md.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/linkage.h>
  29. #include <linux/raid/md.h>
  30. #include <linux/raid/bitmap.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/devfs_fs_kernel.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/suspend.h>
  35. #include <linux/init.h>
  36. #include <linux/file.h>
  37. #ifdef CONFIG_KMOD
  38. #include <linux/kmod.h>
  39. #endif
  40. #include <asm/unaligned.h>
  41. #define MAJOR_NR MD_MAJOR
  42. #define MD_DRIVER
  43. /* 63 partitions with the alternate major number (mdp) */
  44. #define MdpMinorShift 6
  45. #define DEBUG 0
  46. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  47. #ifndef MODULE
  48. static void autostart_arrays (int part);
  49. #endif
  50. static mdk_personality_t *pers[MAX_PERSONALITY];
  51. static DEFINE_SPINLOCK(pers_lock);
  52. /*
  53. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  54. * is 1000 KB/sec, so the extra system load does not show up that much.
  55. * Increase it if you want to have more _guaranteed_ speed. Note that
  56. * the RAID driver will use the maximum available bandwith if the IO
  57. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  58. * speed limit - in case reconstruction slows down your system despite
  59. * idle IO detection.
  60. *
  61. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  62. */
  63. static int sysctl_speed_limit_min = 1000;
  64. static int sysctl_speed_limit_max = 200000;
  65. static struct ctl_table_header *raid_table_header;
  66. static ctl_table raid_table[] = {
  67. {
  68. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  69. .procname = "speed_limit_min",
  70. .data = &sysctl_speed_limit_min,
  71. .maxlen = sizeof(int),
  72. .mode = 0644,
  73. .proc_handler = &proc_dointvec,
  74. },
  75. {
  76. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  77. .procname = "speed_limit_max",
  78. .data = &sysctl_speed_limit_max,
  79. .maxlen = sizeof(int),
  80. .mode = 0644,
  81. .proc_handler = &proc_dointvec,
  82. },
  83. { .ctl_name = 0 }
  84. };
  85. static ctl_table raid_dir_table[] = {
  86. {
  87. .ctl_name = DEV_RAID,
  88. .procname = "raid",
  89. .maxlen = 0,
  90. .mode = 0555,
  91. .child = raid_table,
  92. },
  93. { .ctl_name = 0 }
  94. };
  95. static ctl_table raid_root_table[] = {
  96. {
  97. .ctl_name = CTL_DEV,
  98. .procname = "dev",
  99. .maxlen = 0,
  100. .mode = 0555,
  101. .child = raid_dir_table,
  102. },
  103. { .ctl_name = 0 }
  104. };
  105. static struct block_device_operations md_fops;
  106. /*
  107. * Enables to iterate over all existing md arrays
  108. * all_mddevs_lock protects this list.
  109. */
  110. static LIST_HEAD(all_mddevs);
  111. static DEFINE_SPINLOCK(all_mddevs_lock);
  112. /*
  113. * iterates through all used mddevs in the system.
  114. * We take care to grab the all_mddevs_lock whenever navigating
  115. * the list, and to always hold a refcount when unlocked.
  116. * Any code which breaks out of this loop while own
  117. * a reference to the current mddev and must mddev_put it.
  118. */
  119. #define ITERATE_MDDEV(mddev,tmp) \
  120. \
  121. for (({ spin_lock(&all_mddevs_lock); \
  122. tmp = all_mddevs.next; \
  123. mddev = NULL;}); \
  124. ({ if (tmp != &all_mddevs) \
  125. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  126. spin_unlock(&all_mddevs_lock); \
  127. if (mddev) mddev_put(mddev); \
  128. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  129. tmp != &all_mddevs;}); \
  130. ({ spin_lock(&all_mddevs_lock); \
  131. tmp = tmp->next;}) \
  132. )
  133. static int md_fail_request (request_queue_t *q, struct bio *bio)
  134. {
  135. bio_io_error(bio, bio->bi_size);
  136. return 0;
  137. }
  138. static inline mddev_t *mddev_get(mddev_t *mddev)
  139. {
  140. atomic_inc(&mddev->active);
  141. return mddev;
  142. }
  143. static void mddev_put(mddev_t *mddev)
  144. {
  145. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  146. return;
  147. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  148. list_del(&mddev->all_mddevs);
  149. blk_put_queue(mddev->queue);
  150. kfree(mddev);
  151. }
  152. spin_unlock(&all_mddevs_lock);
  153. }
  154. static mddev_t * mddev_find(dev_t unit)
  155. {
  156. mddev_t *mddev, *new = NULL;
  157. retry:
  158. spin_lock(&all_mddevs_lock);
  159. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  160. if (mddev->unit == unit) {
  161. mddev_get(mddev);
  162. spin_unlock(&all_mddevs_lock);
  163. if (new)
  164. kfree(new);
  165. return mddev;
  166. }
  167. if (new) {
  168. list_add(&new->all_mddevs, &all_mddevs);
  169. spin_unlock(&all_mddevs_lock);
  170. return new;
  171. }
  172. spin_unlock(&all_mddevs_lock);
  173. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  174. if (!new)
  175. return NULL;
  176. memset(new, 0, sizeof(*new));
  177. new->unit = unit;
  178. if (MAJOR(unit) == MD_MAJOR)
  179. new->md_minor = MINOR(unit);
  180. else
  181. new->md_minor = MINOR(unit) >> MdpMinorShift;
  182. init_MUTEX(&new->reconfig_sem);
  183. INIT_LIST_HEAD(&new->disks);
  184. INIT_LIST_HEAD(&new->all_mddevs);
  185. init_timer(&new->safemode_timer);
  186. atomic_set(&new->active, 1);
  187. spin_lock_init(&new->write_lock);
  188. init_waitqueue_head(&new->sb_wait);
  189. new->queue = blk_alloc_queue(GFP_KERNEL);
  190. if (!new->queue) {
  191. kfree(new);
  192. return NULL;
  193. }
  194. blk_queue_make_request(new->queue, md_fail_request);
  195. goto retry;
  196. }
  197. static inline int mddev_lock(mddev_t * mddev)
  198. {
  199. return down_interruptible(&mddev->reconfig_sem);
  200. }
  201. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  202. {
  203. down(&mddev->reconfig_sem);
  204. }
  205. static inline int mddev_trylock(mddev_t * mddev)
  206. {
  207. return down_trylock(&mddev->reconfig_sem);
  208. }
  209. static inline void mddev_unlock(mddev_t * mddev)
  210. {
  211. up(&mddev->reconfig_sem);
  212. if (mddev->thread)
  213. md_wakeup_thread(mddev->thread);
  214. }
  215. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  216. {
  217. mdk_rdev_t * rdev;
  218. struct list_head *tmp;
  219. ITERATE_RDEV(mddev,rdev,tmp) {
  220. if (rdev->desc_nr == nr)
  221. return rdev;
  222. }
  223. return NULL;
  224. }
  225. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  226. {
  227. struct list_head *tmp;
  228. mdk_rdev_t *rdev;
  229. ITERATE_RDEV(mddev,rdev,tmp) {
  230. if (rdev->bdev->bd_dev == dev)
  231. return rdev;
  232. }
  233. return NULL;
  234. }
  235. inline static sector_t calc_dev_sboffset(struct block_device *bdev)
  236. {
  237. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  238. return MD_NEW_SIZE_BLOCKS(size);
  239. }
  240. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  241. {
  242. sector_t size;
  243. size = rdev->sb_offset;
  244. if (chunk_size)
  245. size &= ~((sector_t)chunk_size/1024 - 1);
  246. return size;
  247. }
  248. static int alloc_disk_sb(mdk_rdev_t * rdev)
  249. {
  250. if (rdev->sb_page)
  251. MD_BUG();
  252. rdev->sb_page = alloc_page(GFP_KERNEL);
  253. if (!rdev->sb_page) {
  254. printk(KERN_ALERT "md: out of memory.\n");
  255. return -EINVAL;
  256. }
  257. return 0;
  258. }
  259. static void free_disk_sb(mdk_rdev_t * rdev)
  260. {
  261. if (rdev->sb_page) {
  262. page_cache_release(rdev->sb_page);
  263. rdev->sb_loaded = 0;
  264. rdev->sb_page = NULL;
  265. rdev->sb_offset = 0;
  266. rdev->size = 0;
  267. }
  268. }
  269. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  270. {
  271. mdk_rdev_t *rdev = bio->bi_private;
  272. if (bio->bi_size)
  273. return 1;
  274. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  275. md_error(rdev->mddev, rdev);
  276. if (atomic_dec_and_test(&rdev->mddev->pending_writes))
  277. wake_up(&rdev->mddev->sb_wait);
  278. return 0;
  279. }
  280. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  281. sector_t sector, int size, struct page *page)
  282. {
  283. /* write first size bytes of page to sector of rdev
  284. * Increment mddev->pending_writes before returning
  285. * and decrement it on completion, waking up sb_wait
  286. * if zero is reached.
  287. * If an error occurred, call md_error
  288. */
  289. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  290. bio->bi_bdev = rdev->bdev;
  291. bio->bi_sector = sector;
  292. bio_add_page(bio, page, size, 0);
  293. bio->bi_private = rdev;
  294. bio->bi_end_io = super_written;
  295. atomic_inc(&mddev->pending_writes);
  296. submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
  297. }
  298. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  299. {
  300. if (bio->bi_size)
  301. return 1;
  302. complete((struct completion*)bio->bi_private);
  303. return 0;
  304. }
  305. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  306. struct page *page, int rw)
  307. {
  308. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  309. struct completion event;
  310. int ret;
  311. rw |= (1 << BIO_RW_SYNC);
  312. bio->bi_bdev = bdev;
  313. bio->bi_sector = sector;
  314. bio_add_page(bio, page, size, 0);
  315. init_completion(&event);
  316. bio->bi_private = &event;
  317. bio->bi_end_io = bi_complete;
  318. submit_bio(rw, bio);
  319. wait_for_completion(&event);
  320. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  321. bio_put(bio);
  322. return ret;
  323. }
  324. static int read_disk_sb(mdk_rdev_t * rdev)
  325. {
  326. char b[BDEVNAME_SIZE];
  327. if (!rdev->sb_page) {
  328. MD_BUG();
  329. return -EINVAL;
  330. }
  331. if (rdev->sb_loaded)
  332. return 0;
  333. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
  334. goto fail;
  335. rdev->sb_loaded = 1;
  336. return 0;
  337. fail:
  338. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  339. bdevname(rdev->bdev,b));
  340. return -EINVAL;
  341. }
  342. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  343. {
  344. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  345. (sb1->set_uuid1 == sb2->set_uuid1) &&
  346. (sb1->set_uuid2 == sb2->set_uuid2) &&
  347. (sb1->set_uuid3 == sb2->set_uuid3))
  348. return 1;
  349. return 0;
  350. }
  351. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  352. {
  353. int ret;
  354. mdp_super_t *tmp1, *tmp2;
  355. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  356. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  357. if (!tmp1 || !tmp2) {
  358. ret = 0;
  359. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  360. goto abort;
  361. }
  362. *tmp1 = *sb1;
  363. *tmp2 = *sb2;
  364. /*
  365. * nr_disks is not constant
  366. */
  367. tmp1->nr_disks = 0;
  368. tmp2->nr_disks = 0;
  369. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  370. ret = 0;
  371. else
  372. ret = 1;
  373. abort:
  374. if (tmp1)
  375. kfree(tmp1);
  376. if (tmp2)
  377. kfree(tmp2);
  378. return ret;
  379. }
  380. static unsigned int calc_sb_csum(mdp_super_t * sb)
  381. {
  382. unsigned int disk_csum, csum;
  383. disk_csum = sb->sb_csum;
  384. sb->sb_csum = 0;
  385. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  386. sb->sb_csum = disk_csum;
  387. return csum;
  388. }
  389. /*
  390. * Handle superblock details.
  391. * We want to be able to handle multiple superblock formats
  392. * so we have a common interface to them all, and an array of
  393. * different handlers.
  394. * We rely on user-space to write the initial superblock, and support
  395. * reading and updating of superblocks.
  396. * Interface methods are:
  397. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  398. * loads and validates a superblock on dev.
  399. * if refdev != NULL, compare superblocks on both devices
  400. * Return:
  401. * 0 - dev has a superblock that is compatible with refdev
  402. * 1 - dev has a superblock that is compatible and newer than refdev
  403. * so dev should be used as the refdev in future
  404. * -EINVAL superblock incompatible or invalid
  405. * -othererror e.g. -EIO
  406. *
  407. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  408. * Verify that dev is acceptable into mddev.
  409. * The first time, mddev->raid_disks will be 0, and data from
  410. * dev should be merged in. Subsequent calls check that dev
  411. * is new enough. Return 0 or -EINVAL
  412. *
  413. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  414. * Update the superblock for rdev with data in mddev
  415. * This does not write to disc.
  416. *
  417. */
  418. struct super_type {
  419. char *name;
  420. struct module *owner;
  421. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  422. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  423. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  424. };
  425. /*
  426. * load_super for 0.90.0
  427. */
  428. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  429. {
  430. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  431. mdp_super_t *sb;
  432. int ret;
  433. sector_t sb_offset;
  434. /*
  435. * Calculate the position of the superblock,
  436. * it's at the end of the disk.
  437. *
  438. * It also happens to be a multiple of 4Kb.
