cpu_buffer.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424
  1. /**
  2. * @file cpu_buffer.c
  3. *
  4. * @remark Copyright 2002 OProfile authors
  5. * @remark Read the file COPYING
  6. *
  7. * @author John Levon <levon@movementarian.org>
  8. * @author Barry Kasindorf <barry.kasindorf@amd.com>
  9. *
  10. * Each CPU has a local buffer that stores PC value/event
  11. * pairs. We also log context switches when we notice them.
  12. * Eventually each CPU's buffer is processed into the global
  13. * event buffer by sync_buffer().
  14. *
  15. * We use a local buffer for two reasons: an NMI or similar
  16. * interrupt cannot synchronise, and high sampling rates
  17. * would lead to catastrophic global synchronisation if
  18. * a global buffer was used.
  19. */
  20. #include <linux/sched.h>
  21. #include <linux/oprofile.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/errno.h>
  24. #include "event_buffer.h"
  25. #include "cpu_buffer.h"
  26. #include "buffer_sync.h"
  27. #include "oprof.h"
  28. #define OP_BUFFER_FLAGS 0
  29. /*
  30. * Read and write access is using spin locking. Thus, writing to the
  31. * buffer by NMI handler (x86) could occur also during critical
  32. * sections when reading the buffer. To avoid this, there are 2
  33. * buffers for independent read and write access. Read access is in
  34. * process context only, write access only in the NMI handler. If the
  35. * read buffer runs empty, both buffers are swapped atomically. There
  36. * is potentially a small window during swapping where the buffers are
  37. * disabled and samples could be lost.
  38. *
  39. * Using 2 buffers is a little bit overhead, but the solution is clear
  40. * and does not require changes in the ring buffer implementation. It
  41. * can be changed to a single buffer solution when the ring buffer
  42. * access is implemented as non-locking atomic code.
  43. */
  44. static struct ring_buffer *op_ring_buffer_read;
  45. static struct ring_buffer *op_ring_buffer_write;
  46. DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
  47. static void wq_sync_buffer(struct work_struct *work);
  48. #define DEFAULT_TIMER_EXPIRE (HZ / 10)
  49. static int work_enabled;
  50. unsigned long oprofile_get_cpu_buffer_size(void)
  51. {
  52. return oprofile_cpu_buffer_size;
  53. }
  54. void oprofile_cpu_buffer_inc_smpl_lost(void)
  55. {
  56. struct oprofile_cpu_buffer *cpu_buf
  57. = &__get_cpu_var(cpu_buffer);
  58. cpu_buf->sample_lost_overflow++;
  59. }
  60. void free_cpu_buffers(void)
  61. {
  62. if (op_ring_buffer_read)
  63. ring_buffer_free(op_ring_buffer_read);
  64. op_ring_buffer_read = NULL;
  65. if (op_ring_buffer_write)
  66. ring_buffer_free(op_ring_buffer_write);
  67. op_ring_buffer_write = NULL;
  68. }
  69. int alloc_cpu_buffers(void)
  70. {
  71. int i;
  72. unsigned long buffer_size = oprofile_cpu_buffer_size;
  73. op_ring_buffer_read = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
  74. if (!op_ring_buffer_read)
  75. goto fail;
  76. op_ring_buffer_write = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
  77. if (!op_ring_buffer_write)
  78. goto fail;
  79. for_each_possible_cpu(i) {
  80. struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
  81. b->last_task = NULL;
  82. b->last_is_kernel = -1;
  83. b->tracing = 0;
  84. b->buffer_size = buffer_size;
  85. b->tail_pos = 0;
  86. b->head_pos = 0;
  87. b->sample_received = 0;
  88. b->sample_lost_overflow = 0;
  89. b->backtrace_aborted = 0;
  90. b->sample_invalid_eip = 0;
  91. b->cpu = i;
  92. INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
  93. }
  94. return 0;
  95. fail:
  96. free_cpu_buffers();
  97. return -ENOMEM;
  98. }
  99. void start_cpu_work(void)
  100. {
  101. int i;
  102. work_enabled = 1;
  103. for_each_online_cpu(i) {
  104. struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
  105. /*
  106. * Spread the work by 1 jiffy per cpu so they dont all
  107. * fire at once.
