pgtable.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. #include <linux/mm.h>
  2. #include <asm/pgalloc.h>
  3. #include <asm/tlb.h>
  4. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  5. {
  6. return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  7. }
  8. pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
  9. {
  10. struct page *pte;
  11. #ifdef CONFIG_HIGHPTE
  12. pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
  13. #else
  14. pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
  15. #endif
  16. if (pte)
  17. pgtable_page_ctor(pte);
  18. return pte;
  19. }
  20. void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
  21. {
  22. pgtable_page_dtor(pte);
  23. paravirt_release_pt(page_to_pfn(pte));
  24. tlb_remove_page(tlb, pte);
  25. }
  26. #if PAGETABLE_LEVELS > 2
  27. void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
  28. {
  29. paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
  30. tlb_remove_page(tlb, virt_to_page(pmd));
  31. }
  32. #if PAGETABLE_LEVELS > 3
  33. void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
  34. {
  35. tlb_remove_page(tlb, virt_to_page(pud));
  36. }
  37. #endif /* PAGETABLE_LEVELS > 3 */
  38. #endif /* PAGETABLE_LEVELS > 2 */
  39. static inline void pgd_list_add(pgd_t *pgd)
  40. {
  41. struct page *page = virt_to_page(pgd);
  42. list_add(&page->lru, &pgd_list);
  43. }
  44. static inline void pgd_list_del(pgd_t *pgd)
  45. {
  46. struct page *page = virt_to_page(pgd);
  47. list_del(&page->lru);
  48. }
  49. #ifdef CONFIG_X86_64
  50. pgd_t *pgd_alloc(struct mm_struct *mm)
  51. {
  52. unsigned boundary;
  53. pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT);
  54. unsigned long flags;
  55. if (!pgd)
  56. return NULL;
  57. spin_lock_irqsave(&pgd_lock, flags);
  58. pgd_list_add(pgd);
  59. spin_unlock_irqrestore(&pgd_lock, flags);
  60. /*
  61. * Copy kernel pointers in from init.
  62. * Could keep a freelist or slab cache of those because the kernel
  63. * part never changes.
  64. */
  65. boundary = pgd_index(__PAGE_OFFSET);
  66. memset(pgd, 0, boundary * sizeof(pgd_t));
  67. memcpy(pgd + boundary,
  68. init_level4_pgt + boundary,
  69. (PTRS_PER_PGD - boundary) * sizeof(pgd_t));
  70. return pgd;
  71. }
  72. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  73. {
  74. unsigned long flags;
  75. BUG_ON((unsigned long)pgd & (PAGE_SIZE-1));
  76. spin_lock_irqsave(&pgd_lock, flags);
  77. pgd_list_del(pgd);
  78. spin_unlock_irqrestore(&pgd_lock, flags);
  79. free_page((unsigned long)pgd);
  80. }
  81. #else
  82. /*
  83. * List of all pgd's needed for non-PAE so it can invalidate entries
  84. * in both cached and uncached pgd's; not needed for PAE since the
  85. * kernel pmd is shared. If PAE were not to share the pmd a similar
  86. * tactic would be needed. This is essentially codepath-based locking
  87. * against pageattr.c; it is the unique case in which a valid change
  88. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  89. * vmalloc faults work because attached pagetables are never freed.
  90. * -- wli
  91. */
  92. #define UNSHARED_PTRS_PER_PGD \
  93. (SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD)
  94. static void pgd_ctor(void *p)
  95. {
  96. pgd_t *pgd = p;
  97. unsigned long flags;
  98. /* Clear usermode parts of PGD */
  99. memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
  100. spin_lock_irqsave(&pgd_lock, flags);
  101. /* If the pgd points to a shared pagetable level (either the
  102. ptes in non-PAE, or shared PMD in PAE), then just copy the
  103. references from swapper_pg_dir. */
  104. if (PAGETABLE_LEVELS == 2 ||
  105. (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD)) {
  106. clone_pgd_range(pgd + USER_PTRS_PER_PGD,
  107. swapper_pg_dir + USER_PTRS_PER_PGD,
  108. KERNEL_PGD_PTRS);
  109. paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT,
  110. __pa(swapper_pg_dir) >> PAGE_SHIFT,
  111. USER_PTRS_PER_PGD,
  112. KERNEL_PGD_PTRS);
  113. }
  114. /* list required to sync kernel mapping updates */
  115. if (!SHARED_KERNEL_PMD)
  116. pgd_list_add(pgd);
  117. spin_unlock_irqrestore(&pgd_lock, flags);
  118. }
  119. static void pgd_dtor(void *pgd)
  120. {
  121. unsigned long flags; /* can be called from interrupt context */
  122. if (SHARED_KERNEL_PMD)
  123. return;
  124. spin_lock_irqsave(&pgd_lock, flags);
  125. pgd_list_del(pgd);
  126. spin_unlock_irqrestore(&pgd_lock, flags);
  127. }
  128. #ifdef CONFIG_X86_PAE
  129. /*
  130. * Mop up any pmd pages which may still be attached to the pgd.
