core.c 193 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #ifdef CONFIG_PARAVIRT
  76. #include <asm/paravirt.h>
  77. #endif
  78. #include "sched.h"
  79. #include "../workqueue_sched.h"
  80. #define CREATE_TRACE_POINTS
  81. #include <trace/events/sched.h>
  82. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  83. {
  84. unsigned long delta;
  85. ktime_t soft, hard, now;
  86. for (;;) {
  87. if (hrtimer_active(period_timer))
  88. break;
  89. now = hrtimer_cb_get_time(period_timer);
  90. hrtimer_forward(period_timer, now, period);
  91. soft = hrtimer_get_softexpires(period_timer);
  92. hard = hrtimer_get_expires(period_timer);
  93. delta = ktime_to_ns(ktime_sub(hard, soft));
  94. __hrtimer_start_range_ns(period_timer, soft, delta,
  95. HRTIMER_MODE_ABS_PINNED, 0);
  96. }
  97. }
  98. DEFINE_MUTEX(sched_domains_mutex);
  99. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  100. static void update_rq_clock_task(struct rq *rq, s64 delta);
  101. void update_rq_clock(struct rq *rq)
  102. {
  103. s64 delta;
  104. if (rq->skip_clock_update > 0)
  105. return;
  106. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  107. rq->clock += delta;
  108. update_rq_clock_task(rq, delta);
  109. }
  110. /*
  111. * Debugging: various feature bits
  112. */
  113. #define SCHED_FEAT(name, enabled) \
  114. (1UL << __SCHED_FEAT_##name) * enabled |
  115. const_debug unsigned int sysctl_sched_features =
  116. #include "features.h"
  117. 0;
  118. #undef SCHED_FEAT
  119. #ifdef CONFIG_SCHED_DEBUG
  120. #define SCHED_FEAT(name, enabled) \
  121. #name ,
  122. static __read_mostly char *sched_feat_names[] = {
  123. #include "features.h"
  124. NULL
  125. };
  126. #undef SCHED_FEAT
  127. static int sched_feat_show(struct seq_file *m, void *v)
  128. {
  129. int i;
  130. for (i = 0; sched_feat_names[i]; i++) {
  131. if (!(sysctl_sched_features & (1UL << i)))
  132. seq_puts(m, "NO_");
  133. seq_printf(m, "%s ", sched_feat_names[i]);
  134. }
  135. seq_puts(m, "\n");
  136. return 0;
  137. }
  138. static ssize_t
  139. sched_feat_write(struct file *filp, const char __user *ubuf,
  140. size_t cnt, loff_t *ppos)
  141. {
  142. char buf[64];
  143. char *cmp;
  144. int neg = 0;
  145. int i;
  146. if (cnt > 63)
  147. cnt = 63;
  148. if (copy_from_user(&buf, ubuf, cnt))
  149. return -EFAULT;
  150. buf[cnt] = 0;
  151. cmp = strstrip(buf);
  152. if (strncmp(cmp, "NO_", 3) == 0) {
  153. neg = 1;
  154. cmp += 3;
  155. }
  156. for (i = 0; sched_feat_names[i]; i++) {
  157. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  158. if (neg)
  159. sysctl_sched_features &= ~(1UL << i);
  160. else
  161. sysctl_sched_features |= (1UL << i);
  162. break;
  163. }
  164. }
  165. if (!sched_feat_names[i])
  166. return -EINVAL;
  167. *ppos += cnt;
  168. return cnt;
  169. }
  170. static int sched_feat_open(struct inode *inode, struct file *filp)
  171. {
  172. return single_open(filp, sched_feat_show, NULL);
  173. }
  174. static const struct file_operations sched_feat_fops = {
  175. .open = sched_feat_open,
  176. .write = sched_feat_write,
  177. .read = seq_read,
  178. .llseek = seq_lseek,
  179. .release = single_release,
  180. };
  181. static __init int sched_init_debug(void)
  182. {
  183. debugfs_create_file("sched_features", 0644, NULL, NULL,
  184. &sched_feat_fops);
  185. return 0;
  186. }
  187. late_initcall(sched_init_debug);
  188. #endif
  189. /*
  190. * Number of tasks to iterate in a single balance run.
  191. * Limited because this is done with IRQs disabled.
  192. */
  193. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  194. /*
  195. * period over which we average the RT time consumption, measured
  196. * in ms.
