identifies what devices are on a system during boot, and then
  2277. * inquiry this table to see if this driver is for a given device found.
  2278. */
  2279. static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
  2280. {
  2281. .vendor = PCI_VENDOR_ID_AMD,
  2282. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2283. .subvendor = PCI_ANY_ID,
  2284. .subdevice = PCI_ANY_ID,
  2285. .class = 0,
  2286. .class_mask = 0,
  2287. },
  2288. {
  2289. .vendor = PCI_VENDOR_ID_AMD,
  2290. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2291. .subvendor = PCI_ANY_ID,
  2292. .subdevice = PCI_ANY_ID,
  2293. .class = 0,
  2294. .class_mask = 0,
  2295. },
  2296. {
  2297. .vendor = PCI_VENDOR_ID_AMD,
  2298. .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
  2299. .subvendor = PCI_ANY_ID,
  2300. .subdevice = PCI_ANY_ID,
  2301. .class = 0,
  2302. .class_mask = 0,
  2303. },
  2304. {
  2305. .vendor = PCI_VENDOR_ID_AMD,
  2306. .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
  2307. .subvendor = PCI_ANY_ID,
  2308. .subdevice = PCI_ANY_ID,
  2309. .class = 0,
  2310. .class_mask = 0,
  2311. },
  2312. {
  2313. .vendor = PCI_VENDOR_ID_AMD,
  2314. .device = PCI_DEVICE_ID_AMD_16H_NB_F2,
  2315. .subvendor = PCI_ANY_ID,
  2316. .subdevice = PCI_ANY_ID,
  2317. .class = 0,
  2318. .class_mask = 0,
  2319. },
  2320. {0, }
  2321. };
  2322. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2323. static struct pci_driver amd64_pci_driver = {
  2324. .name = EDAC_MOD_STR,
  2325. .probe = amd64_probe_one_instance,
  2326. .remove = amd64_remove_one_instance,
  2327. .id_table = amd64_pci_table,
  2328. };
  2329. static void setup_pci_device(void)
  2330. {
  2331. struct mem_ctl_info *mci;
  2332. struct amd64_pvt *pvt;
  2333. if (amd64_ctl_pci)
  2334. return;
  2335. mci = mcis[0];
  2336. if (mci) {
  2337. pvt = mci->pvt_info;
  2338. amd64_ctl_pci =
  2339. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2340. if (!amd64_ctl_pci) {
  2341. pr_warning("%s(): Unable to create PCI control\n",
  2342. __func__);
  2343. pr_warning("%s(): PCI error report via EDAC not set\n",
  2344. __func__);
  2345. }
  2346. }
  2347. }
  2348. static int __init amd64_edac_init(void)
  2349. {
  2350. int err = -ENODEV;
  2351. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2352. opstate_init();
  2353. if (amd_cache_northbridges() < 0)
  2354. goto err_ret;
  2355. err = -ENOMEM;
  2356. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2357. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2358. if (!(mcis && ecc_stngs))
  2359. goto err_free;
  2360. msrs = msrs_alloc();
  2361. if (!msrs)
  2362. goto err_free;
  2363. err = pci_register_driver(&amd64_pci_driver);
  2364. if (err)
  2365. goto err_pci;
  2366. err = -ENODEV;
  2367. if (!atomic_read(&drv_instances))
  2368. goto err_no_instances;
  2369. setup_pci_device();
  2370. return 0;
  2371. err_no_instances:
  2372. pci_unregister_driver(&amd64_pci_driver);
  2373. err_pci:
  2374. msrs_free(msrs);
  2375. msrs = NULL;
  2376. err_free:
  2377. kfree(mcis);
  2378. mcis = NULL;
  2379. kfree(ecc_stngs);
  2380. ecc_stngs = NULL;
  2381. err_ret:
  2382. return err;
  2383. }
  2384. static void __exit amd64_edac_exit(void)
  2385. {
  2386. if (amd64_ctl_pci)
  2387. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2388. pci_unregister_driver(&amd64_pci_driver);
  2389. kfree(ecc_stngs);
  2390. ecc_stngs = NULL;
  2391. kfree(mcis);
  2392. mcis = NULL;
  2393. msrs_free(msrs);
  2394. msrs = NULL;
  2395. }
  2396. module_init(amd64_edac_init);
  2397. module_exit(amd64_edac_exit);
  2398. MODULE_LICENSE("GPL");
  2399. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2400. "Dave Peterson, Thayne Harbaugh");
  2401. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2402. EDAC_AMD64_VERSION);
  2403. module_param(edac_op_state, int, 0444);
  2404. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");