  108. */
  109. schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
  110. }
  111. }
  112. void end_cpu_work(void)
  113. {
  114. int i;
  115. work_enabled = 0;
  116. for_each_online_cpu(i) {
  117. struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
  118. cancel_delayed_work(&b->work);
  119. }
  120. flush_scheduled_work();
  121. }
  122. int op_cpu_buffer_write_entry(struct op_entry *entry)
  123. {
  124. entry->event = ring_buffer_lock_reserve(op_ring_buffer_write,
  125. sizeof(struct op_sample),
  126. &entry->irq_flags);
  127. if (entry->event)
  128. entry->sample = ring_buffer_event_data(entry->event);
  129. else
  130. entry->sample = NULL;
  131. if (!entry->sample)
  132. return -ENOMEM;
  133. return 0;
  134. }
  135. int op_cpu_buffer_write_commit(struct op_entry *entry)
  136. {
  137. return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event,
  138. entry->irq_flags);
  139. }
  140. struct op_sample *op_cpu_buffer_read_entry(int cpu)
  141. {
  142. struct ring_buffer_event *e;
  143. e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
  144. if (e)
  145. return ring_buffer_event_data(e);
  146. if (ring_buffer_swap_cpu(op_ring_buffer_read,
  147. op_ring_buffer_write,
  148. cpu))
  149. return NULL;
  150. e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
  151. if (e)
  152. return ring_buffer_event_data(e);
  153. return NULL;
  154. }
  155. unsigned long op_cpu_buffer_entries(int cpu)
  156. {
  157. return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
  158. + ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
  159. }
  160. static inline int
  161. add_sample(struct oprofile_cpu_buffer *cpu_buf,
  162. unsigned long pc, unsigned long event)
  163. {
  164. struct op_entry entry;
  165. int ret;
  166. ret = op_cpu_buffer_write_entry(&entry);
  167. if (ret)
  168. return ret;
  169. entry.sample->eip = pc;
  170. entry.sample->event = event;
  171. return op_cpu_buffer_write_commit(&entry);
  172. }
  173. static inline int
  174. add_code(struct oprofile_cpu_buffer *buffer, unsigned long value)
  175. {
  176. return add_sample(buffer, ESCAPE_CODE, value);
  177. }
  178. /* This must be safe from any context. It's safe writing here
  179. * because of the head/tail separation of the writer and reader
  180. * of the CPU buffer.
  181. *
  182. * is_kernel is needed because on some architectures you cannot
  183. * tell if you are in kernel or user space simply by looking at
  184. * pc. We tag this in the buffer by generating kernel enter/exit
  185. * events whenever is_kernel changes
  186. */
  187. static int log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
  188. int is_kernel, unsigned long event)
  189. {
  190. struct task_struct *task;
  191. cpu_buf->sample_received++;
  192. if (pc == ESCAPE_CODE) {
  193. cpu_buf->sample_invalid_eip++;
  194. return 0;
  195. }
  196. is_kernel = !!is_kernel;
  197. task = current;
  198. /* notice a switch from user->kernel or vice versa */
  199. if (cpu_buf->last_is_kernel != is_kernel) {
  200. cpu_buf->last_is_kernel = is_kernel;
  201. if (add_code(cpu_buf, is_kernel))
  202. goto fail;
  203. }
  204. /* notice a task switch */
  205. if (cpu_buf->last_task != task) {
  206. cpu_buf->last_task = task;
  207. if (add_code(cpu_buf, (unsigned long)task))
  208. goto fail;
  209. }
  210. if (add_sample(cpu_buf, pc, event))
  211. goto fail;
  212. return 1;
  213. fail:
  214. cpu_buf->sample_lost_overflow++;
  215. return 0;
  216. }
  217. static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
  218. {
  219. add_code(cpu_buf, CPU_TRACE_BEGIN);
  220. cpu_buf->tracing = 1;
  221. }
  222. static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
  223. {
  224. cpu_buf->tracing = 0;
  225. }
  226. static inline void
  227. __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
  228. unsigned long event, int is_kernel)
  229. {
  230. struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
  231. if (!oprofile_backtrace_depth) {
