md.c 220 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  134. struct mddev *mddev)
  135. {
  136. struct bio *b;
  137. if (!mddev || !mddev->bio_set)
  138. return bio_alloc(gfp_mask, nr_iovecs);
  139. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  140. if (!b)
  141. return NULL;
  142. return b;
  143. }
  144. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  145. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  146. struct mddev *mddev)
  147. {
  148. struct bio *b;
  149. if (!mddev || !mddev->bio_set)
  150. return bio_clone(bio, gfp_mask);
  151. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, mddev->bio_set);
  152. if (!b)
  153. return NULL;
  154. __bio_clone(b, bio);
  155. if (bio_integrity(bio)) {
  156. int ret;
  157. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  158. if (ret < 0) {
  159. bio_put(b);
  160. return NULL;
  161. }
  162. }
  163. return b;
  164. }
  165. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  166. void md_trim_bio(struct bio *bio, int offset, int size)
  167. {
  168. /* 'bio' is a cloned bio which we need to trim to match
  169. * the given offset and size.
  170. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  171. */
  172. int i;
  173. struct bio_vec *bvec;
  174. int sofar = 0;
  175. size <<= 9;
  176. if (offset == 0 && size == bio->bi_size)
  177. return;
  178. bio->bi_sector += offset;
  179. bio->bi_size = size;
  180. offset <<= 9;
  181. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  182. while (bio->bi_idx < bio->bi_vcnt &&
  183. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  184. /* remove this whole bio_vec */
  185. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  186. bio->bi_idx++;
  187. }
  188. if (bio->bi_idx < bio->bi_vcnt) {
  189. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  190. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  191. }
  192. /* avoid any complications with bi_idx being non-zero*/
  193. if (bio->bi_idx) {
  194. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  195. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  196. bio->bi_vcnt -= bio->bi_idx;
  197. bio->bi_idx = 0;
  198. }
  199. /* Make sure vcnt and last bv are not too big */
  200. bio_for_each_segment(bvec, bio, i) {
  201. if (sofar + bvec->bv_len > size)
  202. bvec->bv_len = size - sofar;
  203. if (bvec->bv_len == 0) {
  204. bio->bi_vcnt = i;
  205. break;
  206. }
  207. sofar += bvec->bv_len;
  208. }
  209. }
  210. EXPORT_SYMBOL_GPL(md_trim_bio);
  211. /*
  212. * We have a system wide 'event count' that is incremented
  213. * on any 'interesting' event, and readers of /proc/mdstat
  214. * can use 'poll' or 'select' to find out when the event
  215. * count increases.
  216. *
  217. * Events are:
  218. * start array, stop array, error, add device, remove device,
  219. * start build, activate spare
  220. */
  221. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  222. static atomic_t md_event_count;
  223. void md_new_event(struct mddev *mddev)
  224. {
  225. atomic_inc(&md_event_count);
  226. wake_up(&md_event_waiters);
  227. }
  228. EXPORT_SYMBOL_GPL(md_new_event);
  229. /* Alternate version that can be called from interrupts
  230. * when calling sysfs_notify isn't needed.
  231. */
  232. static void md_new_event_inintr(struct mddev *mddev)
  233. {
  234. atomic_inc(&md_event_count);
  235. wake_up(&md_event_waiters);
  236. }
  237. /*
  238. * Enables to iterate over all existing md arrays
  239. * all_mddevs_lock protects this list.
  240. */
  241. static LIST_HEAD(all_mddevs);
  242. static DEFINE_SPINLOCK(all_mddevs_lock);
  243. /*
  244. * iterates through all used mddevs in the system.
  245. * We take care to grab the all_mddevs_lock whenever navigating
  246. * the list, and to always hold a refcount when unlocked.
  247. * Any code which breaks out of this loop while own
  248. * a reference to the current mddev and must mddev_put it.
  249. */
  250. #define for_each_mddev(_mddev,_tmp) \
  251. \
  252. for (({ spin_lock(&all_mddevs_lock); \
  253. _tmp = all_mddevs.next; \
  254. _mddev = NULL;}); \
  255. ({ if (_tmp != &all_mddevs) \
  256. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  257. spin_unlock(&all_mddevs_lock); \
  258. if (_mddev) mddev_put(_mddev); \
  259. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  260. _tmp != &all_mddevs;}); \
  261. ({ spin_lock(&all_mddevs_lock); \
  262. _tmp = _tmp->next;}) \
  263. )
  264. /* Rather than calling directly into the personality make_request function,
  265. * IO requests come here first so that we can check if the device is
  266. * being suspended pending a reconfiguration.
  267. * We hold a refcount over the call to ->make_request. By the time that
  268. * call has finished, the bio has been linked into some internal structure
  269. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  270. */
  271. static void md_make_request(struct request_queue *q, struct bio *bio)
  272. {
  273. const int rw = bio_data_dir(bio);
  274. struct mddev *mddev = q->queuedata;
  275. int cpu;
  276. unsigned int sectors;
  277. if (mddev == NULL || mddev->pers == NULL
  278. || !mddev->ready) {
  279. bio_io_error(bio);
  280. return;
  281. }
  282. smp_rmb(); /* Ensure implications of 'active' are visible */
  283. rcu_read_lock();
  284. if (mddev->suspended) {
  285. DEFINE_WAIT(__wait);
  286. for (;;) {
  287. prepare_to_wait(&mddev->sb_wait, &__wait,
  288. TASK_UNINTERRUPTIBLE);
  289. if (!mddev->suspended)
  290. break;
  291. rcu_read_unlock();
  292. schedule();
  293. rcu_read_lock();
  294. }
  295. finish_wait(&mddev->sb_wait, &__wait);
  296. }
  297. atomic_inc(&mddev->active_io);
  298. rcu_read_unlock();
  299. /*
  300. * save the sectors now since our bio can
  301. * go away inside make_request
  302. */
  303. sectors = bio_sectors(bio);
  304. mddev->pers->make_request(mddev, bio);
  305. cpu = part_stat_lock();
  306. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  307. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  308. part_stat_unlock();
  309. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  310. wake_up(&mddev->sb_wait);
  311. }
  312. /* mddev_suspend makes sure no new requests are submitted
  313. * to the device, and that any requests that have been submitted
  314. * are completely handled.
  315. * Once ->stop is called and completes, the module will be completely
  316. * unused.
  317. */
  318. void mddev_suspend(struct mddev *mddev)
  319. {
  320. BUG_ON(mddev->suspended);
  321. mddev->suspended = 1;
  322. synchronize_rcu();
  323. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  324. mddev->pers->quiesce(mddev, 1);
  325. del_timer_sync(&mddev->safemode_timer);
  326. }
  327. EXPORT_SYMBOL_GPL(mddev_suspend);
  328. void mddev_resume(struct mddev *mddev)
  329. {
  330. mddev->suspended = 0;
  331. wake_up(&mddev->sb_wait);
  332. mddev->pers->quiesce(mddev, 0);
  333. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  334. md_wakeup_thread(mddev->thread);
  335. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  336. }
  337. EXPORT_SYMBOL_GPL(mddev_resume);
  338. int mddev_congested(struct mddev *mddev, int bits)
  339. {
  340. return mddev->suspended;
  341. }
  342. EXPORT_SYMBOL(mddev_congested);
  343. /*
  344. * Generic flush handling for md
  345. */
  346. static void md_end_flush(struct bio *bio, int err)
  347. {
  348. struct md_rdev *rdev = bio->bi_private;
  349. struct mddev *mddev = rdev->mddev;
  350. rdev_dec_pending(rdev, mddev);
  351. if (atomic_dec_and_test(&mddev->flush_pending)) {
  352. /* The pre-request flush has finished */
  353. queue_work(md_wq, &mddev->flush_work);
  354. }
  355. bio_put(bio);
  356. }
  357. static void md_submit_flush_data(struct work_struct *ws);
  358. static void submit_flushes(struct work_struct *ws)
  359. {
  360. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  361. struct md_rdev *rdev;
  362. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  363. atomic_set(&mddev->flush_pending, 1);
  364. rcu_read_lock();
  365. rdev_for_each_rcu(rdev, mddev)
  366. if (rdev->raid_disk >= 0 &&
  367. !test_bit(Faulty, &rdev->flags)) {
  368. /* Take two references, one is dropped
  369. * when request finishes, one after
  370. * we reclaim rcu_read_lock
  371. */
  372. struct bio *bi;
  373. atomic_inc(&rdev->nr_pending);
  374. atomic_inc(&rdev->nr_pending);
  375. rcu_read_unlock();
  376. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  377. bi->bi_end_io = md_end_flush;
  378. bi->bi_private = rdev;
  379. bi->bi_bdev = rdev->bdev;
  380. atomic_inc(&mddev->flush_pending);
  381. submit_bio(WRITE_FLUSH, bi);
  382. rcu_read_lock();
  383. rdev_dec_pending(rdev, mddev);
  384. }
  385. rcu_read_unlock();
  386. if (atomic_dec_and_test(&mddev->flush_pending))
  387. queue_work(md_wq, &mddev->flush_work);
  388. }
  389. static void md_submit_flush_data(struct work_struct *ws)
  390. {
  391. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  392. struct bio *bio = mddev->flush_bio;
  393. if (bio->bi_size == 0)
  394. /* an empty barrier - all done */
  395. bio_endio(bio, 0);
  396. else {
  397. bio->bi_rw &= ~REQ_FLUSH;
  398. mddev->pers->make_request(mddev, bio);
  399. }
  400. mddev->flush_bio = NULL;
  401. wake_up(&mddev->sb_wait);
  402. }
  403. void md_flush_request(struct mddev *mddev, struct bio *bio)
  404. {
  405. spin_lock_irq(&mddev->write_lock);
  406. wait_event_lock_irq(mddev->sb_wait,
  407. !mddev->flush_bio,
  408. mddev->write_lock, /*nothing*/);
  409. mddev->flush_bio = bio;
  410. spin_unlock_irq(&mddev->write_lock);
  411. INIT_WORK(&mddev->flush_work, submit_flushes);
  412. queue_work(md_wq, &mddev->flush_work);
  413. }
  414. EXPORT_SYMBOL(md_flush_request);
  415. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  416. {
  417. struct mddev *mddev = cb->data;
  418. md_wakeup_thread(mddev->thread);
  419. kfree(cb);
  420. }
  421. EXPORT_SYMBOL(md_unplug);
  422. static inline struct mddev *mddev_get(struct mddev *mddev)
  423. {
  424. atomic_inc(&mddev->active);
  425. return mddev;
  426. }
  427. static void mddev_delayed_delete(struct work_struct *ws);
  428. static void mddev_put(struct mddev *mddev)
  429. {
  430. struct bio_set *bs = NULL;
  431. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  432. return;
  433. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  434. mddev->ctime == 0 && !mddev->hold_active) {
  435. /* Array is not configured at all, and not held active,
  436. * so destroy it */
  437. list_del_init(&mddev->all_mddevs);
  438. bs = mddev->bio_set;
  439. mddev->bio_set = NULL;
  440. if (mddev->gendisk) {
  441. /* We did a probe so need to clean up. Call
  442. * queue_work inside the spinlock so that
  443. * flush_workqueue() after mddev_find will
  444. * succeed in waiting for the work to be done.
  445. */
  446. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  447. queue_work(md_misc_wq, &mddev->del_work);
  448. } else
  449. kfree(mddev);
  450. }
  451. spin_unlock(&all_mddevs_lock);
  452. if (bs)
  453. bioset_free(bs);
  454. }
  455. void mddev_init(struct mddev *mddev)
  456. {
  457. mutex_init(&mddev->open_mutex);
  458. mutex_init(&mddev->reconfig_mutex);
  459. mutex_init(&mddev->bitmap_info.mutex);
  460. INIT_LIST_HEAD(&mddev->disks);
  461. INIT_LIST_HEAD(&mddev->all_mddevs);
  462. init_timer(&mddev->safemode_timer);
  463. atomic_set(&mddev->active, 1);
  464. atomic_set(&mddev->openers, 0);
  465. atomic_set(&mddev->active_io, 0);
  466. spin_lock_init(&mddev->write_lock);
  467. atomic_set(&mddev->flush_pending, 0);
  468. init_waitqueue_head(&mddev->sb_wait);
  469. init_waitqueue_head(&mddev->recovery_wait);
  470. mddev->reshape_position = MaxSector;
  471. mddev->reshape_backwards = 0;
  472. mddev->resync_min = 0;
  473. mddev->resync_max = MaxSector;
  474. mddev->level = LEVEL_NONE;
  475. }
  476. EXPORT_SYMBOL_GPL(mddev_init);
  477. static struct mddev * mddev_find(dev_t unit)
  478. {
  479. struct mddev *mddev, *new = NULL;
  480. if (unit && MAJOR(unit) != MD_MAJOR)
  481. unit &= ~((1<<MdpMinorShift)-1);
  482. retry:
  483. spin_lock(&all_mddevs_lock);
  484. if (unit) {
  485. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  486. if (mddev->unit == unit) {
  487. mddev_get(mddev);
  488. spin_unlock(&all_mddevs_lock);
  489. kfree(new);
  490. return mddev;
  491. }
  492. if (new) {
  493. list_add(&new->all_mddevs, &all_mddevs);
  494. spin_unlock(&all_mddevs_lock);
  495. new->hold_active = UNTIL_IOCTL;
  496. return new;
  497. }
  498. } else if (new) {
  499. /* find an unused unit number */
  500. static int next_minor = 512;
  501. int start = next_minor;
  502. int is_free = 0;
  503. int dev = 0;
  504. while (!is_free) {
  505. dev = MKDEV(MD_MAJOR, next_minor);
  506. next_minor++;
  507. if (next_minor > MINORMASK)
  508. next_minor = 0;
  509. if (next_minor == start) {
  510. /* Oh dear, all in use. */
  511. spin_unlock(&all_mddevs_lock);
  512. kfree(new);
  513. return NULL;
  514. }
  515. is_free = 1;
  516. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  517. if (mddev->unit == dev) {
  518. is_free = 0;
  519. break;
  520. }
  521. }
  522. new->unit = dev;
  523. new->md_minor = MINOR(dev);
  524. new->hold_active = UNTIL_STOP;
  525. list_add(&new->all_mddevs, &all_mddevs);
  526. spin_unlock(&all_mddevs_lock);
  527. return new;
  528. }
  529. spin_unlock(&all_mddevs_lock);
  530. new = kzalloc(sizeof(*new), GFP_KERNEL);
  531. if (!new)
  532. return NULL;
  533. new->unit = unit;
  534. if (MAJOR(unit) == MD_MAJOR)
  535. new->md_minor = MINOR(unit);
  536. else
  537. new->md_minor = MINOR(unit) >> MdpMinorShift;
  538. mddev_init(new);
  539. goto retry;
  540. }
  541. static inline int mddev_lock(struct mddev * mddev)
  542. {
  543. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  544. }
  545. static inline int mddev_is_locked(struct mddev *mddev)
  546. {
  547. return mutex_is_locked(&mddev->reconfig_mutex);
  548. }
  549. static inline int mddev_trylock(struct mddev * mddev)
  550. {
  551. return mutex_trylock(&mddev->reconfig_mutex);
  552. }
  553. static struct attribute_group md_redundancy_group;
  554. static void mddev_unlock(struct mddev * mddev)
  555. {
  556. if (mddev->to_remove) {
  557. /* These cannot be removed under reconfig_mutex as
  558. * an access to the files will try to take reconfig_mutex
  559. * while holding the file unremovable, which leads to
  560. * a deadlock.
  561. * So hold set sysfs_active while the remove in happeing,
  562. * and anything else which might set ->to_remove or my
  563. * otherwise change the sysfs namespace will fail with
  564. * -EBUSY if sysfs_active is still set.
  565. * We set sysfs_active under reconfig_mutex and elsewhere
  566. * test it under the same mutex to ensure its correct value
  567. * is seen.
  568. */
  569. struct attribute_group *to_remove = mddev->to_remove;
  570. mddev->to_remove = NULL;
  571. mddev->sysfs_active = 1;
  572. mutex_unlock(&mddev->reconfig_mutex);
  573. if (mddev->kobj.sd) {
  574. if (to_remove != &md_redundancy_group)
  575. sysfs_remove_group(&mddev->kobj, to_remove);
  576. if (mddev->pers == NULL ||
  577. mddev->pers->sync_request == NULL) {
  578. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  579. if (mddev->sysfs_action)
  580. sysfs_put(mddev->sysfs_action);
  581. mddev->sysfs_action = NULL;
  582. }
  583. }
  584. mddev->sysfs_active = 0;
  585. } else
  586. mutex_unlock(&mddev->reconfig_mutex);
  587. /* As we've dropped the mutex we need a spinlock to
  588. * make sure the thread doesn't disappear
  589. */
  590. spin_lock(&pers_lock);
  591. md_wakeup_thread(mddev->thread);
  592. spin_unlock(&pers_lock);
  593. }
  594. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  595. {
  596. struct md_rdev *rdev;
  597. rdev_for_each(rdev, mddev)
  598. if (rdev->desc_nr == nr)
  599. return rdev;
  600. return NULL;
  601. }
  602. static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
  603. {
  604. struct md_rdev *rdev;
  605. rdev_for_each(rdev, mddev)
  606. if (rdev->bdev->bd_dev == dev)
  607. return rdev;
  608. return NULL;
  609. }
  610. static struct md_personality *find_pers(int level, char *clevel)
  611. {
  612. struct md_personality *pers;
  613. list_for_each_entry(pers, &pers_list, list) {
  614. if (level != LEVEL_NONE && pers->level == level)
  615. return pers;
  616. if (strcmp(pers->name, clevel)==0)
  617. return pers;
  618. }
  619. return NULL;
  620. }
  621. /* return the offset of the super block in 512byte sectors */
  622. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  623. {
  624. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  625. return MD_NEW_SIZE_SECTORS(num_sectors);
  626. }
  627. static int alloc_disk_sb(struct md_rdev * rdev)
  628. {
  629. if (rdev->sb_page)
  630. MD_BUG();
  631. rdev->sb_page = alloc_page(GFP_KERNEL);
  632. if (!rdev->sb_page) {
  633. printk(KERN_ALERT "md: out of memory.\n");
  634. return -ENOMEM;
  635. }
  636. return 0;
  637. }
  638. void md_rdev_clear(struct md_rdev *rdev)
  639. {
  640. if (rdev->sb_page) {
  641. put_page(rdev->sb_page);
  642. rdev->sb_loaded = 0;
  643. rdev->sb_page = NULL;
  644. rdev->sb_start = 0;
  645. rdev->sectors = 0;
  646. }
  647. if (rdev->bb_page) {
  648. put_page(rdev->bb_page);
  649. rdev->bb_page = NULL;
  650. }
  651. kfree(rdev->badblocks.page);
  652. rdev->badblocks.page = NULL;
  653. }
  654. EXPORT_SYMBOL_GPL(md_rdev_clear);
  655. static void super_written(struct bio *bio, int error)
  656. {
  657. struct md_rdev *rdev = bio->bi_private;
  658. struct mddev *mddev = rdev->mddev;
  659. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  660. printk("md: super_written gets error=%d, uptodate=%d\n",
  661. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  662. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  663. md_error(mddev, rdev);
  664. }
  665. if (atomic_dec_and_test(&mddev->pending_writes))
  666. wake_up(&mddev->sb_wait);
  667. bio_put(bio);
  668. }
  669. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  670. sector_t sector, int size, struct page *page)
  671. {
  672. /* write first size bytes of page to sector of rdev
  673. * Increment mddev->pending_writes before returning
  674. * and decrement it on completion, waking up sb_wait
  675. * if zero is reached.
  676. * If an error occurred, call md_error
  677. */
  678. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  679. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  680. bio->bi_sector = sector;
  681. bio_add_page(bio, page, size, 0);
  682. bio->bi_private = rdev;
  683. bio->bi_end_io = super_written;
  684. atomic_inc(&mddev->pending_writes);
  685. submit_bio(WRITE_FLUSH_FUA, bio);
  686. }
  687. void md_super_wait(struct mddev *mddev)
  688. {
  689. /* wait for all superblock writes that were scheduled to complete */
  690. DEFINE_WAIT(wq);
  691. for(;;) {
  692. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  693. if (atomic_read(&mddev->pending_writes)==0)
  694. break;
  695. schedule();
  696. }
  697. finish_wait(&mddev->sb_wait, &wq);
  698. }
  699. static void bi_complete(struct bio *bio, int error)
  700. {
  701. complete((struct completion*)bio->bi_private);
  702. }
  703. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  704. struct page *page, int rw, bool metadata_op)
  705. {
  706. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  707. struct completion event;
  708. int ret;
  709. rw |= REQ_SYNC;
  710. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  711. rdev->meta_bdev : rdev->bdev;
  712. if (metadata_op)
  713. bio->bi_sector = sector + rdev->sb_start;
  714. else if (rdev->mddev->reshape_position != MaxSector &&
  715. (rdev->mddev->reshape_backwards ==
  716. (sector >= rdev->mddev->reshape_position)))
  717. bio->bi_sector = sector + rdev->new_data_offset;
  718. else
  719. bio->bi_sector = sector + rdev->data_offset;
  720. bio_add_page(bio, page, size, 0);
  721. init_completion(&event);
  722. bio->bi_private = &event;
  723. bio->bi_end_io = bi_complete;
  724. submit_bio(rw, bio);
  725. wait_for_completion(&event);
  726. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  727. bio_put(bio);
  728. return ret;
  729. }
  730. EXPORT_SYMBOL_GPL(sync_page_io);
  731. static int read_disk_sb(struct md_rdev * rdev, int size)
  732. {
  733. char b[BDEVNAME_SIZE];
  734. if (!rdev->sb_page) {
  735. MD_BUG();
  736. return -EINVAL;
  737. }
  738. if (rdev->sb_loaded)
  739. return 0;
  740. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  741. goto fail;
  742. rdev->sb_loaded = 1;
  743. return 0;
  744. fail:
  745. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  746. bdevname(rdev->bdev,b));
  747. return -EINVAL;
  748. }
  749. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  750. {
  751. return sb1->set_uuid0 == sb2->set_uuid0 &&
  752. sb1->set_uuid1 == sb2->set_uuid1 &&
  753. sb1->set_uuid2 == sb2->set_uuid2 &&
  754. sb1->set_uuid3 == sb2->set_uuid3;
  755. }
  756. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  757. {
  758. int ret;
  759. mdp_super_t *tmp1, *tmp2;
  760. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  761. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  762. if (!tmp1 || !tmp2) {
  763. ret = 0;
  764. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  765. goto abort;
  766. }
  767. *tmp1 = *sb1;
  768. *tmp2 = *sb2;
  769. /*
  770. * nr_disks is not constant
  771. */
  772. tmp1->nr_disks = 0;
  773. tmp2->nr_disks = 0;
  774. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  775. abort:
  776. kfree(tmp1);
  777. kfree(tmp2);
  778. return ret;
  779. }
  780. static u32 md_csum_fold(u32 csum)
  781. {
  782. csum = (csum & 0xffff) + (csum >> 16);
  783. return (csum & 0xffff) + (csum >> 16);
  784. }
  785. static unsigned int calc_sb_csum(mdp_super_t * sb)
  786. {
  787. u64 newcsum = 0;
  788. u32 *sb32 = (u32*)sb;
  789. int i;
  790. unsigned int disk_csum, csum;
  791. disk_csum = sb->sb_csum;
  792. sb->sb_csum = 0;
  793. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  794. newcsum += sb32[i];
  795. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  796. #ifdef CONFIG_ALPHA
  797. /* This used to use csum_partial, which was wrong for several
  798. * reasons including that different results are returned on
  799. * different architectures. It isn't critical that we get exactly
  800. * the same return value as before (we always csum_fold before
  801. * testing, and that removes any differences). However as we
  802. * know that csum_partial always returned a 16bit value on
  803. * alphas, do a fold to maximise conformity to previous behaviour.
  804. */
  805. sb->sb_csum = md_csum_fold(disk_csum);
  806. #else
  807. sb->sb_csum = disk_csum;
  808. #endif
  809. return csum;
  810. }
  811. /*
  812. * Handle superblock details.
  813. * We want to be able to handle multiple superblock formats
  814. * so we have a common interface to them all, and an array of
  815. * different handlers.
  816. * We rely on user-space to write the initial superblock, and support
  817. * reading and updating of superblocks.
  818. * Interface methods are:
  819. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  820. * loads and validates a superblock on dev.
  821. * if refdev != NULL, compare superblocks on both devices
  822. * Return:
  823. * 0 - dev has a superblock that is compatible with refdev
  824. * 1 - dev has a superblock that is compatible and newer than refdev
  825. * so dev should be used as the refdev in future
  826. * -EINVAL superblock incompatible or invalid
  827. * -othererror e.g. -EIO
  828. *
  829. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  830. * Verify that dev is acceptable into mddev.
  831. * The first time, mddev->raid_disks will be 0, and data from
  832. * dev should be merged in. Subsequent calls check that dev
  833. * is new enough. Return 0 or -EINVAL
  834. *
  835. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  836. * Update the superblock for rdev with data in mddev
  837. * This does not write to disc.
  838. *
  839. */
  840. struct super_type {
  841. char *name;
  842. struct module *owner;
  843. int (*load_super)(struct md_rdev *rdev,
  844. struct md_rdev *refdev,
  845. int minor_version);
  846. int (*validate_super)(struct mddev *mddev,
  847. struct md_rdev *rdev);
  848. void (*sync_super)(struct mddev *mddev,
  849. struct md_rdev *rdev);
  850. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  851. sector_t num_sectors);
  852. int (*allow_new_offset)(struct md_rdev *rdev,
  853. unsigned long long new_offset);
  854. };
  855. /*
  856. * Check that the given mddev has no bitmap.
  857. *
  858. * This function is called from the run method of all personalities that do not
  859. * support bitmaps. It prints an error message and returns non-zero if mddev
  860. * has a bitmap. Otherwise, it returns 0.
  861. *
  862. */
  863. int md_check_no_bitmap(struct mddev *mddev)
  864. {
  865. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  866. return 0;
  867. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  868. mdname(mddev), mddev->pers->name);
  869. return 1;
  870. }
  871. EXPORT_SYMBOL(md_check_no_bitmap);
  872. /*
  873. * load_super for 0.90.0
  874. */
  875. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  876. {
  877. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  878. mdp_super_t *sb;
  879. int ret;
  880. /*
  881. * Calculate the position of the superblock (512byte sectors),
  882. * it's at the end of the disk.
  883. *
  884. * It also happens to be a multiple of 4Kb.
  885. */
  886. rdev->sb_start = calc_dev_sboffset(rdev);
  887. ret = read_disk_sb(rdev, MD_SB_BYTES);
  888. if (ret) return ret;
  889. ret = -EINVAL;
  890. bdevname(rdev->bdev, b);
  891. sb = page_address(rdev->sb_page);
  892. if (sb->md_magic != MD_SB_MAGIC) {
  893. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  894. b);
  895. goto abort;
  896. }
  897. if (sb->major_version != 0 ||
  898. sb->minor_version < 90 ||
  899. sb->minor_version > 91) {
  900. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  901. sb->major_version, sb->minor_version,
  902. b);
  903. goto abort;
  904. }
  905. if (sb->raid_disks <= 0)
  906. goto abort;
  907. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  908. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  909. b);
  910. goto abort;
  911. }
  912. rdev->preferred_minor = sb->md_minor;
  913. rdev->data_offset = 0;
  914. rdev->new_data_offset = 0;
  915. rdev->sb_size = MD_SB_BYTES;
  916. rdev->badblocks.shift = -1;
  917. if (sb->level == LEVEL_MULTIPATH)
  918. rdev->desc_nr = -1;
  919. else
  920. rdev->desc_nr = sb->this_disk.number;
  921. if (!refdev) {
  922. ret = 1;
  923. } else {
  924. __u64 ev1, ev2;
  925. mdp_super_t *refsb = page_address(refdev->sb_page);
  926. if (!uuid_equal(refsb, sb)) {
  927. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  928. b, bdevname(refdev->bdev,b2));
  929. goto abort;
  930. }
  931. if (!sb_equal(refsb, sb)) {
  932. printk(KERN_WARNING "md: %s has same UUID"
  933. " but different superblock to %s\n",
  934. b, bdevname(refdev->bdev, b2));
  935. goto abort;
  936. }
  937. ev1 = md_event(sb);
  938. ev2 = md_event(refsb);
  939. if (ev1 > ev2)
  940. ret = 1;
  941. else
  942. ret = 0;
  943. }
  944. rdev->sectors = rdev->sb_start;
  945. /* Limit to 4TB as metadata cannot record more than that.
  946. * (not needed for Linear and RAID0 as metadata doesn't
  947. * record this size)
  948. */
  949. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  950. rdev->sectors = (2ULL << 32) - 2;
  951. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  952. /* "this cannot possibly happen" ... */
  953. ret = -EINVAL;
  954. abort:
  955. return ret;
  956. }
  957. /*
  958. * validate_super for 0.90.0
  959. */
  960. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  961. {
  962. mdp_disk_t *desc;
  963. mdp_super_t *sb = page_address(rdev->sb_page);
  964. __u64 ev1 = md_event(sb);
  965. rdev->raid_disk = -1;
  966. clear_bit(Faulty, &rdev->flags);
  967. clear_bit(In_sync, &rdev->flags);
  968. clear_bit(WriteMostly, &rdev->flags);
  969. if (mddev->raid_disks == 0) {
  970. mddev->major_version = 0;
  971. mddev->minor_version = sb->minor_version;
  972. mddev->patch_version = sb->patch_version;
  973. mddev->external = 0;
  974. mddev->chunk_sectors = sb->chunk_size >> 9;
  975. mddev->ctime = sb->ctime;
  976. mddev->utime = sb->utime;
  977. mddev->level = sb->level;
  978. mddev->clevel[0] = 0;
  979. mddev->layout = sb->layout;
  980. mddev->raid_disks = sb->raid_disks;
  981. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  982. mddev->events = ev1;
  983. mddev->bitmap_info.offset = 0;
  984. mddev->bitmap_info.space = 0;
  985. /* bitmap can use 60 K after the 4K superblocks */
  986. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  987. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  988. mddev->reshape_backwards = 0;
  989. if (mddev->minor_version >= 91) {
  990. mddev->reshape_position = sb->reshape_position;
  991. mddev->delta_disks = sb->delta_disks;
  992. mddev->new_level = sb->new_level;
  993. mddev->new_layout = sb->new_layout;
  994. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  995. if (mddev->delta_disks < 0)
  996. mddev->reshape_backwards = 1;
  997. } else {
  998. mddev->reshape_position = MaxSector;
  999. mddev->delta_disks = 0;
  1000. mddev->new_level = mddev->level;
  1001. mddev->new_layout = mddev->layout;
  1002. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1003. }
  1004. if (sb->state & (1<<MD_SB_CLEAN))
  1005. mddev->recovery_cp = MaxSector;
  1006. else {
  1007. if (sb->events_hi == sb->cp_events_hi &&
  1008. sb->events_lo == sb->cp_events_lo) {
  1009. mddev->recovery_cp = sb->recovery_cp;
  1010. } else
  1011. mddev->recovery_cp = 0;
  1012. }
  1013. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1014. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1015. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1016. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1017. mddev->max_disks = MD_SB_DISKS;
  1018. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1019. mddev->bitmap_info.file == NULL) {
  1020. mddev->bitmap_info.offset =
  1021. mddev->bitmap_info.default_offset;
  1022. mddev->bitmap_info.space =
  1023. mddev->bitmap_info.space;
  1024. }
  1025. } else if (mddev->pers == NULL) {
  1026. /* Insist on good event counter while assembling, except
  1027. * for spares (which don't need an event count) */
  1028. ++ev1;
  1029. if (sb->disks[rdev->desc_nr].state & (
  1030. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1031. if (ev1 < mddev->events)
  1032. return -EINVAL;
  1033. } else if (mddev->bitmap) {
  1034. /* if adding to array with a bitmap, then we can accept an
  1035. * older device ... but not too old.
  1036. */
  1037. if (ev1 < mddev->bitmap->events_cleared)
  1038. return 0;
  1039. } else {
  1040. if (ev1 < mddev->events)
  1041. /* just a hot-add of a new device, leave raid_disk at -1 */
  1042. return 0;
  1043. }
  1044. if (mddev->level != LEVEL_MULTIPATH) {
  1045. desc = sb->disks + rdev->desc_nr;
  1046. if (desc->state & (1<<MD_DISK_FAULTY))
  1047. set_bit(Faulty, &rdev->flags);
  1048. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1049. desc->raid_disk < mddev->raid_disks */) {
  1050. set_bit(In_sync, &rdev->flags);
  1051. rdev->raid_disk = desc->raid_disk;
  1052. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1053. /* active but not in sync implies recovery up to
  1054. * reshape position. We don't know exactly where
  1055. * that is, so set to zero for now */
  1056. if (mddev->minor_version >= 91) {
  1057. rdev->recovery_offset = 0;
  1058. rdev->raid_disk = desc->raid_disk;
  1059. }
  1060. }
  1061. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1062. set_bit(WriteMostly, &rdev->flags);
  1063. } else /* MULTIPATH are always insync */
  1064. set_bit(In_sync, &rdev->flags);
  1065. return 0;
  1066. }
  1067. /*
  1068. * sync_super for 0.90.0
  1069. */
  1070. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1071. {
  1072. mdp_super_t *sb;
  1073. struct md_rdev *rdev2;
  1074. int next_spare = mddev->raid_disks;
  1075. /* make rdev->sb match mddev data..