  197. *
  198. * default: 1s
  199. */
  200. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  201. /*
  202. * period over which we measure -rt task cpu usage in us.
  203. * default: 1s
  204. */
  205. unsigned int sysctl_sched_rt_period = 1000000;
  206. __read_mostly int scheduler_running;
  207. /*
  208. * part of the period that we allow rt tasks to run in us.
  209. * default: 0.95s
  210. */
  211. int sysctl_sched_rt_runtime = 950000;
  212. /*
  213. * __task_rq_lock - lock the rq @p resides on.
  214. */
  215. static inline struct rq *__task_rq_lock(struct task_struct *p)
  216. __acquires(rq->lock)
  217. {
  218. struct rq *rq;
  219. lockdep_assert_held(&p->pi_lock);
  220. for (;;) {
  221. rq = task_rq(p);
  222. raw_spin_lock(&rq->lock);
  223. if (likely(rq == task_rq(p)))
  224. return rq;
  225. raw_spin_unlock(&rq->lock);
  226. }
  227. }
  228. /*
  229. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  230. */
  231. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  232. __acquires(p->pi_lock)
  233. __acquires(rq->lock)
  234. {
  235. struct rq *rq;
  236. for (;;) {
  237. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  238. rq = task_rq(p);
  239. raw_spin_lock(&rq->lock);
  240. if (likely(rq == task_rq(p)))
  241. return rq;
  242. raw_spin_unlock(&rq->lock);
  243. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  244. }
  245. }
  246. static void __task_rq_unlock(struct rq *rq)
  247. __releases(rq->lock)
  248. {
  249. raw_spin_unlock(&rq->lock);
  250. }
  251. static inline void
  252. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  253. __releases(rq->lock)
  254. __releases(p->pi_lock)
  255. {
  256. raw_spin_unlock(&rq->lock);
  257. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  258. }
  259. /*
  260. * this_rq_lock - lock this runqueue and disable interrupts.
  261. */
  262. static struct rq *this_rq_lock(void)
  263. __acquires(rq->lock)
  264. {
  265. struct rq *rq;
  266. local_irq_disable();
  267. rq = this_rq();
  268. raw_spin_lock(&rq->lock);
  269. return rq;
  270. }
  271. #ifdef CONFIG_SCHED_HRTICK
  272. /*
  273. * Use HR-timers to deliver accurate preemption points.
  274. *
  275. * Its all a bit involved since we cannot program an hrt while holding the
  276. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  277. * reschedule event.
  278. *
  279. * When we get rescheduled we reprogram the hrtick_timer outside of the
  280. * rq->lock.
  281. */
  282. static void hrtick_clear(struct rq *rq)
  283. {
  284. if (hrtimer_active(&rq->hrtick_timer))
  285. hrtimer_cancel(&rq->hrtick_timer);
  286. }
  287. /*
  288. * High-resolution timer tick.
  289. * Runs from hardirq context with interrupts disabled.
  290. */
  291. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  292. {
  293. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  294. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  295. raw_spin_lock(&rq->lock);
  296. update_rq_clock(rq);
  297. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  298. raw_spin_unlock(&rq->lock);
  299. return HRTIMER_NORESTART;
  300. }
  301. #ifdef CONFIG_SMP
  302. /*
  303. * called from hardirq (IPI) context
  304. */
  305. static void __hrtick_start(void *arg)
  306. {
  307. struct rq *rq = arg;
  308. raw_spin_lock(&rq->lock);
  309. hrtimer_restart(&rq->hrtick_timer);
  310. rq->hrtick_csd_pending = 0;
  311. raw_spin_unlock(&rq->lock);
  312. }
  313. /*
  314. * Called to set the hrtick timer state.