  439. */
  440. sb_offset = calc_dev_sboffset(rdev->bdev);
  441. rdev->sb_offset = sb_offset;
  442. ret = read_disk_sb(rdev);
  443. if (ret) return ret;
  444. ret = -EINVAL;
  445. bdevname(rdev->bdev, b);
  446. sb = (mdp_super_t*)page_address(rdev->sb_page);
  447. if (sb->md_magic != MD_SB_MAGIC) {
  448. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  449. b);
  450. goto abort;
  451. }
  452. if (sb->major_version != 0 ||
  453. sb->minor_version != 90) {
  454. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  455. sb->major_version, sb->minor_version,
  456. b);
  457. goto abort;
  458. }
  459. if (sb->raid_disks <= 0)
  460. goto abort;
  461. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  462. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  463. b);
  464. goto abort;
  465. }
  466. rdev->preferred_minor = sb->md_minor;
  467. rdev->data_offset = 0;
  468. if (sb->level == LEVEL_MULTIPATH)
  469. rdev->desc_nr = -1;
  470. else
  471. rdev->desc_nr = sb->this_disk.number;
  472. if (refdev == 0)
  473. ret = 1;
  474. else {
  475. __u64 ev1, ev2;
  476. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  477. if (!uuid_equal(refsb, sb)) {
  478. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  479. b, bdevname(refdev->bdev,b2));
  480. goto abort;
  481. }
  482. if (!sb_equal(refsb, sb)) {
  483. printk(KERN_WARNING "md: %s has same UUID"
  484. " but different superblock to %s\n",
  485. b, bdevname(refdev->bdev, b2));
  486. goto abort;
  487. }
  488. ev1 = md_event(sb);
  489. ev2 = md_event(refsb);
  490. if (ev1 > ev2)
  491. ret = 1;
  492. else
  493. ret = 0;
  494. }
  495. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  496. abort:
  497. return ret;
  498. }
  499. /*
  500. * validate_super for 0.90.0
  501. */
  502. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  503. {
  504. mdp_disk_t *desc;
  505. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  506. rdev->raid_disk = -1;
  507. rdev->in_sync = 0;
  508. if (mddev->raid_disks == 0) {
  509. mddev->major_version = 0;
  510. mddev->minor_version = sb->minor_version;
  511. mddev->patch_version = sb->patch_version;
  512. mddev->persistent = ! sb->not_persistent;
  513. mddev->chunk_size = sb->chunk_size;
  514. mddev->ctime = sb->ctime;
  515. mddev->utime = sb->utime;
  516. mddev->level = sb->level;
  517. mddev->layout = sb->layout;
  518. mddev->raid_disks = sb->raid_disks;
  519. mddev->size = sb->size;
  520. mddev->events = md_event(sb);
  521. if (sb->state & (1<<MD_SB_CLEAN))
  522. mddev->recovery_cp = MaxSector;
  523. else {
  524. if (sb->events_hi == sb->cp_events_hi &&
  525. sb->events_lo == sb->cp_events_lo) {
  526. mddev->recovery_cp = sb->recovery_cp;
  527. } else
  528. mddev->recovery_cp = 0;
  529. }
  530. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  531. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  532. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  533. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  534. mddev->max_disks = MD_SB_DISKS;
  535. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  536. mddev->bitmap_file == NULL) {
  537. if (mddev->level != 1) {
  538. /* FIXME use a better test */
  539. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  540. return -EINVAL;
  541. }
  542. mddev->bitmap_offset = (MD_SB_BYTES >> 9);
  543. }
  544. } else if (mddev->pers == NULL) {
  545. /* Insist on good event counter while assembling */
  546. __u64 ev1 = md_event(sb);
  547. ++ev1;
  548. if (ev1 < mddev->events)
  549. return -EINVAL;
  550. } else if (mddev->bitmap) {
  551. /* if adding to array with a bitmap, then we can accept an
  552. * older device ... but not too old.
  553. */
  554. __u64 ev1 = md_event(sb);
  555. if (ev1 < mddev->bitmap->events_cleared)
  556. return 0;
  557. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  558. return 0;
  559. if (mddev->level != LEVEL_MULTIPATH) {
  560. rdev->faulty = 0;
  561. desc = sb->disks + rdev->desc_nr;
  562. if (desc->state & (1<<MD_DISK_FAULTY))
  563. rdev->faulty = 1;
  564. else if (desc->state & (1<<MD_DISK_SYNC) &&
  565. desc->raid_disk < mddev->raid_disks) {
  566. rdev->in_sync = 1;
  567. rdev->raid_disk = desc->raid_disk;
  568. }
  569. } else /* MULTIPATH are always insync */
  570. rdev->in_sync = 1;
  571. return 0;
  572. }
  573. /*
  574. * sync_super for 0.90.0
  575. */
  576. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  577. {
  578. mdp_super_t *sb;
  579. struct list_head *tmp;
  580. mdk_rdev_t *rdev2;
  581. int next_spare = mddev->raid_disks;
  582. /* make rdev->sb match mddev data..
  583. *
  584. * 1/ zero out disks
  585. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  586. * 3/ any empty disks < next_spare become removed
  587. *
  588. * disks[0] gets initialised to REMOVED because
  589. * we cannot be sure from other fields if it has
  590. * been initialised or not.
  591. */
  592. int i;
  593. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  594. sb = (mdp_super_t*)page_address(rdev->sb_page);
  595. memset(sb, 0, sizeof(*sb));
  596. sb->md_magic = MD_SB_MAGIC;
  597. sb->major_version = mddev->major_version;
  598. sb->minor_version = mddev->minor_version;
  599. sb->patch_version = mddev->patch_version;
  600. sb->gvalid_words = 0; /* ignored */
  601. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  602. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  603. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  604. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  605. sb->ctime = mddev->ctime;
  606. sb->level = mddev->level;
  607. sb->size = mddev->size;
  608. sb->raid_disks = mddev->raid_disks;
  609. sb->md_minor = mddev->md_minor;
  610. sb->not_persistent = !mddev->persistent;
  611. sb->utime = mddev->utime;
  612. sb->state = 0;
  613. sb->events_hi = (mddev->events>>32);
  614. sb->events_lo = (u32)mddev->events;
  615. if (mddev->in_sync)
  616. {
  617. sb->recovery_cp = mddev->recovery_cp;
  618. sb->cp_events_hi = (mddev->events>>32);
  619. sb->cp_events_lo = (u32)mddev->events;
  620. if (mddev->recovery_cp == MaxSector)
  621. sb->state = (1<< MD_SB_CLEAN);
  622. } else
  623. sb->recovery_cp = 0;
  624. sb->layout = mddev->layout;
  625. sb->chunk_size = mddev->chunk_size;
  626. if (mddev->bitmap && mddev->bitmap_file == NULL)
  627. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  628. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  629. ITERATE_RDEV(mddev,rdev2,tmp) {
  630. mdp_disk_t *d;
  631. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  632. rdev2->desc_nr = rdev2->raid_disk;
  633. else
  634. rdev2->desc_nr = next_spare++;
  635. d = &sb->disks[rdev2->desc_nr];
  636. nr_disks++;
  637. d->number = rdev2->desc_nr;
  638. d->major = MAJOR(rdev2->bdev->bd_dev);
  639. d->minor = MINOR(rdev2->bdev->bd_dev);
  640. if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
  641. d->raid_disk = rdev2->raid_disk;
  642. else
  643. d->raid_disk = rdev2->desc_nr; /* compatibility */
  644. if (rdev2->faulty) {
  645. d->state = (1<<MD_DISK_FAULTY);
  646. failed++;
  647. } else if (rdev2->in_sync) {
  648. d->state = (1<<MD_DISK_ACTIVE);
  649. d->state |= (1<<MD_DISK_SYNC);
  650. active++;
  651. working++;
  652. } else {
  653. d->state = 0;
  654. spare++;
  655. working++;
  656. }
  657. }
  658. /* now set the "removed" and "faulty" bits on any missing devices */
  659. for (i=0 ; i < mddev->raid_disks ; i++) {
  660. mdp_disk_t *d = &sb->disks[i];
  661. if (d->state == 0 && d->number == 0) {
  662. d->number = i;
  663. d->raid_disk = i;
  664. d->state = (1<<MD_DISK_REMOVED);
  665. d->state |= (1<<MD_DISK_FAULTY);
  666. failed++;
  667. }
  668. }
  669. sb->nr_disks = nr_disks;
  670. sb->active_disks = active;
  671. sb->working_disks = working;
  672. sb->failed_disks = failed;
  673. sb->spare_disks = spare;
  674. sb->this_disk = sb->disks[rdev->desc_nr];
  675. sb->sb_csum = calc_sb_csum(sb);
  676. }
  677. /*
  678. * version 1 superblock
  679. */
  680. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  681. {
  682. unsigned int disk_csum, csum;
  683. unsigned long long newcsum;
  684. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  685. unsigned int *isuper = (unsigned int*)sb;
  686. int i;
  687. disk_csum = sb->sb_csum;
  688. sb->sb_csum = 0;
  689. newcsum = 0;
  690. for (i=0; size>=4; size -= 4 )
  691. newcsum += le32_to_cpu(*isuper++);
  692. if (size == 2)
  693. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  694. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  695. sb->sb_csum = disk_csum;
  696. return cpu_to_le32(csum);
  697. }
  698. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  699. {
  700. struct mdp_superblock_1 *sb;
  701. int ret;
  702. sector_t sb_offset;
  703. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  704. /*
  705. * Calculate the position of the superblock.
  706. * It is always aligned to a 4K boundary and
  707. * depeding on minor_version, it can be:
  708. * 0: At least 8K, but less than 12K, from end of device
  709. * 1: At start of device
  710. * 2: 4K from start of device.
  711. */
  712. switch(minor_version) {
  713. case 0:
  714. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  715. sb_offset -= 8*2;
  716. sb_offset &= ~(sector_t)(4*2-1);
  717. /* convert from sectors to K */
  718. sb_offset /= 2;
  719. break;
  720. case 1:
  721. sb_offset = 0;
  722. break;
  723. case 2:
  724. sb_offset = 4;
  725. break;
  726. default:
  727. return -EINVAL;
  728. }
  729. rdev->sb_offset = sb_offset;
  730. ret = read_disk_sb(rdev);
  731. if (ret) return ret;
  732. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  733. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  734. sb->major_version != cpu_to_le32(1) ||
  735. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  736. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  737. sb->feature_map != 0)
  738. return -EINVAL;
  739. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  740. printk("md: invalid superblock checksum on %s\n",
  741. bdevname(rdev->bdev,b));
  742. return -EINVAL;
  743. }
  744. if (le64_to_cpu(sb->data_size) < 10) {
  745. printk("md: data_size too small on %s\n",
  746. bdevname(rdev->bdev,b));
  747. return -EINVAL;
  748. }
  749. rdev->preferred_minor = 0xffff;
  750. rdev->data_offset = le64_to_cpu(sb->data_offset);
  751. if (refdev == 0)
  752. return 1;
  753. else {
  754. __u64 ev1, ev2;
  755. struct mdp_superblock_1 *refsb =
  756. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  757. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  758. sb->level != refsb->level ||
  759. sb->layout != refsb->layout ||
  760. sb->chunksize != refsb->chunksize) {
  761. printk(KERN_WARNING "md: %s has strangely different"
  762. " superblock to %s\n",
  763. bdevname(rdev->bdev,b),
  764. bdevname(refdev->bdev,b2));
  765. return -EINVAL;
  766. }
  767. ev1 = le64_to_cpu(sb->events);
  768. ev2 = le64_to_cpu(refsb->events);
  769. if (ev1 > ev2)
  770. return 1;
  771. }
  772. if (minor_version)
  773. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  774. else
  775. rdev->size = rdev->sb_offset;
  776. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  777. return -EINVAL;
  778. rdev->size = le64_to_cpu(sb->data_size)/2;
  779. if (le32_to_cpu(sb->chunksize))
  780. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  781. return 0;
  782. }
  783. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  784. {
  785. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  786. rdev->raid_disk = -1;
  787. rdev->in_sync = 0;
  788. if (mddev->raid_disks == 0) {
  789. mddev->major_version = 1;
  790. mddev->patch_version = 0;
  791. mddev->persistent = 1;
  792. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  793. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  794. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  795. mddev->level = le32_to_cpu(sb->level);
  796. mddev->layout = le32_to_cpu(sb->layout);
  797. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  798. mddev->size = le64_to_cpu(sb->size)/2;
  799. mddev->events = le64_to_cpu(sb->events);
  800. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  801. memcpy(mddev->uuid, sb->set_uuid, 16);
  802. mddev->max_disks = (4096-256)/2;
  803. if ((le32_to_cpu(sb->feature_map) & 1) &&
  804. mddev->bitmap_file == NULL ) {
  805. if (mddev->level != 1) {
  806. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  807. return -EINVAL;
  808. }
  809. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  810. }
  811. } else if (mddev->pers == NULL) {
  812. /* Insist of good event counter while assembling */
  813. __u64 ev1 = le64_to_cpu(sb->events);
  814. ++ev1;
  815. if (ev1 < mddev->events)
  816. return -EINVAL;
  817. } else if (mddev->bitmap) {
  818. /* If adding to array with a bitmap, then we can accept an
  819. * older device, but not too old.
  820. */
  821. __u64 ev1 = le64_to_cpu(sb->events);
  822. if (ev1 < mddev->bitmap->events_cleared)
  823. return 0;
  824. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  825. return 0;
  826. if (mddev->level != LEVEL_MULTIPATH) {
  827. int role;
  828. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  829. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  830. switch(role) {
  831. case 0xffff: /* spare */
  832. rdev->faulty = 0;
  833. break;
  834. case 0xfffe: /* faulty */
  835. rdev->faulty = 1;
  836. break;
  837. default:
  838. rdev->in_sync = 1;
  839. rdev->faulty = 0;
  840. rdev->raid_disk = role;
  841. break;
  842. }
  843. } else /* MULTIPATH are always insync */
  844. rdev->in_sync = 1;
  845. return 0;
  846. }
  847. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  848. {
  849. struct mdp_superblock_1 *sb;
  850. struct list_head *tmp;
  851. mdk_rdev_t *rdev2;
  852. int max_dev, i;
  853. /* make rdev->sb match mddev and rdev data. */
  854. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  855. sb->feature_map = 0;
  856. sb->pad0 = 0;
  857. memset(sb->pad1, 0, sizeof(sb->pad1));
  858. memset(sb->pad2, 0, sizeof(sb->pad2));
  859. memset(sb->pad3, 0, sizeof(sb->pad3));
  860. sb->utime = cpu_to_le64((__u64)mddev->utime);
  861. sb->events = cpu_to_le64(mddev->events);
  862. if (mddev->in_sync)
  863. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  864. else
  865. sb->resync_offset = cpu_to_le64(0);
  866. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  867. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  868. sb->feature_map = cpu_to_le32(1);
  869. }
  870. max_dev = 0;
  871. ITERATE_RDEV(mddev,rdev2,tmp)
  872. if (rdev2->desc_nr+1 > max_dev)
  873. max_dev = rdev2->desc_nr+1;
  874. sb->max_dev = cpu_to_le32(max_dev);
  875. for (i=0; i<max_dev;i++)
  876. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  877. ITERATE_RDEV(mddev,rdev2,tmp) {
  878. i = rdev2->desc_nr;
  879. if (rdev2->faulty)
  880. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  881. else if (rdev2->in_sync)
  882. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  883. else
  884. sb->dev_roles[i] = cpu_to_le16(0xffff);
  885. }
  886. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  887. sb->sb_csum = calc_sb_1_csum(sb);
  888. }
  889. static struct super_type super_types[] = {
  890. [0] = {
  891. .name = "0.90.0",
  892. .owner = THIS_MODULE,
  893. .load_super = super_90_load,
  894. .validate_super = super_90_validate,
  895. .sync_super = super_90_sync,
  896. },
  897. [1] = {
  898. .name = "md-1",
  899. .owner = THIS_MODULE,
  900. .load_super = super_1_load,
  901. .validate_super = super_1_validate,
  902. .sync_super = super_1_sync,
  903. },
  904. };
  905. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  906. {
  907. struct list_head *tmp;
  908. mdk_rdev_t *rdev;
  909. ITERATE_RDEV(mddev,rdev,tmp)
  910. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  911. return rdev;
  912. return NULL;
  913. }
  914. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  915. {
  916. struct list_head *tmp;
  917. mdk_rdev_t *rdev;
  918. ITERATE_RDEV(mddev1,rdev,tmp)
  919. if (match_dev_unit(mddev2, rdev))
  920. return 1;
  921. return 0;
  922. }
  923. static LIST_HEAD(pending_raid_disks);
  924. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  925. {
  926. mdk_rdev_t *same_pdev;
  927. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  928. if (rdev->mddev) {
  929. MD_BUG();
  930. return -EINVAL;
  931. }
  932. same_pdev = match_dev_unit(mddev, rdev);
  933. if (same_pdev)
  934. printk(KERN_WARNING
  935. "%s: WARNING: %s appears to be on the same physical"
  936. " disk as %s. True\n protection against single-disk"
  937. " failure might be compromised.\n",
  938. mdname(mddev), bdevname(rdev->bdev,b),
  939. bdevname(same_pdev->bdev,b2));
  940. /* Verify rdev->desc_nr is unique.