  1076. *
  1077. * 1/ zero out disks
  1078. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1079. * 3/ any empty disks < next_spare become removed
  1080. *
  1081. * disks[0] gets initialised to REMOVED because
  1082. * we cannot be sure from other fields if it has
  1083. * been initialised or not.
  1084. */
  1085. int i;
  1086. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1087. rdev->sb_size = MD_SB_BYTES;
  1088. sb = page_address(rdev->sb_page);
  1089. memset(sb, 0, sizeof(*sb));
  1090. sb->md_magic = MD_SB_MAGIC;
  1091. sb->major_version = mddev->major_version;
  1092. sb->patch_version = mddev->patch_version;
  1093. sb->gvalid_words = 0; /* ignored */
  1094. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1095. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1096. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1097. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1098. sb->ctime = mddev->ctime;
  1099. sb->level = mddev->level;
  1100. sb->size = mddev->dev_sectors / 2;
  1101. sb->raid_disks = mddev->raid_disks;
  1102. sb->md_minor = mddev->md_minor;
  1103. sb->not_persistent = 0;
  1104. sb->utime = mddev->utime;
  1105. sb->state = 0;
  1106. sb->events_hi = (mddev->events>>32);
  1107. sb->events_lo = (u32)mddev->events;
  1108. if (mddev->reshape_position == MaxSector)
  1109. sb->minor_version = 90;
  1110. else {
  1111. sb->minor_version = 91;
  1112. sb->reshape_position = mddev->reshape_position;
  1113. sb->new_level = mddev->new_level;
  1114. sb->delta_disks = mddev->delta_disks;
  1115. sb->new_layout = mddev->new_layout;
  1116. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1117. }
  1118. mddev->minor_version = sb->minor_version;
  1119. if (mddev->in_sync)
  1120. {
  1121. sb->recovery_cp = mddev->recovery_cp;
  1122. sb->cp_events_hi = (mddev->events>>32);
  1123. sb->cp_events_lo = (u32)mddev->events;
  1124. if (mddev->recovery_cp == MaxSector)
  1125. sb->state = (1<< MD_SB_CLEAN);
  1126. } else
  1127. sb->recovery_cp = 0;
  1128. sb->layout = mddev->layout;
  1129. sb->chunk_size = mddev->chunk_sectors << 9;
  1130. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1131. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1132. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1133. rdev_for_each(rdev2, mddev) {
  1134. mdp_disk_t *d;
  1135. int desc_nr;
  1136. int is_active = test_bit(In_sync, &rdev2->flags);
  1137. if (rdev2->raid_disk >= 0 &&
  1138. sb->minor_version >= 91)
  1139. /* we have nowhere to store the recovery_offset,
  1140. * but if it is not below the reshape_position,
  1141. * we can piggy-back on that.
  1142. */
  1143. is_active = 1;
  1144. if (rdev2->raid_disk < 0 ||
  1145. test_bit(Faulty, &rdev2->flags))
  1146. is_active = 0;
  1147. if (is_active)
  1148. desc_nr = rdev2->raid_disk;
  1149. else
  1150. desc_nr = next_spare++;
  1151. rdev2->desc_nr = desc_nr;
  1152. d = &sb->disks[rdev2->desc_nr];
  1153. nr_disks++;
  1154. d->number = rdev2->desc_nr;
  1155. d->major = MAJOR(rdev2->bdev->bd_dev);
  1156. d->minor = MINOR(rdev2->bdev->bd_dev);
  1157. if (is_active)
  1158. d->raid_disk = rdev2->raid_disk;
  1159. else
  1160. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1161. if (test_bit(Faulty, &rdev2->flags))
  1162. d->state = (1<<MD_DISK_FAULTY);
  1163. else if (is_active) {
  1164. d->state = (1<<MD_DISK_ACTIVE);
  1165. if (test_bit(In_sync, &rdev2->flags))
  1166. d->state |= (1<<MD_DISK_SYNC);
  1167. active++;
  1168. working++;
  1169. } else {
  1170. d->state = 0;
  1171. spare++;
  1172. working++;
  1173. }
  1174. if (test_bit(WriteMostly, &rdev2->flags))
  1175. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1176. }
  1177. /* now set the "removed" and "faulty" bits on any missing devices */
  1178. for (i=0 ; i < mddev->raid_disks ; i++) {
  1179. mdp_disk_t *d = &sb->disks[i];
  1180. if (d->state == 0 && d->number == 0) {
  1181. d->number = i;
  1182. d->raid_disk = i;
  1183. d->state = (1<<MD_DISK_REMOVED);
  1184. d->state |= (1<<MD_DISK_FAULTY);
  1185. failed++;
  1186. }
  1187. }
  1188. sb->nr_disks = nr_disks;
  1189. sb->active_disks = active;
  1190. sb->working_disks = working;
  1191. sb->failed_disks = failed;
  1192. sb->spare_disks = spare;
  1193. sb->this_disk = sb->disks[rdev->desc_nr];
  1194. sb->sb_csum = calc_sb_csum(sb);
  1195. }
  1196. /*
  1197. * rdev_size_change for 0.90.0
  1198. */
  1199. static unsigned long long
  1200. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1201. {
  1202. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1203. return 0; /* component must fit device */
  1204. if (rdev->mddev->bitmap_info.offset)
  1205. return 0; /* can't move bitmap */
  1206. rdev->sb_start = calc_dev_sboffset(rdev);
  1207. if (!num_sectors || num_sectors > rdev->sb_start)
  1208. num_sectors = rdev->sb_start;
  1209. /* Limit to 4TB as metadata cannot record more than that.
  1210. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1211. */
  1212. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1213. num_sectors = (2ULL << 32) - 2;
  1214. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1215. rdev->sb_page);
  1216. md_super_wait(rdev->mddev);
  1217. return num_sectors;
  1218. }
  1219. static int
  1220. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1221. {
  1222. /* non-zero offset changes not possible with v0.90 */
  1223. return new_offset == 0;
  1224. }
  1225. /*
  1226. * version 1 superblock
  1227. */
  1228. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1229. {
  1230. __le32 disk_csum;
  1231. u32 csum;
  1232. unsigned long long newcsum;
  1233. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1234. __le32 *isuper = (__le32*)sb;
  1235. int i;
  1236. disk_csum = sb->sb_csum;
  1237. sb->sb_csum = 0;
  1238. newcsum = 0;
  1239. for (i=0; size>=4; size -= 4 )
  1240. newcsum += le32_to_cpu(*isuper++);
  1241. if (size == 2)
  1242. newcsum += le16_to_cpu(*(__le16*) isuper);
  1243. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1244. sb->sb_csum = disk_csum;
  1245. return cpu_to_le32(csum);
  1246. }
  1247. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1248. int acknowledged);
  1249. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1250. {
  1251. struct mdp_superblock_1 *sb;
  1252. int ret;
  1253. sector_t sb_start;
  1254. sector_t sectors;
  1255. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1256. int bmask;
  1257. /*
  1258. * Calculate the position of the superblock in 512byte sectors.
  1259. * It is always aligned to a 4K boundary and
  1260. * depeding on minor_version, it can be:
  1261. * 0: At least 8K, but less than 12K, from end of device
  1262. * 1: At start of device
  1263. * 2: 4K from start of device.
  1264. */
  1265. switch(minor_version) {
  1266. case 0:
  1267. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1268. sb_start -= 8*2;
  1269. sb_start &= ~(sector_t)(4*2-1);
  1270. break;
  1271. case 1:
  1272. sb_start = 0;
  1273. break;
  1274. case 2:
  1275. sb_start = 8;
  1276. break;
  1277. default:
  1278. return -EINVAL;
  1279. }
  1280. rdev->sb_start = sb_start;
  1281. /* superblock is rarely larger than 1K, but it can be larger,
  1282. * and it is safe to read 4k, so we do that
  1283. */
  1284. ret = read_disk_sb(rdev, 4096);
  1285. if (ret) return ret;
  1286. sb = page_address(rdev->sb_page);
  1287. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1288. sb->major_version != cpu_to_le32(1) ||
  1289. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1290. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1291. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1292. return -EINVAL;
  1293. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1294. printk("md: invalid superblock checksum on %s\n",
  1295. bdevname(rdev->bdev,b));
  1296. return -EINVAL;
  1297. }
  1298. if (le64_to_cpu(sb->data_size) < 10) {
  1299. printk("md: data_size too small on %s\n",
  1300. bdevname(rdev->bdev,b));
  1301. return -EINVAL;
  1302. }
  1303. if (sb->pad0 ||
  1304. sb->pad3[0] ||
  1305. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1306. /* Some padding is non-zero, might be a new feature */
  1307. return -EINVAL;
  1308. rdev->preferred_minor = 0xffff;
  1309. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1310. rdev->new_data_offset = rdev->data_offset;
  1311. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1312. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1313. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1314. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1315. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1316. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1317. if (rdev->sb_size & bmask)
  1318. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1319. if (minor_version
  1320. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1321. return -EINVAL;
  1322. if (minor_version
  1323. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1324. return -EINVAL;
  1325. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1326. rdev->desc_nr = -1;
  1327. else
  1328. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1329. if (!rdev->bb_page) {
  1330. rdev->bb_page = alloc_page(GFP_KERNEL);
  1331. if (!rdev->bb_page)
  1332. return -ENOMEM;
  1333. }
  1334. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1335. rdev->badblocks.count == 0) {
  1336. /* need to load the bad block list.
  1337. * Currently we limit it to one page.
  1338. */
  1339. s32 offset;
  1340. sector_t bb_sector;
  1341. u64 *bbp;
  1342. int i;
  1343. int sectors = le16_to_cpu(sb->bblog_size);
  1344. if (sectors > (PAGE_SIZE / 512))
  1345. return -EINVAL;
  1346. offset = le32_to_cpu(sb->bblog_offset);
  1347. if (offset == 0)
  1348. return -EINVAL;
  1349. bb_sector = (long long)offset;
  1350. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1351. rdev->bb_page, READ, true))
  1352. return -EIO;
  1353. bbp = (u64 *)page_address(rdev->bb_page);
  1354. rdev->badblocks.shift = sb->bblog_shift;
  1355. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1356. u64 bb = le64_to_cpu(*bbp);
  1357. int count = bb & (0x3ff);
  1358. u64 sector = bb >> 10;
  1359. sector <<= sb->bblog_shift;
  1360. count <<= sb->bblog_shift;
  1361. if (bb + 1 == 0)
  1362. break;
  1363. if (md_set_badblocks(&rdev->badblocks,
  1364. sector, count, 1) == 0)
  1365. return -EINVAL;
  1366. }
  1367. } else if (sb->bblog_offset == 0)
  1368. rdev->badblocks.shift = -1;
  1369. if (!refdev) {
  1370. ret = 1;
  1371. } else {
  1372. __u64 ev1, ev2;
  1373. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1374. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1375. sb->level != refsb->level ||
  1376. sb->layout != refsb->layout ||
  1377. sb->chunksize != refsb->chunksize) {
  1378. printk(KERN_WARNING "md: %s has strangely different"
  1379. " superblock to %s\n",
  1380. bdevname(rdev->bdev,b),
  1381. bdevname(refdev->bdev,b2));
  1382. return -EINVAL;
  1383. }
  1384. ev1 = le64_to_cpu(sb->events);
  1385. ev2 = le64_to_cpu(refsb->events);
  1386. if (ev1 > ev2)
  1387. ret = 1;
  1388. else
  1389. ret = 0;
  1390. }
  1391. if (minor_version) {
  1392. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1393. sectors -= rdev->data_offset;
  1394. } else
  1395. sectors = rdev->sb_start;
  1396. if (sectors < le64_to_cpu(sb->data_size))
  1397. return -EINVAL;
  1398. rdev->sectors = le64_to_cpu(sb->data_size);
  1399. return ret;
  1400. }
  1401. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1402. {
  1403. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1404. __u64 ev1 = le64_to_cpu(sb->events);
  1405. rdev->raid_disk = -1;
  1406. clear_bit(Faulty, &rdev->flags);
  1407. clear_bit(In_sync, &rdev->flags);
  1408. clear_bit(WriteMostly, &rdev->flags);
  1409. if (mddev->raid_disks == 0) {
  1410. mddev->major_version = 1;
  1411. mddev->patch_version = 0;
  1412. mddev->external = 0;
  1413. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1414. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1415. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1416. mddev->level = le32_to_cpu(sb->level);
  1417. mddev->clevel[0] = 0;
  1418. mddev->layout = le32_to_cpu(sb->layout);
  1419. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1420. mddev->dev_sectors = le64_to_cpu(sb->size);
  1421. mddev->events = ev1;
  1422. mddev->bitmap_info.offset = 0;
  1423. mddev->bitmap_info.space = 0;
  1424. /* Default location for bitmap is 1K after superblock
  1425. * using 3K - total of 4K
  1426. */
  1427. mddev->bitmap_info.default_offset = 1024 >> 9;
  1428. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1429. mddev->reshape_backwards = 0;
  1430. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1431. memcpy(mddev->uuid, sb->set_uuid, 16);
  1432. mddev->max_disks = (4096-256)/2;
  1433. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1434. mddev->bitmap_info.file == NULL) {
  1435. mddev->bitmap_info.offset =
  1436. (__s32)le32_to_cpu(sb->bitmap_offset);
  1437. /* Metadata doesn't record how much space is available.
  1438. * For 1.0, we assume we can use up to the superblock
  1439. * if before, else to 4K beyond superblock.
  1440. * For others, assume no change is possible.
  1441. */
  1442. if (mddev->minor_version > 0)
  1443. mddev->bitmap_info.space = 0;
  1444. else if (mddev->bitmap_info.offset > 0)
  1445. mddev->bitmap_info.space =
  1446. 8 - mddev->bitmap_info.offset;
  1447. else
  1448. mddev->bitmap_info.space =
  1449. -mddev->bitmap_info.offset;
  1450. }
  1451. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1452. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1453. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1454. mddev->new_level = le32_to_cpu(sb->new_level);
  1455. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1456. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1457. if (mddev->delta_disks < 0 ||
  1458. (mddev->delta_disks == 0 &&
  1459. (le32_to_cpu(sb->feature_map)
  1460. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1461. mddev->reshape_backwards = 1;
  1462. } else {
  1463. mddev->reshape_position = MaxSector;
  1464. mddev->delta_disks = 0;
  1465. mddev->new_level = mddev->level;
  1466. mddev->new_layout = mddev->layout;
  1467. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1468. }
  1469. } else if (mddev->pers == NULL) {
  1470. /* Insist of good event counter while assembling, except for
  1471. * spares (which don't need an event count) */
  1472. ++ev1;
  1473. if (rdev->desc_nr >= 0 &&
  1474. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1475. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1476. if (ev1 < mddev->events)
  1477. return -EINVAL;
  1478. } else if (mddev->bitmap) {
  1479. /* If adding to array with a bitmap, then we can accept an
  1480. * older device, but not too old.
  1481. */
  1482. if (ev1 < mddev->bitmap->events_cleared)
  1483. return 0;
  1484. } else {
  1485. if (ev1 < mddev->events)
  1486. /* just a hot-add of a new device, leave raid_disk at -1 */
  1487. return 0;
  1488. }
  1489. if (mddev->level != LEVEL_MULTIPATH) {
  1490. int role;
  1491. if (rdev->desc_nr < 0 ||
  1492. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1493. role = 0xffff;
  1494. rdev->desc_nr = -1;
  1495. } else
  1496. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1497. switch(role) {
  1498. case 0xffff: /* spare */
  1499. break;
  1500. case 0xfffe: /* faulty */
  1501. set_bit(Faulty, &rdev->flags);
  1502. break;
  1503. default:
  1504. if ((le32_to_cpu(sb->feature_map) &
  1505. MD_FEATURE_RECOVERY_OFFSET))
  1506. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1507. else
  1508. set_bit(In_sync, &rdev->flags);
  1509. rdev->raid_disk = role;
  1510. break;
  1511. }
  1512. if (sb->devflags & WriteMostly1)
  1513. set_bit(WriteMostly, &rdev->flags);
  1514. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1515. set_bit(Replacement, &rdev->flags);
  1516. } else /* MULTIPATH are always insync */
  1517. set_bit(In_sync, &rdev->flags);
  1518. return 0;
  1519. }
  1520. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1521. {
  1522. struct mdp_superblock_1 *sb;
  1523. struct md_rdev *rdev2;
  1524. int max_dev, i;
  1525. /* make rdev->sb match mddev and rdev data. */
  1526. sb = page_address(rdev->sb_page);
  1527. sb->feature_map = 0;
  1528. sb->pad0 = 0;
  1529. sb->recovery_offset = cpu_to_le64(0);
  1530. memset(sb->pad3, 0, sizeof(sb->pad3));
  1531. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1532. sb->events = cpu_to_le64(mddev->events);
  1533. if (mddev->in_sync)
  1534. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1535. else
  1536. sb->resync_offset = cpu_to_le64(0);
  1537. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1538. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1539. sb->size = cpu_to_le64(mddev->dev_sectors);
  1540. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1541. sb->level = cpu_to_le32(mddev->level);
  1542. sb->layout = cpu_to_le32(mddev->layout);
  1543. if (test_bit(WriteMostly, &rdev->flags))
  1544. sb->devflags |= WriteMostly1;
  1545. else
  1546. sb->devflags &= ~WriteMostly1;
  1547. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1548. sb->data_size = cpu_to_le64(rdev->sectors);
  1549. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1550. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1551. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1552. }
  1553. if (rdev->raid_disk >= 0 &&
  1554. !test_bit(In_sync, &rdev->flags)) {
  1555. sb->feature_map |=
  1556. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1557. sb->recovery_offset =
  1558. cpu_to_le64(rdev->recovery_offset);
  1559. }
  1560. if (test_bit(Replacement, &rdev->flags))
  1561. sb->feature_map |=
  1562. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1563. if (mddev->reshape_position != MaxSector) {
  1564. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1565. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1566. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1567. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1568. sb->new_level = cpu_to_le32(mddev->new_level);
  1569. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1570. if (mddev->delta_disks == 0 &&
  1571. mddev->reshape_backwards)
  1572. sb->feature_map
  1573. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1574. if (rdev->new_data_offset != rdev->data_offset) {
  1575. sb->feature_map
  1576. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1577. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1578. - rdev->data_offset));
  1579. }
  1580. }
  1581. if (rdev->badblocks.count == 0)
  1582. /* Nothing to do for bad blocks*/ ;
  1583. else if (sb->bblog_offset == 0)
  1584. /* Cannot record bad blocks on this device */
  1585. md_error(mddev, rdev);
  1586. else {
  1587. struct badblocks *bb = &rdev->badblocks;
  1588. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1589. u64 *p = bb->page;
  1590. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1591. if (bb->changed) {
  1592. unsigned seq;
  1593. retry:
  1594. seq = read_seqbegin(&bb->lock);
  1595. memset(bbp, 0xff, PAGE_SIZE);
  1596. for (i = 0 ; i < bb->count ; i++) {
  1597. u64 internal_bb = *p++;
  1598. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1599. | BB_LEN(internal_bb));
  1600. *bbp++ = cpu_to_le64(store_bb);
  1601. }
  1602. bb->changed = 0;
  1603. if (read_seqretry(&bb->lock, seq))
  1604. goto retry;
  1605. bb->sector = (rdev->sb_start +
  1606. (int)le32_to_cpu(sb->bblog_offset));
  1607. bb->size = le16_to_cpu(sb->bblog_size);
  1608. }
  1609. }
  1610. max_dev = 0;
  1611. rdev_for_each(rdev2, mddev)
  1612. if (rdev2->desc_nr+1 > max_dev)
  1613. max_dev = rdev2->desc_nr+1;
  1614. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1615. int bmask;
  1616. sb->max_dev = cpu_to_le32(max_dev);
  1617. rdev->sb_size = max_dev * 2 + 256;
  1618. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1619. if (rdev->sb_size & bmask)
  1620. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1621. } else
  1622. max_dev = le32_to_cpu(sb->max_dev);
  1623. for (i=0; i<max_dev;i++)
  1624. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1625. rdev_for_each(rdev2, mddev) {
  1626. i = rdev2->desc_nr;
  1627. if (test_bit(Faulty, &rdev2->flags))
  1628. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1629. else if (test_bit(In_sync, &rdev2->flags))
  1630. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1631. else if (rdev2->raid_disk >= 0)
  1632. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1633. else
  1634. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1635. }
  1636. sb->sb_csum = calc_sb_1_csum(sb);
  1637. }
  1638. static unsigned long long
  1639. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1640. {
  1641. struct mdp_superblock_1 *sb;
  1642. sector_t max_sectors;
  1643. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1644. return 0; /* component must fit device */
  1645. if (rdev->data_offset != rdev->new_data_offset)
  1646. return 0; /* too confusing */
  1647. if (rdev->sb_start < rdev->data_offset) {
  1648. /* minor versions 1 and 2; superblock before data */
  1649. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1650. max_sectors -= rdev->data_offset;
  1651. if (!num_sectors || num_sectors > max_sectors)
  1652. num_sectors = max_sectors;
  1653. } else if (rdev->mddev->bitmap_info.offset) {
  1654. /* minor version 0 with bitmap we can't move */
  1655. return 0;
  1656. } else {
  1657. /* minor version 0; superblock after data */
  1658. sector_t sb_start;
  1659. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1660. sb_start &= ~(sector_t)(4*2 - 1);
  1661. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1662. if (!num_sectors || num_sectors > max_sectors)
  1663. num_sectors = max_sectors;
  1664. rdev->sb_start = sb_start;
  1665. }
  1666. sb = page_address(rdev->sb_page);
  1667. sb->data_size = cpu_to_le64(num_sectors);
  1668. sb->super_offset = rdev->sb_start;
  1669. sb->sb_csum = calc_sb_1_csum(sb);
  1670. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1671. rdev->sb_page);
  1672. md_super_wait(rdev->mddev);
  1673. return num_sectors;
  1674. }
  1675. static int
  1676. super_1_allow_new_offset(struct md_rdev *rdev,
  1677. unsigned long long new_offset)
  1678. {
  1679. /* All necessary checks on new >= old have been done */
  1680. struct bitmap *bitmap;
  1681. if (new_offset >= rdev->data_offset)
  1682. return 1;
  1683. /* with 1.0 metadata, there is no metadata to tread on
  1684. * so we can always move back */
  1685. if (rdev->mddev->minor_version == 0)
  1686. return 1;
  1687. /* otherwise we must be sure not to step on
  1688. * any metadata, so stay:
  1689. * 36K beyond start of superblock
  1690. * beyond end of badblocks
  1691. * beyond write-intent bitmap
  1692. */
  1693. if (rdev->sb_start + (32+4)*2 > new_offset)
  1694. return 0;
  1695. bitmap = rdev->mddev->bitmap;
  1696. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1697. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1698. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1699. return 0;
  1700. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1701. return 0;
  1702. return 1;
  1703. }
  1704. static struct super_type super_types[] = {
  1705. [0] = {
  1706. .name = "0.90.0",
  1707. .owner = THIS_MODULE,
  1708. .load_super = super_90_load,
  1709. .validate_super = super_90_validate,
  1710. .sync_super = super_90_sync,
  1711. .rdev_size_change = super_90_rdev_size_change,
  1712. .allow_new_offset = super_90_allow_new_offset,
  1713. },
  1714. [1] = {
  1715. .name = "md-1",
  1716. .owner = THIS_MODULE,
  1717. .load_super = super_1_load,
  1718. .validate_super = super_1_validate,
  1719. .sync_super = super_1_sync,
  1720. .rdev_size_change = super_1_rdev_size_change,
  1721. .allow_new_offset = super_1_allow_new_offset,
  1722. },
  1723. };
  1724. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1725. {
  1726. if (mddev->sync_super) {
  1727. mddev->sync_super(mddev, rdev);
  1728. return;
  1729. }
  1730. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1731. super_types[mddev->major_version].sync_super(mddev, rdev);
  1732. }
  1733. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1734. {
  1735. struct md_rdev *rdev, *rdev2;
  1736. rcu_read_lock();
  1737. rdev_for_each_rcu(rdev, mddev1)
  1738. rdev_for_each_rcu(rdev2, mddev2)
  1739. if (rdev->bdev->bd_contains ==
  1740. rdev2->bdev->bd_contains) {
  1741. rcu_read_unlock();
  1742. return 1;
  1743. }
  1744. rcu_read_unlock();
  1745. return 0;
  1746. }
  1747. static LIST_HEAD(pending_raid_disks);
  1748. /*
  1749. * Try to register data integrity profile for an mddev
  1750. *
  1751. * This is called when an array is started and after a disk has been kicked
  1752. * from the array. It only succeeds if all working and active component devices
  1753. * are integrity capable with matching profiles.
  1754. */
  1755. int md_integrity_register(struct mddev *mddev)
  1756. {
  1757. struct md_rdev *rdev, *reference = NULL;
  1758. if (list_empty(&mddev->disks))
  1759. return 0; /* nothing to do */
  1760. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1761. return 0; /* shouldn't register, or already is */
  1762. rdev_for_each(rdev, mddev) {
  1763. /* skip spares and non-functional disks */
  1764. if (test_bit(Faulty, &rdev->flags))
  1765. continue;
  1766. if (rdev->raid_disk < 0)
  1767. continue;
  1768. if (!reference) {
  1769. /* Use the first rdev as the reference */
  1770. reference = rdev;
  1771. continue;
  1772. }
  1773. /* does this rdev's profile match the reference profile? */
  1774. if (blk_integrity_compare(reference->bdev->bd_disk,
  1775. rdev->bdev->bd_disk) < 0)
  1776. return -EINVAL;
  1777. }
  1778. if (!reference || !bdev_get_integrity(reference->bdev))
  1779. return 0;
  1780. /*
  1781. * All component devices are integrity capable and have matching
  1782. * profiles, register the common profile for the md device.
  1783. */
  1784. if (blk_integrity_register(mddev->gendisk,
  1785. bdev_get_integrity(reference->bdev)) != 0) {
  1786. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1787. mdname(mddev));
  1788. return -EINVAL;
  1789. }
  1790. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1791. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1792. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1793. mdname(mddev));
  1794. return -EINVAL;
  1795. }
  1796. return 0;
  1797. }
  1798. EXPORT_SYMBOL(md_integrity_register);
  1799. /* Disable data integrity if non-capable/non-matching disk is being added */
  1800. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1801. {
  1802. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1803. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1804. if (!bi_mddev) /* nothing to do */
  1805. return;
  1806. if (rdev->raid_disk < 0) /* skip spares */
  1807. return;
  1808. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1809. rdev->bdev->bd_disk) >= 0)
  1810. return;
  1811. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1812. blk_integrity_unregister(mddev->gendisk);
  1813. }
  1814. EXPORT_SYMBOL(md_integrity_add_rdev);
  1815. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1816. {
  1817. char b[BDEVNAME_SIZE];
  1818. struct kobject *ko;
  1819. char *s;
  1820. int err;
  1821. if (rdev->mddev) {
  1822. MD_BUG();
  1823. return -EINVAL;
  1824. }
  1825. /* prevent duplicates */
  1826. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1827. return -EEXIST;
  1828. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1829. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1830. rdev->sectors < mddev->dev_sectors)) {
  1831. if (mddev->pers) {
  1832. /* Cannot change size, so fail
  1833. * If mddev->level <= 0, then we don't care
  1834. * about aligning sizes (e.g. linear)
  1835. */
  1836. if (mddev->level > 0)
  1837. return -ENOSPC;
  1838. } else
  1839. mddev->dev_sectors = rdev->sectors;
  1840. }
  1841. /* Verify rdev->desc_nr is unique.
  1842. * If it is -1, assign a free number, else
  1843. * check number is not in use
  1844. */
  1845. if (rdev->desc_nr < 0) {
  1846. int choice = 0;
  1847. if (mddev->pers) choice = mddev->raid_disks;
  1848. while (find_rdev_nr(mddev, choice))
  1849. choice++;
  1850. rdev->desc_nr = choice;
  1851. } else {
  1852. if (find_rdev_nr(mddev, rdev->desc_nr))
  1853. return -EBUSY;
  1854. }
  1855. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1856. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1857. mdname(mddev), mddev->max_disks);
  1858. return -EBUSY;
  1859. }
  1860. bdevname(rdev->bdev,b);
  1861. while ( (s=strchr(b, '/')) != NULL)
  1862. *s = '!';
  1863. rdev->mddev = mddev;
  1864. printk(KERN_INFO "md: bind<%s>\n", b);
  1865. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1866. goto fail;
  1867. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1868. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1869. /* failure here is OK */;
  1870. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1871. list_add_rcu(&rdev->same_set, &mddev->disks);
  1872. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1873. /* May as well allow recovery to be retried once */
  1874. mddev->recovery_disabled++;
  1875. return 0;
  1876. fail:
  1877. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1878. b, mdname(mddev));
  1879. return err;
  1880. }
  1881. static void md_delayed_delete(struct work_struct *ws)
  1882. {
  1883. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1884. kobject_del(&rdev->kobj);
  1885. kobject_put(&rdev->kobj);
  1886. }
  1887. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1888. {
  1889. char b[BDEVNAME_SIZE];
  1890. if (!rdev->mddev) {
  1891. MD_BUG();
  1892. return;
  1893. }
  1894. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1895. list_del_rcu(&rdev->same_set);
  1896. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1897. rdev->mddev = NULL;
  1898. sysfs_remove_link(&rdev->kobj, "block");
  1899. sysfs_put(rdev->sysfs_state);
  1900. rdev->sysfs_state = NULL;
  1901. rdev->badblocks.count = 0;
  1902. /* We need to delay this, otherwise we can deadlock when
  1903. * writing to 'remove' to "dev/state". We also need
  1904. * to delay it due to rcu usage.
  1905. */
  1906. synchronize_rcu();
  1907. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1908. kobject_get(&rdev->kobj);
  1909. queue_work(md_misc_wq, &rdev->del_work);
  1910. }
  1911. /*
  1912. * prevent the device from being mounted, repartitioned or
  1913. * otherwise reused by a RAID array (or any other kernel
  1914. * subsystem), by bd_claiming the device.