  232. log_sample(cpu_buf, pc, is_kernel, event);
  233. return;
  234. }
  235. oprofile_begin_trace(cpu_buf);
  236. /*
  237. * if log_sample() fail we can't backtrace since we lost the
  238. * source of this event
  239. */
  240. if (log_sample(cpu_buf, pc, is_kernel, event))
  241. oprofile_ops.backtrace(regs, oprofile_backtrace_depth);
  242. oprofile_end_trace(cpu_buf);
  243. }
  244. void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
  245. unsigned long event, int is_kernel)
  246. {
  247. __oprofile_add_ext_sample(pc, regs, event, is_kernel);
  248. }
  249. void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
  250. {
  251. int is_kernel = !user_mode(regs);
  252. unsigned long pc = profile_pc(regs);
  253. __oprofile_add_ext_sample(pc, regs, event, is_kernel);
  254. }
  255. #ifdef CONFIG_OPROFILE_IBS
  256. #define MAX_IBS_SAMPLE_SIZE 14
  257. void oprofile_add_ibs_sample(struct pt_regs * const regs,
  258. unsigned int * const ibs_sample, int ibs_code)
  259. {
  260. int is_kernel = !user_mode(regs);
  261. struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
  262. struct task_struct *task;
  263. int fail = 0;
  264. cpu_buf->sample_received++;
  265. /* notice a switch from user->kernel or vice versa */
  266. if (cpu_buf->last_is_kernel != is_kernel) {
  267. if (add_code(cpu_buf, is_kernel))
  268. goto fail;
  269. cpu_buf->last_is_kernel = is_kernel;
  270. }
  271. /* notice a task switch */
  272. if (!is_kernel) {
  273. task = current;
  274. if (cpu_buf->last_task != task) {
  275. if (add_code(cpu_buf, (unsigned long)task))
  276. goto fail;
  277. cpu_buf->last_task = task;
  278. }
  279. }
  280. fail = fail || add_code(cpu_buf, ibs_code);
  281. fail = fail || add_sample(cpu_buf, ibs_sample[0], ibs_sample[1]);
  282. fail = fail || add_sample(cpu_buf, ibs_sample[2], ibs_sample[3]);
  283. fail = fail || add_sample(cpu_buf, ibs_sample[4], ibs_sample[5]);
  284. if (ibs_code == IBS_OP_BEGIN) {
  285. fail = fail || add_sample(cpu_buf, ibs_sample[6], ibs_sample[7]);
  286. fail = fail || add_sample(cpu_buf, ibs_sample[8], ibs_sample[9]);
  287. fail = fail || add_sample(cpu_buf, ibs_sample[10], ibs_sample[11]);
  288. }
  289. if (fail)
  290. goto fail;
  291. if (oprofile_backtrace_depth)
  292. oprofile_ops.backtrace(regs, oprofile_backtrace_depth);
  293. return;
  294. fail:
  295. cpu_buf->sample_lost_overflow++;
  296. return;
  297. }
  298. #endif
  299. void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
  300. {
  301. struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
  302. log_sample(cpu_buf, pc, is_kernel, event);
  303. }
  304. void oprofile_add_trace(unsigned long pc)
  305. {
  306. struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
  307. if (!cpu_buf->tracing)
  308. return;
  309. /*
  310. * broken frame can give an eip with the same value as an
  311. * escape code, abort the trace if we get it
  312. */
  313. if (pc == ESCAPE_CODE)
  314. goto fail;
  315. if (add_sample(cpu_buf, pc, 0))
  316. goto fail;
  317. return;
  318. fail:
  319. cpu_buf->tracing = 0;
  320. cpu_buf->backtrace_aborted++;
  321. return;
  322. }
  323. /*
  324. * This serves to avoid cpu buffer overflow, and makes sure
  325. * the task mortuary progresses
  326. *
  327. * By using schedule_delayed_work_on and then schedule_delayed_work
  328. * we guarantee this will stay on the correct cpu
  329. */
  330. static void wq_sync_buffer(struct work_struct *work)
  331. {
  332. struct oprofile_cpu_buffer *b =
  333. container_of(work, struct oprofile_cpu_buffer, work.work);
  334. if (b->cpu != smp_processor_id()) {
  335. printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
  336. smp_processor_id(), b->cpu);
  337. if (!cpu_online(b->cpu)) {
  338. cancel_delayed_work(&b->work);
  339. return;
  340. }
  341. }
  342. sync_buffer(b->cpu);
  343. /* don't re-add the work if we're shutting down */
  344. if (work_enabled)
  345. schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
  346. }