  941. * If it is -1, assign a free number, else
  942. * check number is not in use
  943. */
  944. if (rdev->desc_nr < 0) {
  945. int choice = 0;
  946. if (mddev->pers) choice = mddev->raid_disks;
  947. while (find_rdev_nr(mddev, choice))
  948. choice++;
  949. rdev->desc_nr = choice;
  950. } else {
  951. if (find_rdev_nr(mddev, rdev->desc_nr))
  952. return -EBUSY;
  953. }
  954. list_add(&rdev->same_set, &mddev->disks);
  955. rdev->mddev = mddev;
  956. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  957. return 0;
  958. }
  959. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  960. {
  961. char b[BDEVNAME_SIZE];
  962. if (!rdev->mddev) {
  963. MD_BUG();
  964. return;
  965. }
  966. list_del_init(&rdev->same_set);
  967. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  968. rdev->mddev = NULL;
  969. }
  970. /*
  971. * prevent the device from being mounted, repartitioned or
  972. * otherwise reused by a RAID array (or any other kernel
  973. * subsystem), by bd_claiming the device.
  974. */
  975. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  976. {
  977. int err = 0;
  978. struct block_device *bdev;
  979. char b[BDEVNAME_SIZE];
  980. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  981. if (IS_ERR(bdev)) {
  982. printk(KERN_ERR "md: could not open %s.\n",
  983. __bdevname(dev, b));
  984. return PTR_ERR(bdev);
  985. }
  986. err = bd_claim(bdev, rdev);
  987. if (err) {
  988. printk(KERN_ERR "md: could not bd_claim %s.\n",
  989. bdevname(bdev, b));
  990. blkdev_put(bdev);
  991. return err;
  992. }
  993. rdev->bdev = bdev;
  994. return err;
  995. }
  996. static void unlock_rdev(mdk_rdev_t *rdev)
  997. {
  998. struct block_device *bdev = rdev->bdev;
  999. rdev->bdev = NULL;
  1000. if (!bdev)
  1001. MD_BUG();
  1002. bd_release(bdev);
  1003. blkdev_put(bdev);
  1004. }
  1005. void md_autodetect_dev(dev_t dev);
  1006. static void export_rdev(mdk_rdev_t * rdev)
  1007. {
  1008. char b[BDEVNAME_SIZE];
  1009. printk(KERN_INFO "md: export_rdev(%s)\n",
  1010. bdevname(rdev->bdev,b));
  1011. if (rdev->mddev)
  1012. MD_BUG();
  1013. free_disk_sb(rdev);
  1014. list_del_init(&rdev->same_set);
  1015. #ifndef MODULE
  1016. md_autodetect_dev(rdev->bdev->bd_dev);
  1017. #endif
  1018. unlock_rdev(rdev);
  1019. kfree(rdev);
  1020. }
  1021. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1022. {
  1023. unbind_rdev_from_array(rdev);
  1024. export_rdev(rdev);
  1025. }
  1026. static void export_array(mddev_t *mddev)
  1027. {
  1028. struct list_head *tmp;
  1029. mdk_rdev_t *rdev;
  1030. ITERATE_RDEV(mddev,rdev,tmp) {
  1031. if (!rdev->mddev) {
  1032. MD_BUG();
  1033. continue;
  1034. }
  1035. kick_rdev_from_array(rdev);
  1036. }
  1037. if (!list_empty(&mddev->disks))
  1038. MD_BUG();
  1039. mddev->raid_disks = 0;
  1040. mddev->major_version = 0;
  1041. }
  1042. static void print_desc(mdp_disk_t *desc)
  1043. {
  1044. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1045. desc->major,desc->minor,desc->raid_disk,desc->state);
  1046. }
  1047. static void print_sb(mdp_super_t *sb)
  1048. {
  1049. int i;
  1050. printk(KERN_INFO
  1051. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1052. sb->major_version, sb->minor_version, sb->patch_version,
  1053. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1054. sb->ctime);
  1055. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1056. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1057. sb->md_minor, sb->layout, sb->chunk_size);
  1058. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1059. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1060. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1061. sb->failed_disks, sb->spare_disks,
  1062. sb->sb_csum, (unsigned long)sb->events_lo);
  1063. printk(KERN_INFO);
  1064. for (i = 0; i < MD_SB_DISKS; i++) {
  1065. mdp_disk_t *desc;
  1066. desc = sb->disks + i;
  1067. if (desc->number || desc->major || desc->minor ||
  1068. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1069. printk(" D %2d: ", i);
  1070. print_desc(desc);
  1071. }
  1072. }
  1073. printk(KERN_INFO "md: THIS: ");
  1074. print_desc(&sb->this_disk);
  1075. }
  1076. static void print_rdev(mdk_rdev_t *rdev)
  1077. {
  1078. char b[BDEVNAME_SIZE];
  1079. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1080. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1081. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1082. if (rdev->sb_loaded) {
  1083. printk(KERN_INFO "md: rdev superblock:\n");
  1084. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1085. } else
  1086. printk(KERN_INFO "md: no rdev superblock!\n");
  1087. }
  1088. void md_print_devices(void)
  1089. {
  1090. struct list_head *tmp, *tmp2;
  1091. mdk_rdev_t *rdev;
  1092. mddev_t *mddev;
  1093. char b[BDEVNAME_SIZE];
  1094. printk("\n");
  1095. printk("md: **********************************\n");
  1096. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1097. printk("md: **********************************\n");
  1098. ITERATE_MDDEV(mddev,tmp) {
  1099. if (mddev->bitmap)
  1100. bitmap_print_sb(mddev->bitmap);
  1101. else
  1102. printk("%s: ", mdname(mddev));
  1103. ITERATE_RDEV(mddev,rdev,tmp2)
  1104. printk("<%s>", bdevname(rdev->bdev,b));
  1105. printk("\n");
  1106. ITERATE_RDEV(mddev,rdev,tmp2)
  1107. print_rdev(rdev);
  1108. }
  1109. printk("md: **********************************\n");
  1110. printk("\n");
  1111. }
  1112. static void sync_sbs(mddev_t * mddev)
  1113. {
  1114. mdk_rdev_t *rdev;
  1115. struct list_head *tmp;
  1116. ITERATE_RDEV(mddev,rdev,tmp) {
  1117. super_types[mddev->major_version].
  1118. sync_super(mddev, rdev);
  1119. rdev->sb_loaded = 1;
  1120. }
  1121. }
  1122. static void md_update_sb(mddev_t * mddev)
  1123. {
  1124. int err;
  1125. struct list_head *tmp;
  1126. mdk_rdev_t *rdev;
  1127. int sync_req;
  1128. repeat:
  1129. spin_lock(&mddev->write_lock);
  1130. sync_req = mddev->in_sync;
  1131. mddev->utime = get_seconds();
  1132. mddev->events ++;
  1133. if (!mddev->events) {
  1134. /*
  1135. * oops, this 64-bit counter should never wrap.
  1136. * Either we are in around ~1 trillion A.C., assuming
  1137. * 1 reboot per second, or we have a bug:
  1138. */
  1139. MD_BUG();
  1140. mddev->events --;
  1141. }
  1142. mddev->sb_dirty = 2;
  1143. sync_sbs(mddev);
  1144. /*
  1145. * do not write anything to disk if using
  1146. * nonpersistent superblocks
  1147. */
  1148. if (!mddev->persistent) {
  1149. mddev->sb_dirty = 0;
  1150. spin_unlock(&mddev->write_lock);
  1151. wake_up(&mddev->sb_wait);
  1152. return;
  1153. }
  1154. spin_unlock(&mddev->write_lock);
  1155. dprintk(KERN_INFO
  1156. "md: updating %s RAID superblock on device (in sync %d)\n",
  1157. mdname(mddev),mddev->in_sync);
  1158. err = bitmap_update_sb(mddev->bitmap);
  1159. ITERATE_RDEV(mddev,rdev,tmp) {
  1160. char b[BDEVNAME_SIZE];
  1161. dprintk(KERN_INFO "md: ");
  1162. if (rdev->faulty)
  1163. dprintk("(skipping faulty ");
  1164. dprintk("%s ", bdevname(rdev->bdev,b));
  1165. if (!rdev->faulty) {
  1166. md_super_write(mddev,rdev,
  1167. rdev->sb_offset<<1, MD_SB_BYTES,
  1168. rdev->sb_page);
  1169. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1170. bdevname(rdev->bdev,b),
  1171. (unsigned long long)rdev->sb_offset);
  1172. } else
  1173. dprintk(")\n");
  1174. if (mddev->level == LEVEL_MULTIPATH)
  1175. /* only need to write one superblock... */
  1176. break;
  1177. }
  1178. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1179. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1180. spin_lock(&mddev->write_lock);
  1181. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1182. /* have to write it out again */
  1183. spin_unlock(&mddev->write_lock);
  1184. goto repeat;
  1185. }
  1186. mddev->sb_dirty = 0;
  1187. spin_unlock(&mddev->write_lock);
  1188. wake_up(&mddev->sb_wait);
  1189. }
  1190. /*
  1191. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1192. *
  1193. * mark the device faulty if:
  1194. *
  1195. * - the device is nonexistent (zero size)
  1196. * - the device has no valid superblock
  1197. *
  1198. * a faulty rdev _never_ has rdev->sb set.
  1199. */
  1200. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1201. {
  1202. char b[BDEVNAME_SIZE];
  1203. int err;
  1204. mdk_rdev_t *rdev;
  1205. sector_t size;
  1206. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1207. if (!rdev) {
  1208. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1209. return ERR_PTR(-ENOMEM);
  1210. }
  1211. memset(rdev, 0, sizeof(*rdev));
  1212. if ((err = alloc_disk_sb(rdev)))
  1213. goto abort_free;
  1214. err = lock_rdev(rdev, newdev);
  1215. if (err)
  1216. goto abort_free;
  1217. rdev->desc_nr = -1;
  1218. rdev->faulty = 0;
  1219. rdev->in_sync = 0;
  1220. rdev->data_offset = 0;
  1221. atomic_set(&rdev->nr_pending, 0);
  1222. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1223. if (!size) {
  1224. printk(KERN_WARNING
  1225. "md: %s has zero or unknown size, marking faulty!\n",
  1226. bdevname(rdev->bdev,b));
  1227. err = -EINVAL;
  1228. goto abort_free;
  1229. }
  1230. if (super_format >= 0) {
  1231. err = super_types[super_format].
  1232. load_super(rdev, NULL, super_minor);
  1233. if (err == -EINVAL) {
  1234. printk(KERN_WARNING
  1235. "md: %s has invalid sb, not importing!\n",
  1236. bdevname(rdev->bdev,b));
  1237. goto abort_free;
  1238. }
  1239. if (err < 0) {
  1240. printk(KERN_WARNING
  1241. "md: could not read %s's sb, not importing!\n",
  1242. bdevname(rdev->bdev,b));
  1243. goto abort_free;
  1244. }
  1245. }
  1246. INIT_LIST_HEAD(&rdev->same_set);
  1247. return rdev;
  1248. abort_free:
  1249. if (rdev->sb_page) {
  1250. if (rdev->bdev)
  1251. unlock_rdev(rdev);
  1252. free_disk_sb(rdev);
  1253. }
  1254. kfree(rdev);
  1255. return ERR_PTR(err);
  1256. }
  1257. /*
  1258. * Check a full RAID array for plausibility
  1259. */
  1260. static void analyze_sbs(mddev_t * mddev)
  1261. {
  1262. int i;
  1263. struct list_head *tmp;
  1264. mdk_rdev_t *rdev, *freshest;
  1265. char b[BDEVNAME_SIZE];
  1266. freshest = NULL;
  1267. ITERATE_RDEV(mddev,rdev,tmp)
  1268. switch (super_types[mddev->major_version].
  1269. load_super(rdev, freshest, mddev->minor_version)) {
  1270. case 1:
  1271. freshest = rdev;
  1272. break;
  1273. case 0:
  1274. break;
  1275. default:
  1276. printk( KERN_ERR \
  1277. "md: fatal superblock inconsistency in %s"
  1278. " -- removing from array\n",
  1279. bdevname(rdev->bdev,b));
  1280. kick_rdev_from_array(rdev);
  1281. }
  1282. super_types[mddev->major_version].
  1283. validate_super(mddev, freshest);
  1284. i = 0;
  1285. ITERATE_RDEV(mddev,rdev,tmp) {
  1286. if (rdev != freshest)
  1287. if (super_types[mddev->major_version].
  1288. validate_super(mddev, rdev)) {
  1289. printk(KERN_WARNING "md: kicking non-fresh %s"
  1290. " from array!\n",
  1291. bdevname(rdev->bdev,b));
  1292. kick_rdev_from_array(rdev);
  1293. continue;
  1294. }
  1295. if (mddev->level == LEVEL_MULTIPATH) {
  1296. rdev->desc_nr = i++;
  1297. rdev->raid_disk = rdev->desc_nr;
  1298. rdev->in_sync = 1;
  1299. }
  1300. }
  1301. if (mddev->recovery_cp != MaxSector &&
  1302. mddev->level >= 1)
  1303. printk(KERN_ERR "md: %s: raid array is not clean"
  1304. " -- starting background reconstruction\n",
  1305. mdname(mddev));
  1306. }
  1307. int mdp_major = 0;
  1308. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1309. {
  1310. static DECLARE_MUTEX(disks_sem);
  1311. mddev_t *mddev = mddev_find(dev);
  1312. struct gendisk *disk;
  1313. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1314. int shift = partitioned ? MdpMinorShift : 0;
  1315. int unit = MINOR(dev) >> shift;
  1316. if (!mddev)
  1317. return NULL;
  1318. down(&disks_sem);
  1319. if (mddev->gendisk) {
  1320. up(&disks_sem);
  1321. mddev_put(mddev);
  1322. return NULL;
  1323. }
  1324. disk = alloc_disk(1 << shift);
  1325. if (!disk) {
  1326. up(&disks_sem);
  1327. mddev_put(mddev);
  1328. return NULL;
  1329. }
  1330. disk->major = MAJOR(dev);
  1331. disk->first_minor = unit << shift;
  1332. if (partitioned) {
  1333. sprintf(disk->disk_name, "md_d%d", unit);
  1334. sprintf(disk->devfs_name, "md/d%d", unit);
  1335. } else {
  1336. sprintf(disk->disk_name, "md%d", unit);
  1337. sprintf(disk->devfs_name, "md/%d", unit);
  1338. }
  1339. disk->fops = &md_fops;
  1340. disk->private_data = mddev;
  1341. disk->queue = mddev->queue;
  1342. add_disk(disk);
  1343. mddev->gendisk = disk;
  1344. up(&disks_sem);
  1345. return NULL;
  1346. }
  1347. void md_wakeup_thread(mdk_thread_t *thread);
  1348. static void md_safemode_timeout(unsigned long data)
  1349. {
  1350. mddev_t *mddev = (mddev_t *) data;
  1351. mddev->safemode = 1;
  1352. md_wakeup_thread(mddev->thread);
  1353. }
  1354. static int do_md_run(mddev_t * mddev)
  1355. {
  1356. int pnum, err;
  1357. int chunk_size;
  1358. struct list_head *tmp;
  1359. mdk_rdev_t *rdev;
  1360. struct gendisk *disk;
  1361. char b[BDEVNAME_SIZE];
  1362. if (list_empty(&mddev->disks))
  1363. /* cannot run an array with no devices.. */
  1364. return -EINVAL;
  1365. if (mddev->pers)
  1366. return -EBUSY;
  1367. /*
  1368. * Analyze all RAID superblock(s)
  1369. */
  1370. if (!mddev->raid_disks)
  1371. analyze_sbs(mddev);
  1372. chunk_size = mddev->chunk_size;
  1373. pnum = level_to_pers(mddev->level);
  1374. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1375. if (!chunk_size) {
  1376. /*
  1377. * 'default chunksize' in the old md code used to
  1378. * be PAGE_SIZE, baaad.