  1915. */
  1916. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1917. {
  1918. int err = 0;
  1919. struct block_device *bdev;
  1920. char b[BDEVNAME_SIZE];
  1921. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1922. shared ? (struct md_rdev *)lock_rdev : rdev);
  1923. if (IS_ERR(bdev)) {
  1924. printk(KERN_ERR "md: could not open %s.\n",
  1925. __bdevname(dev, b));
  1926. return PTR_ERR(bdev);
  1927. }
  1928. rdev->bdev = bdev;
  1929. return err;
  1930. }
  1931. static void unlock_rdev(struct md_rdev *rdev)
  1932. {
  1933. struct block_device *bdev = rdev->bdev;
  1934. rdev->bdev = NULL;
  1935. if (!bdev)
  1936. MD_BUG();
  1937. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1938. }
  1939. void md_autodetect_dev(dev_t dev);
  1940. static void export_rdev(struct md_rdev * rdev)
  1941. {
  1942. char b[BDEVNAME_SIZE];
  1943. printk(KERN_INFO "md: export_rdev(%s)\n",
  1944. bdevname(rdev->bdev,b));
  1945. if (rdev->mddev)
  1946. MD_BUG();
  1947. md_rdev_clear(rdev);
  1948. #ifndef MODULE
  1949. if (test_bit(AutoDetected, &rdev->flags))
  1950. md_autodetect_dev(rdev->bdev->bd_dev);
  1951. #endif
  1952. unlock_rdev(rdev);
  1953. kobject_put(&rdev->kobj);
  1954. }
  1955. static void kick_rdev_from_array(struct md_rdev * rdev)
  1956. {
  1957. unbind_rdev_from_array(rdev);
  1958. export_rdev(rdev);
  1959. }
  1960. static void export_array(struct mddev *mddev)
  1961. {
  1962. struct md_rdev *rdev, *tmp;
  1963. rdev_for_each_safe(rdev, tmp, mddev) {
  1964. if (!rdev->mddev) {
  1965. MD_BUG();
  1966. continue;
  1967. }
  1968. kick_rdev_from_array(rdev);
  1969. }
  1970. if (!list_empty(&mddev->disks))
  1971. MD_BUG();
  1972. mddev->raid_disks = 0;
  1973. mddev->major_version = 0;
  1974. }
  1975. static void print_desc(mdp_disk_t *desc)
  1976. {
  1977. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1978. desc->major,desc->minor,desc->raid_disk,desc->state);
  1979. }
  1980. static void print_sb_90(mdp_super_t *sb)
  1981. {
  1982. int i;
  1983. printk(KERN_INFO
  1984. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1985. sb->major_version, sb->minor_version, sb->patch_version,
  1986. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1987. sb->ctime);
  1988. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1989. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1990. sb->md_minor, sb->layout, sb->chunk_size);
  1991. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1992. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1993. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1994. sb->failed_disks, sb->spare_disks,
  1995. sb->sb_csum, (unsigned long)sb->events_lo);
  1996. printk(KERN_INFO);
  1997. for (i = 0; i < MD_SB_DISKS; i++) {
  1998. mdp_disk_t *desc;
  1999. desc = sb->disks + i;
  2000. if (desc->number || desc->major || desc->minor ||
  2001. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2002. printk(" D %2d: ", i);
  2003. print_desc(desc);
  2004. }
  2005. }
  2006. printk(KERN_INFO "md: THIS: ");
  2007. print_desc(&sb->this_disk);
  2008. }
  2009. static void print_sb_1(struct mdp_superblock_1 *sb)
  2010. {
  2011. __u8 *uuid;
  2012. uuid = sb->set_uuid;
  2013. printk(KERN_INFO
  2014. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2015. "md: Name: \"%s\" CT:%llu\n",
  2016. le32_to_cpu(sb->major_version),
  2017. le32_to_cpu(sb->feature_map),
  2018. uuid,
  2019. sb->set_name,
  2020. (unsigned long long)le64_to_cpu(sb->ctime)
  2021. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2022. uuid = sb->device_uuid;
  2023. printk(KERN_INFO
  2024. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2025. " RO:%llu\n"
  2026. "md: Dev:%08x UUID: %pU\n"
  2027. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2028. "md: (MaxDev:%u) \n",
  2029. le32_to_cpu(sb->level),
  2030. (unsigned long long)le64_to_cpu(sb->size),
  2031. le32_to_cpu(sb->raid_disks),
  2032. le32_to_cpu(sb->layout),
  2033. le32_to_cpu(sb->chunksize),
  2034. (unsigned long long)le64_to_cpu(sb->data_offset),
  2035. (unsigned long long)le64_to_cpu(sb->data_size),
  2036. (unsigned long long)le64_to_cpu(sb->super_offset),
  2037. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2038. le32_to_cpu(sb->dev_number),
  2039. uuid,
  2040. sb->devflags,
  2041. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2042. (unsigned long long)le64_to_cpu(sb->events),
  2043. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2044. le32_to_cpu(sb->sb_csum),
  2045. le32_to_cpu(sb->max_dev)
  2046. );
  2047. }
  2048. static void print_rdev(struct md_rdev *rdev, int major_version)
  2049. {
  2050. char b[BDEVNAME_SIZE];
  2051. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2052. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2053. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2054. rdev->desc_nr);
  2055. if (rdev->sb_loaded) {
  2056. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2057. switch (major_version) {
  2058. case 0:
  2059. print_sb_90(page_address(rdev->sb_page));
  2060. break;
  2061. case 1:
  2062. print_sb_1(page_address(rdev->sb_page));
  2063. break;
  2064. }
  2065. } else
  2066. printk(KERN_INFO "md: no rdev superblock!\n");
  2067. }
  2068. static void md_print_devices(void)
  2069. {
  2070. struct list_head *tmp;
  2071. struct md_rdev *rdev;
  2072. struct mddev *mddev;
  2073. char b[BDEVNAME_SIZE];
  2074. printk("\n");
  2075. printk("md: **********************************\n");
  2076. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2077. printk("md: **********************************\n");
  2078. for_each_mddev(mddev, tmp) {
  2079. if (mddev->bitmap)
  2080. bitmap_print_sb(mddev->bitmap);
  2081. else
  2082. printk("%s: ", mdname(mddev));
  2083. rdev_for_each(rdev, mddev)
  2084. printk("<%s>", bdevname(rdev->bdev,b));
  2085. printk("\n");
  2086. rdev_for_each(rdev, mddev)
  2087. print_rdev(rdev, mddev->major_version);
  2088. }
  2089. printk("md: **********************************\n");
  2090. printk("\n");
  2091. }
  2092. static void sync_sbs(struct mddev * mddev, int nospares)
  2093. {
  2094. /* Update each superblock (in-memory image), but
  2095. * if we are allowed to, skip spares which already
  2096. * have the right event counter, or have one earlier
  2097. * (which would mean they aren't being marked as dirty
  2098. * with the rest of the array)
  2099. */
  2100. struct md_rdev *rdev;
  2101. rdev_for_each(rdev, mddev) {
  2102. if (rdev->sb_events == mddev->events ||
  2103. (nospares &&
  2104. rdev->raid_disk < 0 &&
  2105. rdev->sb_events+1 == mddev->events)) {
  2106. /* Don't update this superblock */
  2107. rdev->sb_loaded = 2;
  2108. } else {
  2109. sync_super(mddev, rdev);
  2110. rdev->sb_loaded = 1;
  2111. }
  2112. }
  2113. }
  2114. static void md_update_sb(struct mddev * mddev, int force_change)
  2115. {
  2116. struct md_rdev *rdev;
  2117. int sync_req;
  2118. int nospares = 0;
  2119. int any_badblocks_changed = 0;
  2120. repeat:
  2121. /* First make sure individual recovery_offsets are correct */
  2122. rdev_for_each(rdev, mddev) {
  2123. if (rdev->raid_disk >= 0 &&
  2124. mddev->delta_disks >= 0 &&
  2125. !test_bit(In_sync, &rdev->flags) &&
  2126. mddev->curr_resync_completed > rdev->recovery_offset)
  2127. rdev->recovery_offset = mddev->curr_resync_completed;
  2128. }
  2129. if (!mddev->persistent) {
  2130. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2131. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2132. if (!mddev->external) {
  2133. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2134. rdev_for_each(rdev, mddev) {
  2135. if (rdev->badblocks.changed) {
  2136. rdev->badblocks.changed = 0;
  2137. md_ack_all_badblocks(&rdev->badblocks);
  2138. md_error(mddev, rdev);
  2139. }
  2140. clear_bit(Blocked, &rdev->flags);
  2141. clear_bit(BlockedBadBlocks, &rdev->flags);
  2142. wake_up(&rdev->blocked_wait);
  2143. }
  2144. }
  2145. wake_up(&mddev->sb_wait);
  2146. return;
  2147. }
  2148. spin_lock_irq(&mddev->write_lock);
  2149. mddev->utime = get_seconds();
  2150. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2151. force_change = 1;
  2152. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2153. /* just a clean<-> dirty transition, possibly leave spares alone,
  2154. * though if events isn't the right even/odd, we will have to do
  2155. * spares after all
  2156. */
  2157. nospares = 1;
  2158. if (force_change)
  2159. nospares = 0;
  2160. if (mddev->degraded)
  2161. /* If the array is degraded, then skipping spares is both
  2162. * dangerous and fairly pointless.
  2163. * Dangerous because a device that was removed from the array
  2164. * might have a event_count that still looks up-to-date,
  2165. * so it can be re-added without a resync.
  2166. * Pointless because if there are any spares to skip,
  2167. * then a recovery will happen and soon that array won't
  2168. * be degraded any more and the spare can go back to sleep then.
  2169. */
  2170. nospares = 0;
  2171. sync_req = mddev->in_sync;
  2172. /* If this is just a dirty<->clean transition, and the array is clean
  2173. * and 'events' is odd, we can roll back to the previous clean state */
  2174. if (nospares
  2175. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2176. && mddev->can_decrease_events
  2177. && mddev->events != 1) {
  2178. mddev->events--;
  2179. mddev->can_decrease_events = 0;
  2180. } else {
  2181. /* otherwise we have to go forward and ... */
  2182. mddev->events ++;
  2183. mddev->can_decrease_events = nospares;
  2184. }
  2185. if (!mddev->events) {
  2186. /*
  2187. * oops, this 64-bit counter should never wrap.
  2188. * Either we are in around ~1 trillion A.C., assuming
  2189. * 1 reboot per second, or we have a bug:
  2190. */
  2191. MD_BUG();
  2192. mddev->events --;
  2193. }
  2194. rdev_for_each(rdev, mddev) {
  2195. if (rdev->badblocks.changed)
  2196. any_badblocks_changed++;
  2197. if (test_bit(Faulty, &rdev->flags))
  2198. set_bit(FaultRecorded, &rdev->flags);
  2199. }
  2200. sync_sbs(mddev, nospares);
  2201. spin_unlock_irq(&mddev->write_lock);
  2202. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2203. mdname(mddev), mddev->in_sync);
  2204. bitmap_update_sb(mddev->bitmap);
  2205. rdev_for_each(rdev, mddev) {
  2206. char b[BDEVNAME_SIZE];
  2207. if (rdev->sb_loaded != 1)
  2208. continue; /* no noise on spare devices */
  2209. if (!test_bit(Faulty, &rdev->flags) &&
  2210. rdev->saved_raid_disk == -1) {
  2211. md_super_write(mddev,rdev,
  2212. rdev->sb_start, rdev->sb_size,
  2213. rdev->sb_page);
  2214. pr_debug("md: (write) %s's sb offset: %llu\n",
  2215. bdevname(rdev->bdev, b),
  2216. (unsigned long long)rdev->sb_start);
  2217. rdev->sb_events = mddev->events;
  2218. if (rdev->badblocks.size) {
  2219. md_super_write(mddev, rdev,
  2220. rdev->badblocks.sector,
  2221. rdev->badblocks.size << 9,
  2222. rdev->bb_page);
  2223. rdev->badblocks.size = 0;
  2224. }
  2225. } else if (test_bit(Faulty, &rdev->flags))
  2226. pr_debug("md: %s (skipping faulty)\n",
  2227. bdevname(rdev->bdev, b));
  2228. else
  2229. pr_debug("(skipping incremental s/r ");
  2230. if (mddev->level == LEVEL_MULTIPATH)
  2231. /* only need to write one superblock... */
  2232. break;
  2233. }
  2234. md_super_wait(mddev);
  2235. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2236. spin_lock_irq(&mddev->write_lock);
  2237. if (mddev->in_sync != sync_req ||
  2238. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2239. /* have to write it out again */
  2240. spin_unlock_irq(&mddev->write_lock);
  2241. goto repeat;
  2242. }
  2243. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2244. spin_unlock_irq(&mddev->write_lock);
  2245. wake_up(&mddev->sb_wait);
  2246. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2247. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2248. rdev_for_each(rdev, mddev) {
  2249. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2250. clear_bit(Blocked, &rdev->flags);
  2251. if (any_badblocks_changed)
  2252. md_ack_all_badblocks(&rdev->badblocks);
  2253. clear_bit(BlockedBadBlocks, &rdev->flags);
  2254. wake_up(&rdev->blocked_wait);
  2255. }
  2256. }
  2257. /* words written to sysfs files may, or may not, be \n terminated.
  2258. * We want to accept with case. For this we use cmd_match.
  2259. */
  2260. static int cmd_match(const char *cmd, const char *str)
  2261. {
  2262. /* See if cmd, written into a sysfs file, matches
  2263. * str. They must either be the same, or cmd can
  2264. * have a trailing newline
  2265. */
  2266. while (*cmd && *str && *cmd == *str) {
  2267. cmd++;
  2268. str++;
  2269. }
  2270. if (*cmd == '\n')
  2271. cmd++;
  2272. if (*str || *cmd)
  2273. return 0;
  2274. return 1;
  2275. }
  2276. struct rdev_sysfs_entry {
  2277. struct attribute attr;
  2278. ssize_t (*show)(struct md_rdev *, char *);
  2279. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2280. };
  2281. static ssize_t
  2282. state_show(struct md_rdev *rdev, char *page)
  2283. {
  2284. char *sep = "";
  2285. size_t len = 0;
  2286. if (test_bit(Faulty, &rdev->flags) ||
  2287. rdev->badblocks.unacked_exist) {
  2288. len+= sprintf(page+len, "%sfaulty",sep);
  2289. sep = ",";
  2290. }
  2291. if (test_bit(In_sync, &rdev->flags)) {
  2292. len += sprintf(page+len, "%sin_sync",sep);
  2293. sep = ",";
  2294. }
  2295. if (test_bit(WriteMostly, &rdev->flags)) {
  2296. len += sprintf(page+len, "%swrite_mostly",sep);
  2297. sep = ",";
  2298. }
  2299. if (test_bit(Blocked, &rdev->flags) ||
  2300. (rdev->badblocks.unacked_exist
  2301. && !test_bit(Faulty, &rdev->flags))) {
  2302. len += sprintf(page+len, "%sblocked", sep);
  2303. sep = ",";
  2304. }
  2305. if (!test_bit(Faulty, &rdev->flags) &&
  2306. !test_bit(In_sync, &rdev->flags)) {
  2307. len += sprintf(page+len, "%sspare", sep);
  2308. sep = ",";
  2309. }
  2310. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2311. len += sprintf(page+len, "%swrite_error", sep);
  2312. sep = ",";
  2313. }
  2314. if (test_bit(WantReplacement, &rdev->flags)) {
  2315. len += sprintf(page+len, "%swant_replacement", sep);
  2316. sep = ",";
  2317. }
  2318. if (test_bit(Replacement, &rdev->flags)) {
  2319. len += sprintf(page+len, "%sreplacement", sep);
  2320. sep = ",";
  2321. }
  2322. return len+sprintf(page+len, "\n");
  2323. }
  2324. static ssize_t
  2325. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2326. {
  2327. /* can write
  2328. * faulty - simulates an error
  2329. * remove - disconnects the device
  2330. * writemostly - sets write_mostly
  2331. * -writemostly - clears write_mostly
  2332. * blocked - sets the Blocked flags
  2333. * -blocked - clears the Blocked and possibly simulates an error
  2334. * insync - sets Insync providing device isn't active
  2335. * write_error - sets WriteErrorSeen
  2336. * -write_error - clears WriteErrorSeen
  2337. */
  2338. int err = -EINVAL;
  2339. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2340. md_error(rdev->mddev, rdev);
  2341. if (test_bit(Faulty, &rdev->flags))
  2342. err = 0;
  2343. else
  2344. err = -EBUSY;
  2345. } else if (cmd_match(buf, "remove")) {
  2346. if (rdev->raid_disk >= 0)
  2347. err = -EBUSY;
  2348. else {
  2349. struct mddev *mddev = rdev->mddev;
  2350. kick_rdev_from_array(rdev);
  2351. if (mddev->pers)
  2352. md_update_sb(mddev, 1);
  2353. md_new_event(mddev);
  2354. err = 0;
  2355. }
  2356. } else if (cmd_match(buf, "writemostly")) {
  2357. set_bit(WriteMostly, &rdev->flags);
  2358. err = 0;
  2359. } else if (cmd_match(buf, "-writemostly")) {
  2360. clear_bit(WriteMostly, &rdev->flags);
  2361. err = 0;
  2362. } else if (cmd_match(buf, "blocked")) {
  2363. set_bit(Blocked, &rdev->flags);
  2364. err = 0;
  2365. } else if (cmd_match(buf, "-blocked")) {
  2366. if (!test_bit(Faulty, &rdev->flags) &&
  2367. rdev->badblocks.unacked_exist) {
  2368. /* metadata handler doesn't understand badblocks,
  2369. * so we need to fail the device
  2370. */
  2371. md_error(rdev->mddev, rdev);
  2372. }
  2373. clear_bit(Blocked, &rdev->flags);
  2374. clear_bit(BlockedBadBlocks, &rdev->flags);
  2375. wake_up(&rdev->blocked_wait);
  2376. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2377. md_wakeup_thread(rdev->mddev->thread);
  2378. err = 0;
  2379. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2380. set_bit(In_sync, &rdev->flags);
  2381. err = 0;
  2382. } else if (cmd_match(buf, "write_error")) {
  2383. set_bit(WriteErrorSeen, &rdev->flags);
  2384. err = 0;
  2385. } else if (cmd_match(buf, "-write_error")) {
  2386. clear_bit(WriteErrorSeen, &rdev->flags);
  2387. err = 0;
  2388. } else if (cmd_match(buf, "want_replacement")) {
  2389. /* Any non-spare device that is not a replacement can
  2390. * become want_replacement at any time, but we then need to
  2391. * check if recovery is needed.
  2392. */
  2393. if (rdev->raid_disk >= 0 &&
  2394. !test_bit(Replacement, &rdev->flags))
  2395. set_bit(WantReplacement, &rdev->flags);
  2396. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2397. md_wakeup_thread(rdev->mddev->thread);
  2398. err = 0;
  2399. } else if (cmd_match(buf, "-want_replacement")) {
  2400. /* Clearing 'want_replacement' is always allowed.
  2401. * Once replacements starts it is too late though.
  2402. */
  2403. err = 0;
  2404. clear_bit(WantReplacement, &rdev->flags);
  2405. } else if (cmd_match(buf, "replacement")) {
  2406. /* Can only set a device as a replacement when array has not
  2407. * yet been started. Once running, replacement is automatic
  2408. * from spares, or by assigning 'slot'.
  2409. */
  2410. if (rdev->mddev->pers)
  2411. err = -EBUSY;
  2412. else {
  2413. set_bit(Replacement, &rdev->flags);
  2414. err = 0;
  2415. }
  2416. } else if (cmd_match(buf, "-replacement")) {
  2417. /* Similarly, can only clear Replacement before start */
  2418. if (rdev->mddev->pers)
  2419. err = -EBUSY;
  2420. else {
  2421. clear_bit(Replacement, &rdev->flags);
  2422. err = 0;
  2423. }
  2424. }
  2425. if (!err)
  2426. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2427. return err ? err : len;
  2428. }
  2429. static struct rdev_sysfs_entry rdev_state =
  2430. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2431. static ssize_t
  2432. errors_show(struct md_rdev *rdev, char *page)
  2433. {
  2434. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2435. }
  2436. static ssize_t
  2437. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2438. {
  2439. char *e;
  2440. unsigned long n = simple_strtoul(buf, &e, 10);
  2441. if (*buf && (*e == 0 || *e == '\n')) {
  2442. atomic_set(&rdev->corrected_errors, n);
  2443. return len;
  2444. }
  2445. return -EINVAL;
  2446. }
  2447. static struct rdev_sysfs_entry rdev_errors =
  2448. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2449. static ssize_t
  2450. slot_show(struct md_rdev *rdev, char *page)
  2451. {
  2452. if (rdev->raid_disk < 0)
  2453. return sprintf(page, "none\n");
  2454. else
  2455. return sprintf(page, "%d\n", rdev->raid_disk);
  2456. }
  2457. static ssize_t
  2458. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2459. {
  2460. char *e;
  2461. int err;
  2462. int slot = simple_strtoul(buf, &e, 10);
  2463. if (strncmp(buf, "none", 4)==0)
  2464. slot = -1;
  2465. else if (e==buf || (*e && *e!= '\n'))
  2466. return -EINVAL;
  2467. if (rdev->mddev->pers && slot == -1) {
  2468. /* Setting 'slot' on an active array requires also
  2469. * updating the 'rd%d' link, and communicating
  2470. * with the personality with ->hot_*_disk.
  2471. * For now we only support removing
  2472. * failed/spare devices. This normally happens automatically,
  2473. * but not when the metadata is externally managed.
  2474. */
  2475. if (rdev->raid_disk == -1)
  2476. return -EEXIST;
  2477. /* personality does all needed checks */
  2478. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2479. return -EINVAL;
  2480. err = rdev->mddev->pers->
  2481. hot_remove_disk(rdev->mddev, rdev);
  2482. if (err)
  2483. return err;
  2484. sysfs_unlink_rdev(rdev->mddev, rdev);
  2485. rdev->raid_disk = -1;
  2486. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2487. md_wakeup_thread(rdev->mddev->thread);
  2488. } else if (rdev->mddev->pers) {
  2489. /* Activating a spare .. or possibly reactivating
  2490. * if we ever get bitmaps working here.
  2491. */
  2492. if (rdev->raid_disk != -1)
  2493. return -EBUSY;
  2494. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2495. return -EBUSY;
  2496. if (rdev->mddev->pers->hot_add_disk == NULL)
  2497. return -EINVAL;
  2498. if (slot >= rdev->mddev->raid_disks &&
  2499. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2500. return -ENOSPC;
  2501. rdev->raid_disk = slot;
  2502. if (test_bit(In_sync, &rdev->flags))
  2503. rdev->saved_raid_disk = slot;
  2504. else
  2505. rdev->saved_raid_disk = -1;
  2506. clear_bit(In_sync, &rdev->flags);
  2507. err = rdev->mddev->pers->
  2508. hot_add_disk(rdev->mddev, rdev);
  2509. if (err) {
  2510. rdev->raid_disk = -1;
  2511. return err;
  2512. } else
  2513. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2514. if (sysfs_link_rdev(rdev->mddev, rdev))
  2515. /* failure here is OK */;
  2516. /* don't wakeup anyone, leave that to userspace. */
  2517. } else {
  2518. if (slot >= rdev->mddev->raid_disks &&
  2519. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2520. return -ENOSPC;
  2521. rdev->raid_disk = slot;
  2522. /* assume it is working */
  2523. clear_bit(Faulty, &rdev->flags);
  2524. clear_bit(WriteMostly, &rdev->flags);
  2525. set_bit(In_sync, &rdev->flags);
  2526. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2527. }
  2528. return len;
  2529. }
  2530. static struct rdev_sysfs_entry rdev_slot =
  2531. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2532. static ssize_t
  2533. offset_show(struct md_rdev *rdev, char *page)
  2534. {
  2535. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2536. }
  2537. static ssize_t
  2538. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2539. {
  2540. unsigned long long offset;
  2541. if (strict_strtoull(buf, 10, &offset) < 0)
  2542. return -EINVAL;
  2543. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2544. return -EBUSY;
  2545. if (rdev->sectors && rdev->mddev->external)
  2546. /* Must set offset before size, so overlap checks
  2547. * can be sane */
  2548. return -EBUSY;
  2549. rdev->data_offset = offset;
  2550. rdev->new_data_offset = offset;
  2551. return len;
  2552. }
  2553. static struct rdev_sysfs_entry rdev_offset =
  2554. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2555. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2556. {
  2557. return sprintf(page, "%llu\n",
  2558. (unsigned long long)rdev->new_data_offset);
  2559. }
  2560. static ssize_t new_offset_store(struct md_rdev *rdev,
  2561. const char *buf, size_t len)
  2562. {
  2563. unsigned long long new_offset;
  2564. struct mddev *mddev = rdev->mddev;
  2565. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2566. return -EINVAL;
  2567. if (mddev->sync_thread)
  2568. return -EBUSY;
  2569. if (new_offset == rdev->data_offset)
  2570. /* reset is always permitted */
  2571. ;
  2572. else if (new_offset > rdev->data_offset) {
  2573. /* must not push array size beyond rdev_sectors */
  2574. if (new_offset - rdev->data_offset
  2575. + mddev->dev_sectors > rdev->sectors)
  2576. return -E2BIG;
  2577. }
  2578. /* Metadata worries about other space details. */
  2579. /* decreasing the offset is inconsistent with a backwards
  2580. * reshape.
  2581. */
  2582. if (new_offset < rdev->data_offset &&
  2583. mddev->reshape_backwards)
  2584. return -EINVAL;
  2585. /* Increasing offset is inconsistent with forwards
  2586. * reshape. reshape_direction should be set to
  2587. * 'backwards' first.
  2588. */
  2589. if (new_offset > rdev->data_offset &&
  2590. !mddev->reshape_backwards)
  2591. return -EINVAL;
  2592. if (mddev->pers && mddev->persistent &&
  2593. !super_types[mddev->major_version]
  2594. .allow_new_offset(rdev, new_offset))
  2595. return -E2BIG;
  2596. rdev->new_data_offset = new_offset;
  2597. if (new_offset > rdev->data_offset)
  2598. mddev->reshape_backwards = 1;
  2599. else if (new_offset < rdev->data_offset)
  2600. mddev->reshape_backwards = 0;
  2601. return len;
  2602. }
  2603. static struct rdev_sysfs_entry rdev_new_offset =
  2604. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2605. static ssize_t
  2606. rdev_size_show(struct md_rdev *rdev, char *page)
  2607. {
  2608. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2609. }
  2610. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2611. {
  2612. /* check if two start/length pairs overlap */
  2613. if (s1+l1 <= s2)
  2614. return 0;
  2615. if (s2+l2 <= s1)
  2616. return 0;
  2617. return 1;
  2618. }
  2619. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2620. {
  2621. unsigned long long blocks;
  2622. sector_t new;
  2623. if (strict_strtoull(buf, 10, &blocks) < 0)
  2624. return -EINVAL;
  2625. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2626. return -EINVAL; /* sector conversion overflow */
  2627. new = blocks * 2;
  2628. if (new != blocks * 2)
  2629. return -EINVAL; /* unsigned long long to sector_t overflow */
  2630. *sectors = new;
  2631. return 0;
  2632. }
  2633. static ssize_t
  2634. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2635. {
  2636. struct mddev *my_mddev = rdev->mddev;
  2637. sector_t oldsectors = rdev->sectors;
  2638. sector_t sectors;
  2639. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2640. return -EINVAL;
  2641. if (rdev->data_offset != rdev->new_data_offset)
  2642. return -EINVAL; /* too confusing */
  2643. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2644. if (my_mddev->persistent) {
  2645. sectors = super_types[my_mddev->major_version].
  2646. rdev_size_change(rdev, sectors);
  2647. if (!sectors)
  2648. return -EBUSY;
  2649. } else if (!sectors)
  2650. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2651. rdev->data_offset;
  2652. }
  2653. if (sectors < my_mddev->dev_sectors)
  2654. return -EINVAL; /* component must fit device */
  2655. rdev->sectors = sectors;
  2656. if (sectors > oldsectors && my_mddev->external) {
  2657. /* need to check that all other rdevs with the same ->bdev
  2658. * do not overlap. We need to unlock the mddev to avoid
  2659. * a deadlock. We have already changed rdev->sectors, and if
  2660. * we have to change it back, we will have the lock again.
  2661. */
  2662. struct mddev *mddev;
  2663. int overlap = 0;
  2664. struct list_head *tmp;
  2665. mddev_unlock(my_mddev);
  2666. for_each_mddev(mddev, tmp) {
  2667. struct md_rdev *rdev2;
  2668. mddev_lock(mddev);
  2669. rdev_for_each(rdev2, mddev)
  2670. if (rdev->bdev == rdev2->bdev &&
  2671. rdev != rdev2 &&
  2672. overlaps(rdev->data_offset, rdev->sectors,
  2673. rdev2->data_offset,
  2674. rdev2->sectors)) {
  2675. overlap = 1;
  2676. break;
  2677. }
  2678. mddev_unlock(mddev);
  2679. if (overlap) {
  2680. mddev_put(mddev);
  2681. break;
  2682. }
  2683. }
  2684. mddev_lock(my_mddev);
  2685. if (overlap) {
  2686. /* Someone else could have slipped in a size
  2687. * change here, but doing so is just silly.
  2688. * We put oldsectors back because we *know* it is
  2689. * safe, and trust userspace not to race with
  2690. * itself
  2691. */
  2692. rdev->sectors = oldsectors;
  2693. return -EBUSY;
  2694. }
  2695. }
  2696. return len;
  2697. }
  2698. static struct rdev_sysfs_entry rdev_size =
  2699. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2700. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2701. {
  2702. unsigned long long recovery_start = rdev->recovery_offset;
  2703. if (test_bit(In_sync, &rdev->flags) ||
  2704. recovery_start == MaxSector)
  2705. return sprintf(page, "none\n");
  2706. return sprintf(page, "%llu\n", recovery_start);
  2707. }
  2708. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2709. {
  2710. unsigned long long recovery_start;
  2711. if (cmd_match(buf, "none"))
  2712. recovery_start = MaxSector;
  2713. else if (strict_strtoull(buf, 10, &recovery_start))
  2714. return -EINVAL;
  2715. if (rdev->mddev->pers &&
  2716. rdev->raid_disk >= 0)
  2717. return -EBUSY;
  2718. rdev->recovery_offset = recovery_start;
  2719. if (recovery_start == MaxSector)
  2720. set_bit(In_sync, &rdev->flags);
  2721. else
  2722. clear_bit(In_sync, &rdev->flags);
  2723. return len;
  2724. }
  2725. static struct rdev_sysfs_entry rdev_recovery_start =
  2726. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2727. static ssize_t
  2728. badblocks_show(struct badblocks *bb, char *page, int unack);
  2729. static ssize_t
  2730. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2731. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2732. {
  2733. return badblocks_show(&rdev->badblocks, page, 0);
  2734. }
  2735. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2736. {
  2737. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2738. /* Maybe that ack was all we needed */
  2739. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2740. wake_up(&rdev->blocked_wait);
  2741. return rv;
  2742. }
  2743. static struct rdev_sysfs_entry rdev_bad_blocks =
  2744. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2745. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2746. {
  2747. return badblocks_show(&rdev->badblocks, page, 1);
  2748. }
  2749. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2750. {
  2751. return badblocks_store(&rdev->badblocks, page, len, 1);
  2752. }
  2753. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2754. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2755. static struct attribute *rdev_default_attrs[] = {
  2756. &rdev_state.attr,
  2757. &rdev_errors.attr,
  2758. &rdev_slot.attr,
  2759. &rdev_offset.attr,
  2760. &rdev_new_offset.attr,
  2761. &rdev_size.attr,
  2762. &rdev_recovery_start.attr,
  2763. &rdev_bad_blocks.attr,
  2764. &rdev_unack_bad_blocks.attr,
  2765. NULL,
  2766. };
  2767. static ssize_t
  2768. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2769. {
  2770. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2771. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2772. struct mddev *mddev = rdev->mddev;
  2773. ssize_t rv;
  2774. if (!entry->show)
  2775. return -EIO;
  2776. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2777. if (!rv) {
  2778. if (rdev->mddev == NULL)
  2779. rv = -EBUSY;
  2780. else
  2781. rv = entry->show(rdev, page);
  2782. mddev_unlock(mddev);
  2783. }
  2784. return rv;
  2785. }
  2786. static ssize_t
  2787. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2788. const char *page, size_t length)
  2789. {
  2790. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2791. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2792. ssize_t rv;
  2793. struct mddev *mddev = rdev->mddev;
  2794. if (!entry->store)
  2795. return -EIO;
  2796. if (!capable(CAP_SYS_ADMIN))
  2797. return -EACCES;
  2798. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2799. if (!rv) {
  2800. if (rdev->mddev == NULL)
  2801. rv = -EBUSY;
  2802. else
  2803. rv = entry->store(rdev, page, length);
  2804. mddev_unlock(mddev);
  2805. }
  2806. return rv;
  2807. }
  2808. static void rdev_free(struct kobject *ko)
  2809. {
  2810. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2811. kfree(rdev);
  2812. }
  2813. static const struct sysfs_ops rdev_sysfs_ops = {
  2814. .show = rdev_attr_show,
  2815. .store = rdev_attr_store,
  2816. };
  2817. static struct kobj_type rdev_ktype = {
  2818. .release = rdev_free,
  2819. .sysfs_ops = &rdev_sysfs_ops,
  2820. .default_attrs = rdev_default_attrs,
  2821. };
  2822. int md_rdev_init(struct md_rdev *rdev)
  2823. {
  2824. rdev->desc_nr = -1;
  2825. rdev->saved_raid_disk = -1;
  2826. rdev->raid_disk = -1;
  2827. rdev->flags = 0;
  2828. rdev->data_offset = 0;
  2829. rdev->new_data_offset = 0;
  2830. rdev->sb_events = 0;
  2831. rdev->last_read_error.tv_sec = 0;
  2832. rdev->last_read_error.tv_nsec = 0;
  2833. rdev->sb_loaded = 0;
  2834. rdev->bb_page = NULL;
  2835. atomic_set(&rdev->nr_pending, 0);
  2836. atomic_set(&rdev->read_errors, 0);
  2837. atomic_set(&rdev->corrected_errors, 0);
  2838. INIT_LIST_HEAD(&rdev->same_set);
  2839. init_waitqueue_head(&rdev->blocked_wait);
  2840. /* Add space to store bad block list.
  2841. * This reserves the space even on arrays where it cannot
  2842. * be used - I wonder if that matters
  2843. */
  2844. rdev->badblocks.count = 0;
  2845. rdev->badblocks.shift = 0;
  2846. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2847. seqlock_init(&rdev->badblocks.lock);
  2848. if (rdev->badblocks.page == NULL)
  2849. return -ENOMEM;
  2850. return 0;
  2851. }
  2852. EXPORT_SYMBOL_GPL(md_rdev_init);
  2853. /*
  2854. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2855. *
  2856. * mark the device faulty if:
  2857. *
  2858. * - the device is nonexistent (zero size)
  2859. * - the device has no valid superblock
  2860. *
  2861. * a faulty rdev _never_ has rdev->sb set.
  2862. */
  2863. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2864. {
  2865. char b[BDEVNAME_SIZE];
  2866. int err;
  2867. struct md_rdev *rdev;
  2868. sector_t size;
  2869. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2870. if (!rdev) {
  2871. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2872. return ERR_PTR(-ENOMEM);
  2873. }
  2874. err = md_rdev_init(rdev);
  2875. if (err)
  2876. goto abort_free;
  2877. err = alloc_disk_sb(rdev);
  2878. if (err)
  2879. goto abort_free;
  2880. err = lock_rdev(rdev, newdev, super_format == -2);
  2881. if (err)
  2882. goto abort_free;
  2883. kobject_init(&rdev->kobj, &rdev_ktype);
  2884. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2885. if (!size) {
  2886. printk(KERN_WARNING
  2887. "md: %s has zero or unknown size, marking faulty!\n",
  2888. bdevname(rdev->bdev,b));
  2889. err = -EINVAL;
  2890. goto abort_free;
  2891. }
  2892. if (super_format >= 0) {
  2893. err = super_types[super_format].