  131. * Normally they will be freed by munmap/exit_mmap, but any pmd we
  132. * preallocate which never got a corresponding vma will need to be
  133. * freed manually.
  134. */
  135. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  136. {
  137. int i;
  138. for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) {
  139. pgd_t pgd = pgdp[i];
  140. if (pgd_val(pgd) != 0) {
  141. pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
  142. pgdp[i] = native_make_pgd(0);
  143. paravirt_release_pd(pgd_val(pgd) >> PAGE_SHIFT);
  144. pmd_free(mm, pmd);
  145. }
  146. }
  147. }
  148. /*
  149. * In PAE mode, we need to do a cr3 reload (=tlb flush) when
  150. * updating the top-level pagetable entries to guarantee the
  151. * processor notices the update. Since this is expensive, and
  152. * all 4 top-level entries are used almost immediately in a
  153. * new process's life, we just pre-populate them here.
  154. *
  155. * Also, if we're in a paravirt environment where the kernel pmd is
  156. * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
  157. * and initialize the kernel pmds here.
  158. */
  159. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  160. {
  161. pud_t *pud;
  162. unsigned long addr;
  163. int i;
  164. pud = pud_offset(pgd, 0);
  165. for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD;
  166. i++, pud++, addr += PUD_SIZE) {
  167. pmd_t *pmd = pmd_alloc_one(mm, addr);
  168. if (!pmd) {
  169. pgd_mop_up_pmds(mm, pgd);
  170. return 0;
  171. }
  172. if (i >= USER_PTRS_PER_PGD)
  173. memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
  174. sizeof(pmd_t) * PTRS_PER_PMD);
  175. pud_populate(mm, pud, pmd);
  176. }
  177. return 1;
  178. }
  179. void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
  180. {
  181. paravirt_alloc_pd(mm, __pa(pmd) >> PAGE_SHIFT);
  182. /* Note: almost everything apart from _PAGE_PRESENT is
  183. reserved at the pmd (PDPT) level. */
  184. set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
  185. /*
  186. * According to Intel App note "TLBs, Paging-Structure Caches,
  187. * and Their Invalidation", April 2007, document 317080-001,
  188. * section 8.1: in PAE mode we explicitly have to flush the
  189. * TLB via cr3 if the top-level pgd is changed...
  190. */
  191. if (mm == current->active_mm)
  192. write_cr3(read_cr3());
  193. }
  194. #else /* !CONFIG_X86_PAE */
  195. /* No need to prepopulate any pagetable entries in non-PAE modes. */
  196. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  197. {
  198. return 1;
  199. }
  200. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgd)
  201. {
  202. }
  203. #endif /* CONFIG_X86_PAE */
  204. pgd_t *pgd_alloc(struct mm_struct *mm)
  205. {
  206. pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
  207. /* so that alloc_pd can use it */
  208. mm->pgd = pgd;
  209. if (pgd)
  210. pgd_ctor(pgd);
  211. if (pgd && !pgd_prepopulate_pmd(mm, pgd)) {
  212. pgd_dtor(pgd);
  213. free_page((unsigned long)pgd);
  214. pgd = NULL;
  215. }
  216. return pgd;
  217. }
  218. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  219. {
  220. pgd_mop_up_pmds(mm, pgd);
  221. pgd_dtor(pgd);
  222. free_page((unsigned long)pgd);
  223. }
  224. #endif