  1379. * we abort here to be on the safe side. We don't
  1380. * want to continue the bad practice.
  1381. */
  1382. printk(KERN_ERR
  1383. "no chunksize specified, see 'man raidtab'\n");
  1384. return -EINVAL;
  1385. }
  1386. if (chunk_size > MAX_CHUNK_SIZE) {
  1387. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1388. chunk_size, MAX_CHUNK_SIZE);
  1389. return -EINVAL;
  1390. }
  1391. /*
  1392. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1393. */
  1394. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1395. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1396. return -EINVAL;
  1397. }
  1398. if (chunk_size < PAGE_SIZE) {
  1399. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1400. chunk_size, PAGE_SIZE);
  1401. return -EINVAL;
  1402. }
  1403. /* devices must have minimum size of one chunk */
  1404. ITERATE_RDEV(mddev,rdev,tmp) {
  1405. if (rdev->faulty)
  1406. continue;
  1407. if (rdev->size < chunk_size / 1024) {
  1408. printk(KERN_WARNING
  1409. "md: Dev %s smaller than chunk_size:"
  1410. " %lluk < %dk\n",
  1411. bdevname(rdev->bdev,b),
  1412. (unsigned long long)rdev->size,
  1413. chunk_size / 1024);
  1414. return -EINVAL;
  1415. }
  1416. }
  1417. }
  1418. #ifdef CONFIG_KMOD
  1419. if (!pers[pnum])
  1420. {
  1421. request_module("md-personality-%d", pnum);
  1422. }
  1423. #endif
  1424. /*
  1425. * Drop all container device buffers, from now on
  1426. * the only valid external interface is through the md
  1427. * device.
  1428. * Also find largest hardsector size
  1429. */
  1430. ITERATE_RDEV(mddev,rdev,tmp) {
  1431. if (rdev->faulty)
  1432. continue;
  1433. sync_blockdev(rdev->bdev);
  1434. invalidate_bdev(rdev->bdev, 0);
  1435. }
  1436. md_probe(mddev->unit, NULL, NULL);
  1437. disk = mddev->gendisk;
  1438. if (!disk)
  1439. return -ENOMEM;
  1440. spin_lock(&pers_lock);
  1441. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1442. spin_unlock(&pers_lock);
  1443. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1444. pnum);
  1445. return -EINVAL;
  1446. }
  1447. mddev->pers = pers[pnum];
  1448. spin_unlock(&pers_lock);
  1449. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1450. /* before we start the array running, initialise the bitmap */
  1451. err = bitmap_create(mddev);
  1452. if (err)
  1453. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1454. mdname(mddev), err);
  1455. else
  1456. err = mddev->pers->run(mddev);
  1457. if (err) {
  1458. printk(KERN_ERR "md: pers->run() failed ...\n");
  1459. module_put(mddev->pers->owner);
  1460. mddev->pers = NULL;
  1461. bitmap_destroy(mddev);
  1462. return err;
  1463. }
  1464. atomic_set(&mddev->writes_pending,0);
  1465. mddev->safemode = 0;
  1466. mddev->safemode_timer.function = md_safemode_timeout;
  1467. mddev->safemode_timer.data = (unsigned long) mddev;
  1468. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1469. mddev->in_sync = 1;
  1470. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1471. if (mddev->sb_dirty)
  1472. md_update_sb(mddev);
  1473. set_capacity(disk, mddev->array_size<<1);
  1474. /* If we call blk_queue_make_request here, it will
  1475. * re-initialise max_sectors etc which may have been
  1476. * refined inside -> run. So just set the bits we need to set.
  1477. * Most initialisation happended when we called
  1478. * blk_queue_make_request(..., md_fail_request)
  1479. * earlier.
  1480. */
  1481. mddev->queue->queuedata = mddev;
  1482. mddev->queue->make_request_fn = mddev->pers->make_request;
  1483. mddev->changed = 1;
  1484. return 0;
  1485. }
  1486. static int restart_array(mddev_t *mddev)
  1487. {
  1488. struct gendisk *disk = mddev->gendisk;
  1489. int err;
  1490. /*
  1491. * Complain if it has no devices
  1492. */
  1493. err = -ENXIO;
  1494. if (list_empty(&mddev->disks))
  1495. goto out;
  1496. if (mddev->pers) {
  1497. err = -EBUSY;
  1498. if (!mddev->ro)
  1499. goto out;
  1500. mddev->safemode = 0;
  1501. mddev->ro = 0;
  1502. set_disk_ro(disk, 0);
  1503. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1504. mdname(mddev));
  1505. /*
  1506. * Kick recovery or resync if necessary
  1507. */
  1508. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1509. md_wakeup_thread(mddev->thread);
  1510. err = 0;
  1511. } else {
  1512. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1513. mdname(mddev));
  1514. err = -EINVAL;
  1515. }
  1516. out:
  1517. return err;
  1518. }
  1519. static int do_md_stop(mddev_t * mddev, int ro)
  1520. {
  1521. int err = 0;
  1522. struct gendisk *disk = mddev->gendisk;
  1523. if (mddev->pers) {
  1524. if (atomic_read(&mddev->active)>2) {
  1525. printk("md: %s still in use.\n",mdname(mddev));
  1526. return -EBUSY;
  1527. }
  1528. if (mddev->sync_thread) {
  1529. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1530. md_unregister_thread(mddev->sync_thread);
  1531. mddev->sync_thread = NULL;
  1532. }
  1533. del_timer_sync(&mddev->safemode_timer);
  1534. invalidate_partition(disk, 0);
  1535. if (ro) {
  1536. err = -ENXIO;
  1537. if (mddev->ro)
  1538. goto out;
  1539. mddev->ro = 1;
  1540. } else {
  1541. if (mddev->ro)
  1542. set_disk_ro(disk, 0);
  1543. blk_queue_make_request(mddev->queue, md_fail_request);
  1544. mddev->pers->stop(mddev);
  1545. module_put(mddev->pers->owner);
  1546. mddev->pers = NULL;
  1547. if (mddev->ro)
  1548. mddev->ro = 0;
  1549. }
  1550. if (!mddev->in_sync) {
  1551. /* mark array as shutdown cleanly */
  1552. mddev->in_sync = 1;
  1553. md_update_sb(mddev);
  1554. }
  1555. if (ro)
  1556. set_disk_ro(disk, 1);
  1557. }
  1558. bitmap_destroy(mddev);
  1559. if (mddev->bitmap_file) {
  1560. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1561. fput(mddev->bitmap_file);
  1562. mddev->bitmap_file = NULL;
  1563. }
  1564. /*
  1565. * Free resources if final stop
  1566. */
  1567. if (!ro) {
  1568. struct gendisk *disk;
  1569. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1570. export_array(mddev);
  1571. mddev->array_size = 0;
  1572. disk = mddev->gendisk;
  1573. if (disk)
  1574. set_capacity(disk, 0);
  1575. mddev->changed = 1;
  1576. } else
  1577. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1578. mdname(mddev));
  1579. err = 0;
  1580. out:
  1581. return err;
  1582. }
  1583. static void autorun_array(mddev_t *mddev)
  1584. {
  1585. mdk_rdev_t *rdev;
  1586. struct list_head *tmp;
  1587. int err;
  1588. if (list_empty(&mddev->disks))
  1589. return;
  1590. printk(KERN_INFO "md: running: ");
  1591. ITERATE_RDEV(mddev,rdev,tmp) {
  1592. char b[BDEVNAME_SIZE];
  1593. printk("<%s>", bdevname(rdev->bdev,b));
  1594. }
  1595. printk("\n");
  1596. err = do_md_run (mddev);
  1597. if (err) {
  1598. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1599. do_md_stop (mddev, 0);
  1600. }
  1601. }
  1602. /*
  1603. * lets try to run arrays based on all disks that have arrived
  1604. * until now. (those are in pending_raid_disks)
  1605. *
  1606. * the method: pick the first pending disk, collect all disks with
  1607. * the same UUID, remove all from the pending list and put them into
  1608. * the 'same_array' list. Then order this list based on superblock
  1609. * update time (freshest comes first), kick out 'old' disks and
  1610. * compare superblocks. If everything's fine then run it.
  1611. *
  1612. * If "unit" is allocated, then bump its reference count
  1613. */
  1614. static void autorun_devices(int part)
  1615. {
  1616. struct list_head candidates;
  1617. struct list_head *tmp;
  1618. mdk_rdev_t *rdev0, *rdev;
  1619. mddev_t *mddev;
  1620. char b[BDEVNAME_SIZE];
  1621. printk(KERN_INFO "md: autorun ...\n");
  1622. while (!list_empty(&pending_raid_disks)) {
  1623. dev_t dev;
  1624. rdev0 = list_entry(pending_raid_disks.next,
  1625. mdk_rdev_t, same_set);
  1626. printk(KERN_INFO "md: considering %s ...\n",
  1627. bdevname(rdev0->bdev,b));
  1628. INIT_LIST_HEAD(&candidates);
  1629. ITERATE_RDEV_PENDING(rdev,tmp)
  1630. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1631. printk(KERN_INFO "md: adding %s ...\n",
  1632. bdevname(rdev->bdev,b));
  1633. list_move(&rdev->same_set, &candidates);
  1634. }
  1635. /*
  1636. * now we have a set of devices, with all of them having
  1637. * mostly sane superblocks. It's time to allocate the
  1638. * mddev.
  1639. */
  1640. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1641. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1642. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1643. break;
  1644. }
  1645. if (part)
  1646. dev = MKDEV(mdp_major,
  1647. rdev0->preferred_minor << MdpMinorShift);
  1648. else
  1649. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1650. md_probe(dev, NULL, NULL);
  1651. mddev = mddev_find(dev);
  1652. if (!mddev) {
  1653. printk(KERN_ERR
  1654. "md: cannot allocate memory for md drive.\n");
  1655. break;
  1656. }
  1657. if (mddev_lock(mddev))
  1658. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1659. mdname(mddev));
  1660. else if (mddev->raid_disks || mddev->major_version
  1661. || !list_empty(&mddev->disks)) {
  1662. printk(KERN_WARNING
  1663. "md: %s already running, cannot run %s\n",
  1664. mdname(mddev), bdevname(rdev0->bdev,b));
  1665. mddev_unlock(mddev);
  1666. } else {
  1667. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1668. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1669. list_del_init(&rdev->same_set);
  1670. if (bind_rdev_to_array(rdev, mddev))
  1671. export_rdev(rdev);
  1672. }
  1673. autorun_array(mddev);
  1674. mddev_unlock(mddev);
  1675. }
  1676. /* on success, candidates will be empty, on error
  1677. * it won't...
  1678. */
  1679. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1680. export_rdev(rdev);
  1681. mddev_put(mddev);
  1682. }
  1683. printk(KERN_INFO "md: ... autorun DONE.\n");
  1684. }
  1685. /*
  1686. * import RAID devices based on one partition
  1687. * if possible, the array gets run as well.