  2894. load_super(rdev, NULL, super_minor);
  2895. if (err == -EINVAL) {
  2896. printk(KERN_WARNING
  2897. "md: %s does not have a valid v%d.%d "
  2898. "superblock, not importing!\n",
  2899. bdevname(rdev->bdev,b),
  2900. super_format, super_minor);
  2901. goto abort_free;
  2902. }
  2903. if (err < 0) {
  2904. printk(KERN_WARNING
  2905. "md: could not read %s's sb, not importing!\n",
  2906. bdevname(rdev->bdev,b));
  2907. goto abort_free;
  2908. }
  2909. }
  2910. if (super_format == -1)
  2911. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2912. rdev->badblocks.shift = -1;
  2913. return rdev;
  2914. abort_free:
  2915. if (rdev->bdev)
  2916. unlock_rdev(rdev);
  2917. md_rdev_clear(rdev);
  2918. kfree(rdev);
  2919. return ERR_PTR(err);
  2920. }
  2921. /*
  2922. * Check a full RAID array for plausibility
  2923. */
  2924. static void analyze_sbs(struct mddev * mddev)
  2925. {
  2926. int i;
  2927. struct md_rdev *rdev, *freshest, *tmp;
  2928. char b[BDEVNAME_SIZE];
  2929. freshest = NULL;
  2930. rdev_for_each_safe(rdev, tmp, mddev)
  2931. switch (super_types[mddev->major_version].
  2932. load_super(rdev, freshest, mddev->minor_version)) {
  2933. case 1:
  2934. freshest = rdev;
  2935. break;
  2936. case 0:
  2937. break;
  2938. default:
  2939. printk( KERN_ERR \
  2940. "md: fatal superblock inconsistency in %s"
  2941. " -- removing from array\n",
  2942. bdevname(rdev->bdev,b));
  2943. kick_rdev_from_array(rdev);
  2944. }
  2945. super_types[mddev->major_version].
  2946. validate_super(mddev, freshest);
  2947. i = 0;
  2948. rdev_for_each_safe(rdev, tmp, mddev) {
  2949. if (mddev->max_disks &&
  2950. (rdev->desc_nr >= mddev->max_disks ||
  2951. i > mddev->max_disks)) {
  2952. printk(KERN_WARNING
  2953. "md: %s: %s: only %d devices permitted\n",
  2954. mdname(mddev), bdevname(rdev->bdev, b),
  2955. mddev->max_disks);
  2956. kick_rdev_from_array(rdev);
  2957. continue;
  2958. }
  2959. if (rdev != freshest)
  2960. if (super_types[mddev->major_version].
  2961. validate_super(mddev, rdev)) {
  2962. printk(KERN_WARNING "md: kicking non-fresh %s"
  2963. " from array!\n",
  2964. bdevname(rdev->bdev,b));
  2965. kick_rdev_from_array(rdev);
  2966. continue;
  2967. }
  2968. if (mddev->level == LEVEL_MULTIPATH) {
  2969. rdev->desc_nr = i++;
  2970. rdev->raid_disk = rdev->desc_nr;
  2971. set_bit(In_sync, &rdev->flags);
  2972. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2973. rdev->raid_disk = -1;
  2974. clear_bit(In_sync, &rdev->flags);
  2975. }
  2976. }
  2977. }
  2978. /* Read a fixed-point number.
  2979. * Numbers in sysfs attributes should be in "standard" units where
  2980. * possible, so time should be in seconds.
  2981. * However we internally use a a much smaller unit such as
  2982. * milliseconds or jiffies.
  2983. * This function takes a decimal number with a possible fractional
  2984. * component, and produces an integer which is the result of
  2985. * multiplying that number by 10^'scale'.
  2986. * all without any floating-point arithmetic.
  2987. */
  2988. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2989. {
  2990. unsigned long result = 0;
  2991. long decimals = -1;
  2992. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2993. if (*cp == '.')
  2994. decimals = 0;
  2995. else if (decimals < scale) {
  2996. unsigned int value;
  2997. value = *cp - '0';
  2998. result = result * 10 + value;
  2999. if (decimals >= 0)
  3000. decimals++;
  3001. }
  3002. cp++;
  3003. }
  3004. if (*cp == '\n')
  3005. cp++;
  3006. if (*cp)
  3007. return -EINVAL;
  3008. if (decimals < 0)
  3009. decimals = 0;
  3010. while (decimals < scale) {
  3011. result *= 10;
  3012. decimals ++;
  3013. }
  3014. *res = result;
  3015. return 0;
  3016. }
  3017. static void md_safemode_timeout(unsigned long data);
  3018. static ssize_t
  3019. safe_delay_show(struct mddev *mddev, char *page)
  3020. {
  3021. int msec = (mddev->safemode_delay*1000)/HZ;
  3022. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3023. }
  3024. static ssize_t
  3025. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3026. {
  3027. unsigned long msec;
  3028. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3029. return -EINVAL;
  3030. if (msec == 0)
  3031. mddev->safemode_delay = 0;
  3032. else {
  3033. unsigned long old_delay = mddev->safemode_delay;
  3034. mddev->safemode_delay = (msec*HZ)/1000;
  3035. if (mddev->safemode_delay == 0)
  3036. mddev->safemode_delay = 1;
  3037. if (mddev->safemode_delay < old_delay)
  3038. md_safemode_timeout((unsigned long)mddev);
  3039. }
  3040. return len;
  3041. }
  3042. static struct md_sysfs_entry md_safe_delay =
  3043. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3044. static ssize_t
  3045. level_show(struct mddev *mddev, char *page)
  3046. {
  3047. struct md_personality *p = mddev->pers;
  3048. if (p)
  3049. return sprintf(page, "%s\n", p->name);
  3050. else if (mddev->clevel[0])
  3051. return sprintf(page, "%s\n", mddev->clevel);
  3052. else if (mddev->level != LEVEL_NONE)
  3053. return sprintf(page, "%d\n", mddev->level);
  3054. else
  3055. return 0;
  3056. }
  3057. static ssize_t
  3058. level_store(struct mddev *mddev, const char *buf, size_t len)
  3059. {
  3060. char clevel[16];
  3061. ssize_t rv = len;
  3062. struct md_personality *pers;
  3063. long level;
  3064. void *priv;
  3065. struct md_rdev *rdev;
  3066. if (mddev->pers == NULL) {
  3067. if (len == 0)
  3068. return 0;
  3069. if (len >= sizeof(mddev->clevel))
  3070. return -ENOSPC;
  3071. strncpy(mddev->clevel, buf, len);
  3072. if (mddev->clevel[len-1] == '\n')
  3073. len--;
  3074. mddev->clevel[len] = 0;
  3075. mddev->level = LEVEL_NONE;
  3076. return rv;
  3077. }
  3078. /* request to change the personality. Need to ensure:
  3079. * - array is not engaged in resync/recovery/reshape
  3080. * - old personality can be suspended
  3081. * - new personality will access other array.
  3082. */
  3083. if (mddev->sync_thread ||
  3084. mddev->reshape_position != MaxSector ||
  3085. mddev->sysfs_active)
  3086. return -EBUSY;
  3087. if (!mddev->pers->quiesce) {
  3088. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3089. mdname(mddev), mddev->pers->name);
  3090. return -EINVAL;
  3091. }
  3092. /* Now find the new personality */
  3093. if (len == 0 || len >= sizeof(clevel))
  3094. return -EINVAL;
  3095. strncpy(clevel, buf, len);
  3096. if (clevel[len-1] == '\n')
  3097. len--;
  3098. clevel[len] = 0;
  3099. if (strict_strtol(clevel, 10, &level))
  3100. level = LEVEL_NONE;
  3101. if (request_module("md-%s", clevel) != 0)
  3102. request_module("md-level-%s", clevel);
  3103. spin_lock(&pers_lock);
  3104. pers = find_pers(level, clevel);
  3105. if (!pers || !try_module_get(pers->owner)) {
  3106. spin_unlock(&pers_lock);
  3107. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3108. return -EINVAL;
  3109. }
  3110. spin_unlock(&pers_lock);
  3111. if (pers == mddev->pers) {
  3112. /* Nothing to do! */
  3113. module_put(pers->owner);
  3114. return rv;
  3115. }
  3116. if (!pers->takeover) {
  3117. module_put(pers->owner);
  3118. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3119. mdname(mddev), clevel);
  3120. return -EINVAL;
  3121. }
  3122. rdev_for_each(rdev, mddev)
  3123. rdev->new_raid_disk = rdev->raid_disk;
  3124. /* ->takeover must set new_* and/or delta_disks
  3125. * if it succeeds, and may set them when it fails.
  3126. */
  3127. priv = pers->takeover(mddev);
  3128. if (IS_ERR(priv)) {
  3129. mddev->new_level = mddev->level;
  3130. mddev->new_layout = mddev->layout;
  3131. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3132. mddev->raid_disks -= mddev->delta_disks;
  3133. mddev->delta_disks = 0;
  3134. mddev->reshape_backwards = 0;
  3135. module_put(pers->owner);
  3136. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3137. mdname(mddev), clevel);
  3138. return PTR_ERR(priv);
  3139. }
  3140. /* Looks like we have a winner */
  3141. mddev_suspend(mddev);
  3142. mddev->pers->stop(mddev);
  3143. if (mddev->pers->sync_request == NULL &&
  3144. pers->sync_request != NULL) {
  3145. /* need to add the md_redundancy_group */
  3146. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3147. printk(KERN_WARNING
  3148. "md: cannot register extra attributes for %s\n",
  3149. mdname(mddev));
  3150. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3151. }
  3152. if (mddev->pers->sync_request != NULL &&
  3153. pers->sync_request == NULL) {
  3154. /* need to remove the md_redundancy_group */
  3155. if (mddev->to_remove == NULL)
  3156. mddev->to_remove = &md_redundancy_group;
  3157. }
  3158. if (mddev->pers->sync_request == NULL &&
  3159. mddev->external) {
  3160. /* We are converting from a no-redundancy array
  3161. * to a redundancy array and metadata is managed
  3162. * externally so we need to be sure that writes
  3163. * won't block due to a need to transition
  3164. * clean->dirty
  3165. * until external management is started.
  3166. */
  3167. mddev->in_sync = 0;
  3168. mddev->safemode_delay = 0;
  3169. mddev->safemode = 0;
  3170. }
  3171. rdev_for_each(rdev, mddev) {
  3172. if (rdev->raid_disk < 0)
  3173. continue;
  3174. if (rdev->new_raid_disk >= mddev->raid_disks)
  3175. rdev->new_raid_disk = -1;
  3176. if (rdev->new_raid_disk == rdev->raid_disk)
  3177. continue;
  3178. sysfs_unlink_rdev(mddev, rdev);
  3179. }
  3180. rdev_for_each(rdev, mddev) {
  3181. if (rdev->raid_disk < 0)
  3182. continue;
  3183. if (rdev->new_raid_disk == rdev->raid_disk)
  3184. continue;
  3185. rdev->raid_disk = rdev->new_raid_disk;
  3186. if (rdev->raid_disk < 0)
  3187. clear_bit(In_sync, &rdev->flags);
  3188. else {
  3189. if (sysfs_link_rdev(mddev, rdev))
  3190. printk(KERN_WARNING "md: cannot register rd%d"
  3191. " for %s after level change\n",
  3192. rdev->raid_disk, mdname(mddev));
  3193. }
  3194. }
  3195. module_put(mddev->pers->owner);
  3196. mddev->pers = pers;
  3197. mddev->private = priv;
  3198. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3199. mddev->level = mddev->new_level;
  3200. mddev->layout = mddev->new_layout;
  3201. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3202. mddev->delta_disks = 0;
  3203. mddev->reshape_backwards = 0;
  3204. mddev->degraded = 0;
  3205. if (mddev->pers->sync_request == NULL) {
  3206. /* this is now an array without redundancy, so
  3207. * it must always be in_sync
  3208. */
  3209. mddev->in_sync = 1;
  3210. del_timer_sync(&mddev->safemode_timer);
  3211. }
  3212. pers->run(mddev);
  3213. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3214. mddev_resume(mddev);
  3215. sysfs_notify(&mddev->kobj, NULL, "level");
  3216. md_new_event(mddev);
  3217. return rv;
  3218. }
  3219. static struct md_sysfs_entry md_level =
  3220. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3221. static ssize_t
  3222. layout_show(struct mddev *mddev, char *page)
  3223. {
  3224. /* just a number, not meaningful for all levels */
  3225. if (mddev->reshape_position != MaxSector &&
  3226. mddev->layout != mddev->new_layout)
  3227. return sprintf(page, "%d (%d)\n",
  3228. mddev->new_layout, mddev->layout);
  3229. return sprintf(page, "%d\n", mddev->layout);
  3230. }
  3231. static ssize_t
  3232. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3233. {
  3234. char *e;
  3235. unsigned long n = simple_strtoul(buf, &e, 10);
  3236. if (!*buf || (*e && *e != '\n'))
  3237. return -EINVAL;
  3238. if (mddev->pers) {
  3239. int err;
  3240. if (mddev->pers->check_reshape == NULL)
  3241. return -EBUSY;
  3242. mddev->new_layout = n;
  3243. err = mddev->pers->check_reshape(mddev);
  3244. if (err) {
  3245. mddev->new_layout = mddev->layout;
  3246. return err;
  3247. }
  3248. } else {
  3249. mddev->new_layout = n;
  3250. if (mddev->reshape_position == MaxSector)
  3251. mddev->layout = n;
  3252. }
  3253. return len;
  3254. }
  3255. static struct md_sysfs_entry md_layout =
  3256. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3257. static ssize_t
  3258. raid_disks_show(struct mddev *mddev, char *page)
  3259. {
  3260. if (mddev->raid_disks == 0)
  3261. return 0;
  3262. if (mddev->reshape_position != MaxSector &&
  3263. mddev->delta_disks != 0)
  3264. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3265. mddev->raid_disks - mddev->delta_disks);
  3266. return sprintf(page, "%d\n", mddev->raid_disks);
  3267. }
  3268. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3269. static ssize_t
  3270. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3271. {
  3272. char *e;
  3273. int rv = 0;
  3274. unsigned long n = simple_strtoul(buf, &e, 10);
  3275. if (!*buf || (*e && *e != '\n'))
  3276. return -EINVAL;
  3277. if (mddev->pers)
  3278. rv = update_raid_disks(mddev, n);
  3279. else if (mddev->reshape_position != MaxSector) {
  3280. struct md_rdev *rdev;
  3281. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3282. rdev_for_each(rdev, mddev) {
  3283. if (olddisks < n &&
  3284. rdev->data_offset < rdev->new_data_offset)
  3285. return -EINVAL;
  3286. if (olddisks > n &&
  3287. rdev->data_offset > rdev->new_data_offset)
  3288. return -EINVAL;
  3289. }
  3290. mddev->delta_disks = n - olddisks;
  3291. mddev->raid_disks = n;
  3292. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3293. } else
  3294. mddev->raid_disks = n;
  3295. return rv ? rv : len;
  3296. }
  3297. static struct md_sysfs_entry md_raid_disks =
  3298. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3299. static ssize_t
  3300. chunk_size_show(struct mddev *mddev, char *page)
  3301. {
  3302. if (mddev->reshape_position != MaxSector &&
  3303. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3304. return sprintf(page, "%d (%d)\n",
  3305. mddev->new_chunk_sectors << 9,
  3306. mddev->chunk_sectors << 9);
  3307. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3308. }
  3309. static ssize_t
  3310. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3311. {
  3312. char *e;
  3313. unsigned long n = simple_strtoul(buf, &e, 10);
  3314. if (!*buf || (*e && *e != '\n'))
  3315. return -EINVAL;
  3316. if (mddev->pers) {
  3317. int err;
  3318. if (mddev->pers->check_reshape == NULL)
  3319. return -EBUSY;
  3320. mddev->new_chunk_sectors = n >> 9;
  3321. err = mddev->pers->check_reshape(mddev);
  3322. if (err) {
  3323. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3324. return err;
  3325. }
  3326. } else {
  3327. mddev->new_chunk_sectors = n >> 9;
  3328. if (mddev->reshape_position == MaxSector)
  3329. mddev->chunk_sectors = n >> 9;
  3330. }
  3331. return len;
  3332. }
  3333. static struct md_sysfs_entry md_chunk_size =
  3334. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3335. static ssize_t
  3336. resync_start_show(struct mddev *mddev, char *page)
  3337. {
  3338. if (mddev->recovery_cp == MaxSector)
  3339. return sprintf(page, "none\n");
  3340. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3341. }
  3342. static ssize_t
  3343. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3344. {
  3345. char *e;
  3346. unsigned long long n = simple_strtoull(buf, &e, 10);
  3347. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3348. return -EBUSY;
  3349. if (cmd_match(buf, "none"))
  3350. n = MaxSector;
  3351. else if (!*buf || (*e && *e != '\n'))
  3352. return -EINVAL;
  3353. mddev->recovery_cp = n;
  3354. return len;
  3355. }
  3356. static struct md_sysfs_entry md_resync_start =
  3357. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3358. /*
  3359. * The array state can be:
  3360. *
  3361. * clear
  3362. * No devices, no size, no level
  3363. * Equivalent to STOP_ARRAY ioctl
  3364. * inactive
  3365. * May have some settings, but array is not active
  3366. * all IO results in error
  3367. * When written, doesn't tear down array, but just stops it
  3368. * suspended (not supported yet)
  3369. * All IO requests will block. The array can be reconfigured.
  3370. * Writing this, if accepted, will block until array is quiescent
  3371. * readonly
  3372. * no resync can happen. no superblocks get written.
  3373. * write requests fail
  3374. * read-auto
  3375. * like readonly, but behaves like 'clean' on a write request.
  3376. *
  3377. * clean - no pending writes, but otherwise active.
  3378. * When written to inactive array, starts without resync
  3379. * If a write request arrives then
  3380. * if metadata is known, mark 'dirty' and switch to 'active'.
  3381. * if not known, block and switch to write-pending
  3382. * If written to an active array that has pending writes, then fails.
  3383. * active
  3384. * fully active: IO and resync can be happening.
  3385. * When written to inactive array, starts with resync
  3386. *
  3387. * write-pending
  3388. * clean, but writes are blocked waiting for 'active' to be written.
  3389. *
  3390. * active-idle
  3391. * like active, but no writes have been seen for a while (100msec).
  3392. *
  3393. */
  3394. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3395. write_pending, active_idle, bad_word};
  3396. static char *array_states[] = {
  3397. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3398. "write-pending", "active-idle", NULL };
  3399. static int match_word(const char *word, char **list)
  3400. {
  3401. int n;
  3402. for (n=0; list[n]; n++)
  3403. if (cmd_match(word, list[n]))
  3404. break;
  3405. return n;
  3406. }
  3407. static ssize_t
  3408. array_state_show(struct mddev *mddev, char *page)
  3409. {
  3410. enum array_state st = inactive;
  3411. if (mddev->pers)
  3412. switch(mddev->ro) {
  3413. case 1:
  3414. st = readonly;
  3415. break;
  3416. case 2:
  3417. st = read_auto;
  3418. break;
  3419. case 0:
  3420. if (mddev->in_sync)
  3421. st = clean;
  3422. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3423. st = write_pending;
  3424. else if (mddev->safemode)
  3425. st = active_idle;
  3426. else
  3427. st = active;
  3428. }
  3429. else {
  3430. if (list_empty(&mddev->disks) &&
  3431. mddev->raid_disks == 0 &&
  3432. mddev->dev_sectors == 0)
  3433. st = clear;
  3434. else
  3435. st = inactive;
  3436. }
  3437. return sprintf(page, "%s\n", array_states[st]);
  3438. }
  3439. static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
  3440. static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
  3441. static int do_md_run(struct mddev * mddev);
  3442. static int restart_array(struct mddev *mddev);
  3443. static ssize_t
  3444. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3445. {
  3446. int err = -EINVAL;
  3447. enum array_state st = match_word(buf, array_states);
  3448. switch(st) {
  3449. case bad_word:
  3450. break;
  3451. case clear:
  3452. /* stopping an active array */
  3453. err = do_md_stop(mddev, 0, NULL);
  3454. break;
  3455. case inactive:
  3456. /* stopping an active array */
  3457. if (mddev->pers)
  3458. err = do_md_stop(mddev, 2, NULL);
  3459. else
  3460. err = 0; /* already inactive */
  3461. break;
  3462. case suspended:
  3463. break; /* not supported yet */
  3464. case readonly:
  3465. if (mddev->pers)
  3466. err = md_set_readonly(mddev, NULL);
  3467. else {
  3468. mddev->ro = 1;
  3469. set_disk_ro(mddev->gendisk, 1);
  3470. err = do_md_run(mddev);
  3471. }
  3472. break;
  3473. case read_auto:
  3474. if (mddev->pers) {
  3475. if (mddev->ro == 0)
  3476. err = md_set_readonly(mddev, NULL);
  3477. else if (mddev->ro == 1)
  3478. err = restart_array(mddev);
  3479. if (err == 0) {
  3480. mddev->ro = 2;
  3481. set_disk_ro(mddev->gendisk, 0);
  3482. }
  3483. } else {
  3484. mddev->ro = 2;
  3485. err = do_md_run(mddev);
  3486. }
  3487. break;
  3488. case clean:
  3489. if (mddev->pers) {
  3490. restart_array(mddev);
  3491. spin_lock_irq(&mddev->write_lock);
  3492. if (atomic_read(&mddev->writes_pending) == 0) {
  3493. if (mddev->in_sync == 0) {
  3494. mddev->in_sync = 1;
  3495. if (mddev->safemode == 1)
  3496. mddev->safemode = 0;
  3497. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3498. }
  3499. err = 0;
  3500. } else
  3501. err = -EBUSY;
  3502. spin_unlock_irq(&mddev->write_lock);
  3503. } else
  3504. err = -EINVAL;
  3505. break;
  3506. case active:
  3507. if (mddev->pers) {
  3508. restart_array(mddev);
  3509. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3510. wake_up(&mddev->sb_wait);
  3511. err = 0;
  3512. } else {
  3513. mddev->ro = 0;
  3514. set_disk_ro(mddev->gendisk, 0);
  3515. err = do_md_run(mddev);
  3516. }
  3517. break;
  3518. case write_pending:
  3519. case active_idle:
  3520. /* these cannot be set */
  3521. break;
  3522. }
  3523. if (err)
  3524. return err;
  3525. else {
  3526. if (mddev->hold_active == UNTIL_IOCTL)
  3527. mddev->hold_active = 0;
  3528. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3529. return len;
  3530. }
  3531. }
  3532. static struct md_sysfs_entry md_array_state =
  3533. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3534. static ssize_t
  3535. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3536. return sprintf(page, "%d\n",
  3537. atomic_read(&mddev->max_corr_read_errors));
  3538. }
  3539. static ssize_t
  3540. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3541. {
  3542. char *e;
  3543. unsigned long n = simple_strtoul(buf, &e, 10);
  3544. if (*buf && (*e == 0 || *e == '\n')) {
  3545. atomic_set(&mddev->max_corr_read_errors, n);
  3546. return len;
  3547. }
  3548. return -EINVAL;
  3549. }
  3550. static struct md_sysfs_entry max_corr_read_errors =
  3551. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3552. max_corrected_read_errors_store);
  3553. static ssize_t
  3554. null_show(struct mddev *mddev, char *page)
  3555. {
  3556. return -EINVAL;
  3557. }
  3558. static ssize_t
  3559. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3560. {
  3561. /* buf must be %d:%d\n? giving major and minor numbers */
  3562. /* The new device is added to the array.
  3563. * If the array has a persistent superblock, we read the
  3564. * superblock to initialise info and check validity.
  3565. * Otherwise, only checking done is that in bind_rdev_to_array,
  3566. * which mainly checks size.
  3567. */
  3568. char *e;
  3569. int major = simple_strtoul(buf, &e, 10);
  3570. int minor;
  3571. dev_t dev;
  3572. struct md_rdev *rdev;
  3573. int err;
  3574. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3575. return -EINVAL;
  3576. minor = simple_strtoul(e+1, &e, 10);
  3577. if (*e && *e != '\n')
  3578. return -EINVAL;
  3579. dev = MKDEV(major, minor);
  3580. if (major != MAJOR(dev) ||
  3581. minor != MINOR(dev))
  3582. return -EOVERFLOW;
  3583. if (mddev->persistent) {
  3584. rdev = md_import_device(dev, mddev->major_version,
  3585. mddev->minor_version);
  3586. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3587. struct md_rdev *rdev0
  3588. = list_entry(mddev->disks.next,
  3589. struct md_rdev, same_set);
  3590. err = super_types[mddev->major_version]
  3591. .load_super(rdev, rdev0, mddev->minor_version);
  3592. if (err < 0)
  3593. goto out;
  3594. }
  3595. } else if (mddev->external)
  3596. rdev = md_import_device(dev, -2, -1);
  3597. else
  3598. rdev = md_import_device(dev, -1, -1);
  3599. if (IS_ERR(rdev))
  3600. return PTR_ERR(rdev);
  3601. err = bind_rdev_to_array(rdev, mddev);
  3602. out:
  3603. if (err)
  3604. export_rdev(rdev);
  3605. return err ? err : len;
  3606. }
  3607. static struct md_sysfs_entry md_new_device =
  3608. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3609. static ssize_t
  3610. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3611. {
  3612. char *end;
  3613. unsigned long chunk, end_chunk;
  3614. if (!mddev->bitmap)
  3615. goto out;
  3616. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3617. while (*buf) {
  3618. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3619. if (buf == end) break;
  3620. if (*end == '-') { /* range */
  3621. buf = end + 1;
  3622. end_chunk = simple_strtoul(buf, &end, 0);
  3623. if (buf == end) break;
  3624. }
  3625. if (*end && !isspace(*end)) break;
  3626. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3627. buf = skip_spaces(end);
  3628. }
  3629. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3630. out:
  3631. return len;
  3632. }
  3633. static struct md_sysfs_entry md_bitmap =
  3634. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3635. static ssize_t
  3636. size_show(struct mddev *mddev, char *page)
  3637. {
  3638. return sprintf(page, "%llu\n",
  3639. (unsigned long long)mddev->dev_sectors / 2);
  3640. }
  3641. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3642. static ssize_t
  3643. size_store(struct mddev *mddev, const char *buf, size_t len)
  3644. {
  3645. /* If array is inactive, we can reduce the component size, but
  3646. * not increase it (except from 0).
  3647. * If array is active, we can try an on-line resize
  3648. */
  3649. sector_t sectors;
  3650. int err = strict_blocks_to_sectors(buf, &sectors);
  3651. if (err < 0)
  3652. return err;
  3653. if (mddev->pers) {
  3654. err = update_size(mddev, sectors);
  3655. md_update_sb(mddev, 1);
  3656. } else {
  3657. if (mddev->dev_sectors == 0 ||
  3658. mddev->dev_sectors > sectors)
  3659. mddev->dev_sectors = sectors;
  3660. else
  3661. err = -ENOSPC;
  3662. }
  3663. return err ? err : len;
  3664. }
  3665. static struct md_sysfs_entry md_size =
  3666. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3667. /* Metdata version.
  3668. * This is one of
  3669. * 'none' for arrays with no metadata (good luck...)
  3670. * 'external' for arrays with externally managed metadata,
  3671. * or N.M for internally known formats
  3672. */
  3673. static ssize_t
  3674. metadata_show(struct mddev *mddev, char *page)
  3675. {
  3676. if (mddev->persistent)
  3677. return sprintf(page, "%d.%d\n",
  3678. mddev->major_version, mddev->minor_version);
  3679. else if (mddev->external)
  3680. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3681. else
  3682. return sprintf(page, "none\n");
  3683. }
  3684. static ssize_t
  3685. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3686. {
  3687. int major, minor;
  3688. char *e;
  3689. /* Changing the details of 'external' metadata is
  3690. * always permitted. Otherwise there must be
  3691. * no devices attached to the array.
  3692. */
  3693. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3694. ;
  3695. else if (!list_empty(&mddev->disks))
  3696. return -EBUSY;
  3697. if (cmd_match(buf, "none")) {
  3698. mddev->persistent = 0;
  3699. mddev->external = 0;
  3700. mddev->major_version = 0;
  3701. mddev->minor_version = 90;
  3702. return len;
  3703. }
  3704. if (strncmp(buf, "external:", 9) == 0) {
  3705. size_t namelen = len-9;
  3706. if (namelen >= sizeof(mddev->metadata_type))
  3707. namelen = sizeof(mddev->metadata_type)-1;
  3708. strncpy(mddev->metadata_type, buf+9, namelen);
  3709. mddev->metadata_type[namelen] = 0;
  3710. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3711. mddev->metadata_type[--namelen] = 0;
  3712. mddev->persistent = 0;
  3713. mddev->external = 1;
  3714. mddev->major_version = 0;
  3715. mddev->minor_version = 90;
  3716. return len;
  3717. }
  3718. major = simple_strtoul(buf, &e, 10);
  3719. if (e==buf || *e != '.')