  1688. */
  1689. static int autostart_array(dev_t startdev)
  1690. {
  1691. char b[BDEVNAME_SIZE];
  1692. int err = -EINVAL, i;
  1693. mdp_super_t *sb = NULL;
  1694. mdk_rdev_t *start_rdev = NULL, *rdev;
  1695. start_rdev = md_import_device(startdev, 0, 0);
  1696. if (IS_ERR(start_rdev))
  1697. return err;
  1698. /* NOTE: this can only work for 0.90.0 superblocks */
  1699. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1700. if (sb->major_version != 0 ||
  1701. sb->minor_version != 90 ) {
  1702. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1703. export_rdev(start_rdev);
  1704. return err;
  1705. }
  1706. if (start_rdev->faulty) {
  1707. printk(KERN_WARNING
  1708. "md: can not autostart based on faulty %s!\n",
  1709. bdevname(start_rdev->bdev,b));
  1710. export_rdev(start_rdev);
  1711. return err;
  1712. }
  1713. list_add(&start_rdev->same_set, &pending_raid_disks);
  1714. for (i = 0; i < MD_SB_DISKS; i++) {
  1715. mdp_disk_t *desc = sb->disks + i;
  1716. dev_t dev = MKDEV(desc->major, desc->minor);
  1717. if (!dev)
  1718. continue;
  1719. if (dev == startdev)
  1720. continue;
  1721. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1722. continue;
  1723. rdev = md_import_device(dev, 0, 0);
  1724. if (IS_ERR(rdev))
  1725. continue;
  1726. list_add(&rdev->same_set, &pending_raid_disks);
  1727. }
  1728. /*
  1729. * possibly return codes
  1730. */
  1731. autorun_devices(0);
  1732. return 0;
  1733. }
  1734. static int get_version(void __user * arg)
  1735. {
  1736. mdu_version_t ver;
  1737. ver.major = MD_MAJOR_VERSION;
  1738. ver.minor = MD_MINOR_VERSION;
  1739. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1740. if (copy_to_user(arg, &ver, sizeof(ver)))
  1741. return -EFAULT;
  1742. return 0;
  1743. }
  1744. static int get_array_info(mddev_t * mddev, void __user * arg)
  1745. {
  1746. mdu_array_info_t info;
  1747. int nr,working,active,failed,spare;
  1748. mdk_rdev_t *rdev;
  1749. struct list_head *tmp;
  1750. nr=working=active=failed=spare=0;
  1751. ITERATE_RDEV(mddev,rdev,tmp) {
  1752. nr++;
  1753. if (rdev->faulty)
  1754. failed++;
  1755. else {
  1756. working++;
  1757. if (rdev->in_sync)
  1758. active++;
  1759. else
  1760. spare++;
  1761. }
  1762. }
  1763. info.major_version = mddev->major_version;
  1764. info.minor_version = mddev->minor_version;
  1765. info.patch_version = MD_PATCHLEVEL_VERSION;
  1766. info.ctime = mddev->ctime;
  1767. info.level = mddev->level;
  1768. info.size = mddev->size;
  1769. info.nr_disks = nr;
  1770. info.raid_disks = mddev->raid_disks;
  1771. info.md_minor = mddev->md_minor;
  1772. info.not_persistent= !mddev->persistent;
  1773. info.utime = mddev->utime;
  1774. info.state = 0;
  1775. if (mddev->in_sync)
  1776. info.state = (1<<MD_SB_CLEAN);
  1777. info.active_disks = active;
  1778. info.working_disks = working;
  1779. info.failed_disks = failed;
  1780. info.spare_disks = spare;
  1781. info.layout = mddev->layout;
  1782. info.chunk_size = mddev->chunk_size;
  1783. if (copy_to_user(arg, &info, sizeof(info)))
  1784. return -EFAULT;
  1785. return 0;
  1786. }
  1787. static int get_bitmap_file(mddev_t * mddev, void * arg)
  1788. {
  1789. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  1790. char *ptr, *buf = NULL;
  1791. int err = -ENOMEM;
  1792. file = kmalloc(sizeof(*file), GFP_KERNEL);
  1793. if (!file)
  1794. goto out;
  1795. /* bitmap disabled, zero the first byte and copy out */
  1796. if (!mddev->bitmap || !mddev->bitmap->file) {
  1797. file->pathname[0] = '\0';
  1798. goto copy_out;
  1799. }
  1800. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  1801. if (!buf)
  1802. goto out;
  1803. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  1804. if (!ptr)
  1805. goto out;
  1806. strcpy(file->pathname, ptr);
  1807. copy_out:
  1808. err = 0;
  1809. if (copy_to_user(arg, file, sizeof(*file)))
  1810. err = -EFAULT;
  1811. out:
  1812. kfree(buf);
  1813. kfree(file);
  1814. return err;
  1815. }
  1816. static int get_disk_info(mddev_t * mddev, void __user * arg)
  1817. {
  1818. mdu_disk_info_t info;
  1819. unsigned int nr;
  1820. mdk_rdev_t *rdev;
  1821. if (copy_from_user(&info, arg, sizeof(info)))
  1822. return -EFAULT;
  1823. nr = info.number;
  1824. rdev = find_rdev_nr(mddev, nr);
  1825. if (rdev) {
  1826. info.major = MAJOR(rdev->bdev->bd_dev);
  1827. info.minor = MINOR(rdev->bdev->bd_dev);
  1828. info.raid_disk = rdev->raid_disk;
  1829. info.state = 0;
  1830. if (rdev->faulty)
  1831. info.state |= (1<<MD_DISK_FAULTY);
  1832. else if (rdev->in_sync) {
  1833. info.state |= (1<<MD_DISK_ACTIVE);
  1834. info.state |= (1<<MD_DISK_SYNC);
  1835. }
  1836. } else {
  1837. info.major = info.minor = 0;
  1838. info.raid_disk = -1;
  1839. info.state = (1<<MD_DISK_REMOVED);
  1840. }
  1841. if (copy_to_user(arg, &info, sizeof(info)))
  1842. return -EFAULT;
  1843. return 0;
  1844. }
  1845. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  1846. {
  1847. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1848. mdk_rdev_t *rdev;
  1849. dev_t dev = MKDEV(info->major,info->minor);
  1850. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  1851. return -EOVERFLOW;
  1852. if (!mddev->raid_disks) {
  1853. int err;
  1854. /* expecting a device which has a superblock */
  1855. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  1856. if (IS_ERR(rdev)) {
  1857. printk(KERN_WARNING
  1858. "md: md_import_device returned %ld\n",
  1859. PTR_ERR(rdev));
  1860. return PTR_ERR(rdev);
  1861. }
  1862. if (!list_empty(&mddev->disks)) {
  1863. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1864. mdk_rdev_t, same_set);
  1865. int err = super_types[mddev->major_version]
  1866. .load_super(rdev, rdev0, mddev->minor_version);
  1867. if (err < 0) {
  1868. printk(KERN_WARNING
  1869. "md: %s has different UUID to %s\n",
  1870. bdevname(rdev->bdev,b),
  1871. bdevname(rdev0->bdev,b2));
  1872. export_rdev(rdev);
  1873. return -EINVAL;
  1874. }
  1875. }
  1876. err = bind_rdev_to_array(rdev, mddev);
  1877. if (err)
  1878. export_rdev(rdev);
  1879. return err;
  1880. }
  1881. /*
  1882. * add_new_disk can be used once the array is assembled
  1883. * to add "hot spares". They must already have a superblock
  1884. * written
  1885. */
  1886. if (mddev->pers) {
  1887. int err;
  1888. if (!mddev->pers->hot_add_disk) {
  1889. printk(KERN_WARNING
  1890. "%s: personality does not support diskops!\n",
  1891. mdname(mddev));
  1892. return -EINVAL;
  1893. }
  1894. rdev = md_import_device(dev, mddev->major_version,
  1895. mddev->minor_version);
  1896. if (IS_ERR(rdev)) {
  1897. printk(KERN_WARNING
  1898. "md: md_import_device returned %ld\n",
  1899. PTR_ERR(rdev));
  1900. return PTR_ERR(rdev);
  1901. }
  1902. /* set save_raid_disk if appropriate */
  1903. if (!mddev->persistent) {
  1904. if (info->state & (1<<MD_DISK_SYNC) &&
  1905. info->raid_disk < mddev->raid_disks)
  1906. rdev->raid_disk = info->raid_disk;
  1907. else
  1908. rdev->raid_disk = -1;
  1909. } else
  1910. super_types[mddev->major_version].
  1911. validate_super(mddev, rdev);
  1912. rdev->saved_raid_disk = rdev->raid_disk;
  1913. rdev->in_sync = 0; /* just to be sure */
  1914. rdev->raid_disk = -1;
  1915. err = bind_rdev_to_array(rdev, mddev);
  1916. if (err)
  1917. export_rdev(rdev);
  1918. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1919. if (mddev->thread)
  1920. md_wakeup_thread(mddev->thread);
  1921. return err;
  1922. }
  1923. /* otherwise, add_new_disk is only allowed
  1924. * for major_version==0 superblocks
  1925. */
  1926. if (mddev->major_version != 0) {
  1927. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  1928. mdname(mddev));
  1929. return -EINVAL;
  1930. }
  1931. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  1932. int err;
  1933. rdev = md_import_device (dev, -1, 0);
  1934. if (IS_ERR(rdev)) {
  1935. printk(KERN_WARNING
  1936. "md: error, md_import_device() returned %ld\n",
  1937. PTR_ERR(rdev));
  1938. return PTR_ERR(rdev);
  1939. }
  1940. rdev->desc_nr = info->number;
  1941. if (info->raid_disk < mddev->raid_disks)
  1942. rdev->raid_disk = info->raid_disk;
  1943. else
  1944. rdev->raid_disk = -1;
  1945. rdev->faulty = 0;
  1946. if (rdev->raid_disk < mddev->raid_disks)
  1947. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  1948. else
  1949. rdev->in_sync = 0;
  1950. err = bind_rdev_to_array(rdev, mddev);
  1951. if (err) {
  1952. export_rdev(rdev);
  1953. return err;
  1954. }
  1955. if (!mddev->persistent) {
  1956. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  1957. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1958. } else
  1959. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1960. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  1961. if (!mddev->size || (mddev->size > rdev->size))
  1962. mddev->size = rdev->size;
  1963. }
  1964. return 0;
  1965. }
  1966. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  1967. {
  1968. char b[BDEVNAME_SIZE];
  1969. mdk_rdev_t *rdev;
  1970. if (!mddev->pers)
  1971. return -ENODEV;
  1972. rdev = find_rdev(mddev, dev);
  1973. if (!rdev)
  1974. return -ENXIO;
  1975. if (rdev->raid_disk >= 0)
  1976. goto busy;
  1977. kick_rdev_from_array(rdev);
  1978. md_update_sb(mddev);
  1979. return 0;
  1980. busy:
  1981. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  1982. bdevname(rdev->bdev,b), mdname(mddev));
  1983. return -EBUSY;
  1984. }
  1985. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  1986. {
  1987. char b[BDEVNAME_SIZE];
  1988. int err;
  1989. unsigned int size;
  1990. mdk_rdev_t *rdev;
  1991. if (!mddev->pers)
  1992. return -ENODEV;
  1993. if (mddev->major_version != 0) {
  1994. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  1995. " version-0 superblocks.\n",
  1996. mdname(mddev));
  1997. return -EINVAL;
  1998. }
  1999. if (!mddev->pers->hot_add_disk) {
  2000. printk(KERN_WARNING
  2001. "%s: personality does not support diskops!\n",
  2002. mdname(mddev));
  2003. return -EINVAL;
  2004. }
  2005. rdev = md_import_device (dev, -1, 0);
  2006. if (IS_ERR(rdev)) {
  2007. printk(KERN_WARNING
  2008. "md: error, md_import_device() returned %ld\n",
  2009. PTR_ERR(rdev));
  2010. return -EINVAL;
  2011. }
  2012. if (mddev->persistent)
  2013. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2014. else
  2015. rdev->sb_offset =
  2016. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2017. size = calc_dev_size(rdev, mddev->chunk_size);
  2018. rdev->size = size;
  2019. if (size < mddev->size) {
  2020. printk(KERN_WARNING
  2021. "%s: disk size %llu blocks < array size %llu\n",
  2022. mdname(mddev), (unsigned long long)size,
  2023. (unsigned long long)mddev->size);
  2024. err = -ENOSPC;
  2025. goto abort_export;
  2026. }
  2027. if (rdev->faulty) {
  2028. printk(KERN_WARNING
  2029. "md: can not hot-add faulty %s disk to %s!\n",
  2030. bdevname(rdev->bdev,b), mdname(mddev));
  2031. err = -EINVAL;
  2032. goto abort_export;
  2033. }
  2034. rdev->in_sync = 0;
  2035. rdev->desc_nr = -1;
  2036. bind_rdev_to_array(rdev, mddev);
  2037. /*
  2038. * The rest should better be atomic, we can have disk failures
  2039. * noticed in interrupt contexts ...
  2040. */
  2041. if (rdev->desc_nr == mddev->max_disks) {
  2042. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2043. mdname(mddev));
  2044. err = -EBUSY;
  2045. goto abort_unbind_export;
  2046. }
  2047. rdev->raid_disk = -1;
  2048. md_update_sb(mddev);
  2049. /*
  2050. * Kick recovery, maybe this spare has to be added to the
  2051. * array immediately.
  2052. */
  2053. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2054. md_wakeup_thread(mddev->thread);
  2055. return 0;
  2056. abort_unbind_export:
  2057. unbind_rdev_from_array(rdev);
  2058. abort_export:
  2059. export_rdev(rdev);
  2060. return err;
  2061. }
  2062. /* similar to deny_write_access, but accounts for our holding a reference
  2063. * to the file ourselves */
  2064. static int deny_bitmap_write_access(struct file * file)
  2065. {
  2066. struct inode *inode = file->f_mapping->host;
  2067. spin_lock(&inode->i_lock);
  2068. if (atomic_read(&inode->i_writecount) > 1) {
  2069. spin_unlock(&inode->i_lock);
  2070. return -ETXTBSY;
  2071. }
  2072. atomic_set(&inode->i_writecount, -1);
  2073. spin_unlock(&inode->i_lock);
  2074. return 0;
  2075. }
  2076. static int set_bitmap_file(mddev_t *mddev, int fd)
  2077. {
  2078. int err;
  2079. if (mddev->pers)
  2080. return -EBUSY;
  2081. mddev->bitmap_file = fget(fd);
  2082. if (mddev->bitmap_file == NULL) {
  2083. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2084. mdname(mddev));
  2085. return -EBADF;
  2086. }
  2087. err = deny_bitmap_write_access(mddev->bitmap_file);
  2088. if (err) {
  2089. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2090. mdname(mddev));
  2091. fput(mddev->bitmap_file);
  2092. mddev->bitmap_file = NULL;
  2093. } else
  2094. mddev->bitmap_offset = 0; /* file overrides offset */
  2095. return err;
  2096. }
  2097. /*
  2098. * set_array_info is used two different ways
  2099. * The original usage is when creating a new array.
  2100. * In this usage, raid_disks is > 0 and it together with
  2101. * level, size, not_persistent,layout,chunksize determine the
  2102. * shape of the array.
  2103. * This will always create an array with a type-0.90.0 superblock.
  2104. * The newer usage is when assembling an array.
  2105. * In this case raid_disks will be 0, and the major_version field is
  2106. * use to determine which style super-blocks are to be found on the devices.
  2107. * The minor and patch _version numbers are also kept incase the
  2108. * super_block handler wishes to interpret them.
  2109. */
  2110. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2111. {
  2112. if (info->raid_disks == 0) {
  2113. /* just setting version number for superblock loading */
  2114. if (info->major_version < 0 ||
  2115. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2116. super_types[info->major_version].name == NULL) {
  2117. /* maybe try to auto-load a module? */
  2118. printk(KERN_INFO
  2119. "md: superblock version %d not known\n",
  2120. info->major_version);
  2121. return -EINVAL;
  2122. }
  2123. mddev->major_version = info->major_version;
  2124. mddev->minor_version = info->minor_version;
  2125. mddev->patch_version = info->patch_version;
  2126. return 0;
  2127. }
  2128. mddev->major_version = MD_MAJOR_VERSION;
  2129. mddev->minor_version = MD_MINOR_VERSION;
  2130. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2131. mddev->ctime = get_seconds();
  2132. mddev->level = info->level;
  2133. mddev->size = info->size;
  2134. mddev->raid_disks = info->raid_disks;
  2135. /* don't set md_minor, it is determined by which /dev/md* was
  2136. * openned
  2137. */
  2138. if (info->state & (1<<MD_SB_CLEAN))
  2139. mddev->recovery_cp = MaxSector;
  2140. else
  2141. mddev->recovery_cp = 0;
  2142. mddev->persistent = ! info->not_persistent;
  2143. mddev->layout = info->layout;
  2144. mddev->chunk_size = info->chunk_size;
  2145. mddev->max_disks = MD_SB_DISKS;
  2146. mddev->sb_dirty = 1;
  2147. /*
  2148. * Generate a 128 bit UUID
  2149. */
  2150. get_random_bytes(mddev->uuid, 16);
  2151. return 0;
  2152. }
  2153. /*
  2154. * update_array_info is used to change the configuration of an
  2155. * on-line array.
  2156. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2157. * fields in the info are checked against the array.
  2158. * Any differences that cannot be handled will cause an error.
  2159. * Normally, only one change can be managed at a time.
  2160. */
  2161. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2162. {
  2163. int rv = 0;
  2164. int cnt = 0;
  2165. if (mddev->major_version != info->major_version ||
  2166. mddev->minor_version != info->minor_version ||
  2167. /* mddev->patch_version != info->patch_version || */
  2168. mddev->ctime != info->ctime ||
  2169. mddev->level != info->level ||
  2170. /* mddev->layout != info->layout || */
  2171. !mddev->persistent != info->not_persistent||
  2172. mddev->chunk_size != info->chunk_size )
  2173. return -EINVAL;
  2174. /* Check there is only one change */
  2175. if (mddev->size != info->size) cnt++;
  2176. if (mddev->raid_disks != info->raid_disks) cnt++;
  2177. if (mddev->layout != info->layout) cnt++;
  2178. if (cnt == 0) return 0;
  2179. if (cnt > 1) return -EINVAL;
  2180. if (mddev->layout != info->layout) {
  2181. /* Change layout
  2182. * we don't need to do anything at the md level, the
  2183. * personality will take care of it all.
  2184. */
  2185. if (mddev->pers->reconfig == NULL)
  2186. return -EINVAL;
  2187. else
  2188. return mddev->pers->reconfig(mddev, info->layout, -1);
  2189. }
  2190. if (mddev->size != info->size) {
  2191. mdk_rdev_t * rdev;
  2192. struct list_head *tmp;
  2193. if (mddev->pers->resize == NULL)
  2194. return -EINVAL;
  2195. /* The "size" is the amount of each device that is used.
  2196. * This can only make sense for arrays with redundancy.
  2197. * linear and raid0 always use whatever space is available
  2198. * We can only consider changing the size if no resync
  2199. * or reconstruction is happening, and if the new size
  2200. * is acceptable. It must fit before the sb_offset or,
  2201. * if that is <data_offset, it must fit before the
  2202. * size of each device.
  2203. * If size is zero, we find the largest size that fits.
  2204. */
  2205. if (mddev->sync_thread)
  2206. return -EBUSY;
  2207. ITERATE_RDEV(mddev,rdev,tmp) {
  2208. sector_t avail;
  2209. int fit = (info->size == 0);
  2210. if (rdev->sb_offset > rdev->data_offset)
  2211. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2212. else
  2213. avail = get_capacity(rdev->bdev->bd_disk)
  2214. - rdev->data_offset;
  2215. if (fit && (info->size == 0 || info->size > avail/2))
  2216. info->size = avail/2;
  2217. if (avail < ((sector_t)info->size << 1))
  2218. return -ENOSPC;
  2219. }
  2220. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2221. if (!rv) {
  2222. struct block_device *bdev;
  2223. bdev = bdget_disk(mddev->gendisk, 0);
  2224. if (bdev) {
  2225. down(&bdev->bd_inode->i_sem);
  2226. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2227. up(&bdev->bd_inode->i_sem);
  2228. bdput(bdev);
  2229. }
  2230. }
  2231. }
  2232. if (mddev->raid_disks != info->raid_disks) {
  2233. /* change the number of raid disks */
  2234. if (mddev->pers->reshape == NULL)
  2235. return -EINVAL;
  2236. if (info->raid_disks <= 0 ||
  2237. info->raid_disks >= mddev->max_disks)
  2238. return -EINVAL;
  2239. if (mddev->sync_thread)
  2240. return -EBUSY;
  2241. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2242. if (!rv) {
  2243. struct block_device *bdev;
  2244. bdev = bdget_disk(mddev->gendisk, 0);
  2245. if (bdev) {
  2246. down(&bdev->bd_inode->i_sem);
  2247. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2248. up(&bdev->bd_inode->i_sem);
  2249. bdput(bdev);
  2250. }
  2251. }
  2252. }
  2253. md_update_sb(mddev);
  2254. return rv;
  2255. }
  2256. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2257. {
  2258. mdk_rdev_t *rdev;
  2259. if (mddev->pers == NULL)
  2260. return -ENODEV;
  2261. rdev = find_rdev(mddev, dev);
  2262. if (!rdev)
  2263. return -ENODEV;
  2264. md_error(mddev, rdev);
  2265. return 0;
  2266. }
  2267. static int md_ioctl(struct inode *inode, struct file *file,
  2268. unsigned int cmd, unsigned long arg)
  2269. {
  2270. int err = 0;
  2271. void __user *argp = (void __user *)arg;
  2272. struct hd_geometry __user *loc = argp;
  2273. mddev_t *mddev = NULL;
  2274. if (!capable(CAP_SYS_ADMIN))
  2275. return -EACCES;
  2276. /*
  2277. * Commands dealing with the RAID driver but not any
  2278. * particular array:
  2279. */
  2280. switch (cmd)
  2281. {
  2282. case RAID_VERSION:
  2283. err = get_version(argp);
  2284. goto done;
  2285. case PRINT_RAID_DEBUG:
  2286. err = 0;
  2287. md_print_devices();
  2288. goto done;
  2289. #ifndef MODULE
  2290. case RAID_AUTORUN:
  2291. err = 0;
  2292. autostart_arrays(arg);
  2293. goto done;
  2294. #endif
  2295. default:;
  2296. }
  2297. /*
  2298. * Commands creating/starting a new array:
  2299. */
  2300. mddev = inode->i_bdev->bd_disk->private_data;
  2301. if (!mddev) {
  2302. BUG();
  2303. goto abort;
  2304. }
  2305. if (cmd == START_ARRAY) {
  2306. /* START_ARRAY doesn't need to lock the array as autostart_array
  2307. * does the locking, and it could even be a different array
  2308. */
  2309. static int cnt = 3;
  2310. if (cnt > 0 ) {
  2311. printk(KERN_WARNING
  2312. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2313. "This will not be supported beyond 2.6\n",
  2314. current->comm, current->pid);
  2315. cnt--;
  2316. }
  2317. err = autostart_array(new_decode_dev(arg));
  2318. if (err) {
  2319. printk(KERN_WARNING "md: autostart failed!\n");
  2320. goto abort;
  2321. }
  2322. goto done;
  2323. }
  2324. err = mddev_lock(mddev);
  2325. if (err) {
  2326. printk(KERN_INFO
  2327. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2328. err, cmd);
  2329. goto abort;
  2330. }
  2331. switch (cmd)
  2332. {
  2333. case SET_ARRAY_INFO:
  2334. {
  2335. mdu_array_info_t info;
  2336. if (!arg)
  2337. memset(&info, 0, sizeof(info));
  2338. else if (copy_from_user(&info, argp, sizeof(info))) {
  2339. err = -EFAULT;
  2340. goto abort_unlock;
  2341. }
  2342. if (mddev->pers) {
  2343. err = update_array_info(mddev, &info);
  2344. if (err) {
  2345. printk(KERN_WARNING "md: couldn't update"
  2346. " array info. %d\n", err);
  2347. goto abort_unlock;
  2348. }
  2349. goto done_unlock;
  2350. }
  2351. if (!list_empty(&mddev->disks)) {
  2352. printk(KERN_WARNING
  2353. "md: array %s already has disks!\n",
  2354. mdname(mddev));
  2355. err = -EBUSY;
  2356. goto abort_unlock;
  2357. }
  2358. if (mddev->raid_disks) {
  2359. printk(KERN_WARNING
  2360. "md: array %s already initialised!\n",
  2361. mdname(mddev));
  2362. err = -EBUSY;
  2363. goto abort_unlock;
  2364. }
  2365. err = set_array_info(mddev, &info);
  2366. if (err) {
  2367. printk(KERN_WARNING "md: couldn't set"
  2368. " array info. %d\n", err);
  2369. goto abort_unlock;
  2370. }
  2371. }
  2372. goto done_unlock;
  2373. default:;
  2374. }
  2375. /*
  2376. * Commands querying/configuring an existing array:
  2377. */
  2378. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2379. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2380. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2381. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2382. err = -ENODEV;
  2383. goto abort_unlock;
  2384. }
  2385. /*
  2386. * Commands even a read-only array can execute:
  2387. */
  2388. switch (cmd)
  2389. {
  2390. case GET_ARRAY_INFO:
  2391. err = get_array_info(mddev, argp);
  2392. goto done_unlock;
  2393. case GET_BITMAP_FILE:
  2394. err = get_bitmap_file(mddev, (void *)arg);
  2395. goto done_unlock;
  2396. case GET_DISK_INFO:
  2397. err = get_disk_info(mddev, argp);
  2398. goto done_unlock;
  2399. case RESTART_ARRAY_RW:
  2400. err = restart_array(mddev);
  2401. goto done_unlock;
  2402. case STOP_ARRAY:
  2403. err = do_md_stop (mddev, 0);
  2404. goto done_unlock;
  2405. case STOP_ARRAY_RO:
  2406. err = do_md_stop (mddev, 1);
  2407. goto done_unlock;
  2408. /*
  2409. * We have a problem here : there is no easy way to give a CHS
  2410. * virtual geometry. We currently pretend that we have a 2 heads
  2411. * 4 sectors (with a BIG number of cylinders...). This drives
  2412. * dosfs just mad... ;-)
  2413. */
  2414. case HDIO_GETGEO:
  2415. if (!loc) {
  2416. err = -EINVAL;
  2417. goto abort_unlock;
  2418. }
  2419. err = put_user (2, (char __user *) &loc->heads);
  2420. if (err)
  2421. goto abort_unlock;
  2422. err = put_user (4, (char __user *) &loc->sectors);
  2423. if (err)
  2424. goto abort_unlock;
  2425. err = put_user(get_capacity(mddev->gendisk)/8,
  2426. (short __user *) &loc->cylinders);
  2427. if (err)
  2428. goto abort_unlock;
  2429. err = put_user (get_start_sect(inode->i_bdev),
  2430. (long __user *) &loc->start);
  2431. goto done_unlock;
  2432. }
  2433. /*
  2434. * The remaining ioctls are changing the state of the
  2435. * superblock, so we do not allow read-only arrays
  2436. * here:
  2437. */
  2438. if (mddev->ro) {
  2439. err = -EROFS;
  2440. goto abort_unlock;
  2441. }
  2442. switch (cmd)
  2443. {
  2444. case ADD_NEW_DISK:
  2445. {
  2446. mdu_disk_info_t info;
  2447. if (copy_from_user(&info, argp, sizeof(info)))
  2448. err = -EFAULT;
  2449. else
  2450. err = add_new_disk(mddev, &info);
  2451. goto done_unlock;
  2452. }
  2453. case HOT_REMOVE_DISK:
  2454. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2455. goto done_unlock;
  2456. case HOT_ADD_DISK:
  2457. err = hot_add_disk(mddev, new_decode_dev(arg));
  2458. goto done_unlock;
  2459. case SET_DISK_FAULTY:
  2460. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2461. goto done_unlock;
  2462. case RUN_ARRAY:
  2463. err = do_md_run (mddev);
  2464. goto done_unlock;
  2465. case SET_BITMAP_FILE:
  2466. err = set_bitmap_file(mddev, (int)arg);
  2467. goto done_unlock;
  2468. default:
  2469. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2470. printk(KERN_WARNING "md: %s(pid %d) used"
  2471. " obsolete MD ioctl, upgrade your"
  2472. " software to use new ictls.\n",
  2473. current->comm, current->pid);
  2474. err = -EINVAL;
  2475. goto abort_unlock;
  2476. }
  2477. done_unlock:
  2478. abort_unlock:
  2479. mddev_unlock(mddev);
  2480. return err;
  2481. done:
  2482. if (err)
  2483. MD_BUG();
  2484. abort:
  2485. return err;
  2486. }
  2487. static int md_open(struct inode *inode, struct file *file)
  2488. {
  2489. /*
  2490. * Succeed if we can lock the mddev, which confirms that
  2491. * it isn't being stopped right now.
  2492. */
  2493. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2494. int err;
  2495. if ((err = mddev_lock(mddev)))
  2496. goto out;
  2497. err = 0;
  2498. mddev_get(mddev);
  2499. mddev_unlock(mddev);
  2500. check_disk_change(inode->i_bdev);
  2501. out:
  2502. return err;
  2503. }
  2504. static int md_release(struct inode *inode, struct file * file)
  2505. {
  2506. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2507. if (!mddev)
  2508. BUG();
  2509. mddev_put(mddev);
  2510. return 0;
  2511. }
  2512. static int md_media_changed(struct gendisk *disk)
  2513. {
  2514. mddev_t *mddev = disk->private_data;
  2515. return mddev->changed;
  2516. }
  2517. static int md_revalidate(struct gendisk *disk)
  2518. {
  2519. mddev_t *mddev = disk->private_data;
  2520. mddev->changed = 0;
  2521. return 0;
  2522. }
  2523. static struct block_device_operations md_fops =
  2524. {
  2525. .owner = THIS_MODULE,
  2526. .open = md_open,
  2527. .release = md_release,
  2528. .ioctl = md_ioctl,
  2529. .media_changed = md_media_changed,
  2530. .revalidate_disk= md_revalidate,
  2531. };
  2532. static int md_thread(void * arg)
  2533. {
  2534. mdk_thread_t *thread = arg;
  2535. lock_kernel();
  2536. /*
  2537. * Detach thread
  2538. */
  2539. daemonize(thread->name, mdname(thread->mddev));
  2540. current->exit_signal = SIGCHLD;
  2541. allow_signal(SIGKILL);
  2542. thread->tsk = current;
  2543. /*
  2544. * md_thread is a 'system-thread', it's priority should be very
  2545. * high. We avoid resource deadlocks individually in each
  2546. * raid personality. (RAID5 does preallocation) We also use RR and
  2547. * the very same RT priority as kswapd, thus we will never get
  2548. * into a priority inversion deadlock.
  2549. *
  2550. * we definitely have to have equal or higher priority than
  2551. * bdflush, otherwise bdflush will deadlock if there are too
  2552. * many dirty RAID5 blocks.