  3720. return -EINVAL;
  3721. buf = e+1;
  3722. minor = simple_strtoul(buf, &e, 10);
  3723. if (e==buf || (*e && *e != '\n') )
  3724. return -EINVAL;
  3725. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3726. return -ENOENT;
  3727. mddev->major_version = major;
  3728. mddev->minor_version = minor;
  3729. mddev->persistent = 1;
  3730. mddev->external = 0;
  3731. return len;
  3732. }
  3733. static struct md_sysfs_entry md_metadata =
  3734. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3735. static ssize_t
  3736. action_show(struct mddev *mddev, char *page)
  3737. {
  3738. char *type = "idle";
  3739. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3740. type = "frozen";
  3741. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3742. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3743. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3744. type = "reshape";
  3745. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3746. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3747. type = "resync";
  3748. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3749. type = "check";
  3750. else
  3751. type = "repair";
  3752. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3753. type = "recover";
  3754. }
  3755. return sprintf(page, "%s\n", type);
  3756. }
  3757. static void reap_sync_thread(struct mddev *mddev);
  3758. static ssize_t
  3759. action_store(struct mddev *mddev, const char *page, size_t len)
  3760. {
  3761. if (!mddev->pers || !mddev->pers->sync_request)
  3762. return -EINVAL;
  3763. if (cmd_match(page, "frozen"))
  3764. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3765. else
  3766. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3767. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3768. if (mddev->sync_thread) {
  3769. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3770. reap_sync_thread(mddev);
  3771. }
  3772. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3773. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3774. return -EBUSY;
  3775. else if (cmd_match(page, "resync"))
  3776. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3777. else if (cmd_match(page, "recover")) {
  3778. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3779. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3780. } else if (cmd_match(page, "reshape")) {
  3781. int err;
  3782. if (mddev->pers->start_reshape == NULL)
  3783. return -EINVAL;
  3784. err = mddev->pers->start_reshape(mddev);
  3785. if (err)
  3786. return err;
  3787. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3788. } else {
  3789. if (cmd_match(page, "check"))
  3790. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3791. else if (!cmd_match(page, "repair"))
  3792. return -EINVAL;
  3793. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3794. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3795. }
  3796. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3797. md_wakeup_thread(mddev->thread);
  3798. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3799. return len;
  3800. }
  3801. static ssize_t
  3802. mismatch_cnt_show(struct mddev *mddev, char *page)
  3803. {
  3804. return sprintf(page, "%llu\n",
  3805. (unsigned long long) mddev->resync_mismatches);
  3806. }
  3807. static struct md_sysfs_entry md_scan_mode =
  3808. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3809. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3810. static ssize_t
  3811. sync_min_show(struct mddev *mddev, char *page)
  3812. {
  3813. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3814. mddev->sync_speed_min ? "local": "system");
  3815. }
  3816. static ssize_t
  3817. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3818. {
  3819. int min;
  3820. char *e;
  3821. if (strncmp(buf, "system", 6)==0) {
  3822. mddev->sync_speed_min = 0;
  3823. return len;
  3824. }
  3825. min = simple_strtoul(buf, &e, 10);
  3826. if (buf == e || (*e && *e != '\n') || min <= 0)
  3827. return -EINVAL;
  3828. mddev->sync_speed_min = min;
  3829. return len;
  3830. }
  3831. static struct md_sysfs_entry md_sync_min =
  3832. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3833. static ssize_t
  3834. sync_max_show(struct mddev *mddev, char *page)
  3835. {
  3836. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3837. mddev->sync_speed_max ? "local": "system");
  3838. }
  3839. static ssize_t
  3840. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3841. {
  3842. int max;
  3843. char *e;
  3844. if (strncmp(buf, "system", 6)==0) {
  3845. mddev->sync_speed_max = 0;
  3846. return len;
  3847. }
  3848. max = simple_strtoul(buf, &e, 10);
  3849. if (buf == e || (*e && *e != '\n') || max <= 0)
  3850. return -EINVAL;
  3851. mddev->sync_speed_max = max;
  3852. return len;
  3853. }
  3854. static struct md_sysfs_entry md_sync_max =
  3855. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3856. static ssize_t
  3857. degraded_show(struct mddev *mddev, char *page)
  3858. {
  3859. return sprintf(page, "%d\n", mddev->degraded);
  3860. }
  3861. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3862. static ssize_t
  3863. sync_force_parallel_show(struct mddev *mddev, char *page)
  3864. {
  3865. return sprintf(page, "%d\n", mddev->parallel_resync);
  3866. }
  3867. static ssize_t
  3868. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3869. {
  3870. long n;
  3871. if (strict_strtol(buf, 10, &n))
  3872. return -EINVAL;
  3873. if (n != 0 && n != 1)
  3874. return -EINVAL;
  3875. mddev->parallel_resync = n;
  3876. if (mddev->sync_thread)
  3877. wake_up(&resync_wait);
  3878. return len;
  3879. }
  3880. /* force parallel resync, even with shared block devices */
  3881. static struct md_sysfs_entry md_sync_force_parallel =
  3882. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3883. sync_force_parallel_show, sync_force_parallel_store);
  3884. static ssize_t
  3885. sync_speed_show(struct mddev *mddev, char *page)
  3886. {
  3887. unsigned long resync, dt, db;
  3888. if (mddev->curr_resync == 0)
  3889. return sprintf(page, "none\n");
  3890. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3891. dt = (jiffies - mddev->resync_mark) / HZ;
  3892. if (!dt) dt++;
  3893. db = resync - mddev->resync_mark_cnt;
  3894. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3895. }
  3896. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3897. static ssize_t
  3898. sync_completed_show(struct mddev *mddev, char *page)
  3899. {
  3900. unsigned long long max_sectors, resync;
  3901. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3902. return sprintf(page, "none\n");
  3903. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3904. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3905. max_sectors = mddev->resync_max_sectors;
  3906. else
  3907. max_sectors = mddev->dev_sectors;
  3908. resync = mddev->curr_resync_completed;
  3909. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3910. }
  3911. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3912. static ssize_t
  3913. min_sync_show(struct mddev *mddev, char *page)
  3914. {
  3915. return sprintf(page, "%llu\n",
  3916. (unsigned long long)mddev->resync_min);
  3917. }
  3918. static ssize_t
  3919. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3920. {
  3921. unsigned long long min;
  3922. if (strict_strtoull(buf, 10, &min))
  3923. return -EINVAL;
  3924. if (min > mddev->resync_max)
  3925. return -EINVAL;
  3926. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3927. return -EBUSY;
  3928. /* Must be a multiple of chunk_size */
  3929. if (mddev->chunk_sectors) {
  3930. sector_t temp = min;
  3931. if (sector_div(temp, mddev->chunk_sectors))
  3932. return -EINVAL;
  3933. }
  3934. mddev->resync_min = min;
  3935. return len;
  3936. }
  3937. static struct md_sysfs_entry md_min_sync =
  3938. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3939. static ssize_t
  3940. max_sync_show(struct mddev *mddev, char *page)
  3941. {
  3942. if (mddev->resync_max == MaxSector)
  3943. return sprintf(page, "max\n");
  3944. else
  3945. return sprintf(page, "%llu\n",
  3946. (unsigned long long)mddev->resync_max);
  3947. }
  3948. static ssize_t
  3949. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3950. {
  3951. if (strncmp(buf, "max", 3) == 0)
  3952. mddev->resync_max = MaxSector;
  3953. else {
  3954. unsigned long long max;
  3955. if (strict_strtoull(buf, 10, &max))
  3956. return -EINVAL;
  3957. if (max < mddev->resync_min)
  3958. return -EINVAL;
  3959. if (max < mddev->resync_max &&
  3960. mddev->ro == 0 &&
  3961. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3962. return -EBUSY;
  3963. /* Must be a multiple of chunk_size */
  3964. if (mddev->chunk_sectors) {
  3965. sector_t temp = max;
  3966. if (sector_div(temp, mddev->chunk_sectors))
  3967. return -EINVAL;
  3968. }
  3969. mddev->resync_max = max;
  3970. }
  3971. wake_up(&mddev->recovery_wait);
  3972. return len;
  3973. }
  3974. static struct md_sysfs_entry md_max_sync =
  3975. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3976. static ssize_t
  3977. suspend_lo_show(struct mddev *mddev, char *page)
  3978. {
  3979. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3980. }
  3981. static ssize_t
  3982. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3983. {
  3984. char *e;
  3985. unsigned long long new = simple_strtoull(buf, &e, 10);
  3986. unsigned long long old = mddev->suspend_lo;
  3987. if (mddev->pers == NULL ||
  3988. mddev->pers->quiesce == NULL)
  3989. return -EINVAL;
  3990. if (buf == e || (*e && *e != '\n'))
  3991. return -EINVAL;
  3992. mddev->suspend_lo = new;
  3993. if (new >= old)
  3994. /* Shrinking suspended region */
  3995. mddev->pers->quiesce(mddev, 2);
  3996. else {
  3997. /* Expanding suspended region - need to wait */
  3998. mddev->pers->quiesce(mddev, 1);
  3999. mddev->pers->quiesce(mddev, 0);
  4000. }
  4001. return len;
  4002. }
  4003. static struct md_sysfs_entry md_suspend_lo =
  4004. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4005. static ssize_t
  4006. suspend_hi_show(struct mddev *mddev, char *page)
  4007. {
  4008. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4009. }
  4010. static ssize_t
  4011. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4012. {
  4013. char *e;
  4014. unsigned long long new = simple_strtoull(buf, &e, 10);
  4015. unsigned long long old = mddev->suspend_hi;
  4016. if (mddev->pers == NULL ||
  4017. mddev->pers->quiesce == NULL)
  4018. return -EINVAL;
  4019. if (buf == e || (*e && *e != '\n'))
  4020. return -EINVAL;
  4021. mddev->suspend_hi = new;
  4022. if (new <= old)
  4023. /* Shrinking suspended region */
  4024. mddev->pers->quiesce(mddev, 2);
  4025. else {
  4026. /* Expanding suspended region - need to wait */
  4027. mddev->pers->quiesce(mddev, 1);
  4028. mddev->pers->quiesce(mddev, 0);
  4029. }
  4030. return len;
  4031. }
  4032. static struct md_sysfs_entry md_suspend_hi =
  4033. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4034. static ssize_t
  4035. reshape_position_show(struct mddev *mddev, char *page)
  4036. {
  4037. if (mddev->reshape_position != MaxSector)
  4038. return sprintf(page, "%llu\n",
  4039. (unsigned long long)mddev->reshape_position);
  4040. strcpy(page, "none\n");
  4041. return 5;
  4042. }
  4043. static ssize_t
  4044. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4045. {
  4046. struct md_rdev *rdev;
  4047. char *e;
  4048. unsigned long long new = simple_strtoull(buf, &e, 10);
  4049. if (mddev->pers)
  4050. return -EBUSY;
  4051. if (buf == e || (*e && *e != '\n'))
  4052. return -EINVAL;
  4053. mddev->reshape_position = new;
  4054. mddev->delta_disks = 0;
  4055. mddev->reshape_backwards = 0;
  4056. mddev->new_level = mddev->level;
  4057. mddev->new_layout = mddev->layout;
  4058. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4059. rdev_for_each(rdev, mddev)
  4060. rdev->new_data_offset = rdev->data_offset;
  4061. return len;
  4062. }
  4063. static struct md_sysfs_entry md_reshape_position =
  4064. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4065. reshape_position_store);
  4066. static ssize_t
  4067. reshape_direction_show(struct mddev *mddev, char *page)
  4068. {
  4069. return sprintf(page, "%s\n",
  4070. mddev->reshape_backwards ? "backwards" : "forwards");
  4071. }
  4072. static ssize_t
  4073. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4074. {
  4075. int backwards = 0;
  4076. if (cmd_match(buf, "forwards"))
  4077. backwards = 0;
  4078. else if (cmd_match(buf, "backwards"))
  4079. backwards = 1;
  4080. else
  4081. return -EINVAL;
  4082. if (mddev->reshape_backwards == backwards)
  4083. return len;
  4084. /* check if we are allowed to change */
  4085. if (mddev->delta_disks)
  4086. return -EBUSY;
  4087. if (mddev->persistent &&
  4088. mddev->major_version == 0)
  4089. return -EINVAL;
  4090. mddev->reshape_backwards = backwards;
  4091. return len;
  4092. }
  4093. static struct md_sysfs_entry md_reshape_direction =
  4094. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4095. reshape_direction_store);
  4096. static ssize_t
  4097. array_size_show(struct mddev *mddev, char *page)
  4098. {
  4099. if (mddev->external_size)
  4100. return sprintf(page, "%llu\n",
  4101. (unsigned long long)mddev->array_sectors/2);
  4102. else
  4103. return sprintf(page, "default\n");
  4104. }
  4105. static ssize_t
  4106. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4107. {
  4108. sector_t sectors;
  4109. if (strncmp(buf, "default", 7) == 0) {
  4110. if (mddev->pers)
  4111. sectors = mddev->pers->size(mddev, 0, 0);
  4112. else
  4113. sectors = mddev->array_sectors;
  4114. mddev->external_size = 0;
  4115. } else {
  4116. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4117. return -EINVAL;
  4118. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4119. return -E2BIG;
  4120. mddev->external_size = 1;
  4121. }
  4122. mddev->array_sectors = sectors;
  4123. if (mddev->pers) {
  4124. set_capacity(mddev->gendisk, mddev->array_sectors);
  4125. revalidate_disk(mddev->gendisk);
  4126. }
  4127. return len;
  4128. }
  4129. static struct md_sysfs_entry md_array_size =
  4130. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4131. array_size_store);
  4132. static struct attribute *md_default_attrs[] = {
  4133. &md_level.attr,
  4134. &md_layout.attr,
  4135. &md_raid_disks.attr,
  4136. &md_chunk_size.attr,
  4137. &md_size.attr,
  4138. &md_resync_start.attr,
  4139. &md_metadata.attr,
  4140. &md_new_device.attr,
  4141. &md_safe_delay.attr,
  4142. &md_array_state.attr,
  4143. &md_reshape_position.attr,
  4144. &md_reshape_direction.attr,
  4145. &md_array_size.attr,
  4146. &max_corr_read_errors.attr,
  4147. NULL,
  4148. };
  4149. static struct attribute *md_redundancy_attrs[] = {
  4150. &md_scan_mode.attr,
  4151. &md_mismatches.attr,
  4152. &md_sync_min.attr,
  4153. &md_sync_max.attr,
  4154. &md_sync_speed.attr,
  4155. &md_sync_force_parallel.attr,
  4156. &md_sync_completed.attr,
  4157. &md_min_sync.attr,
  4158. &md_max_sync.attr,
  4159. &md_suspend_lo.attr,
  4160. &md_suspend_hi.attr,
  4161. &md_bitmap.attr,
  4162. &md_degraded.attr,
  4163. NULL,
  4164. };
  4165. static struct attribute_group md_redundancy_group = {
  4166. .name = NULL,
  4167. .attrs = md_redundancy_attrs,
  4168. };
  4169. static ssize_t
  4170. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4171. {
  4172. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4173. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4174. ssize_t rv;
  4175. if (!entry->show)
  4176. return -EIO;
  4177. spin_lock(&all_mddevs_lock);
  4178. if (list_empty(&mddev->all_mddevs)) {
  4179. spin_unlock(&all_mddevs_lock);
  4180. return -EBUSY;
  4181. }
  4182. mddev_get(mddev);
  4183. spin_unlock(&all_mddevs_lock);
  4184. rv = mddev_lock(mddev);
  4185. if (!rv) {
  4186. rv = entry->show(mddev, page);
  4187. mddev_unlock(mddev);
  4188. }
  4189. mddev_put(mddev);
  4190. return rv;
  4191. }
  4192. static ssize_t
  4193. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4194. const char *page, size_t length)
  4195. {
  4196. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4197. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4198. ssize_t rv;
  4199. if (!entry->store)
  4200. return -EIO;
  4201. if (!capable(CAP_SYS_ADMIN))
  4202. return -EACCES;
  4203. spin_lock(&all_mddevs_lock);
  4204. if (list_empty(&mddev->all_mddevs)) {
  4205. spin_unlock(&all_mddevs_lock);
  4206. return -EBUSY;
  4207. }
  4208. mddev_get(mddev);
  4209. spin_unlock(&all_mddevs_lock);
  4210. rv = mddev_lock(mddev);
  4211. if (!rv) {
  4212. rv = entry->store(mddev, page, length);
  4213. mddev_unlock(mddev);
  4214. }
  4215. mddev_put(mddev);
  4216. return rv;
  4217. }
  4218. static void md_free(struct kobject *ko)
  4219. {
  4220. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4221. if (mddev->sysfs_state)
  4222. sysfs_put(mddev->sysfs_state);
  4223. if (mddev->gendisk) {
  4224. del_gendisk(mddev->gendisk);
  4225. put_disk(mddev->gendisk);
  4226. }
  4227. if (mddev->queue)
  4228. blk_cleanup_queue(mddev->queue);
  4229. kfree(mddev);
  4230. }
  4231. static const struct sysfs_ops md_sysfs_ops = {
  4232. .show = md_attr_show,
  4233. .store = md_attr_store,
  4234. };
  4235. static struct kobj_type md_ktype = {
  4236. .release = md_free,
  4237. .sysfs_ops = &md_sysfs_ops,
  4238. .default_attrs = md_default_attrs,
  4239. };
  4240. int mdp_major = 0;
  4241. static void mddev_delayed_delete(struct work_struct *ws)
  4242. {
  4243. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4244. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4245. kobject_del(&mddev->kobj);
  4246. kobject_put(&mddev->kobj);
  4247. }
  4248. static int md_alloc(dev_t dev, char *name)
  4249. {
  4250. static DEFINE_MUTEX(disks_mutex);
  4251. struct mddev *mddev = mddev_find(dev);
  4252. struct gendisk *disk;
  4253. int partitioned;
  4254. int shift;
  4255. int unit;
  4256. int error;
  4257. if (!mddev)
  4258. return -ENODEV;
  4259. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4260. shift = partitioned ? MdpMinorShift : 0;
  4261. unit = MINOR(mddev->unit) >> shift;
  4262. /* wait for any previous instance of this device to be
  4263. * completely removed (mddev_delayed_delete).
  4264. */
  4265. flush_workqueue(md_misc_wq);
  4266. mutex_lock(&disks_mutex);
  4267. error = -EEXIST;
  4268. if (mddev->gendisk)
  4269. goto abort;
  4270. if (name) {
  4271. /* Need to ensure that 'name' is not a duplicate.
  4272. */
  4273. struct mddev *mddev2;
  4274. spin_lock(&all_mddevs_lock);
  4275. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4276. if (mddev2->gendisk &&
  4277. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4278. spin_unlock(&all_mddevs_lock);
  4279. goto abort;
  4280. }
  4281. spin_unlock(&all_mddevs_lock);
  4282. }
  4283. error = -ENOMEM;
  4284. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4285. if (!mddev->queue)
  4286. goto abort;
  4287. mddev->queue->queuedata = mddev;
  4288. blk_queue_make_request(mddev->queue, md_make_request);
  4289. blk_set_stacking_limits(&mddev->queue->limits);
  4290. disk = alloc_disk(1 << shift);
  4291. if (!disk) {
  4292. blk_cleanup_queue(mddev->queue);
  4293. mddev->queue = NULL;
  4294. goto abort;
  4295. }
  4296. disk->major = MAJOR(mddev->unit);
  4297. disk->first_minor = unit << shift;
  4298. if (name)
  4299. strcpy(disk->disk_name, name);
  4300. else if (partitioned)
  4301. sprintf(disk->disk_name, "md_d%d", unit);
  4302. else
  4303. sprintf(disk->disk_name, "md%d", unit);
  4304. disk->fops = &md_fops;
  4305. disk->private_data = mddev;
  4306. disk->queue = mddev->queue;
  4307. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4308. /* Allow extended partitions. This makes the
  4309. * 'mdp' device redundant, but we can't really
  4310. * remove it now.
  4311. */
  4312. disk->flags |= GENHD_FL_EXT_DEVT;
  4313. mddev->gendisk = disk;
  4314. /* As soon as we call add_disk(), another thread could get
  4315. * through to md_open, so make sure it doesn't get too far
  4316. */
  4317. mutex_lock(&mddev->open_mutex);
  4318. add_disk(disk);
  4319. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4320. &disk_to_dev(disk)->kobj, "%s", "md");
  4321. if (error) {
  4322. /* This isn't possible, but as kobject_init_and_add is marked
  4323. * __must_check, we must do something with the result
  4324. */
  4325. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4326. disk->disk_name);
  4327. error = 0;
  4328. }
  4329. if (mddev->kobj.sd &&
  4330. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4331. printk(KERN_DEBUG "pointless warning\n");
  4332. mutex_unlock(&mddev->open_mutex);
  4333. abort:
  4334. mutex_unlock(&disks_mutex);
  4335. if (!error && mddev->kobj.sd) {
  4336. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4337. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4338. }
  4339. mddev_put(mddev);
  4340. return error;
  4341. }
  4342. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4343. {
  4344. md_alloc(dev, NULL);
  4345. return NULL;
  4346. }
  4347. static int add_named_array(const char *val, struct kernel_param *kp)
  4348. {
  4349. /* val must be "md_*" where * is not all digits.
  4350. * We allocate an array with a large free minor number, and
  4351. * set the name to val. val must not already be an active name.
  4352. */
  4353. int len = strlen(val);
  4354. char buf[DISK_NAME_LEN];
  4355. while (len && val[len-1] == '\n')
  4356. len--;
  4357. if (len >= DISK_NAME_LEN)
  4358. return -E2BIG;
  4359. strlcpy(buf, val, len+1);
  4360. if (strncmp(buf, "md_", 3) != 0)
  4361. return -EINVAL;
  4362. return md_alloc(0, buf);
  4363. }
  4364. static void md_safemode_timeout(unsigned long data)
  4365. {
  4366. struct mddev *mddev = (struct mddev *) data;
  4367. if (!atomic_read(&mddev->writes_pending)) {
  4368. mddev->safemode = 1;
  4369. if (mddev->external)
  4370. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4371. }
  4372. md_wakeup_thread(mddev->thread);
  4373. }
  4374. static int start_dirty_degraded;
  4375. int md_run(struct mddev *mddev)
  4376. {
  4377. int err;
  4378. struct md_rdev *rdev;
  4379. struct md_personality *pers;
  4380. if (list_empty(&mddev->disks))
  4381. /* cannot run an array with no devices.. */
  4382. return -EINVAL;
  4383. if (mddev->pers)
  4384. return -EBUSY;
  4385. /* Cannot run until previous stop completes properly */
  4386. if (mddev->sysfs_active)
  4387. return -EBUSY;
  4388. /*
  4389. * Analyze all RAID superblock(s)
  4390. */
  4391. if (!mddev->raid_disks) {
  4392. if (!mddev->persistent)
  4393. return -EINVAL;
  4394. analyze_sbs(mddev);
  4395. }
  4396. if (mddev->level != LEVEL_NONE)
  4397. request_module("md-level-%d", mddev->level);
  4398. else if (mddev->clevel[0])
  4399. request_module("md-%s", mddev->clevel);
  4400. /*
  4401. * Drop all container device buffers, from now on
  4402. * the only valid external interface is through the md
  4403. * device.
  4404. */
  4405. rdev_for_each(rdev, mddev) {
  4406. if (test_bit(Faulty, &rdev->flags))
  4407. continue;
  4408. sync_blockdev(rdev->bdev);
  4409. invalidate_bdev(rdev->bdev);
  4410. /* perform some consistency tests on the device.
  4411. * We don't want the data to overlap the metadata,
  4412. * Internal Bitmap issues have been handled elsewhere.
  4413. */
  4414. if (rdev->meta_bdev) {
  4415. /* Nothing to check */;
  4416. } else if (rdev->data_offset < rdev->sb_start) {
  4417. if (mddev->dev_sectors &&
  4418. rdev->data_offset + mddev->dev_sectors
  4419. > rdev->sb_start) {
  4420. printk("md: %s: data overlaps metadata\n",
  4421. mdname(mddev));
  4422. return -EINVAL;
  4423. }
  4424. } else {
  4425. if (rdev->sb_start + rdev->sb_size/512
  4426. > rdev->data_offset) {
  4427. printk("md: %s: metadata overlaps data\n",
  4428. mdname(mddev));
  4429. return -EINVAL;
  4430. }
  4431. }
  4432. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4433. }
  4434. if (mddev->bio_set == NULL)
  4435. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4436. spin_lock(&pers_lock);
  4437. pers = find_pers(mddev->level, mddev->clevel);
  4438. if (!pers || !try_module_get(pers->owner)) {
  4439. spin_unlock(&pers_lock);
  4440. if (mddev->level != LEVEL_NONE)
  4441. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4442. mddev->level);
  4443. else
  4444. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4445. mddev->clevel);
  4446. return -EINVAL;
  4447. }
  4448. mddev->pers = pers;
  4449. spin_unlock(&pers_lock);
  4450. if (mddev->level != pers->level) {
  4451. mddev->level = pers->level;
  4452. mddev->new_level = pers->level;
  4453. }
  4454. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4455. if (mddev->reshape_position != MaxSector &&
  4456. pers->start_reshape == NULL) {
  4457. /* This personality cannot handle reshaping... */
  4458. mddev->pers = NULL;
  4459. module_put(pers->owner);
  4460. return -EINVAL;
  4461. }
  4462. if (pers->sync_request) {
  4463. /* Warn if this is a potentially silly
  4464. * configuration.
  4465. */
  4466. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4467. struct md_rdev *rdev2;
  4468. int warned = 0;
  4469. rdev_for_each(rdev, mddev)
  4470. rdev_for_each(rdev2, mddev) {
  4471. if (rdev < rdev2 &&
  4472. rdev->bdev->bd_contains ==
  4473. rdev2->bdev->bd_contains) {
  4474. printk(KERN_WARNING
  4475. "%s: WARNING: %s appears to be"
  4476. " on the same physical disk as"
  4477. " %s.\n",
  4478. mdname(mddev),
  4479. bdevname(rdev->bdev,b),
  4480. bdevname(rdev2->bdev,b2));
  4481. warned = 1;
  4482. }
  4483. }
  4484. if (warned)
  4485. printk(KERN_WARNING
  4486. "True protection against single-disk"
  4487. " failure might be compromised.\n");
  4488. }
  4489. mddev->recovery = 0;
  4490. /* may be over-ridden by personality */
  4491. mddev->resync_max_sectors = mddev->dev_sectors;
  4492. mddev->ok_start_degraded = start_dirty_degraded;
  4493. if (start_readonly && mddev->ro == 0)
  4494. mddev->ro = 2; /* read-only, but switch on first write */
  4495. err = mddev->pers->run(mddev);
  4496. if (err)
  4497. printk(KERN_ERR "md: pers->run() failed ...\n");
  4498. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4499. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4500. " but 'external_size' not in effect?\n", __func__);
  4501. printk(KERN_ERR
  4502. "md: invalid array_size %llu > default size %llu\n",
  4503. (unsigned long long)mddev->array_sectors / 2,
  4504. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4505. err = -EINVAL;
  4506. mddev->pers->stop(mddev);
  4507. }
  4508. if (err == 0 && mddev->pers->sync_request &&
  4509. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4510. err = bitmap_create(mddev);
  4511. if (err) {
  4512. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4513. mdname(mddev), err);
  4514. mddev->pers->stop(mddev);
  4515. }
  4516. }
  4517. if (err) {
  4518. module_put(mddev->pers->owner);
  4519. mddev->pers = NULL;
  4520. bitmap_destroy(mddev);
  4521. return err;
  4522. }
  4523. if (mddev->pers->sync_request) {
  4524. if (mddev->kobj.sd &&
  4525. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4526. printk(KERN_WARNING
  4527. "md: cannot register extra attributes for %s\n",
  4528. mdname(mddev));
  4529. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4530. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4531. mddev->ro = 0;
  4532. atomic_set(&mddev->writes_pending,0);
  4533. atomic_set(&mddev->max_corr_read_errors,
  4534. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4535. mddev->safemode = 0;
  4536. mddev->safemode_timer.function = md_safemode_timeout;
  4537. mddev->safemode_timer.data = (unsigned long) mddev;
  4538. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4539. mddev->in_sync = 1;
  4540. smp_wmb();
  4541. mddev->ready = 1;
  4542. rdev_for_each(rdev, mddev)
  4543. if (rdev->raid_disk >= 0)
  4544. if (sysfs_link_rdev(mddev, rdev))
  4545. /* failure here is OK */;
  4546. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4547. if (mddev->flags)
  4548. md_update_sb(mddev, 0);
  4549. md_new_event(mddev);
  4550. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4551. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4552. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4553. return 0;
  4554. }
  4555. EXPORT_SYMBOL_GPL(md_run);
  4556. static int do_md_run(struct mddev *mddev)
  4557. {
  4558. int err;
  4559. err = md_run(mddev);
  4560. if (err)
  4561. goto out;
  4562. err = bitmap_load(mddev);
  4563. if (err) {
  4564. bitmap_destroy(mddev);
  4565. goto out;
  4566. }
  4567. md_wakeup_thread(mddev->thread);
  4568. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4569. set_capacity(mddev->gendisk, mddev->array_sectors);
  4570. revalidate_disk(mddev->gendisk);
  4571. mddev->changed = 1;
  4572. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4573. out:
  4574. return err;
  4575. }
  4576. static int restart_array(struct mddev *mddev)
  4577. {
  4578. struct gendisk *disk = mddev->gendisk;
  4579. /* Complain if it has no devices */
  4580. if (list_empty(&mddev->disks))
  4581. return -ENXIO;
  4582. if (!mddev->pers)
  4583. return -EINVAL;
  4584. if (!mddev->ro)
  4585. return -EBUSY;
  4586. mddev->safemode = 0;
  4587. mddev->ro = 0;
  4588. set_disk_ro(disk, 0);
  4589. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4590. mdname(mddev));
  4591. /* Kick recovery or resync if necessary */
  4592. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4593. md_wakeup_thread(mddev->thread);
  4594. md_wakeup_thread(mddev->sync_thread);
  4595. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4596. return 0;
  4597. }
  4598. /* similar to deny_write_access, but accounts for our holding a reference
  4599. * to the file ourselves */
  4600. static int deny_bitmap_write_access(struct file * file)
  4601. {
  4602. struct inode *inode = file->f_mapping->host;
  4603. spin_lock(&inode->i_lock);
  4604. if (atomic_read(&inode->i_writecount) > 1) {
  4605. spin_unlock(&inode->i_lock);
  4606. return -ETXTBSY;
  4607. }
  4608. atomic_set(&inode->i_writecount, -1);
  4609. spin_unlock(&inode->i_lock);
  4610. return 0;
  4611. }
  4612. void restore_bitmap_write_access(struct file *file)
  4613. {
  4614. struct inode *inode = file->f_mapping->host;
  4615. spin_lock(&inode->i_lock);
  4616. atomic_set(&inode->i_writecount, 1);
  4617. spin_unlock(&inode->i_lock);
  4618. }
  4619. static void md_clean(struct mddev *mddev)
  4620. {
  4621. mddev->array_sectors = 0;
  4622. mddev->external_size = 0;
  4623. mddev->dev_sectors = 0;
  4624. mddev->raid_disks = 0;
  4625. mddev->recovery_cp = 0;
  4626. mddev->resync_min = 0;
  4627. mddev->resync_max = MaxSector;
  4628. mddev->reshape_position = MaxSector;
  4629. mddev->external = 0;
  4630. mddev->persistent = 0;
  4631. mddev->level = LEVEL_NONE;
  4632. mddev->clevel[0] = 0;
  4633. mddev->flags = 0;
  4634. mddev->ro = 0;
  4635. mddev->metadata_type[0] = 0;
  4636. mddev->chunk_sectors = 0;
  4637. mddev->ctime = mddev->utime = 0;
  4638. mddev->layout = 0;
  4639. mddev->max_disks = 0;
  4640. mddev->events = 0;
  4641. mddev->can_decrease_events = 0;
  4642. mddev->delta_disks = 0;
  4643. mddev->reshape_backwards = 0;
  4644. mddev->new_level = LEVEL_NONE;
  4645. mddev->new_layout = 0;
  4646. mddev->new_chunk_sectors = 0;
  4647. mddev->curr_resync = 0;
  4648. mddev->resync_mismatches = 0;
  4649. mddev->suspend_lo = mddev->suspend_hi = 0;
  4650. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4651. mddev->recovery = 0;
  4652. mddev->in_sync = 0;
  4653. mddev->changed = 0;
  4654. mddev->degraded = 0;
  4655. mddev->safemode = 0;
  4656. mddev->merge_check_needed = 0;
  4657. mddev->bitmap_info.offset = 0;
  4658. mddev->bitmap_info.default_offset = 0;
  4659. mddev->bitmap_info.default_space = 0;
  4660. mddev->bitmap_info.chunksize = 0;
  4661. mddev->bitmap_info.daemon_sleep = 0;
  4662. mddev->bitmap_info.max_write_behind = 0;
  4663. }
  4664. static void __md_stop_writes(struct mddev *mddev)
  4665. {
  4666. if (mddev->sync_thread) {
  4667. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4668. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4669. reap_sync_thread(mddev);
  4670. }
  4671. del_timer_sync(&mddev->safemode_timer);
  4672. bitmap_flush(mddev);
  4673. md_super_wait(mddev);
  4674. if (!mddev->in_sync || mddev->flags) {
  4675. /* mark array as shutdown cleanly */
  4676. mddev->in_sync = 1;
  4677. md_update_sb(mddev, 1);
  4678. }
  4679. }
  4680. void md_stop_writes(struct mddev *mddev)
  4681. {
  4682. mddev_lock(mddev);
  4683. __md_stop_writes(mddev);
  4684. mddev_unlock(mddev);
  4685. }
  4686. EXPORT_SYMBOL_GPL(md_stop_writes);
  4687. void md_stop(struct mddev *mddev)
  4688. {
  4689. mddev->ready = 0;
  4690. mddev->pers->stop(mddev);
  4691. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4692. mddev->to_remove = &md_redundancy_group;
  4693. module_put(mddev->pers->owner);
  4694. mddev->pers = NULL;
  4695. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4696. }
  4697. EXPORT_SYMBOL_GPL(md_stop);
  4698. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4699. {
  4700. int err = 0;
  4701. mutex_lock(&mddev->open_mutex);
  4702. if (atomic_read(&mddev->openers) > !!bdev) {
  4703. printk("md: %s still in use.\n",mdname(mddev));
  4704. err = -EBUSY;
  4705. goto out;
  4706. }
  4707. if (bdev)
  4708. sync_blockdev(bdev);
  4709. if (mddev->pers) {
  4710. __md_stop_writes(mddev);
  4711. err = -ENXIO;
  4712. if (mddev->ro==1)
  4713. goto out;
  4714. mddev->ro = 1;
  4715. set_disk_ro(mddev->gendisk, 1);
  4716. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4717. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4718. err = 0;
  4719. }
  4720. out:
  4721. mutex_unlock(&mddev->open_mutex);
  4722. return err;
  4723. }
  4724. /* mode:
  4725. * 0 - completely stop and dis-assemble array
  4726. * 2 - stop but do not disassemble array
  4727. */
  4728. static int do_md_stop(struct mddev * mddev, int mode,
  4729. struct block_device *bdev)
  4730. {
  4731. struct gendisk *disk = mddev->gendisk;
  4732. struct md_rdev *rdev;
  4733. mutex_lock(&mddev->open_mutex);
  4734. if (atomic_read(&mddev->openers) > !!bdev ||
  4735. mddev->sysfs_active) {
  4736. printk("md: %s still in use.\n",mdname(mddev));
  4737. mutex_unlock(&mddev->open_mutex);
  4738. return -EBUSY;
  4739. }
  4740. if (bdev)
  4741. /* It is possible IO was issued on some other
  4742. * open file which was closed before we took ->open_mutex.
  4743. * As that was not the last close __blkdev_put will not
  4744. * have called sync_blockdev, so we must.
  4745. */
  4746. sync_blockdev(bdev);
  4747. if (mddev->pers) {
  4748. if (mddev->ro)
  4749. set_disk_ro(disk, 0);
  4750. __md_stop_writes(mddev);
  4751. md_stop(mddev);
  4752. mddev->queue->merge_bvec_fn = NULL;
  4753. mddev->queue->backing_dev_info.congested_fn = NULL;
  4754. /* tell userspace to handle 'inactive' */
  4755. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4756. rdev_for_each(rdev, mddev)
  4757. if (rdev->raid_disk >= 0)
  4758. sysfs_unlink_rdev(mddev, rdev);
  4759. set_capacity(disk, 0);
  4760. mutex_unlock(&mddev->open_mutex);
  4761. mddev->changed = 1;
  4762. revalidate_disk(disk);
  4763. if (mddev->ro)
  4764. mddev->ro = 0;
  4765. } else
  4766. mutex_unlock(&mddev->open_mutex);
  4767. /*
  4768. * Free resources if final stop
  4769. */
  4770. if (mode == 0) {
  4771. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4772. bitmap_destroy(mddev);
  4773. if (mddev->bitmap_info.file) {
  4774. restore_bitmap_write_access(mddev->bitmap_info.file);
  4775. fput(mddev->bitmap_info.file);
  4776. mddev->bitmap_info.file = NULL;
  4777. }
  4778. mddev->bitmap_info.offset = 0;
  4779. export_array(mddev);
  4780. md_clean(mddev);
  4781. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4782. if (mddev->hold_active == UNTIL_STOP)
  4783. mddev->hold_active = 0;
  4784. }
  4785. blk_integrity_unregister(disk);
  4786. md_new_event(mddev);
  4787. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4788. return 0;
  4789. }
  4790. #ifndef MODULE
  4791. static void autorun_array(struct mddev *mddev)
  4792. {
  4793. struct md_rdev *rdev;
  4794. int err;
  4795. if (list_empty(&mddev->disks))
  4796. return;
  4797. printk(KERN_INFO "md: running: ");
  4798. rdev_for_each(rdev, mddev) {
  4799. char b[BDEVNAME_SIZE];
  4800. printk("<%s>", bdevname(rdev->bdev,b));
  4801. }
  4802. printk("\n");
  4803. err = do_md_run(mddev);
  4804. if (err) {
  4805. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4806. do_md_stop(mddev, 0, NULL);
  4807. }
  4808. }
  4809. /*
  4810. * lets try to run arrays based on all disks that have arrived
  4811. * until now. (those are in pending_raid_disks)
  4812. *
  4813. * the method: pick the first pending disk, collect all disks with
  4814. * the same UUID, remove all from the pending list and put them into
  4815. * the 'same_array' list. Then order this list based on superblock
  4816. * update time (freshest comes first), kick out 'old' disks and
  4817. * compare superblocks. If everything's fine then run it.
  4818. *
  4819. * If "unit" is allocated, then bump its reference count
  4820. */
  4821. static void autorun_devices(int part)
  4822. {
  4823. struct md_rdev *rdev0, *rdev, *tmp;
  4824. struct mddev *mddev;
  4825. char b[BDEVNAME_SIZE];
  4826. printk(KERN_INFO "md: autorun ...\n");
  4827. while (!list_empty(&pending_raid_disks)) {
  4828. int unit;
  4829. dev_t dev;
  4830. LIST_HEAD(candidates);
  4831. rdev0 = list_entry(pending_raid_disks.next,
  4832. struct md_rdev, same_set);
  4833. printk(KERN_INFO "md: considering %s ...\n",
  4834. bdevname(rdev0->bdev,b));
  4835. INIT_LIST_HEAD(&candidates);
  4836. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4837. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4838. printk(KERN_INFO "md: adding %s ...\n",
  4839. bdevname(rdev->bdev,b));
  4840. list_move(&rdev->same_set, &candidates);
  4841. }
  4842. /*
  4843. * now we have a set of devices, with all of them having
  4844. * mostly sane superblocks. It's time to allocate the
  4845. * mddev.
  4846. */
  4847. if (part) {
  4848. dev = MKDEV(mdp_major,
  4849. rdev0->preferred_minor << MdpMinorShift);
  4850. unit = MINOR(dev) >> MdpMinorShift;
  4851. } else {
  4852. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4853. unit = MINOR(dev);
  4854. }
  4855. if (rdev0->preferred_minor != unit) {
  4856. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4857. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4858. break;
  4859. }
  4860. md_probe(dev, NULL, NULL);
  4861. mddev = mddev_find(dev);
  4862. if (!mddev || !mddev->gendisk) {
  4863. if (mddev)
  4864. mddev_put(mddev);
  4865. printk(KERN_ERR
  4866. "md: cannot allocate memory for md drive.\n");
  4867. break;
  4868. }
  4869. if (mddev_lock(mddev))
  4870. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4871. mdname(mddev));
  4872. else if (mddev->raid_disks || mddev->major_version
  4873. || !list_empty(&mddev->disks)) {
  4874. printk(KERN_WARNING
  4875. "md: %s already running, cannot run %s\n",
  4876. mdname(mddev), bdevname(rdev0->bdev,b));
  4877. mddev_unlock(mddev);
  4878. } else {
  4879. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4880. mddev->persistent = 1;
  4881. rdev_for_each_list(rdev, tmp, &candidates) {
  4882. list_del_init(&rdev->same_set);
  4883. if (bind_rdev_to_array(rdev, mddev))
  4884. export_rdev(rdev);
  4885. }
  4886. autorun_array(mddev);
  4887. mddev_unlock(mddev);
  4888. }
  4889. /* on success, candidates will be empty, on error
  4890. * it won't...
  4891. */
  4892. rdev_for_each_list(rdev, tmp, &candidates) {
  4893. list_del_init(&rdev->same_set);
  4894. export_rdev(rdev);
  4895. }
  4896. mddev_put(mddev);
  4897. }
  4898. printk(KERN_INFO "md: ... autorun DONE.\n");
  4899. }
  4900. #endif /* !MODULE */
  4901. static int get_version(void __user * arg)
  4902. {
  4903. mdu_version_t ver;
  4904. ver.major = MD_MAJOR_VERSION;
  4905. ver.minor = MD_MINOR_VERSION;
  4906. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4907. if (copy_to_user(arg, &ver, sizeof(ver)))
  4908. return -EFAULT;
  4909. return 0;
  4910. }
  4911. static int get_array_info(struct mddev * mddev, void __user * arg)
  4912. {
  4913. mdu_array_info_t info;
  4914. int nr,working,insync,failed,spare;
  4915. struct md_rdev *rdev;
  4916. nr=working=insync=failed=spare=0;
  4917. rdev_for_each(rdev, mddev) {
  4918. nr++;
  4919. if (test_bit(Faulty, &rdev->flags))
  4920. failed++;
  4921. else {
  4922. working++;
  4923. if (test_bit(In_sync, &rdev->flags))
  4924. insync++;
  4925. else
  4926. spare++;
  4927. }
  4928. }
  4929. info.major_version = mddev->major_version;
  4930. info.minor_version = mddev->minor_version;
  4931. info.patch_version = MD_PATCHLEVEL_VERSION;
  4932. info.ctime = mddev->ctime;
  4933. info.level = mddev->level;
  4934. info.size = mddev->dev_sectors / 2;
  4935. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4936. info.size = -1;
  4937. info.nr_disks = nr;
  4938. info.raid_disks = mddev->raid_disks;
  4939. info.md_minor = mddev->md_minor;
  4940. info.not_persistent= !mddev->persistent;
  4941. info.utime = mddev->utime;
  4942. info.state = 0;
  4943. if (mddev->in_sync)
  4944. info.state = (1<<MD_SB_CLEAN);
  4945. if (mddev->bitmap && mddev->bitmap_info.offset)
  4946. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4947. info.active_disks = insync;
  4948. info.working_disks = working;
  4949. info.failed_disks = failed;
  4950. info.spare_disks = spare;
  4951. info.layout = mddev->layout;
  4952. info.chunk_size = mddev->chunk_sectors << 9;
  4953. if (copy_to_user(arg, &info, sizeof(info)))
  4954. return -EFAULT;
  4955. return 0;
  4956. }
  4957. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4958. {
  4959. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4960. char *ptr, *buf = NULL;
  4961. int err = -ENOMEM;
  4962. if (md_allow_write(mddev))
  4963. file = kmalloc(sizeof(*file), GFP_NOIO);
  4964. else
  4965. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4966. if (!file)
  4967. goto out;
  4968. /* bitmap disabled, zero the first byte and copy out */
  4969. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  4970. file->pathname[0] = '\0';
  4971. goto copy_out;
  4972. }
  4973. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4974. if (!buf)
  4975. goto out;
  4976. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  4977. buf, sizeof(file->pathname));
  4978. if (IS_ERR(ptr))
  4979. goto out;
  4980. strcpy(file->pathname, ptr);
  4981. copy_out:
  4982. err = 0;
  4983. if (copy_to_user(arg, file, sizeof(*file)))
  4984. err = -EFAULT;
  4985. out:
  4986. kfree(buf);
  4987. kfree(file);
  4988. return err;
  4989. }
  4990. static int get_disk_info(struct mddev * mddev, void __user * arg)
  4991. {
  4992. mdu_disk_info_t info;
  4993. struct md_rdev *rdev;
  4994. if (copy_from_user(&info, arg, sizeof(info)))
  4995. return -EFAULT;
  4996. rdev = find_rdev_nr(mddev, info.number);
  4997. if (rdev) {
  4998. info.major = MAJOR(rdev->bdev->bd_dev);
  4999. info.minor = MINOR(rdev->bdev->bd_dev);
  5000. info.raid_disk = rdev->raid_disk;
  5001. info.state = 0;
  5002. if (test_bit(Faulty, &rdev->flags))
  5003. info.state |= (1<<MD_DISK_FAULTY);
  5004. else if (test_bit(In_sync, &rdev->flags)) {
  5005. info.state |= (1<<MD_DISK_ACTIVE);
  5006. info.state |= (1<<MD_DISK_SYNC);
  5007. }
  5008. if (test_bit(WriteMostly, &rdev->flags))
  5009. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5010. } else {
  5011. info.major = info.minor = 0;
  5012. info.raid_disk = -1;
  5013. info.state = (1<<MD_DISK_REMOVED);
  5014. }
  5015. if (copy_to_user(arg, &info, sizeof(info)))
  5016. return -EFAULT;
  5017. return 0;
  5018. }
  5019. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5020. {
  5021. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5022. struct md_rdev *rdev;
  5023. dev_t dev = MKDEV(info->major,info->minor);
  5024. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5025. return -EOVERFLOW;
  5026. if (!mddev->raid_disks) {
  5027. int err;
  5028. /* expecting a device which has a superblock */
  5029. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5030. if (IS_ERR(rdev)) {
  5031. printk(KERN_WARNING
  5032. "md: md_import_device returned %ld\n",
  5033. PTR_ERR(rdev));
  5034. return PTR_ERR(rdev);
  5035. }
  5036. if (!list_empty(&mddev->disks)) {
  5037. struct md_rdev *rdev0
  5038. = list_entry(mddev->disks.next,
  5039. struct md_rdev, same_set);
  5040. err = super_types[mddev->major_version]
  5041. .load_super(rdev, rdev0, mddev->minor_version);
  5042. if (err < 0) {
  5043. printk(KERN_WARNING
  5044. "md: %s has different UUID to %s\n",
  5045. bdevname(rdev->bdev,b),
  5046. bdevname(rdev0->bdev,b2));
  5047. export_rdev(rdev);
  5048. return -EINVAL;
  5049. }
  5050. }
  5051. err = bind_rdev_to_array(rdev, mddev);
  5052. if (err)
  5053. export_rdev(rdev);
  5054. return err;
  5055. }
  5056. /*
  5057. * add_new_disk can be used once the array is assembled
  5058. * to add "hot spares". They must already have a superblock
  5059. * written
  5060. */
  5061. if (mddev->pers) {
  5062. int err;
  5063. if (!mddev->pers->hot_add_disk) {
  5064. printk(KERN_WARNING
  5065. "%s: personality does not support diskops!\n",
  5066. mdname(mddev));
  5067. return -EINVAL;
  5068. }
  5069. if (mddev->persistent)
  5070. rdev = md_import_device(dev, mddev->major_version,
  5071. mddev->minor_version);
  5072. else
  5073. rdev = md_import_device(dev, -1, -1);
  5074. if (IS_ERR(rdev)) {
  5075. printk(KERN_WARNING
  5076. "md: md_import_device returned %ld\n",
  5077. PTR_ERR(rdev));
  5078. return PTR_ERR(rdev);
  5079. }
  5080. /* set saved_raid_disk if appropriate */
  5081. if (!mddev->persistent) {
  5082. if (info->state & (1<<MD_DISK_SYNC) &&
  5083. info->raid_disk < mddev->raid_disks) {
  5084. rdev->raid_disk = info->raid_disk;
  5085. set_bit(In_sync, &rdev->flags);
  5086. } else
  5087. rdev->raid_disk = -1;
  5088. } else
  5089. super_types[mddev->major_version].
  5090. validate_super(mddev, rdev);
  5091. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5092. rdev->raid_disk != info->raid_disk) {
  5093. /* This was a hot-add request, but events doesn't
  5094. * match, so reject it.
  5095. */
  5096. export_rdev(rdev);
  5097. return -EINVAL;
  5098. }
  5099. if (test_bit(In_sync, &rdev->flags))
  5100. rdev->saved_raid_disk = rdev->raid_disk;
  5101. else
  5102. rdev->saved_raid_disk = -1;
  5103. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5104. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5105. set_bit(WriteMostly, &rdev->flags);
  5106. else
  5107. clear_bit(WriteMostly, &rdev->flags);
  5108. rdev->raid_disk = -1;
  5109. err = bind_rdev_to_array(rdev, mddev);
  5110. if (!err && !mddev->pers->hot_remove_disk) {
  5111. /* If there is hot_add_disk but no hot_remove_disk
  5112. * then added disks for geometry changes,
  5113. * and should be added immediately.
  5114. */
  5115. super_types[mddev->major_version].
  5116. validate_super(mddev, rdev);
  5117. err = mddev->pers->hot_add_disk(mddev, rdev);
  5118. if (err)
  5119. unbind_rdev_from_array(rdev);
  5120. }
  5121. if (err)
  5122. export_rdev(rdev);
  5123. else
  5124. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5125. md_update_sb(mddev, 1);
  5126. if (mddev->degraded)
  5127. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5128. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5129. if (!err)
  5130. md_new_event(mddev);
  5131. md_wakeup_thread(mddev->thread);
  5132. return err;
  5133. }
  5134. /* otherwise, add_new_disk is only allowed
  5135. * for major_version==0 superblocks
  5136. */
  5137. if (mddev->major_version != 0) {
  5138. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5139. mdname(mddev));
  5140. return -EINVAL;
  5141. }
  5142. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5143. int err;
  5144. rdev = md_import_device(dev, -1, 0);
  5145. if (IS_ERR(rdev)) {
  5146. printk(KERN_WARNING
  5147. "md: error, md_import_device() returned %ld\n",
  5148. PTR_ERR(rdev));
  5149. return PTR_ERR(rdev);
  5150. }
  5151. rdev->desc_nr = info->number;
  5152. if (info->raid_disk < mddev->raid_disks)
  5153. rdev->raid_disk = info->raid_disk;
  5154. else
  5155. rdev->raid_disk = -1;
  5156. if (rdev->raid_disk < mddev->raid_disks)
  5157. if (info->state & (1<<MD_DISK_SYNC))
  5158. set_bit(In_sync, &rdev->flags);
  5159. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5160. set_bit(WriteMostly, &rdev->flags);
  5161. if (!mddev->persistent) {
  5162. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5163. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5164. } else
  5165. rdev->sb_start = calc_dev_sboffset(rdev);
  5166. rdev->sectors = rdev->sb_start;
  5167. err = bind_rdev_to_array(rdev, mddev);
  5168. if (err) {
  5169. export_rdev(rdev);
  5170. return err;
  5171. }
  5172. }
  5173. return 0;
  5174. }
  5175. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5176. {
  5177. char b[BDEVNAME_SIZE];
  5178. struct md_rdev *rdev;
  5179. rdev = find_rdev(mddev, dev);
  5180. if (!rdev)
  5181. return -ENXIO;
  5182. if (rdev->raid_disk >= 0)
  5183. goto busy;
  5184. kick_rdev_from_array(rdev);
  5185. md_update_sb(mddev, 1);
  5186. md_new_event(mddev);
  5187. return 0;
  5188. busy:
  5189. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5190. bdevname(rdev->bdev,b), mdname(mddev));
  5191. return -EBUSY;
  5192. }
  5193. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5194. {
  5195. char b[BDEVNAME_SIZE];
  5196. int err;
  5197. struct md_rdev *rdev;
  5198. if (!mddev->pers)
  5199. return -ENODEV;
  5200. if (mddev->major_version != 0) {
  5201. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5202. " version-0 superblocks.\n",
  5203. mdname(mddev));
  5204. return -EINVAL;
  5205. }
  5206. if (!mddev->pers->hot_add_disk) {
  5207. printk(KERN_WARNING
  5208. "%s: personality does not support diskops!\n",
  5209. mdname(mddev));
  5210. return -EINVAL;
  5211. }
  5212. rdev = md_import_device(dev, -1, 0);
  5213. if (IS_ERR(rdev)) {
  5214. printk(KERN_WARNING
  5215. "md: error, md_import_device() returned %ld\n",
  5216. PTR_ERR(rdev));
  5217. return -EINVAL;
  5218. }
  5219. if (mddev->persistent)
  5220. rdev->sb_start = calc_dev_sboffset(rdev);
  5221. else
  5222. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5223. rdev->sectors = rdev->sb_start;
  5224. if (test_bit(Faulty, &rdev->flags)) {
  5225. printk(KERN_WARNING
  5226. "md: can not hot-add faulty %s disk to %s!\n",
  5227. bdevname(rdev->bdev,b), mdname(mddev));
  5228. err = -EINVAL;
  5229. goto abort_export;
  5230. }
  5231. clear_bit(In_sync, &rdev->flags);
  5232. rdev->desc_nr = -1;
  5233. rdev->saved_raid_disk = -1;
  5234. err = bind_rdev_to_array(rdev, mddev);
  5235. if (err)
  5236. goto abort_export;
  5237. /*
  5238. * The rest should better be atomic, we can have disk failures
  5239. * noticed in interrupt contexts ...
  5240. */
  5241. rdev->raid_disk = -1;
  5242. md_update_sb(mddev, 1);
  5243. /*
  5244. * Kick recovery, maybe this spare has to be added to the
  5245. * array immediately.
  5246. */
  5247. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5248. md_wakeup_thread(mddev->thread);
  5249. md_new_event(mddev);
  5250. return 0;
  5251. abort_export:
  5252. export_rdev(rdev);
  5253. return err;
  5254. }
  5255. static int set_bitmap_file(struct mddev *mddev, int fd)
  5256. {
  5257. int err;
  5258. if (mddev->pers) {
  5259. if (!mddev->pers->quiesce)
  5260. return -EBUSY;
  5261. if (mddev->recovery || mddev->sync_thread)
  5262. return -EBUSY;
  5263. /* we should be able to change the bitmap.. */
  5264. }
  5265. if (fd >= 0) {
  5266. if (mddev->bitmap)
  5267. return -EEXIST; /* cannot add when bitmap is present */
  5268. mddev->bitmap_info.file = fget(fd);
  5269. if (mddev->bitmap_info.file == NULL) {
  5270. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5271. mdname(mddev));
  5272. return -EBADF;
  5273. }
  5274. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5275. if (err) {
  5276. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5277. mdname(mddev));
  5278. fput(mddev->bitmap_info.file);
  5279. mddev->bitmap_info.file = NULL;
  5280. return err;
  5281. }
  5282. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5283. } else if (mddev->bitmap == NULL)
  5284. return -ENOENT; /* cannot remove what isn't there */
  5285. err = 0;
  5286. if (mddev->pers) {
  5287. mddev->pers->quiesce(mddev, 1);
  5288. if (fd >= 0) {
  5289. err = bitmap_create(mddev);
  5290. if (!err)
  5291. err = bitmap_load(mddev);
  5292. }
  5293. if (fd < 0 || err) {
  5294. bitmap_destroy(mddev);
  5295. fd = -1; /* make sure to put the file */
  5296. }
  5297. mddev->pers->quiesce(mddev, 0);
  5298. }
  5299. if (fd < 0) {
  5300. if (mddev->bitmap_info.file) {
  5301. restore_bitmap_write_access(mddev->bitmap_info.file);
  5302. fput(mddev->bitmap_info.file);
  5303. }
  5304. mddev->bitmap_info.file = NULL;
  5305. }
  5306. return err;
  5307. }
  5308. /*
  5309. * set_array_info is used two different ways
  5310. * The original usage is when creating a new array.
  5311. * In this usage, raid_disks is > 0 and it together with
  5312. * level, size, not_persistent,layout,chunksize determine the
  5313. * shape of the array.
  5314. * This will always create an array with a type-0.90.0 superblock.
  5315. * The newer usage is when assembling an array.
  5316. * In this case raid_disks will be 0, and the major_version field is
  5317. * use to determine which style super-blocks are to be found on the devices.
  5318. * The minor and patch _version numbers are also kept incase the
  5319. * super_block handler wishes to interpret them.
  5320. */
  5321. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5322. {
  5323. if (info->raid_disks == 0) {
  5324. /* just setting version number for superblock loading */
  5325. if (info->major_version < 0 ||
  5326. info->major_version >= ARRAY_SIZE(super_types) ||
  5327. super_types[info->major_version].name == NULL) {
  5328. /* maybe try to auto-load a module? */
  5329. printk(KERN_INFO
  5330. "md: superblock version %d not known\n",
  5331. info->major_version);
  5332. return -EINVAL;
  5333. }
  5334. mddev->major_version = info->major_version;
  5335. mddev->minor_version = info->minor_version;
  5336. mddev->patch_version = info->patch_version;
  5337. mddev->persistent = !info->not_persistent;
  5338. /* ensure mddev_put doesn't delete this now that there
  5339. * is some minimal configuration.
  5340. */
  5341. mddev->ctime = get_seconds();
  5342. return 0;
  5343. }
  5344. mddev->major_version = MD_MAJOR_VERSION;
  5345. mddev->minor_version = MD_MINOR_VERSION;
  5346. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5347. mddev->ctime = get_seconds();
  5348. mddev->level = info->level;
  5349. mddev->clevel[0] = 0;
  5350. mddev->dev_sectors = 2 * (sector_t)info->size;
  5351. mddev->raid_disks = info->raid_disks;
  5352. /* don't set md_minor, it is determined by which /dev/md* was
  5353. * openned
  5354. */
  5355. if (info->state & (1<<MD_SB_CLEAN))
  5356. mddev->recovery_cp = MaxSector;
  5357. else
  5358. mddev->recovery_cp = 0;
  5359. mddev->persistent = ! info->not_persistent;
  5360. mddev->external = 0;
  5361. mddev->layout = info->layout;
  5362. mddev->chunk_sectors = info->chunk_size >> 9;
  5363. mddev->max_disks = MD_SB_DISKS;
  5364. if (mddev->persistent)
  5365. mddev->flags = 0;
  5366. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5367. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5368. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5369. mddev->bitmap_info.offset = 0;
  5370. mddev->reshape_position = MaxSector;
  5371. /*
  5372. * Generate a 128 bit UUID
  5373. */
  5374. get_random_bytes(mddev->uuid, 16);
  5375. mddev->new_level = mddev->level;
  5376. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5377. mddev->new_layout = mddev->layout;
  5378. mddev->delta_disks = 0;
  5379. mddev->reshape_backwards = 0;
  5380. return 0;
  5381. }
  5382. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5383. {
  5384. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5385. if (mddev->external_size)
  5386. return;
  5387. mddev->array_sectors = array_sectors;
  5388. }
  5389. EXPORT_SYMBOL(md_set_array_sectors);
  5390. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5391. {
  5392. struct md_rdev *rdev;
  5393. int rv;
  5394. int fit = (num_sectors == 0);
  5395. if (mddev->pers->resize == NULL)
  5396. return -EINVAL;
  5397. /* The "num_sectors" is the number of sectors of each device that
  5398. * is used. This can only make sense for arrays with redundancy.
  5399. * linear and raid0 always use whatever space is available. We can only
  5400. * consider changing this number if no resync or reconstruction is
  5401. * happening, and if the new size is acceptable. It must fit before the
  5402. * sb_start or, if that is <data_offset, it must fit before the size
  5403. * of each device. If num_sectors is zero, we find the largest size
  5404. * that fits.
  5405. */
  5406. if (mddev->sync_thread)
  5407. return -EBUSY;
  5408. rdev_for_each(rdev, mddev) {
  5409. sector_t avail = rdev->sectors;
  5410. if (fit && (num_sectors == 0 || num_sectors > avail))
  5411. num_sectors = avail;
  5412. if (avail < num_sectors)
  5413. return -ENOSPC;
  5414. }
  5415. rv = mddev->pers->resize(mddev, num_sectors);
  5416. if (!rv)
  5417. revalidate_disk(mddev->gendisk);
  5418. return rv;
  5419. }
  5420. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5421. {
  5422. int rv;
  5423. struct md_rdev *rdev;
  5424. /* change the number of raid disks */
  5425. if (mddev->pers->check_reshape == NULL)
  5426. return -EINVAL;
  5427. if (raid_disks <= 0 ||
  5428. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5429. return -EINVAL;
  5430. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5431. return -EBUSY;
  5432. rdev_for_each(rdev, mddev) {
  5433. if (mddev->raid_disks < raid_disks &&
  5434. rdev->data_offset < rdev->new_data_offset)
  5435. return -EINVAL;
  5436. if (mddev->raid_disks > raid_disks &&
  5437. rdev->data_offset > rdev->new_data_offset)
  5438. return -EINVAL;
  5439. }
  5440. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5441. if (mddev->delta_disks < 0)
  5442. mddev->reshape_backwards = 1;
  5443. else if (mddev->delta_disks > 0)
  5444. mddev->reshape_backwards = 0;
  5445. rv = mddev->pers->check_reshape(mddev);
  5446. if (rv < 0) {
  5447. mddev->delta_disks = 0;
  5448. mddev->reshape_backwards = 0;
  5449. }
  5450. return rv;
  5451. }
  5452. /*
  5453. * update_array_info is used to change the configuration of an
  5454. * on-line array.
  5455. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5456. * fields in the info are checked against the array.
  5457. * Any differences that cannot be handled will cause an error.
  5458. * Normally, only one change can be managed at a time.
  5459. */
  5460. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5461. {
  5462. int rv = 0;
  5463. int cnt = 0;
  5464. int state = 0;
  5465. /* calculate expected state,ignoring low bits */
  5466. if (mddev->bitmap && mddev->bitmap_info.offset)
  5467. state |= (1 << MD_SB_BITMAP_PRESENT);
  5468. if (mddev->major_version != info->major_version ||
  5469. mddev->minor_version != info->minor_version ||
  5470. /* mddev->patch_version != info->patch_version || */
  5471. mddev->ctime != info->ctime ||
  5472. mddev->level != info->level ||
  5473. /* mddev->layout != info->layout || */
  5474. !mddev->persistent != info->not_persistent||
  5475. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5476. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5477. ((state^info->state) & 0xfffffe00)
  5478. )
  5479. return -EINVAL;
  5480. /* Check there is only one change */
  5481. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5482. cnt++;
  5483. if (mddev->raid_disks != info->raid_disks)
  5484. cnt++;
  5485. if (mddev->layout != info->layout)
  5486. cnt++;
  5487. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5488. cnt++;
  5489. if (cnt == 0)
  5490. return 0;
  5491. if (cnt > 1)
  5492. return -EINVAL;
  5493. if (mddev->layout != info->layout) {
  5494. /* Change layout
  5495. * we don't need to do anything at the md level, the
  5496. * personality will take care of it all.
  5497. */
  5498. if (mddev->pers->check_reshape == NULL)
  5499. return -EINVAL;
  5500. else {
  5501. mddev->new_layout = info->layout;
  5502. rv = mddev->pers->check_reshape(mddev);
  5503. if (rv)
  5504. mddev->new_layout = mddev->layout;
  5505. return rv;
  5506. }
  5507. }
  5508. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5509. rv = update_size(mddev, (sector_t)info->size * 2);
  5510. if (mddev->raid_disks != info->raid_disks)
  5511. rv = update_raid_disks(mddev, info->raid_disks);
  5512. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5513. if (mddev->pers->quiesce == NULL)
  5514. return -EINVAL;
  5515. if (mddev->recovery || mddev->sync_thread)
  5516. return -EBUSY;
  5517. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5518. /* add the bitmap */
  5519. if (mddev->bitmap)
  5520. return -EEXIST;
  5521. if (mddev->bitmap_info.default_offset == 0)
  5522. return -EINVAL;
  5523. mddev->bitmap_info.offset =
  5524. mddev->bitmap_info.default_offset;
  5525. mddev->bitmap_info.space =
  5526. mddev->bitmap_info.default_space;
  5527. mddev->pers->quiesce(mddev, 1);
  5528. rv = bitmap_create(mddev);
  5529. if (!rv)
  5530. rv = bitmap_load(mddev);
  5531. if (rv)
  5532. bitmap_destroy(mddev);
  5533. mddev->pers->quiesce(mddev, 0);
  5534. } else {
  5535. /* remove the bitmap */
  5536. if (!mddev->bitmap)
  5537. return -ENOENT;
  5538. if (mddev->bitmap->storage.file)
  5539. return -EINVAL;
  5540. mddev->pers->quiesce(mddev, 1);
  5541. bitmap_destroy(mddev);
  5542. mddev->pers->quiesce(mddev, 0);
  5543. mddev->bitmap_info.offset = 0;
  5544. }
  5545. }
  5546. md_update_sb(mddev, 1);
  5547. return rv;
  5548. }
  5549. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5550. {
  5551. struct md_rdev *rdev;
  5552. if (mddev->pers == NULL)
  5553. return -ENODEV;
  5554. rdev = find_rdev(mddev, dev);
  5555. if (!rdev)
  5556. return -ENODEV;
  5557. md_error(mddev, rdev);
  5558. if (!test_bit(Faulty, &rdev->flags))
  5559. return -EBUSY;
  5560. return 0;
  5561. }
  5562. /*
  5563. * We have a problem here : there is no easy way to give a CHS
  5564. * virtual geometry. We currently pretend that we have a 2 heads
  5565. * 4 sectors (with a BIG number of cylinders...). This drives
  5566. * dosfs just mad... ;-)
  5567. */
  5568. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5569. {
  5570. struct mddev *mddev = bdev->bd_disk->private_data;
  5571. geo->heads = 2;
  5572. geo->sectors = 4;
  5573. geo->cylinders = mddev->array_sectors / 8;
  5574. return 0;
  5575. }
  5576. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5577. unsigned int cmd, unsigned long arg)
  5578. {
  5579. int err = 0;
  5580. void __user *argp = (void __user *)arg;
  5581. struct mddev *mddev = NULL;
  5582. int ro;
  5583. switch (cmd) {
  5584. case RAID_VERSION:
  5585. case GET_ARRAY_INFO:
  5586. case GET_DISK_INFO:
  5587. break;
  5588. default:
  5589. if (!capable(CAP_SYS_ADMIN))
  5590. return -EACCES;
  5591. }
  5592. /*
  5593. * Commands dealing with the RAID driver but not any
  5594. * particular array:
  5595. */
  5596. switch (cmd)
  5597. {
  5598. case RAID_VERSION:
  5599. err = get_version(argp);
  5600. goto done;
  5601. case PRINT_RAID_DEBUG:
  5602. err = 0;
  5603. md_print_devices();
  5604. goto done;
  5605. #ifndef MODULE
  5606. case RAID_AUTORUN:
  5607. err = 0;
  5608. autostart_arrays(arg);
  5609. goto done;
  5610. #endif
  5611. default:;
  5612. }
  5613. /*
  5614. * Commands creating/starting a new array:
  5615. */
  5616. mddev = bdev->bd_disk->private_data;
  5617. if (!mddev) {
  5618. BUG();
  5619. goto abort;
  5620. }
  5621. err = mddev_lock(mddev);
  5622. if (err) {
  5623. printk(KERN_INFO
  5624. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5625. err, cmd);
  5626. goto abort;
  5627. }
  5628. switch (cmd)
  5629. {
  5630. case SET_ARRAY_INFO:
  5631. {
  5632. mdu_array_info_t info;
  5633. if (!arg)
  5634. memset(&info, 0, sizeof(info));
  5635. else if (copy_from_user(&info, argp, sizeof(info))) {
  5636. err = -EFAULT;
  5637. goto abort_unlock;
  5638. }
  5639. if (mddev->pers) {
  5640. err = update_array_info(mddev, &info);
  5641. if (err) {
  5642. printk(KERN_WARNING "md: couldn't update"
  5643. " array info. %d\n", err);
  5644. goto abort_unlock;
  5645. }
  5646. goto done_unlock;
  5647. }
  5648. if (!list_empty(&mddev->disks)) {
  5649. printk(KERN_WARNING
  5650. "md: array %s already has disks!\n",
  5651. mdname(mddev));
  5652. err = -EBUSY;
  5653. goto abort_unlock;
  5654. }
  5655. if (mddev->raid_disks) {
  5656. printk(KERN_WARNING
  5657. "md: array %s already initialised!\n",
  5658. mdname(mddev));
  5659. err = -EBUSY;
  5660. goto abort_unlock;
  5661. }
  5662. err = set_array_info(mddev, &info);
  5663. if (err) {
  5664. printk(KERN_WARNING "md: couldn't set"
  5665. " array info. %d\n", err);
  5666. goto abort_unlock;
  5667. }
  5668. }
  5669. goto done_unlock;
  5670. default:;
  5671. }
  5672. /*
  5673. * Commands querying/configuring an existing array:
  5674. */
  5675. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5676. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5677. if ((!mddev->raid_disks && !mddev->external)
  5678. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5679. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5680. && cmd != GET_BITMAP_FILE) {
  5681. err = -ENODEV;
  5682. goto abort_unlock;
  5683. }
  5684. /*
  5685. * Commands even a read-only array can execute:
  5686. */
  5687. switch (cmd)
  5688. {
  5689. case GET_ARRAY_INFO:
  5690. err = get_array_info(mddev, argp);
  5691. goto done_unlock;
  5692. case GET_BITMAP_FILE:
  5693. err = get_bitmap_file(mddev, argp);
  5694. goto done_unlock;
  5695. case GET_DISK_INFO:
  5696. err = get_disk_info(mddev, argp);
  5697. goto done_unlock;
  5698. case RESTART_ARRAY_RW:
  5699. err = restart_array(mddev);
  5700. goto done_unlock;
  5701. case STOP_ARRAY:
  5702. err = do_md_stop(mddev, 0, bdev);
  5703. goto done_unlock;
  5704. case STOP_ARRAY_RO:
  5705. err = md_set_readonly(mddev, bdev);
  5706. goto done_unlock;
  5707. case BLKROSET:
  5708. if (get_user(ro, (int __user *)(arg))) {
  5709. err = -EFAULT;
  5710. goto done_unlock;
  5711. }
  5712. err = -EINVAL;
  5713. /* if the bdev is going readonly the value of mddev->ro
  5714. * does not matter, no writes are coming
  5715. */
  5716. if (ro)
  5717. goto done_unlock;
  5718. /* are we are already prepared for writes? */
  5719. if (mddev->ro != 1)
  5720. goto done_unlock;
  5721. /* transitioning to readauto need only happen for
  5722. * arrays that call md_write_start
  5723. */
  5724. if (mddev->pers) {
  5725. err = restart_array(mddev);
  5726. if (err == 0) {
  5727. mddev->ro = 2;
  5728. set_disk_ro(mddev->gendisk, 0);
  5729. }
  5730. }
  5731. goto done_unlock;
  5732. }
  5733. /*
  5734. * The remaining ioctls are changing the state of the
  5735. * superblock, so we do not allow them on read-only arrays.