  2553. */
  2554. unlock_kernel();
  2555. complete(thread->event);
  2556. while (thread->run) {
  2557. void (*run)(mddev_t *);
  2558. wait_event_interruptible_timeout(thread->wqueue,
  2559. test_bit(THREAD_WAKEUP, &thread->flags),
  2560. thread->timeout);
  2561. if (current->flags & PF_FREEZE)
  2562. refrigerator(PF_FREEZE);
  2563. clear_bit(THREAD_WAKEUP, &thread->flags);
  2564. run = thread->run;
  2565. if (run)
  2566. run(thread->mddev);
  2567. if (signal_pending(current))
  2568. flush_signals(current);
  2569. }
  2570. complete(thread->event);
  2571. return 0;
  2572. }
  2573. void md_wakeup_thread(mdk_thread_t *thread)
  2574. {
  2575. if (thread) {
  2576. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2577. set_bit(THREAD_WAKEUP, &thread->flags);
  2578. wake_up(&thread->wqueue);
  2579. }
  2580. }
  2581. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2582. const char *name)
  2583. {
  2584. mdk_thread_t *thread;
  2585. int ret;
  2586. struct completion event;
  2587. thread = (mdk_thread_t *) kmalloc
  2588. (sizeof(mdk_thread_t), GFP_KERNEL);
  2589. if (!thread)
  2590. return NULL;
  2591. memset(thread, 0, sizeof(mdk_thread_t));
  2592. init_waitqueue_head(&thread->wqueue);
  2593. init_completion(&event);
  2594. thread->event = &event;
  2595. thread->run = run;
  2596. thread->mddev = mddev;
  2597. thread->name = name;
  2598. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2599. ret = kernel_thread(md_thread, thread, 0);
  2600. if (ret < 0) {
  2601. kfree(thread);
  2602. return NULL;
  2603. }
  2604. wait_for_completion(&event);
  2605. return thread;
  2606. }
  2607. void md_unregister_thread(mdk_thread_t *thread)
  2608. {
  2609. struct completion event;
  2610. init_completion(&event);
  2611. thread->event = &event;
  2612. /* As soon as ->run is set to NULL, the task could disappear,
  2613. * so we need to hold tasklist_lock until we have sent the signal
  2614. */
  2615. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2616. read_lock(&tasklist_lock);
  2617. thread->run = NULL;
  2618. send_sig(SIGKILL, thread->tsk, 1);
  2619. read_unlock(&tasklist_lock);
  2620. wait_for_completion(&event);
  2621. kfree(thread);
  2622. }
  2623. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2624. {
  2625. if (!mddev) {
  2626. MD_BUG();
  2627. return;
  2628. }
  2629. if (!rdev || rdev->faulty)
  2630. return;
  2631. /*
  2632. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2633. mdname(mddev),
  2634. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2635. __builtin_return_address(0),__builtin_return_address(1),
  2636. __builtin_return_address(2),__builtin_return_address(3));
  2637. */
  2638. if (!mddev->pers->error_handler)
  2639. return;
  2640. mddev->pers->error_handler(mddev,rdev);
  2641. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2642. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2643. md_wakeup_thread(mddev->thread);
  2644. }
  2645. /* seq_file implementation /proc/mdstat */
  2646. static void status_unused(struct seq_file *seq)
  2647. {
  2648. int i = 0;
  2649. mdk_rdev_t *rdev;
  2650. struct list_head *tmp;
  2651. seq_printf(seq, "unused devices: ");
  2652. ITERATE_RDEV_PENDING(rdev,tmp) {
  2653. char b[BDEVNAME_SIZE];
  2654. i++;
  2655. seq_printf(seq, "%s ",
  2656. bdevname(rdev->bdev,b));
  2657. }
  2658. if (!i)
  2659. seq_printf(seq, "<none>");
  2660. seq_printf(seq, "\n");
  2661. }
  2662. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2663. {
  2664. unsigned long max_blocks, resync, res, dt, db, rt;
  2665. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2666. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2667. max_blocks = mddev->resync_max_sectors >> 1;
  2668. else
  2669. max_blocks = mddev->size;
  2670. /*
  2671. * Should not happen.
  2672. */
  2673. if (!max_blocks) {
  2674. MD_BUG();
  2675. return;
  2676. }
  2677. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2678. {
  2679. int i, x = res/50, y = 20-x;
  2680. seq_printf(seq, "[");
  2681. for (i = 0; i < x; i++)
  2682. seq_printf(seq, "=");
  2683. seq_printf(seq, ">");
  2684. for (i = 0; i < y; i++)
  2685. seq_printf(seq, ".");
  2686. seq_printf(seq, "] ");
  2687. }
  2688. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2689. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2690. "resync" : "recovery"),
  2691. res/10, res % 10, resync, max_blocks);
  2692. /*
  2693. * We do not want to overflow, so the order of operands and
  2694. * the * 100 / 100 trick are important. We do a +1 to be
  2695. * safe against division by zero. We only estimate anyway.
  2696. *
  2697. * dt: time from mark until now
  2698. * db: blocks written from mark until now
  2699. * rt: remaining time
  2700. */
  2701. dt = ((jiffies - mddev->resync_mark) / HZ);
  2702. if (!dt) dt++;
  2703. db = resync - (mddev->resync_mark_cnt/2);
  2704. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2705. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2706. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2707. }
  2708. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2709. {
  2710. struct list_head *tmp;
  2711. loff_t l = *pos;
  2712. mddev_t *mddev;
  2713. if (l >= 0x10000)
  2714. return NULL;
  2715. if (!l--)
  2716. /* header */
  2717. return (void*)1;
  2718. spin_lock(&all_mddevs_lock);
  2719. list_for_each(tmp,&all_mddevs)
  2720. if (!l--) {
  2721. mddev = list_entry(tmp, mddev_t, all_mddevs);
  2722. mddev_get(mddev);
  2723. spin_unlock(&all_mddevs_lock);
  2724. return mddev;
  2725. }
  2726. spin_unlock(&all_mddevs_lock);
  2727. if (!l--)
  2728. return (void*)2;/* tail */
  2729. return NULL;
  2730. }
  2731. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2732. {
  2733. struct list_head *tmp;
  2734. mddev_t *next_mddev, *mddev = v;
  2735. ++*pos;
  2736. if (v == (void*)2)
  2737. return NULL;
  2738. spin_lock(&all_mddevs_lock);
  2739. if (v == (void*)1)
  2740. tmp = all_mddevs.next;
  2741. else
  2742. tmp = mddev->all_mddevs.next;
  2743. if (tmp != &all_mddevs)
  2744. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  2745. else {
  2746. next_mddev = (void*)2;
  2747. *pos = 0x10000;
  2748. }
  2749. spin_unlock(&all_mddevs_lock);
  2750. if (v != (void*)1)
  2751. mddev_put(mddev);
  2752. return next_mddev;
  2753. }
  2754. static void md_seq_stop(struct seq_file *seq, void *v)
  2755. {
  2756. mddev_t *mddev = v;
  2757. if (mddev && v != (void*)1 && v != (void*)2)
  2758. mddev_put(mddev);
  2759. }
  2760. static int md_seq_show(struct seq_file *seq, void *v)
  2761. {
  2762. mddev_t *mddev = v;
  2763. sector_t size;
  2764. struct list_head *tmp2;
  2765. mdk_rdev_t *rdev;
  2766. int i;
  2767. struct bitmap *bitmap;
  2768. if (v == (void*)1) {
  2769. seq_printf(seq, "Personalities : ");
  2770. spin_lock(&pers_lock);
  2771. for (i = 0; i < MAX_PERSONALITY; i++)
  2772. if (pers[i])
  2773. seq_printf(seq, "[%s] ", pers[i]->name);
  2774. spin_unlock(&pers_lock);
  2775. seq_printf(seq, "\n");
  2776. return 0;
  2777. }
  2778. if (v == (void*)2) {
  2779. status_unused(seq);
  2780. return 0;
  2781. }
  2782. if (mddev_lock(mddev)!=0)
  2783. return -EINTR;
  2784. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  2785. seq_printf(seq, "%s : %sactive", mdname(mddev),
  2786. mddev->pers ? "" : "in");
  2787. if (mddev->pers) {
  2788. if (mddev->ro)
  2789. seq_printf(seq, " (read-only)");
  2790. seq_printf(seq, " %s", mddev->pers->name);
  2791. }
  2792. size = 0;
  2793. ITERATE_RDEV(mddev,rdev,tmp2) {
  2794. char b[BDEVNAME_SIZE];
  2795. seq_printf(seq, " %s[%d]",
  2796. bdevname(rdev->bdev,b), rdev->desc_nr);
  2797. if (rdev->faulty) {
  2798. seq_printf(seq, "(F)");
  2799. continue;
  2800. }
  2801. size += rdev->size;
  2802. }
  2803. if (!list_empty(&mddev->disks)) {
  2804. if (mddev->pers)
  2805. seq_printf(seq, "\n %llu blocks",
  2806. (unsigned long long)mddev->array_size);
  2807. else
  2808. seq_printf(seq, "\n %llu blocks",
  2809. (unsigned long long)size);
  2810. }
  2811. if (mddev->pers) {
  2812. mddev->pers->status (seq, mddev);
  2813. seq_printf(seq, "\n ");
  2814. if (mddev->curr_resync > 2) {
  2815. status_resync (seq, mddev);
  2816. seq_printf(seq, "\n ");
  2817. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  2818. seq_printf(seq, " resync=DELAYED\n ");
  2819. } else
  2820. seq_printf(seq, "\n ");
  2821. if ((bitmap = mddev->bitmap)) {
  2822. unsigned long chunk_kb;
  2823. unsigned long flags;
  2824. spin_lock_irqsave(&bitmap->lock, flags);
  2825. chunk_kb = bitmap->chunksize >> 10;
  2826. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  2827. "%lu%s chunk",
  2828. bitmap->pages - bitmap->missing_pages,
  2829. bitmap->pages,
  2830. (bitmap->pages - bitmap->missing_pages)
  2831. << (PAGE_SHIFT - 10),
  2832. chunk_kb ? chunk_kb : bitmap->chunksize,
  2833. chunk_kb ? "KB" : "B");
  2834. if (bitmap->file) {
  2835. seq_printf(seq, ", file: ");
  2836. seq_path(seq, bitmap->file->f_vfsmnt,
  2837. bitmap->file->f_dentry," \t\n");
  2838. }
  2839. seq_printf(seq, "\n");
  2840. spin_unlock_irqrestore(&bitmap->lock, flags);
  2841. }
  2842. seq_printf(seq, "\n");
  2843. }
  2844. mddev_unlock(mddev);
  2845. return 0;
  2846. }
  2847. static struct seq_operations md_seq_ops = {
  2848. .start = md_seq_start,
  2849. .next = md_seq_next,
  2850. .stop = md_seq_stop,
  2851. .show = md_seq_show,
  2852. };
  2853. static int md_seq_open(struct inode *inode, struct file *file)
  2854. {
  2855. int error;
  2856. error = seq_open(file, &md_seq_ops);
  2857. return error;
  2858. }
  2859. static struct file_operations md_seq_fops = {
  2860. .open = md_seq_open,
  2861. .read = seq_read,
  2862. .llseek = seq_lseek,
  2863. .release = seq_release,
  2864. };
  2865. int register_md_personality(int pnum, mdk_personality_t *p)
  2866. {
  2867. if (pnum >= MAX_PERSONALITY) {
  2868. printk(KERN_ERR
  2869. "md: tried to install personality %s as nr %d, but max is %lu\n",
  2870. p->name, pnum, MAX_PERSONALITY-1);
  2871. return -EINVAL;
  2872. }
  2873. spin_lock(&pers_lock);
  2874. if (pers[pnum]) {
  2875. spin_unlock(&pers_lock);
  2876. return -EBUSY;
  2877. }
  2878. pers[pnum] = p;
  2879. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  2880. spin_unlock(&pers_lock);
  2881. return 0;
  2882. }
  2883. int unregister_md_personality(int pnum)
  2884. {
  2885. if (pnum >= MAX_PERSONALITY)
  2886. return -EINVAL;
  2887. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  2888. spin_lock(&pers_lock);
  2889. pers[pnum] = NULL;
  2890. spin_unlock(&pers_lock);
  2891. return 0;
  2892. }
  2893. static int is_mddev_idle(mddev_t *mddev)
  2894. {
  2895. mdk_rdev_t * rdev;
  2896. struct list_head *tmp;
  2897. int idle;
  2898. unsigned long curr_events;
  2899. idle = 1;
  2900. ITERATE_RDEV(mddev,rdev,tmp) {
  2901. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  2902. curr_events = disk_stat_read(disk, read_sectors) +
  2903. disk_stat_read(disk, write_sectors) -
  2904. atomic_read(&disk->sync_io);
  2905. /* Allow some slack between valud of curr_events and last_events,
  2906. * as there are some uninteresting races.
  2907. * Note: the following is an unsigned comparison.
  2908. */
  2909. if ((curr_events - rdev->last_events + 32) > 64) {
  2910. rdev->last_events = curr_events;
  2911. idle = 0;
  2912. }
  2913. }
  2914. return idle;
  2915. }
  2916. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  2917. {
  2918. /* another "blocks" (512byte) blocks have been synced */
  2919. atomic_sub(blocks, &mddev->recovery_active);
  2920. wake_up(&mddev->recovery_wait);
  2921. if (!ok) {
  2922. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  2923. md_wakeup_thread(mddev->thread);
  2924. // stop recovery, signal do_sync ....
  2925. }
  2926. }
  2927. /* md_write_start(mddev, bi)
  2928. * If we need to update some array metadata (e.g. 'active' flag
  2929. * in superblock) before writing, schedule a superblock update
  2930. * and wait for it to complete.
  2931. */
  2932. void md_write_start(mddev_t *mddev, struct bio *bi)
  2933. {
  2934. DEFINE_WAIT(w);
  2935. if (bio_data_dir(bi) != WRITE)
  2936. return;
  2937. atomic_inc(&mddev->writes_pending);
  2938. if (mddev->in_sync) {
  2939. spin_lock(&mddev->write_lock);
  2940. if (mddev->in_sync) {
  2941. mddev->in_sync = 0;
  2942. mddev->sb_dirty = 1;
  2943. md_wakeup_thread(mddev->thread);
  2944. }
  2945. spin_unlock(&mddev->write_lock);
  2946. }
  2947. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  2948. }
  2949. void md_write_end(mddev_t *mddev)
  2950. {
  2951. if (atomic_dec_and_test(&mddev->writes_pending)) {
  2952. if (mddev->safemode == 2)
  2953. md_wakeup_thread(mddev->thread);
  2954. else
  2955. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  2956. }
  2957. }
  2958. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  2959. #define SYNC_MARKS 10
  2960. #define SYNC_MARK_STEP (3*HZ)
  2961. static void md_do_sync(mddev_t *mddev)
  2962. {
  2963. mddev_t *mddev2;
  2964. unsigned int currspeed = 0,
  2965. window;
  2966. sector_t max_sectors,j, io_sectors;
  2967. unsigned long mark[SYNC_MARKS];
  2968. sector_t mark_cnt[SYNC_MARKS];
  2969. int last_mark,m;
  2970. struct list_head *tmp;
  2971. sector_t last_check;
  2972. int skipped = 0;
  2973. /* just incase thread restarts... */
  2974. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  2975. return;
  2976. /* we overload curr_resync somewhat here.
  2977. * 0 == not engaged in resync at all
  2978. * 2 == checking that there is no conflict with another sync
  2979. * 1 == like 2, but have yielded to allow conflicting resync to
  2980. * commense
  2981. * other == active in resync - this many blocks
  2982. *
  2983. * Before starting a resync we must have set curr_resync to
  2984. * 2, and then checked that every "conflicting" array has curr_resync
  2985. * less than ours. When we find one that is the same or higher
  2986. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  2987. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  2988. * This will mean we have to start checking from the beginning again.