  5736. * However non-MD ioctls (e.g. get-size) will still come through
  5737. * here and hit the 'default' below, so only disallow
  5738. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5739. */
  5740. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5741. if (mddev->ro == 2) {
  5742. mddev->ro = 0;
  5743. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5744. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5745. md_wakeup_thread(mddev->thread);
  5746. } else {
  5747. err = -EROFS;
  5748. goto abort_unlock;
  5749. }
  5750. }
  5751. switch (cmd)
  5752. {
  5753. case ADD_NEW_DISK:
  5754. {
  5755. mdu_disk_info_t info;
  5756. if (copy_from_user(&info, argp, sizeof(info)))
  5757. err = -EFAULT;
  5758. else
  5759. err = add_new_disk(mddev, &info);
  5760. goto done_unlock;
  5761. }
  5762. case HOT_REMOVE_DISK:
  5763. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5764. goto done_unlock;
  5765. case HOT_ADD_DISK:
  5766. err = hot_add_disk(mddev, new_decode_dev(arg));
  5767. goto done_unlock;
  5768. case SET_DISK_FAULTY:
  5769. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5770. goto done_unlock;
  5771. case RUN_ARRAY:
  5772. err = do_md_run(mddev);
  5773. goto done_unlock;
  5774. case SET_BITMAP_FILE:
  5775. err = set_bitmap_file(mddev, (int)arg);
  5776. goto done_unlock;
  5777. default:
  5778. err = -EINVAL;
  5779. goto abort_unlock;
  5780. }
  5781. done_unlock:
  5782. abort_unlock:
  5783. if (mddev->hold_active == UNTIL_IOCTL &&
  5784. err != -EINVAL)
  5785. mddev->hold_active = 0;
  5786. mddev_unlock(mddev);
  5787. return err;
  5788. done:
  5789. if (err)
  5790. MD_BUG();
  5791. abort:
  5792. return err;
  5793. }
  5794. #ifdef CONFIG_COMPAT
  5795. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5796. unsigned int cmd, unsigned long arg)
  5797. {
  5798. switch (cmd) {
  5799. case HOT_REMOVE_DISK:
  5800. case HOT_ADD_DISK:
  5801. case SET_DISK_FAULTY:
  5802. case SET_BITMAP_FILE:
  5803. /* These take in integer arg, do not convert */
  5804. break;
  5805. default:
  5806. arg = (unsigned long)compat_ptr(arg);
  5807. break;
  5808. }
  5809. return md_ioctl(bdev, mode, cmd, arg);
  5810. }
  5811. #endif /* CONFIG_COMPAT */
  5812. static int md_open(struct block_device *bdev, fmode_t mode)
  5813. {
  5814. /*
  5815. * Succeed if we can lock the mddev, which confirms that
  5816. * it isn't being stopped right now.
  5817. */
  5818. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5819. int err;
  5820. if (!mddev)
  5821. return -ENODEV;
  5822. if (mddev->gendisk != bdev->bd_disk) {
  5823. /* we are racing with mddev_put which is discarding this
  5824. * bd_disk.
  5825. */
  5826. mddev_put(mddev);
  5827. /* Wait until bdev->bd_disk is definitely gone */
  5828. flush_workqueue(md_misc_wq);
  5829. /* Then retry the open from the top */
  5830. return -ERESTARTSYS;
  5831. }
  5832. BUG_ON(mddev != bdev->bd_disk->private_data);
  5833. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5834. goto out;
  5835. err = 0;
  5836. atomic_inc(&mddev->openers);
  5837. mutex_unlock(&mddev->open_mutex);
  5838. check_disk_change(bdev);
  5839. out:
  5840. return err;
  5841. }
  5842. static int md_release(struct gendisk *disk, fmode_t mode)
  5843. {
  5844. struct mddev *mddev = disk->private_data;
  5845. BUG_ON(!mddev);
  5846. atomic_dec(&mddev->openers);
  5847. mddev_put(mddev);
  5848. return 0;
  5849. }
  5850. static int md_media_changed(struct gendisk *disk)
  5851. {
  5852. struct mddev *mddev = disk->private_data;
  5853. return mddev->changed;
  5854. }
  5855. static int md_revalidate(struct gendisk *disk)
  5856. {
  5857. struct mddev *mddev = disk->private_data;
  5858. mddev->changed = 0;
  5859. return 0;
  5860. }
  5861. static const struct block_device_operations md_fops =
  5862. {
  5863. .owner = THIS_MODULE,
  5864. .open = md_open,
  5865. .release = md_release,
  5866. .ioctl = md_ioctl,
  5867. #ifdef CONFIG_COMPAT
  5868. .compat_ioctl = md_compat_ioctl,
  5869. #endif
  5870. .getgeo = md_getgeo,
  5871. .media_changed = md_media_changed,
  5872. .revalidate_disk= md_revalidate,
  5873. };
  5874. static int md_thread(void * arg)
  5875. {
  5876. struct md_thread *thread = arg;
  5877. /*
  5878. * md_thread is a 'system-thread', it's priority should be very
  5879. * high. We avoid resource deadlocks individually in each
  5880. * raid personality. (RAID5 does preallocation) We also use RR and
  5881. * the very same RT priority as kswapd, thus we will never get
  5882. * into a priority inversion deadlock.
  5883. *
  5884. * we definitely have to have equal or higher priority than
  5885. * bdflush, otherwise bdflush will deadlock if there are too
  5886. * many dirty RAID5 blocks.
  5887. */
  5888. allow_signal(SIGKILL);
  5889. while (!kthread_should_stop()) {
  5890. /* We need to wait INTERRUPTIBLE so that
  5891. * we don't add to the load-average.
  5892. * That means we need to be sure no signals are
  5893. * pending
  5894. */
  5895. if (signal_pending(current))
  5896. flush_signals(current);
  5897. wait_event_interruptible_timeout
  5898. (thread->wqueue,
  5899. test_bit(THREAD_WAKEUP, &thread->flags)
  5900. || kthread_should_stop(),
  5901. thread->timeout);
  5902. clear_bit(THREAD_WAKEUP, &thread->flags);
  5903. if (!kthread_should_stop())
  5904. thread->run(thread->mddev);
  5905. }
  5906. return 0;
  5907. }
  5908. void md_wakeup_thread(struct md_thread *thread)
  5909. {
  5910. if (thread) {
  5911. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5912. set_bit(THREAD_WAKEUP, &thread->flags);
  5913. wake_up(&thread->wqueue);
  5914. }
  5915. }
  5916. struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
  5917. const char *name)
  5918. {
  5919. struct md_thread *thread;
  5920. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5921. if (!thread)
  5922. return NULL;
  5923. init_waitqueue_head(&thread->wqueue);
  5924. thread->run = run;
  5925. thread->mddev = mddev;
  5926. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5927. thread->tsk = kthread_run(md_thread, thread,
  5928. "%s_%s",
  5929. mdname(thread->mddev),
  5930. name);
  5931. if (IS_ERR(thread->tsk)) {
  5932. kfree(thread);
  5933. return NULL;
  5934. }
  5935. return thread;
  5936. }
  5937. void md_unregister_thread(struct md_thread **threadp)
  5938. {
  5939. struct md_thread *thread = *threadp;
  5940. if (!thread)
  5941. return;
  5942. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5943. /* Locking ensures that mddev_unlock does not wake_up a
  5944. * non-existent thread
  5945. */
  5946. spin_lock(&pers_lock);
  5947. *threadp = NULL;
  5948. spin_unlock(&pers_lock);
  5949. kthread_stop(thread->tsk);
  5950. kfree(thread);
  5951. }
  5952. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5953. {
  5954. if (!mddev) {
  5955. MD_BUG();
  5956. return;
  5957. }
  5958. if (!rdev || test_bit(Faulty, &rdev->flags))
  5959. return;
  5960. if (!mddev->pers || !mddev->pers->error_handler)
  5961. return;
  5962. mddev->pers->error_handler(mddev,rdev);
  5963. if (mddev->degraded)
  5964. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5965. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5966. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5967. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5968. md_wakeup_thread(mddev->thread);
  5969. if (mddev->event_work.func)
  5970. queue_work(md_misc_wq, &mddev->event_work);
  5971. md_new_event_inintr(mddev);
  5972. }
  5973. /* seq_file implementation /proc/mdstat */
  5974. static void status_unused(struct seq_file *seq)
  5975. {
  5976. int i = 0;
  5977. struct md_rdev *rdev;
  5978. seq_printf(seq, "unused devices: ");
  5979. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5980. char b[BDEVNAME_SIZE];
  5981. i++;
  5982. seq_printf(seq, "%s ",
  5983. bdevname(rdev->bdev,b));
  5984. }
  5985. if (!i)
  5986. seq_printf(seq, "<none>");
  5987. seq_printf(seq, "\n");
  5988. }
  5989. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  5990. {
  5991. sector_t max_sectors, resync, res;
  5992. unsigned long dt, db;
  5993. sector_t rt;
  5994. int scale;
  5995. unsigned int per_milli;
  5996. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5997. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  5998. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5999. max_sectors = mddev->resync_max_sectors;
  6000. else
  6001. max_sectors = mddev->dev_sectors;
  6002. /*
  6003. * Should not happen.
  6004. */
  6005. if (!max_sectors) {
  6006. MD_BUG();
  6007. return;
  6008. }
  6009. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6010. * in a sector_t, and (max_sectors>>scale) will fit in a
  6011. * u32, as those are the requirements for sector_div.
  6012. * Thus 'scale' must be at least 10
  6013. */
  6014. scale = 10;
  6015. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6016. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6017. scale++;
  6018. }
  6019. res = (resync>>scale)*1000;
  6020. sector_div(res, (u32)((max_sectors>>scale)+1));
  6021. per_milli = res;
  6022. {
  6023. int i, x = per_milli/50, y = 20-x;
  6024. seq_printf(seq, "[");
  6025. for (i = 0; i < x; i++)
  6026. seq_printf(seq, "=");
  6027. seq_printf(seq, ">");
  6028. for (i = 0; i < y; i++)
  6029. seq_printf(seq, ".");
  6030. seq_printf(seq, "] ");
  6031. }
  6032. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6033. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6034. "reshape" :
  6035. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6036. "check" :
  6037. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6038. "resync" : "recovery"))),
  6039. per_milli/10, per_milli % 10,
  6040. (unsigned long long) resync/2,
  6041. (unsigned long long) max_sectors/2);
  6042. /*
  6043. * dt: time from mark until now
  6044. * db: blocks written from mark until now
  6045. * rt: remaining time
  6046. *
  6047. * rt is a sector_t, so could be 32bit or 64bit.
  6048. * So we divide before multiply in case it is 32bit and close
  6049. * to the limit.
  6050. * We scale the divisor (db) by 32 to avoid losing precision
  6051. * near the end of resync when the number of remaining sectors
  6052. * is close to 'db'.
  6053. * We then divide rt by 32 after multiplying by db to compensate.
  6054. * The '+1' avoids division by zero if db is very small.
  6055. */
  6056. dt = ((jiffies - mddev->resync_mark) / HZ);
  6057. if (!dt) dt++;
  6058. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6059. - mddev->resync_mark_cnt;
  6060. rt = max_sectors - resync; /* number of remaining sectors */
  6061. sector_div(rt, db/32+1);
  6062. rt *= dt;
  6063. rt >>= 5;
  6064. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6065. ((unsigned long)rt % 60)/6);
  6066. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6067. }
  6068. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6069. {
  6070. struct list_head *tmp;
  6071. loff_t l = *pos;
  6072. struct mddev *mddev;
  6073. if (l >= 0x10000)
  6074. return NULL;
  6075. if (!l--)
  6076. /* header */
  6077. return (void*)1;
  6078. spin_lock(&all_mddevs_lock);
  6079. list_for_each(tmp,&all_mddevs)
  6080. if (!l--) {
  6081. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6082. mddev_get(mddev);
  6083. spin_unlock(&all_mddevs_lock);
  6084. return mddev;
  6085. }
  6086. spin_unlock(&all_mddevs_lock);
  6087. if (!l--)
  6088. return (void*)2;/* tail */
  6089. return NULL;
  6090. }
  6091. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6092. {
  6093. struct list_head *tmp;
  6094. struct mddev *next_mddev, *mddev = v;
  6095. ++*pos;
  6096. if (v == (void*)2)
  6097. return NULL;
  6098. spin_lock(&all_mddevs_lock);
  6099. if (v == (void*)1)
  6100. tmp = all_mddevs.next;
  6101. else
  6102. tmp = mddev->all_mddevs.next;
  6103. if (tmp != &all_mddevs)
  6104. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6105. else {
  6106. next_mddev = (void*)2;
  6107. *pos = 0x10000;
  6108. }
  6109. spin_unlock(&all_mddevs_lock);
  6110. if (v != (void*)1)
  6111. mddev_put(mddev);
  6112. return next_mddev;
  6113. }
  6114. static void md_seq_stop(struct seq_file *seq, void *v)
  6115. {
  6116. struct mddev *mddev = v;
  6117. if (mddev && v != (void*)1 && v != (void*)2)
  6118. mddev_put(mddev);
  6119. }
  6120. static int md_seq_show(struct seq_file *seq, void *v)
  6121. {
  6122. struct mddev *mddev = v;
  6123. sector_t sectors;
  6124. struct md_rdev *rdev;
  6125. if (v == (void*)1) {
  6126. struct md_personality *pers;
  6127. seq_printf(seq, "Personalities : ");
  6128. spin_lock(&pers_lock);
  6129. list_for_each_entry(pers, &pers_list, list)
  6130. seq_printf(seq, "[%s] ", pers->name);
  6131. spin_unlock(&pers_lock);
  6132. seq_printf(seq, "\n");
  6133. seq->poll_event = atomic_read(&md_event_count);
  6134. return 0;
  6135. }
  6136. if (v == (void*)2) {
  6137. status_unused(seq);
  6138. return 0;
  6139. }
  6140. if (mddev_lock(mddev) < 0)
  6141. return -EINTR;
  6142. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6143. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6144. mddev->pers ? "" : "in");
  6145. if (mddev->pers) {
  6146. if (mddev->ro==1)
  6147. seq_printf(seq, " (read-only)");
  6148. if (mddev->ro==2)
  6149. seq_printf(seq, " (auto-read-only)");
  6150. seq_printf(seq, " %s", mddev->pers->name);
  6151. }
  6152. sectors = 0;
  6153. rdev_for_each(rdev, mddev) {
  6154. char b[BDEVNAME_SIZE];
  6155. seq_printf(seq, " %s[%d]",
  6156. bdevname(rdev->bdev,b), rdev->desc_nr);
  6157. if (test_bit(WriteMostly, &rdev->flags))
  6158. seq_printf(seq, "(W)");
  6159. if (test_bit(Faulty, &rdev->flags)) {
  6160. seq_printf(seq, "(F)");
  6161. continue;
  6162. }
  6163. if (rdev->raid_disk < 0)
  6164. seq_printf(seq, "(S)"); /* spare */
  6165. if (test_bit(Replacement, &rdev->flags))
  6166. seq_printf(seq, "(R)");
  6167. sectors += rdev->sectors;
  6168. }
  6169. if (!list_empty(&mddev->disks)) {
  6170. if (mddev->pers)
  6171. seq_printf(seq, "\n %llu blocks",
  6172. (unsigned long long)
  6173. mddev->array_sectors / 2);
  6174. else
  6175. seq_printf(seq, "\n %llu blocks",
  6176. (unsigned long long)sectors / 2);
  6177. }
  6178. if (mddev->persistent) {
  6179. if (mddev->major_version != 0 ||
  6180. mddev->minor_version != 90) {
  6181. seq_printf(seq," super %d.%d",
  6182. mddev->major_version,
  6183. mddev->minor_version);
  6184. }
  6185. } else if (mddev->external)
  6186. seq_printf(seq, " super external:%s",
  6187. mddev->metadata_type);
  6188. else
  6189. seq_printf(seq, " super non-persistent");
  6190. if (mddev->pers) {
  6191. mddev->pers->status(seq, mddev);
  6192. seq_printf(seq, "\n ");
  6193. if (mddev->pers->sync_request) {
  6194. if (mddev->curr_resync > 2) {
  6195. status_resync(seq, mddev);
  6196. seq_printf(seq, "\n ");
  6197. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  6198. seq_printf(seq, "\tresync=DELAYED\n ");
  6199. else if (mddev->recovery_cp < MaxSector)
  6200. seq_printf(seq, "\tresync=PENDING\n ");
  6201. }
  6202. } else
  6203. seq_printf(seq, "\n ");
  6204. bitmap_status(seq, mddev->bitmap);
  6205. seq_printf(seq, "\n");
  6206. }
  6207. mddev_unlock(mddev);
  6208. return 0;
  6209. }
  6210. static const struct seq_operations md_seq_ops = {
  6211. .start = md_seq_start,
  6212. .next = md_seq_next,
  6213. .stop = md_seq_stop,
  6214. .show = md_seq_show,
  6215. };
  6216. static int md_seq_open(struct inode *inode, struct file *file)
  6217. {
  6218. struct seq_file *seq;
  6219. int error;
  6220. error = seq_open(file, &md_seq_ops);
  6221. if (error)
  6222. return error;
  6223. seq = file->private_data;
  6224. seq->poll_event = atomic_read(&md_event_count);
  6225. return error;
  6226. }
  6227. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6228. {
  6229. struct seq_file *seq = filp->private_data;
  6230. int mask;
  6231. poll_wait(filp, &md_event_waiters, wait);
  6232. /* always allow read */
  6233. mask = POLLIN | POLLRDNORM;
  6234. if (seq->poll_event != atomic_read(&md_event_count))
  6235. mask |= POLLERR | POLLPRI;
  6236. return mask;
  6237. }
  6238. static const struct file_operations md_seq_fops = {
  6239. .owner = THIS_MODULE,
  6240. .open = md_seq_open,
  6241. .read = seq_read,
  6242. .llseek = seq_lseek,
  6243. .release = seq_release_private,
  6244. .poll = mdstat_poll,
  6245. };
  6246. int register_md_personality(struct md_personality *p)
  6247. {
  6248. spin_lock(&pers_lock);
  6249. list_add_tail(&p->list, &pers_list);
  6250. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6251. spin_unlock(&pers_lock);
  6252. return 0;
  6253. }
  6254. int unregister_md_personality(struct md_personality *p)
  6255. {
  6256. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6257. spin_lock(&pers_lock);
  6258. list_del_init(&p->list);
  6259. spin_unlock(&pers_lock);
  6260. return 0;
  6261. }
  6262. static int is_mddev_idle(struct mddev *mddev, int init)
  6263. {
  6264. struct md_rdev * rdev;
  6265. int idle;
  6266. int curr_events;
  6267. idle = 1;
  6268. rcu_read_lock();
  6269. rdev_for_each_rcu(rdev, mddev) {
  6270. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6271. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6272. (int)part_stat_read(&disk->part0, sectors[1]) -
  6273. atomic_read(&disk->sync_io);
  6274. /* sync IO will cause sync_io to increase before the disk_stats
  6275. * as sync_io is counted when a request starts, and
  6276. * disk_stats is counted when it completes.
  6277. * So resync activity will cause curr_events to be smaller than
  6278. * when there was no such activity.
  6279. * non-sync IO will cause disk_stat to increase without
  6280. * increasing sync_io so curr_events will (eventually)
  6281. * be larger than it was before. Once it becomes
  6282. * substantially larger, the test below will cause
  6283. * the array to appear non-idle, and resync will slow
  6284. * down.
  6285. * If there is a lot of outstanding resync activity when
  6286. * we set last_event to curr_events, then all that activity
  6287. * completing might cause the array to appear non-idle
  6288. * and resync will be slowed down even though there might
  6289. * not have been non-resync activity. This will only
  6290. * happen once though. 'last_events' will soon reflect
  6291. * the state where there is little or no outstanding
  6292. * resync requests, and further resync activity will
  6293. * always make curr_events less than last_events.
  6294. *
  6295. */
  6296. if (init || curr_events - rdev->last_events > 64) {
  6297. rdev->last_events = curr_events;
  6298. idle = 0;
  6299. }
  6300. }
  6301. rcu_read_unlock();
  6302. return idle;
  6303. }
  6304. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6305. {
  6306. /* another "blocks" (512byte) blocks have been synced */
  6307. atomic_sub(blocks, &mddev->recovery_active);
  6308. wake_up(&mddev->recovery_wait);
  6309. if (!ok) {
  6310. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6311. md_wakeup_thread(mddev->thread);
  6312. // stop recovery, signal do_sync ....
  6313. }
  6314. }
  6315. /* md_write_start(mddev, bi)
  6316. * If we need to update some array metadata (e.g. 'active' flag
  6317. * in superblock) before writing, schedule a superblock update
  6318. * and wait for it to complete.
  6319. */
  6320. void md_write_start(struct mddev *mddev, struct bio *bi)
  6321. {
  6322. int did_change = 0;
  6323. if (bio_data_dir(bi) != WRITE)
  6324. return;
  6325. BUG_ON(mddev->ro == 1);
  6326. if (mddev->ro == 2) {
  6327. /* need to switch to read/write */
  6328. mddev->ro = 0;
  6329. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6330. md_wakeup_thread(mddev->thread);
  6331. md_wakeup_thread(mddev->sync_thread);
  6332. did_change = 1;
  6333. }
  6334. atomic_inc(&mddev->writes_pending);
  6335. if (mddev->safemode == 1)
  6336. mddev->safemode = 0;
  6337. if (mddev->in_sync) {
  6338. spin_lock_irq(&mddev->write_lock);
  6339. if (mddev->in_sync) {
  6340. mddev->in_sync = 0;
  6341. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6342. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6343. md_wakeup_thread(mddev->thread);
  6344. did_change = 1;
  6345. }
  6346. spin_unlock_irq(&mddev->write_lock);
  6347. }
  6348. if (did_change)
  6349. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6350. wait_event(mddev->sb_wait,
  6351. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6352. }
  6353. void md_write_end(struct mddev *mddev)
  6354. {
  6355. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6356. if (mddev->safemode == 2)
  6357. md_wakeup_thread(mddev->thread);
  6358. else if (mddev->safemode_delay)
  6359. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6360. }
  6361. }
  6362. /* md_allow_write(mddev)
  6363. * Calling this ensures that the array is marked 'active' so that writes
  6364. * may proceed without blocking. It is important to call this before
  6365. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6366. * Must be called with mddev_lock held.
  6367. *
  6368. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6369. * is dropped, so return -EAGAIN after notifying userspace.
  6370. */
  6371. int md_allow_write(struct mddev *mddev)
  6372. {
  6373. if (!mddev->pers)
  6374. return 0;
  6375. if (mddev->ro)
  6376. return 0;
  6377. if (!mddev->pers->sync_request)
  6378. return 0;
  6379. spin_lock_irq(&mddev->write_lock);
  6380. if (mddev->in_sync) {
  6381. mddev->in_sync = 0;
  6382. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6383. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6384. if (mddev->safemode_delay &&
  6385. mddev->safemode == 0)
  6386. mddev->safemode = 1;
  6387. spin_unlock_irq(&mddev->write_lock);
  6388. md_update_sb(mddev, 0);
  6389. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6390. } else
  6391. spin_unlock_irq(&mddev->write_lock);
  6392. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6393. return -EAGAIN;
  6394. else
  6395. return 0;
  6396. }
  6397. EXPORT_SYMBOL_GPL(md_allow_write);
  6398. #define SYNC_MARKS 10
  6399. #define SYNC_MARK_STEP (3*HZ)
  6400. void md_do_sync(struct mddev *mddev)
  6401. {
  6402. struct mddev *mddev2;
  6403. unsigned int currspeed = 0,
  6404. window;
  6405. sector_t max_sectors,j, io_sectors;
  6406. unsigned long mark[SYNC_MARKS];
  6407. sector_t mark_cnt[SYNC_MARKS];
  6408. int last_mark,m;
  6409. struct list_head *tmp;
  6410. sector_t last_check;
  6411. int skipped = 0;
  6412. struct md_rdev *rdev;
  6413. char *desc;
  6414. struct blk_plug plug;
  6415. /* just incase thread restarts... */
  6416. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6417. return;
  6418. if (mddev->ro) /* never try to sync a read-only array */
  6419. return;
  6420. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6421. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6422. desc = "data-check";
  6423. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6424. desc = "requested-resync";
  6425. else
  6426. desc = "resync";
  6427. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6428. desc = "reshape";
  6429. else
  6430. desc = "recovery";
  6431. /* we overload curr_resync somewhat here.
  6432. * 0 == not engaged in resync at all
  6433. * 2 == checking that there is no conflict with another sync
  6434. * 1 == like 2, but have yielded to allow conflicting resync to
  6435. * commense
  6436. * other == active in resync - this many blocks
  6437. *
  6438. * Before starting a resync we must have set curr_resync to
  6439. * 2, and then checked that every "conflicting" array has curr_resync
  6440. * less than ours. When we find one that is the same or higher
  6441. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6442. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6443. * This will mean we have to start checking from the beginning again.
  6444. *
  6445. */
  6446. do {
  6447. mddev->curr_resync = 2;
  6448. try_again:
  6449. if (kthread_should_stop())
  6450. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6451. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6452. goto skip;
  6453. for_each_mddev(mddev2, tmp) {
  6454. if (mddev2 == mddev)
  6455. continue;
  6456. if (!mddev->parallel_resync
  6457. && mddev2->curr_resync
  6458. && match_mddev_units(mddev, mddev2)) {
  6459. DEFINE_WAIT(wq);
  6460. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6461. /* arbitrarily yield */
  6462. mddev->curr_resync = 1;
  6463. wake_up(&resync_wait);
  6464. }
  6465. if (mddev > mddev2 && mddev->curr_resync == 1)
  6466. /* no need to wait here, we can wait the next
  6467. * time 'round when curr_resync == 2
  6468. */
  6469. continue;
  6470. /* We need to wait 'interruptible' so as not to
  6471. * contribute to the load average, and not to
  6472. * be caught by 'softlockup'
  6473. */
  6474. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6475. if (!kthread_should_stop() &&
  6476. mddev2->curr_resync >= mddev->curr_resync) {
  6477. printk(KERN_INFO "md: delaying %s of %s"
  6478. " until %s has finished (they"
  6479. " share one or more physical units)\n",
  6480. desc, mdname(mddev), mdname(mddev2));
  6481. mddev_put(mddev2);
  6482. if (signal_pending(current))
  6483. flush_signals(current);
  6484. schedule();
  6485. finish_wait(&resync_wait, &wq);
  6486. goto try_again;
  6487. }
  6488. finish_wait(&resync_wait, &wq);
  6489. }
  6490. }
  6491. } while (mddev->curr_resync < 2);
  6492. j = 0;
  6493. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6494. /* resync follows the size requested by the personality,
  6495. * which defaults to physical size, but can be virtual size
  6496. */
  6497. max_sectors = mddev->resync_max_sectors;
  6498. mddev->resync_mismatches = 0;
  6499. /* we don't use the checkpoint if there's a bitmap */
  6500. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6501. j = mddev->resync_min;
  6502. else if (!mddev->bitmap)
  6503. j = mddev->recovery_cp;
  6504. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6505. max_sectors = mddev->resync_max_sectors;
  6506. else {
  6507. /* recovery follows the physical size of devices */
  6508. max_sectors = mddev->dev_sectors;
  6509. j = MaxSector;
  6510. rcu_read_lock();
  6511. rdev_for_each_rcu(rdev, mddev)
  6512. if (rdev->raid_disk >= 0 &&
  6513. !test_bit(Faulty, &rdev->flags) &&
  6514. !test_bit(In_sync, &rdev->flags) &&
  6515. rdev->recovery_offset < j)
  6516. j = rdev->recovery_offset;
  6517. rcu_read_unlock();
  6518. }
  6519. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6520. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6521. " %d KB/sec/disk.\n", speed_min(mddev));
  6522. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6523. "(but not more than %d KB/sec) for %s.\n",
  6524. speed_max(mddev), desc);
  6525. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6526. io_sectors = 0;
  6527. for (m = 0; m < SYNC_MARKS; m++) {
  6528. mark[m] = jiffies;
  6529. mark_cnt[m] = io_sectors;
  6530. }
  6531. last_mark = 0;
  6532. mddev->resync_mark = mark[last_mark];
  6533. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6534. /*
  6535. * Tune reconstruction:
  6536. */
  6537. window = 32*(PAGE_SIZE/512);
  6538. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6539. window/2, (unsigned long long)max_sectors/2);
  6540. atomic_set(&mddev->recovery_active, 0);
  6541. last_check = 0;
  6542. if (j>2) {
  6543. printk(KERN_INFO
  6544. "md: resuming %s of %s from checkpoint.\n",
  6545. desc, mdname(mddev));
  6546. mddev->curr_resync = j;
  6547. }
  6548. mddev->curr_resync_completed = j;
  6549. blk_start_plug(&plug);
  6550. while (j < max_sectors) {
  6551. sector_t sectors;
  6552. skipped = 0;
  6553. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6554. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6555. (mddev->curr_resync - mddev->curr_resync_completed)
  6556. > (max_sectors >> 4)) ||
  6557. (j - mddev->curr_resync_completed)*2
  6558. >= mddev->resync_max - mddev->curr_resync_completed
  6559. )) {
  6560. /* time to update curr_resync_completed */
  6561. wait_event(mddev->recovery_wait,
  6562. atomic_read(&mddev->recovery_active) == 0);
  6563. mddev->curr_resync_completed = j;
  6564. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6565. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6566. }
  6567. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6568. /* As this condition is controlled by user-space,
  6569. * we can block indefinitely, so use '_interruptible'
  6570. * to avoid triggering warnings.
  6571. */
  6572. flush_signals(current); /* just in case */
  6573. wait_event_interruptible(mddev->recovery_wait,
  6574. mddev->resync_max > j
  6575. || kthread_should_stop());
  6576. }
  6577. if (kthread_should_stop())
  6578. goto interrupted;
  6579. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6580. currspeed < speed_min(mddev));
  6581. if (sectors == 0) {
  6582. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6583. goto out;
  6584. }
  6585. if (!skipped) { /* actual IO requested */
  6586. io_sectors += sectors;
  6587. atomic_add(sectors, &mddev->recovery_active);
  6588. }
  6589. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6590. break;
  6591. j += sectors;
  6592. if (j>1) mddev->curr_resync = j;
  6593. mddev->curr_mark_cnt = io_sectors;
  6594. if (last_check == 0)
  6595. /* this is the earliest that rebuild will be
  6596. * visible in /proc/mdstat
  6597. */
  6598. md_new_event(mddev);
  6599. if (last_check + window > io_sectors || j == max_sectors)
  6600. continue;
  6601. last_check = io_sectors;
  6602. repeat:
  6603. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6604. /* step marks */
  6605. int next = (last_mark+1) % SYNC_MARKS;
  6606. mddev->resync_mark = mark[next];
  6607. mddev->resync_mark_cnt = mark_cnt[next];
  6608. mark[next] = jiffies;
  6609. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6610. last_mark = next;
  6611. }
  6612. if (kthread_should_stop())
  6613. goto interrupted;
  6614. /*
  6615. * this loop exits only if either when we are slower than
  6616. * the 'hard' speed limit, or the system was IO-idle for
  6617. * a jiffy.
  6618. * the system might be non-idle CPU-wise, but we only care
  6619. * about not overloading the IO subsystem. (things like an
  6620. * e2fsck being done on the RAID array should execute fast)
  6621. */
  6622. cond_resched();
  6623. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6624. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6625. if (currspeed > speed_min(mddev)) {
  6626. if ((currspeed > speed_max(mddev)) ||
  6627. !is_mddev_idle(mddev, 0)) {
  6628. msleep(500);
  6629. goto repeat;
  6630. }
  6631. }
  6632. }
  6633. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6634. /*
  6635. * this also signals 'finished resyncing' to md_stop
  6636. */
  6637. out:
  6638. blk_finish_plug(&plug);
  6639. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6640. /* tell personality that we are finished */
  6641. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6642. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6643. mddev->curr_resync > 2) {
  6644. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6645. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6646. if (mddev->curr_resync >= mddev->recovery_cp) {
  6647. printk(KERN_INFO
  6648. "md: checkpointing %s of %s.\n",
  6649. desc, mdname(mddev));
  6650. mddev->recovery_cp =
  6651. mddev->curr_resync_completed;
  6652. }
  6653. } else
  6654. mddev->recovery_cp = MaxSector;
  6655. } else {
  6656. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6657. mddev->curr_resync = MaxSector;
  6658. rcu_read_lock();
  6659. rdev_for_each_rcu(rdev, mddev)
  6660. if (rdev->raid_disk >= 0 &&
  6661. mddev->delta_disks >= 0 &&
  6662. !test_bit(Faulty, &rdev->flags) &&
  6663. !test_bit(In_sync, &rdev->flags) &&
  6664. rdev->recovery_offset < mddev->curr_resync)
  6665. rdev->recovery_offset = mddev->curr_resync;
  6666. rcu_read_unlock();
  6667. }
  6668. }
  6669. skip:
  6670. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6671. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6672. /* We completed so min/max setting can be forgotten if used. */
  6673. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6674. mddev->resync_min = 0;
  6675. mddev->resync_max = MaxSector;
  6676. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6677. mddev->resync_min = mddev->curr_resync_completed;
  6678. mddev->curr_resync = 0;
  6679. wake_up(&resync_wait);
  6680. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6681. md_wakeup_thread(mddev->thread);
  6682. return;
  6683. interrupted:
  6684. /*
  6685. * got a signal, exit.
  6686. */
  6687. printk(KERN_INFO
  6688. "md: md_do_sync() got signal ... exiting\n");
  6689. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6690. goto out;
  6691. }
  6692. EXPORT_SYMBOL_GPL(md_do_sync);
  6693. static int remove_and_add_spares(struct mddev *mddev)
  6694. {
  6695. struct md_rdev *rdev;
  6696. int spares = 0;
  6697. int removed = 0;
  6698. mddev->curr_resync_completed = 0;
  6699. rdev_for_each(rdev, mddev)
  6700. if (rdev->raid_disk >= 0 &&
  6701. !test_bit(Blocked, &rdev->flags) &&
  6702. (test_bit(Faulty, &rdev->flags) ||
  6703. ! test_bit(In_sync, &rdev->flags)) &&
  6704. atomic_read(&rdev->nr_pending)==0) {
  6705. if (mddev->pers->hot_remove_disk(
  6706. mddev, rdev) == 0) {
  6707. sysfs_unlink_rdev(mddev, rdev);
  6708. rdev->raid_disk = -1;
  6709. removed++;
  6710. }
  6711. }
  6712. if (removed)
  6713. sysfs_notify(&mddev->kobj, NULL,
  6714. "degraded");
  6715. rdev_for_each(rdev, mddev) {
  6716. if (rdev->raid_disk >= 0 &&
  6717. !test_bit(In_sync, &rdev->flags) &&
  6718. !test_bit(Faulty, &rdev->flags))
  6719. spares++;
  6720. if (rdev->raid_disk < 0
  6721. && !test_bit(Faulty, &rdev->flags)) {
  6722. rdev->recovery_offset = 0;
  6723. if (mddev->pers->
  6724. hot_add_disk(mddev, rdev) == 0) {
  6725. if (sysfs_link_rdev(mddev, rdev))
  6726. /* failure here is OK */;
  6727. spares++;
  6728. md_new_event(mddev);
  6729. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6730. }
  6731. }
  6732. }
  6733. return spares;
  6734. }
  6735. static void reap_sync_thread(struct mddev *mddev)
  6736. {
  6737. struct md_rdev *rdev;
  6738. /* resync has finished, collect result */
  6739. md_unregister_thread(&mddev->sync_thread);
  6740. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6741. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6742. /* success...*/
  6743. /* activate any spares */
  6744. if (mddev->pers->spare_active(mddev))
  6745. sysfs_notify(&mddev->kobj, NULL,
  6746. "degraded");
  6747. }
  6748. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6749. mddev->pers->finish_reshape)
  6750. mddev->pers->finish_reshape(mddev);
  6751. /* If array is no-longer degraded, then any saved_raid_disk
  6752. * information must be scrapped. Also if any device is now
  6753. * In_sync we must scrape the saved_raid_disk for that device
  6754. * do the superblock for an incrementally recovered device
  6755. * written out.
  6756. */
  6757. rdev_for_each(rdev, mddev)
  6758. if (!mddev->degraded ||
  6759. test_bit(In_sync, &rdev->flags))
  6760. rdev->saved_raid_disk = -1;
  6761. md_update_sb(mddev, 1);
  6762. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6763. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6764. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6765. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6766. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6767. /* flag recovery needed just to double check */
  6768. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6769. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6770. md_new_event(mddev);
  6771. if (mddev->event_work.func)
  6772. queue_work(md_misc_wq, &mddev->event_work);
  6773. }
  6774. /*
  6775. * This routine is regularly called by all per-raid-array threads to
  6776. * deal with generic issues like resync and super-block update.
  6777. * Raid personalities that don't have a thread (linear/raid0) do not
  6778. * need this as they never do any recovery or update the superblock.
  6779. *
  6780. * It does not do any resync itself, but rather "forks" off other threads
  6781. * to do that as needed.
  6782. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6783. * "->recovery" and create a thread at ->sync_thread.
  6784. * When the thread finishes it sets MD_RECOVERY_DONE
  6785. * and wakeups up this thread which will reap the thread and finish up.
  6786. * This thread also removes any faulty devices (with nr_pending == 0).
  6787. *
  6788. * The overall approach is:
  6789. * 1/ if the superblock needs updating, update it.
  6790. * 2/ If a recovery thread is running, don't do anything else.
  6791. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6792. * 4/ If there are any faulty devices, remove them.
  6793. * 5/ If array is degraded, try to add spares devices
  6794. * 6/ If array has spares or is not in-sync, start a resync thread.
  6795. */
  6796. void md_check_recovery(struct mddev *mddev)
  6797. {
  6798. if (mddev->suspended)
  6799. return;
  6800. if (mddev->bitmap)
  6801. bitmap_daemon_work(mddev);
  6802. if (signal_pending(current)) {
  6803. if (mddev->pers->sync_request && !mddev->external) {
  6804. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6805. mdname(mddev));
  6806. mddev->safemode = 2;
  6807. }
  6808. flush_signals(current);
  6809. }
  6810. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6811. return;
  6812. if ( ! (
  6813. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6814. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6815. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6816. (mddev->external == 0 && mddev->safemode == 1) ||
  6817. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6818. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6819. ))
  6820. return;
  6821. if (mddev_trylock(mddev)) {
  6822. int spares = 0;
  6823. if (mddev->ro) {
  6824. /* Only thing we do on a ro array is remove
  6825. * failed devices.
  6826. */
  6827. struct md_rdev *rdev;
  6828. rdev_for_each(rdev, mddev)
  6829. if (rdev->raid_disk >= 0 &&
  6830. !test_bit(Blocked, &rdev->flags) &&
  6831. test_bit(Faulty, &rdev->flags) &&
  6832. atomic_read(&rdev->nr_pending)==0) {
  6833. if (mddev->pers->hot_remove_disk(
  6834. mddev, rdev) == 0) {
  6835. sysfs_unlink_rdev(mddev, rdev);
  6836. rdev->raid_disk = -1;
  6837. }
  6838. }
  6839. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6840. goto unlock;
  6841. }
  6842. if (!mddev->external) {
  6843. int did_change = 0;
  6844. spin_lock_irq(&mddev->write_lock);
  6845. if (mddev->safemode &&
  6846. !atomic_read(&mddev->writes_pending) &&
  6847. !mddev->in_sync &&
  6848. mddev->recovery_cp == MaxSector) {
  6849. mddev->in_sync = 1;
  6850. did_change = 1;
  6851. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6852. }
  6853. if (mddev->safemode == 1)
  6854. mddev->safemode = 0;
  6855. spin_unlock_irq(&mddev->write_lock);
  6856. if (did_change)
  6857. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6858. }
  6859. if (mddev->flags)
  6860. md_update_sb(mddev, 0);
  6861. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6862. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6863. /* resync/recovery still happening */
  6864. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6865. goto unlock;
  6866. }
  6867. if (mddev->sync_thread) {
  6868. reap_sync_thread(mddev);
  6869. goto unlock;
  6870. }
  6871. /* Set RUNNING before clearing NEEDED to avoid
  6872. * any transients in the value of "sync_action".
  6873. */
  6874. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6875. /* Clear some bits that don't mean anything, but
  6876. * might be left set
  6877. */
  6878. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6879. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6880. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6881. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6882. goto unlock;
  6883. /* no recovery is running.
  6884. * remove any failed drives, then
  6885. * add spares if possible.
  6886. * Spare are also removed and re-added, to allow
  6887. * the personality to fail the re-add.
  6888. */
  6889. if (mddev->reshape_position != MaxSector) {
  6890. if (mddev->pers->check_reshape == NULL ||
  6891. mddev->pers->check_reshape(mddev) != 0)
  6892. /* Cannot proceed */
  6893. goto unlock;
  6894. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6895. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6896. } else if ((spares = remove_and_add_spares(mddev))) {
  6897. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6898. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6899. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6900. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6901. } else if (mddev->recovery_cp < MaxSector) {
  6902. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6903. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6904. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6905. /* nothing to be done ... */
  6906. goto unlock;
  6907. if (mddev->pers->sync_request) {
  6908. if (spares) {
  6909. /* We are adding a device or devices to an array
  6910. * which has the bitmap stored on all devices.
  6911. * So make sure all bitmap pages get written
  6912. */
  6913. bitmap_write_all(mddev->bitmap);
  6914. }
  6915. mddev->sync_thread = md_register_thread(md_do_sync,
  6916. mddev,
  6917. "resync");
  6918. if (!mddev->sync_thread) {
  6919. printk(KERN_ERR "%s: could not start resync"
  6920. " thread...\n",
  6921. mdname(mddev));
  6922. /* leave the spares where they are, it shouldn't hurt */
  6923. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6924. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6925. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6926. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6927. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6928. } else
  6929. md_wakeup_thread(mddev->sync_thread);
  6930. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6931. md_new_event(mddev);
  6932. }
  6933. unlock:
  6934. if (!mddev->sync_thread) {
  6935. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6936. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6937. &mddev->recovery))
  6938. if (mddev->sysfs_action)
  6939. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6940. }
  6941. mddev_unlock(mddev);
  6942. }
  6943. }
  6944. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6945. {
  6946. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6947. wait_event_timeout(rdev->blocked_wait,
  6948. !test_bit(Blocked, &rdev->flags) &&
  6949. !test_bit(BlockedBadBlocks, &rdev->flags),
  6950. msecs_to_jiffies(5000));
  6951. rdev_dec_pending(rdev, mddev);
  6952. }
  6953. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6954. void md_finish_reshape(struct mddev *mddev)
  6955. {
  6956. /* called be personality module when reshape completes. */
  6957. struct md_rdev *rdev;
  6958. rdev_for_each(rdev, mddev) {
  6959. if (rdev->data_offset > rdev->new_data_offset)
  6960. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  6961. else
  6962. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  6963. rdev->data_offset = rdev->new_data_offset;
  6964. }
  6965. }
  6966. EXPORT_SYMBOL(md_finish_reshape);
  6967. /* Bad block management.
  6968. * We can record which blocks on each device are 'bad' and so just
  6969. * fail those blocks, or that stripe, rather than the whole device.
  6970. * Entries in the bad-block table are 64bits wide. This comprises:
  6971. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6972. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6973. * A 'shift' can be set so that larger blocks are tracked and
  6974. * consequently larger devices can be covered.
  6975. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6976. *
  6977. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6978. * might need to retry if it is very unlucky.
  6979. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6980. * so we use the write_seqlock_irq variant.
  6981. *
  6982. * When looking for a bad block we specify a range and want to
  6983. * know if any block in the range is bad. So we binary-search
  6984. * to the last range that starts at-or-before the given endpoint,
  6985. * (or "before the sector after the target range")
  6986. * then see if it ends after the given start.
  6987. * We return
  6988. * 0 if there are no known bad blocks in the range
  6989. * 1 if there are known bad block which are all acknowledged
  6990. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  6991. * plus the start/length of the first bad section we overlap.
  6992. */
  6993. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  6994. sector_t *first_bad, int *bad_sectors)
  6995. {
  6996. int hi;
  6997. int lo = 0;
  6998. u64 *p = bb->page;
  6999. int rv = 0;
  7000. sector_t target = s + sectors;
  7001. unsigned seq;
  7002. if (bb->shift > 0) {
  7003. /* round the start down, and the end up */
  7004. s >>= bb->shift;
  7005. target += (1<<bb->shift) - 1;
  7006. target >>= bb->shift;
  7007. sectors = target - s;
  7008. }
  7009. /* 'target' is now the first block after the bad range */
  7010. retry:
  7011. seq = read_seqbegin(&bb->lock);
  7012. hi = bb->count;
  7013. /* Binary search between lo and hi for 'target'
  7014. * i.e. for the last range that starts before 'target'
  7015. */
  7016. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7017. * are known not to be the last range before target.
  7018. * VARIANT: hi-lo is the number of possible
  7019. * ranges, and decreases until it reaches 1
  7020. */
  7021. while (hi - lo > 1) {
  7022. int mid = (lo + hi) / 2;
  7023. sector_t a = BB_OFFSET(p[mid]);
  7024. if (a < target)
  7025. /* This could still be the one, earlier ranges
  7026. * could not. */
  7027. lo = mid;
  7028. else
  7029. /* This and later ranges are definitely out. */
  7030. hi = mid;
  7031. }
  7032. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7033. if (hi > lo) {
  7034. /* need to check all range that end after 's' to see if
  7035. * any are unacknowledged.
  7036. */
  7037. while (lo >= 0 &&
  7038. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7039. if (BB_OFFSET(p[lo]) < target) {
  7040. /* starts before the end, and finishes after
  7041. * the start, so they must overlap
  7042. */
  7043. if (rv != -1 && BB_ACK(p[lo]))
  7044. rv = 1;
  7045. else
  7046. rv = -1;
  7047. *first_bad = BB_OFFSET(p[lo]);
  7048. *bad_sectors = BB_LEN(p[lo]);
  7049. }
  7050. lo--;
  7051. }
  7052. }
  7053. if (read_seqretry(&bb->lock, seq))
  7054. goto retry;
  7055. return rv;
  7056. }
  7057. EXPORT_SYMBOL_GPL(md_is_badblock);
  7058. /*
  7059. * Add a range of bad blocks to the table.
  7060. * This might extend the table, or might contract it
  7061. * if two adjacent ranges can be merged.
  7062. * We binary-search to find the 'insertion' point, then
  7063. * decide how best to handle it.
  7064. */
  7065. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7066. int acknowledged)
  7067. {
  7068. u64 *p;
  7069. int lo, hi;
  7070. int rv = 1;
  7071. if (bb->shift < 0)
  7072. /* badblocks are disabled */
  7073. return 0;
  7074. if (bb->shift) {
  7075. /* round the start down, and the end up */
  7076. sector_t next = s + sectors;
  7077. s >>= bb->shift;
  7078. next += (1<<bb->shift) - 1;
  7079. next >>= bb->shift;
  7080. sectors = next - s;
  7081. }
  7082. write_seqlock_irq(&bb->lock);
  7083. p = bb->page;
  7084. lo = 0;
  7085. hi = bb->count;
  7086. /* Find the last range that starts at-or-before 's' */
  7087. while (hi - lo > 1) {
  7088. int mid = (lo + hi) / 2;
  7089. sector_t a = BB_OFFSET(p[mid]);
  7090. if (a <= s)
  7091. lo = mid;
  7092. else
  7093. hi = mid;
  7094. }
  7095. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7096. hi = lo;
  7097. if (hi > lo) {
  7098. /* we found a range that might merge with the start
  7099. * of our new range
  7100. */
  7101. sector_t a = BB_OFFSET(p[lo]);
  7102. sector_t e = a + BB_LEN(p[lo]);
  7103. int ack = BB_ACK(p[lo]);
  7104. if (e >= s) {
  7105. /* Yes, we can merge with a previous range */
  7106. if (s == a && s + sectors >= e)
  7107. /* new range covers old */
  7108. ack = acknowledged;
  7109. else
  7110. ack = ack && acknowledged;
  7111. if (e < s + sectors)
  7112. e = s + sectors;
  7113. if (e - a <= BB_MAX_LEN) {
  7114. p[lo] = BB_MAKE(a, e-a, ack);
  7115. s = e;
  7116. } else {
  7117. /* does not all fit in one range,
  7118. * make p[lo] maximal
  7119. */
  7120. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7121. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7122. s = a + BB_MAX_LEN;
  7123. }
  7124. sectors = e - s;
  7125. }
  7126. }
  7127. if (sectors && hi < bb->count) {
  7128. /* 'hi' points to the first range that starts after 's'.
  7129. * Maybe we can merge with the start of that range */
  7130. sector_t a = BB_OFFSET(p[hi]);
  7131. sector_t e = a + BB_LEN(p[hi]);
  7132. int ack = BB_ACK(p[hi]);
  7133. if (a <= s + sectors) {
  7134. /* merging is possible */
  7135. if (e <= s + sectors) {
  7136. /* full overlap */
  7137. e = s + sectors;
  7138. ack = acknowledged;
  7139. } else
  7140. ack = ack && acknowledged;
  7141. a = s;
  7142. if (e - a <= BB_MAX_LEN) {
  7143. p[hi] = BB_MAKE(a, e-a, ack);
  7144. s = e;
  7145. } else {
  7146. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7147. s = a + BB_MAX_LEN;
  7148. }
  7149. sectors = e - s;
  7150. lo = hi;
  7151. hi++;
  7152. }
  7153. }
  7154. if (sectors == 0 && hi < bb->count) {
  7155. /* we might be able to combine lo and hi */
  7156. /* Note: 's' is at the end of 'lo' */
  7157. sector_t a = BB_OFFSET(p[hi]);
  7158. int lolen = BB_LEN(p[lo]);
  7159. int hilen = BB_LEN(p[hi]);
  7160. int newlen = lolen + hilen - (s - a);
  7161. if (s >= a && newlen < BB_MAX_LEN) {
  7162. /* yes, we can combine them */
  7163. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7164. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7165. memmove(p + hi, p + hi + 1,
  7166. (bb->count - hi - 1) * 8);
  7167. bb->count--;
  7168. }
  7169. }
  7170. while (sectors) {
  7171. /* didn't merge (it all).
  7172. * Need to add a range just before 'hi' */
  7173. if (bb->count >= MD_MAX_BADBLOCKS) {
  7174. /* No room for more */
  7175. rv = 0;
  7176. break;
  7177. } else {
  7178. int this_sectors = sectors;
  7179. memmove(p + hi + 1, p + hi,
  7180. (bb->count - hi) * 8);
  7181. bb->count++;
  7182. if (this_sectors > BB_MAX_LEN)
  7183. this_sectors = BB_MAX_LEN;
  7184. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7185. sectors -= this_sectors;
  7186. s += this_sectors;
  7187. }
  7188. }
  7189. bb->changed = 1;
  7190. if (!acknowledged)
  7191. bb->unacked_exist = 1;
  7192. write_sequnlock_irq(&bb->lock);
  7193. return rv;
  7194. }
  7195. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7196. int is_new)
  7197. {
  7198. int rv;
  7199. if (is_new)
  7200. s += rdev->new_data_offset;
  7201. else
  7202. s += rdev->data_offset;
  7203. rv = md_set_badblocks(&rdev->badblocks,
  7204. s, sectors, 0);
  7205. if (rv) {
  7206. /* Make sure they get written out promptly */
  7207. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7208. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7209. md_wakeup_thread(rdev->mddev->thread);
  7210. }
  7211. return rv;
  7212. }
  7213. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7214. /*
  7215. * Remove a range of bad blocks from the table.
  7216. * This may involve extending the table if we spilt a region,
  7217. * but it must not fail. So if the table becomes full, we just
  7218. * drop the remove request.
  7219. */
  7220. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7221. {
  7222. u64 *p;
  7223. int lo, hi;
  7224. sector_t target = s + sectors;
  7225. int rv = 0;
  7226. if (bb->shift > 0) {
  7227. /* When clearing we round the start up and the end down.
  7228. * This should not matter as the shift should align with
  7229. * the block size and no rounding should ever be needed.
  7230. * However it is better the think a block is bad when it
  7231. * isn't than to think a block is not bad when it is.
  7232. */
  7233. s += (1<<bb->shift) - 1;
  7234. s >>= bb->shift;
  7235. target >>= bb->shift;
  7236. sectors = target - s;
  7237. }
  7238. write_seqlock_irq(&bb->lock);
  7239. p = bb->page;
  7240. lo = 0;
  7241. hi = bb->count;
  7242. /* Find the last range that starts before 'target' */
  7243. while (hi - lo > 1) {
  7244. int mid = (lo + hi) / 2;
  7245. sector_t a = BB_OFFSET(p[mid]);
  7246. if (a < target)
  7247. lo = mid;
  7248. else
  7249. hi = mid;
  7250. }
  7251. if (hi > lo) {
  7252. /* p[lo] is the last range that could overlap the
  7253. * current range. Earlier ranges could also overlap,
  7254. * but only this one can overlap the end of the range.
  7255. */
  7256. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7257. /* Partial overlap, leave the tail of this range */
  7258. int ack = BB_ACK(p[lo]);
  7259. sector_t a = BB_OFFSET(p[lo]);
  7260. sector_t end = a + BB_LEN(p[lo]);
  7261. if (a < s) {
  7262. /* we need to split this range */
  7263. if (bb->count >= MD_MAX_BADBLOCKS) {
  7264. rv = 0;
  7265. goto out;
  7266. }
  7267. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7268. bb->count++;
  7269. p[lo] = BB_MAKE(a, s-a, ack);
  7270. lo++;
  7271. }
  7272. p[lo] = BB_MAKE(target, end - target, ack);
  7273. /* there is no longer an overlap */
  7274. hi = lo;
  7275. lo--;
  7276. }
  7277. while (lo >= 0 &&
  7278. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7279. /* This range does overlap */
  7280. if (BB_OFFSET(p[lo]) < s) {
  7281. /* Keep the early parts of this range. */
  7282. int ack = BB_ACK(p[lo]);
  7283. sector_t start = BB_OFFSET(p[lo]);
  7284. p[lo] = BB_MAKE(start, s - start, ack);
  7285. /* now low doesn't overlap, so.. */
  7286. break;
  7287. }
  7288. lo--;
  7289. }
  7290. /* 'lo' is strictly before, 'hi' is strictly after,
  7291. * anything between needs to be discarded
  7292. */
  7293. if (hi - lo > 1) {
  7294. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7295. bb->count -= (hi - lo - 1);
  7296. }
  7297. }
  7298. bb->changed = 1;
  7299. out:
  7300. write_sequnlock_irq(&bb->lock);
  7301. return rv;
  7302. }
  7303. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7304. int is_new)
  7305. {
  7306. if (is_new)
  7307. s += rdev->new_data_offset;
  7308. else
  7309. s += rdev->data_offset;
  7310. return md_clear_badblocks(&rdev->badblocks,
  7311. s, sectors);
  7312. }
  7313. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7314. /*
  7315. * Acknowledge all bad blocks in a list.
  7316. * This only succeeds if ->changed is clear. It is used by
  7317. * in-kernel metadata updates
  7318. */
  7319. void md_ack_all_badblocks(struct badblocks *bb)
  7320. {
  7321. if (bb->page == NULL || bb->changed)
  7322. /* no point even trying */
  7323. return;
  7324. write_seqlock_irq(&bb->lock);
  7325. if (bb->changed == 0 && bb->unacked_exist) {
  7326. u64 *p = bb->page;
  7327. int i;
  7328. for (i = 0; i < bb->count ; i++) {
  7329. if (!BB_ACK(p[i])) {
  7330. sector_t start = BB_OFFSET(p[i]);
  7331. int len = BB_LEN(p[i]);
  7332. p[i] = BB_MAKE(start, len, 1);
  7333. }
  7334. }
  7335. bb->unacked_exist = 0;
  7336. }
  7337. write_sequnlock_irq(&bb->lock);
  7338. }
  7339. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7340. /* sysfs access to bad-blocks list.
  7341. * We present two files.
  7342. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7343. * are recorded as bad. The list is truncated to fit within
  7344. * the one-page limit of sysfs.
  7345. * Writing "sector length" to this file adds an acknowledged
  7346. * bad block list.
  7347. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7348. * been acknowledged. Writing to this file adds bad blocks
  7349. * without acknowledging them. This is largely for testing.
  7350. */
  7351. static ssize_t
  7352. badblocks_show(struct badblocks *bb, char *page, int unack)
  7353. {
  7354. size_t len;
  7355. int i;
  7356. u64 *p = bb->page;
  7357. unsigned seq;
  7358. if (bb->shift < 0)
  7359. return 0;
  7360. retry:
  7361. seq = read_seqbegin(&bb->lock);
  7362. len = 0;
  7363. i = 0;
  7364. while (len < PAGE_SIZE && i < bb->count) {
  7365. sector_t s = BB_OFFSET(p[i]);
  7366. unsigned int length = BB_LEN(p[i]);
  7367. int ack = BB_ACK(p[i]);
  7368. i++;
  7369. if (unack && ack)
  7370. continue;
  7371. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7372. (unsigned long long)s << bb->shift,
  7373. length << bb->shift);
  7374. }
  7375. if (unack && len == 0)
  7376. bb->unacked_exist = 0;
  7377. if (read_seqretry(&bb->lock, seq))
  7378. goto retry;
  7379. return len;
  7380. }
  7381. #define DO_DEBUG 1
  7382. static ssize_t
  7383. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7384. {
  7385. unsigned long long sector;
  7386. int length;
  7387. char newline;
  7388. #ifdef DO_DEBUG
  7389. /* Allow clearing via sysfs *only* for testing/debugging.
  7390. * Normally only a successful write may clear a badblock
  7391. */
  7392. int clear = 0;
  7393. if (page[0] == '-') {
  7394. clear = 1;
  7395. page++;
  7396. }
  7397. #endif /* DO_DEBUG */
  7398. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7399. case 3:
  7400. if (newline != '\n')
  7401. return -EINVAL;
  7402. case 2:
  7403. if (length <= 0)
  7404. return -EINVAL;
  7405. break;
  7406. default:
  7407. return -EINVAL;
  7408. }
  7409. #ifdef DO_DEBUG
  7410. if (clear) {
  7411. md_clear_badblocks(bb, sector, length);
  7412. return len;
  7413. }
  7414. #endif /* DO_DEBUG */
  7415. if (md_set_badblocks(bb, sector, length, !unack))
  7416. return len;
  7417. else
  7418. return -ENOSPC;
  7419. }
  7420. static int md_notify_reboot(struct notifier_block *this,
  7421. unsigned long code, void *x)
  7422. {
  7423. struct list_head *tmp;
  7424. struct mddev *mddev;
  7425. int need_delay = 0;
  7426. for_each_mddev(mddev, tmp) {
  7427. if (mddev_trylock(mddev)) {
  7428. if (mddev->pers)
  7429. __md_stop_writes(mddev);
  7430. mddev->safemode = 2;
  7431. mddev_unlock(mddev);
  7432. }
  7433. need_delay = 1;
  7434. }
  7435. /*
  7436. * certain more exotic SCSI devices are known to be
  7437. * volatile wrt too early system reboots. While the
  7438. * right place to handle this issue is the given
  7439. * driver, we do want to have a safe RAID driver ...
  7440. */
  7441. if (need_delay)
  7442. mdelay(1000*1);
  7443. return NOTIFY_DONE;
  7444. }
  7445. static struct notifier_block md_notifier = {
  7446. .notifier_call = md_notify_reboot,
  7447. .next = NULL,
  7448. .priority = INT_MAX, /* before any real devices */
  7449. };
  7450. static void md_geninit(void)
  7451. {
  7452. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7453. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7454. }
  7455. static int __init md_init(void)
  7456. {
  7457. int ret = -ENOMEM;
  7458. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7459. if (!md_wq)
  7460. goto err_wq;
  7461. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7462. if (!md_misc_wq)
  7463. goto err_misc_wq;
  7464. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7465. goto err_md;
  7466. if ((ret = register_blkdev(0, "mdp")) < 0)
  7467. goto err_mdp;
  7468. mdp_major = ret;
  7469. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7470. md_probe, NULL, NULL);
  7471. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7472. md_probe, NULL, NULL);
  7473. register_reboot_notifier(&md_notifier);
  7474. raid_table_header = register_sysctl_table(raid_root_table);
  7475. md_geninit();
  7476. return 0;
  7477. err_mdp:
  7478. unregister_blkdev(MD_MAJOR, "md");
  7479. err_md:
  7480. destroy_workqueue(md_misc_wq);
  7481. err_misc_wq:
  7482. destroy_workqueue(md_wq);
  7483. err_wq:
  7484. return ret;
  7485. }
  7486. #ifndef MODULE
  7487. /*
  7488. * Searches all registered partitions for autorun RAID arrays
  7489. * at boot time.
  7490. */
  7491. static LIST_HEAD(all_detected_devices);
  7492. struct detected_devices_node {
  7493. struct list_head list;
  7494. dev_t dev;
  7495. };
  7496. void md_autodetect_dev(dev_t dev)
  7497. {
  7498. struct detected_devices_node *node_detected_dev;
  7499. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7500. if (node_detected_dev) {
  7501. node_detected_dev->dev = dev;
  7502. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7503. } else {
  7504. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7505. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7506. }
  7507. }
  7508. static void autostart_arrays(int part)
  7509. {
  7510. struct md_rdev *rdev;
  7511. struct detected_devices_node *node_detected_dev;
  7512. dev_t dev;
  7513. int i_scanned, i_passed;
  7514. i_scanned = 0;
  7515. i_passed = 0;
  7516. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7517. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7518. i_scanned++;
  7519. node_detected_dev = list_entry(all_detected_devices.next,
  7520. struct detected_devices_node, list);
  7521. list_del(&node_detected_dev->list);
  7522. dev = node_detected_dev->dev;
  7523. kfree(node_detected_dev);
  7524. rdev = md_import_device(dev,0, 90);
  7525. if (IS_ERR(rdev))
  7526. continue;
  7527. if (test_bit(Faulty, &rdev->flags)) {
  7528. MD_BUG();
  7529. continue;
  7530. }
  7531. set_bit(AutoDetected, &rdev->flags);
  7532. list_add(&rdev->same_set, &pending_raid_disks);
  7533. i_passed++;
  7534. }
  7535. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7536. i_scanned, i_passed);
  7537. autorun_devices(part);
  7538. }
  7539. #endif /* !MODULE */
  7540. static __exit void md_exit(void)
  7541. {
  7542. struct mddev *mddev;
  7543. struct list_head *tmp;
  7544. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7545. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7546. unregister_blkdev(MD_MAJOR,"md");
  7547. unregister_blkdev(mdp_major, "mdp");
  7548. unregister_reboot_notifier(&md_notifier);
  7549. unregister_sysctl_table(raid_table_header);
  7550. remove_proc_entry("mdstat", NULL);
  7551. for_each_mddev(mddev, tmp) {
  7552. export_array(mddev);
  7553. mddev->hold_active = 0;
  7554. }
  7555. destroy_workqueue(md_misc_wq);
  7556. destroy_workqueue(md_wq);
  7557. }
  7558. subsys_initcall(md_init);
  7559. module_exit(md_exit)
  7560. static int get_ro(char *buffer, struct kernel_param *kp)
  7561. {
  7562. return sprintf(buffer, "%d", start_readonly);
  7563. }
  7564. static int set_ro(const char *val, struct kernel_param *kp)
  7565. {
  7566. char *e;
  7567. int num = simple_strtoul(val, &e, 10);
  7568. if (*val && (*e == '\0' || *e == '\n')) {
  7569. start_readonly = num;
  7570. return 0;
  7571. }
  7572. return -EINVAL;
  7573. }
  7574. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7575. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7576. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7577. EXPORT_SYMBOL(register_md_personality);
  7578. EXPORT_SYMBOL(unregister_md_personality);
  7579. EXPORT_SYMBOL(md_error);
  7580. EXPORT_SYMBOL(md_done_sync);
  7581. EXPORT_SYMBOL(md_write_start);
  7582. EXPORT_SYMBOL(md_write_end);
  7583. EXPORT_SYMBOL(md_register_thread);
  7584. EXPORT_SYMBOL(md_unregister_thread);
  7585. EXPORT_SYMBOL(md_wakeup_thread);
  7586. EXPORT_SYMBOL(md_check_recovery);
  7587. MODULE_LICENSE("GPL");
  7588. MODULE_DESCRIPTION("MD RAID framework");
  7589. MODULE_ALIAS("md");
  7590. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);