  2989. *
  2990. */
  2991. do {
  2992. mddev->curr_resync = 2;
  2993. try_again:
  2994. if (signal_pending(current)) {
  2995. flush_signals(current);
  2996. goto skip;
  2997. }
  2998. ITERATE_MDDEV(mddev2,tmp) {
  2999. printk(".");
  3000. if (mddev2 == mddev)
  3001. continue;
  3002. if (mddev2->curr_resync &&
  3003. match_mddev_units(mddev,mddev2)) {
  3004. DEFINE_WAIT(wq);
  3005. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3006. /* arbitrarily yield */
  3007. mddev->curr_resync = 1;
  3008. wake_up(&resync_wait);
  3009. }
  3010. if (mddev > mddev2 && mddev->curr_resync == 1)
  3011. /* no need to wait here, we can wait the next
  3012. * time 'round when curr_resync == 2
  3013. */
  3014. continue;
  3015. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  3016. if (!signal_pending(current)
  3017. && mddev2->curr_resync >= mddev->curr_resync) {
  3018. printk(KERN_INFO "md: delaying resync of %s"
  3019. " until %s has finished resync (they"
  3020. " share one or more physical units)\n",
  3021. mdname(mddev), mdname(mddev2));
  3022. mddev_put(mddev2);
  3023. schedule();
  3024. finish_wait(&resync_wait, &wq);
  3025. goto try_again;
  3026. }
  3027. finish_wait(&resync_wait, &wq);
  3028. }
  3029. }
  3030. } while (mddev->curr_resync < 2);
  3031. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3032. /* resync follows the size requested by the personality,
  3033. * which defaults to physical size, but can be virtual size
  3034. */
  3035. max_sectors = mddev->resync_max_sectors;
  3036. else
  3037. /* recovery follows the physical size of devices */
  3038. max_sectors = mddev->size << 1;
  3039. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3040. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3041. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3042. printk(KERN_INFO "md: using maximum available idle IO bandwith "
  3043. "(but not more than %d KB/sec) for reconstruction.\n",
  3044. sysctl_speed_limit_max);
  3045. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3046. /* we don't use the checkpoint if there's a bitmap */
  3047. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
  3048. j = mddev->recovery_cp;
  3049. else
  3050. j = 0;
  3051. io_sectors = 0;
  3052. for (m = 0; m < SYNC_MARKS; m++) {
  3053. mark[m] = jiffies;
  3054. mark_cnt[m] = io_sectors;
  3055. }
  3056. last_mark = 0;
  3057. mddev->resync_mark = mark[last_mark];
  3058. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3059. /*
  3060. * Tune reconstruction:
  3061. */
  3062. window = 32*(PAGE_SIZE/512);
  3063. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3064. window/2,(unsigned long long) max_sectors/2);
  3065. atomic_set(&mddev->recovery_active, 0);
  3066. init_waitqueue_head(&mddev->recovery_wait);
  3067. last_check = 0;
  3068. if (j>2) {
  3069. printk(KERN_INFO
  3070. "md: resuming recovery of %s from checkpoint.\n",
  3071. mdname(mddev));
  3072. mddev->curr_resync = j;
  3073. }
  3074. while (j < max_sectors) {
  3075. sector_t sectors;
  3076. skipped = 0;
  3077. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3078. currspeed < sysctl_speed_limit_min);
  3079. if (sectors == 0) {
  3080. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3081. goto out;
  3082. }
  3083. if (!skipped) { /* actual IO requested */
  3084. io_sectors += sectors;
  3085. atomic_add(sectors, &mddev->recovery_active);
  3086. }
  3087. j += sectors;
  3088. if (j>1) mddev->curr_resync = j;
  3089. if (last_check + window > io_sectors || j == max_sectors)
  3090. continue;
  3091. last_check = io_sectors;
  3092. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3093. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3094. break;
  3095. repeat:
  3096. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3097. /* step marks */
  3098. int next = (last_mark+1) % SYNC_MARKS;
  3099. mddev->resync_mark = mark[next];
  3100. mddev->resync_mark_cnt = mark_cnt[next];
  3101. mark[next] = jiffies;
  3102. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3103. last_mark = next;
  3104. }
  3105. if (signal_pending(current)) {
  3106. /*
  3107. * got a signal, exit.
  3108. */
  3109. printk(KERN_INFO
  3110. "md: md_do_sync() got signal ... exiting\n");
  3111. flush_signals(current);
  3112. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3113. goto out;
  3114. }
  3115. /*
  3116. * this loop exits only if either when we are slower than
  3117. * the 'hard' speed limit, or the system was IO-idle for
  3118. * a jiffy.
  3119. * the system might be non-idle CPU-wise, but we only care
  3120. * about not overloading the IO subsystem. (things like an
  3121. * e2fsck being done on the RAID array should execute fast)
  3122. */
  3123. mddev->queue->unplug_fn(mddev->queue);
  3124. cond_resched();
  3125. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3126. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3127. if (currspeed > sysctl_speed_limit_min) {
  3128. if ((currspeed > sysctl_speed_limit_max) ||
  3129. !is_mddev_idle(mddev)) {
  3130. msleep_interruptible(250);
  3131. goto repeat;
  3132. }
  3133. }
  3134. }
  3135. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3136. /*
  3137. * this also signals 'finished resyncing' to md_stop
  3138. */
  3139. out:
  3140. mddev->queue->unplug_fn(mddev->queue);
  3141. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3142. /* tell personality that we are finished */
  3143. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3144. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3145. mddev->curr_resync > 2 &&
  3146. mddev->curr_resync >= mddev->recovery_cp) {
  3147. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3148. printk(KERN_INFO
  3149. "md: checkpointing recovery of %s.\n",
  3150. mdname(mddev));
  3151. mddev->recovery_cp = mddev->curr_resync;
  3152. } else
  3153. mddev->recovery_cp = MaxSector;
  3154. }
  3155. skip:
  3156. mddev->curr_resync = 0;
  3157. wake_up(&resync_wait);
  3158. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3159. md_wakeup_thread(mddev->thread);
  3160. }
  3161. /*
  3162. * This routine is regularly called by all per-raid-array threads to
  3163. * deal with generic issues like resync and super-block update.
  3164. * Raid personalities that don't have a thread (linear/raid0) do not
  3165. * need this as they never do any recovery or update the superblock.
  3166. *
  3167. * It does not do any resync itself, but rather "forks" off other threads
  3168. * to do that as needed.
  3169. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3170. * "->recovery" and create a thread at ->sync_thread.
  3171. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3172. * and wakeups up this thread which will reap the thread and finish up.
  3173. * This thread also removes any faulty devices (with nr_pending == 0).
  3174. *
  3175. * The overall approach is:
  3176. * 1/ if the superblock needs updating, update it.
  3177. * 2/ If a recovery thread is running, don't do anything else.
  3178. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3179. * 4/ If there are any faulty devices, remove them.
  3180. * 5/ If array is degraded, try to add spares devices
  3181. * 6/ If array has spares or is not in-sync, start a resync thread.
  3182. */
  3183. void md_check_recovery(mddev_t *mddev)
  3184. {
  3185. mdk_rdev_t *rdev;
  3186. struct list_head *rtmp;
  3187. if (mddev->bitmap)
  3188. bitmap_daemon_work(mddev->bitmap);
  3189. if (mddev->ro)
  3190. return;
  3191. if (signal_pending(current)) {
  3192. if (mddev->pers->sync_request) {
  3193. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3194. mdname(mddev));
  3195. mddev->safemode = 2;
  3196. }
  3197. flush_signals(current);
  3198. }
  3199. if ( ! (
  3200. mddev->sb_dirty ||
  3201. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3202. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3203. (mddev->safemode == 1) ||
  3204. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3205. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3206. ))
  3207. return;
  3208. if (mddev_trylock(mddev)==0) {
  3209. int spares =0;
  3210. spin_lock(&mddev->write_lock);
  3211. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3212. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3213. mddev->in_sync = 1;
  3214. mddev->sb_dirty = 1;
  3215. }
  3216. if (mddev->safemode == 1)
  3217. mddev->safemode = 0;
  3218. spin_unlock(&mddev->write_lock);
  3219. if (mddev->sb_dirty)
  3220. md_update_sb(mddev);
  3221. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3222. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3223. /* resync/recovery still happening */
  3224. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3225. goto unlock;
  3226. }
  3227. if (mddev->sync_thread) {
  3228. /* resync has finished, collect result */
  3229. md_unregister_thread(mddev->sync_thread);
  3230. mddev->sync_thread = NULL;
  3231. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3232. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3233. /* success...*/
  3234. /* activate any spares */
  3235. mddev->pers->spare_active(mddev);
  3236. }
  3237. md_update_sb(mddev);
  3238. /* if array is no-longer degraded, then any saved_raid_disk
  3239. * information must be scrapped
  3240. */
  3241. if (!mddev->degraded)
  3242. ITERATE_RDEV(mddev,rdev,rtmp)
  3243. rdev->saved_raid_disk = -1;
  3244. mddev->recovery = 0;
  3245. /* flag recovery needed just to double check */
  3246. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3247. goto unlock;
  3248. }
  3249. if (mddev->recovery)
  3250. /* probably just the RECOVERY_NEEDED flag */
  3251. mddev->recovery = 0;
  3252. /* no recovery is running.
  3253. * remove any failed drives, then
  3254. * add spares if possible.
  3255. * Spare are also removed and re-added, to allow
  3256. * the personality to fail the re-add.
  3257. */
  3258. ITERATE_RDEV(mddev,rdev,rtmp)
  3259. if (rdev->raid_disk >= 0 &&
  3260. (rdev->faulty || ! rdev->in_sync) &&
  3261. atomic_read(&rdev->nr_pending)==0) {
  3262. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
  3263. rdev->raid_disk = -1;
  3264. }
  3265. if (mddev->degraded) {
  3266. ITERATE_RDEV(mddev,rdev,rtmp)
  3267. if (rdev->raid_disk < 0
  3268. && !rdev->faulty) {
  3269. if (mddev->pers->hot_add_disk(mddev,rdev))
  3270. spares++;
  3271. else
  3272. break;
  3273. }
  3274. }
  3275. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3276. /* nothing we can do ... */
  3277. goto unlock;
  3278. }
  3279. if (mddev->pers->sync_request) {
  3280. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3281. if (!spares)
  3282. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3283. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3284. /* We are adding a device or devices to an array
  3285. * which has the bitmap stored on all devices.
  3286. * So make sure all bitmap pages get written
  3287. */
  3288. bitmap_write_all(mddev->bitmap);
  3289. }
  3290. mddev->sync_thread = md_register_thread(md_do_sync,
  3291. mddev,
  3292. "%s_resync");
  3293. if (!mddev->sync_thread) {
  3294. printk(KERN_ERR "%s: could not start resync"
  3295. " thread...\n",
  3296. mdname(mddev));
  3297. /* leave the spares where they are, it shouldn't hurt */
  3298. mddev->recovery = 0;
  3299. } else {
  3300. md_wakeup_thread(mddev->sync_thread);
  3301. }
  3302. }
  3303. unlock:
  3304. mddev_unlock(mddev);
  3305. }
  3306. }
  3307. static int md_notify_reboot(struct notifier_block *this,
  3308. unsigned long code, void *x)
  3309. {
  3310. struct list_head *tmp;
  3311. mddev_t *mddev;
  3312. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3313. printk(KERN_INFO "md: stopping all md devices.\n");
  3314. ITERATE_MDDEV(mddev,tmp)
  3315. if (mddev_trylock(mddev)==0)
  3316. do_md_stop (mddev, 1);
  3317. /*
  3318. * certain more exotic SCSI devices are known to be
  3319. * volatile wrt too early system reboots. While the
  3320. * right place to handle this issue is the given
  3321. * driver, we do want to have a safe RAID driver ...
  3322. */
  3323. mdelay(1000*1);
  3324. }
  3325. return NOTIFY_DONE;
  3326. }
  3327. static struct notifier_block md_notifier = {
  3328. .notifier_call = md_notify_reboot,
  3329. .next = NULL,
  3330. .priority = INT_MAX, /* before any real devices */
  3331. };
  3332. static void md_geninit(void)
  3333. {
  3334. struct proc_dir_entry *p;
  3335. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3336. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3337. if (p)
  3338. p->proc_fops = &md_seq_fops;
  3339. }
  3340. static int __init md_init(void)
  3341. {
  3342. int minor;
  3343. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3344. " MD_SB_DISKS=%d\n",
  3345. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3346. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3347. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
  3348. BITMAP_MINOR);
  3349. if (register_blkdev(MAJOR_NR, "md"))
  3350. return -1;
  3351. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3352. unregister_blkdev(MAJOR_NR, "md");
  3353. return -1;
  3354. }
  3355. devfs_mk_dir("md");
  3356. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3357. md_probe, NULL, NULL);
  3358. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3359. md_probe, NULL, NULL);
  3360. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3361. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3362. S_IFBLK|S_IRUSR|S_IWUSR,
  3363. "md/%d", minor);
  3364. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3365. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3366. S_IFBLK|S_IRUSR|S_IWUSR,
  3367. "md/mdp%d", minor);
  3368. register_reboot_notifier(&md_notifier);
  3369. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3370. md_geninit();
  3371. return (0);
  3372. }
  3373. #ifndef MODULE
  3374. /*
  3375. * Searches all registered partitions for autorun RAID arrays
  3376. * at boot time.
  3377. */
  3378. static dev_t detected_devices[128];
  3379. static int dev_cnt;
  3380. void md_autodetect_dev(dev_t dev)
  3381. {
  3382. if (dev_cnt >= 0 && dev_cnt < 127)
  3383. detected_devices[dev_cnt++] = dev;
  3384. }
  3385. static void autostart_arrays(int part)
  3386. {
  3387. mdk_rdev_t *rdev;
  3388. int i;
  3389. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3390. for (i = 0; i < dev_cnt; i++) {
  3391. dev_t dev = detected_devices[i];
  3392. rdev = md_import_device(dev,0, 0);
  3393. if (IS_ERR(rdev))
  3394. continue;
  3395. if (rdev->faulty) {
  3396. MD_BUG();
  3397. continue;
  3398. }
  3399. list_add(&rdev->same_set, &pending_raid_disks);
  3400. }
  3401. dev_cnt = 0;
  3402. autorun_devices(part);
  3403. }
  3404. #endif
  3405. static __exit void md_exit(void)
  3406. {
  3407. mddev_t *mddev;
  3408. struct list_head *tmp;
  3409. int i;
  3410. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3411. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3412. for (i=0; i < MAX_MD_DEVS; i++)
  3413. devfs_remove("md/%d", i);
  3414. for (i=0; i < MAX_MD_DEVS; i++)
  3415. devfs_remove("md/d%d", i);
  3416. devfs_remove("md");
  3417. unregister_blkdev(MAJOR_NR,"md");
  3418. unregister_blkdev(mdp_major, "mdp");
  3419. unregister_reboot_notifier(&md_notifier);
  3420. unregister_sysctl_table(raid_table_header);
  3421. remove_proc_entry("mdstat", NULL);
  3422. ITERATE_MDDEV(mddev,tmp) {
  3423. struct gendisk *disk = mddev->gendisk;
  3424. if (!disk)
  3425. continue;
  3426. export_array(mddev);
  3427. del_gendisk(disk);
  3428. put_disk(disk);
  3429. mddev->gendisk = NULL;
  3430. mddev_put(mddev);
  3431. }
  3432. }
  3433. module_init(md_init)
  3434. module_exit(md_exit)
  3435. EXPORT_SYMBOL(register_md_personality);
  3436. EXPORT_SYMBOL(unregister_md_personality);
  3437. EXPORT_SYMBOL(md_error);
  3438. EXPORT_SYMBOL(md_done_sync);
  3439. EXPORT_SYMBOL(md_write_start);
  3440. EXPORT_SYMBOL(md_write_end);
  3441. EXPORT_SYMBOL(md_register_thread);
  3442. EXPORT_SYMBOL(md_unregister_thread);
  3443. EXPORT_SYMBOL(md_wakeup_thread);
  3444. EXPORT_SYMBOL(md_print_devices);
  3445. EXPORT_SYMBOL(md_check_recovery);
  3446. MODULE_LICENSE("GPL");