  315. *
  316. * called with rq->lock held and irqs disabled
  317. */
  318. void hrtick_start(struct rq *rq, u64 delay)
  319. {
  320. struct hrtimer *timer = &rq->hrtick_timer;
  321. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  322. hrtimer_set_expires(timer, time);
  323. if (rq == this_rq()) {
  324. hrtimer_restart(timer);
  325. } else if (!rq->hrtick_csd_pending) {
  326. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  327. rq->hrtick_csd_pending = 1;
  328. }
  329. }
  330. static int
  331. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  332. {
  333. int cpu = (int)(long)hcpu;
  334. switch (action) {
  335. case CPU_UP_CANCELED:
  336. case CPU_UP_CANCELED_FROZEN:
  337. case CPU_DOWN_PREPARE:
  338. case CPU_DOWN_PREPARE_FROZEN:
  339. case CPU_DEAD:
  340. case CPU_DEAD_FROZEN:
  341. hrtick_clear(cpu_rq(cpu));
  342. return NOTIFY_OK;
  343. }
  344. return NOTIFY_DONE;
  345. }
  346. static __init void init_hrtick(void)
  347. {
  348. hotcpu_notifier(hotplug_hrtick, 0);
  349. }
  350. #else
  351. /*
  352. * Called to set the hrtick timer state.
  353. *
  354. * called with rq->lock held and irqs disabled
  355. */
  356. void hrtick_start(struct rq *rq, u64 delay)
  357. {
  358. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  359. HRTIMER_MODE_REL_PINNED, 0);
  360. }
  361. static inline void init_hrtick(void)
  362. {
  363. }
  364. #endif /* CONFIG_SMP */
  365. static void init_rq_hrtick(struct rq *rq)
  366. {
  367. #ifdef CONFIG_SMP
  368. rq->hrtick_csd_pending = 0;
  369. rq->hrtick_csd.flags = 0;
  370. rq->hrtick_csd.func = __hrtick_start;
  371. rq->hrtick_csd.info = rq;
  372. #endif
  373. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  374. rq->hrtick_timer.function = hrtick;
  375. }
  376. #else /* CONFIG_SCHED_HRTICK */
  377. static inline void hrtick_clear(struct rq *rq)
  378. {
  379. }
  380. static inline void init_rq_hrtick(struct rq *rq)
  381. {
  382. }
  383. static inline void init_hrtick(void)
  384. {
  385. }
  386. #endif /* CONFIG_SCHED_HRTICK */
  387. /*
  388. * resched_task - mark a task 'to be rescheduled now'.
  389. *
  390. * On UP this means the setting of the need_resched flag, on SMP it
  391. * might also involve a cross-CPU call to trigger the scheduler on
  392. * the target CPU.
  393. */
  394. #ifdef CONFIG_SMP
  395. #ifndef tsk_is_polling
  396. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  397. #endif
  398. void resched_task(struct task_struct *p)
  399. {
  400. int cpu;
  401. assert_raw_spin_locked(&task_rq(p)->lock);
  402. if (test_tsk_need_resched(p))
  403. return;
  404. set_tsk_need_resched(p);
  405. cpu = task_cpu(p);
  406. if (cpu == smp_processor_id())
  407. return;
  408. /* NEED_RESCHED must be visible before we test polling */
  409. smp_mb();
  410. if (!tsk_is_polling(p))
  411. smp_send_reschedule(cpu);
  412. }
  413. void resched_cpu(int cpu)
  414. {
  415. struct rq *rq = cpu_rq(cpu);
  416. unsigned long flags;
  417. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  418. return;
  419. resched_task(cpu_curr(cpu));
  420. raw_spin_unlock_irqrestore(&rq->lock, flags);
  421. }
  422. #ifdef CONFIG_NO_HZ
  423. /*
  424. * In the semi idle case, use the nearest busy cpu for migrating timers
  425. * from an idle cpu. This is good for power-savings.
  426. *
  427. * We don't do similar optimization for completely idle system, as
  428. * selecting an idle cpu will add more delays to the timers than intended
  429. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  430. */
  431. int get_nohz_timer_target(void)
  432. {
  433. int cpu = smp_processor_id();
  434. int i;
  435. struct sched_domain *sd;
  436. rcu_read_lock();
  437. for_each_domain(cpu, sd) {
  438. for_each_cpu(i, sched_domain_span(sd)) {
  439. if (!idle_cpu(i)) {
  440. cpu = i;
  441. goto unlock;
  442. }
  443. }
  444. }
  445. unlock:
  446. rcu_read_unlock();
  447. return cpu;
  448. }
  449. /*
  450. * When add_timer_on() enqueues a timer into the timer wheel of an
  451. * idle CPU then this timer might expire before the next timer event
  452. * which is scheduled to wake up that CPU. In case of a completely
  453. * idle system the next event might even be infinite time into the
  454. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  455. * leaves the inner idle loop so the newly added timer is taken into
  456. * account when the CPU goes back to idle and evaluates the timer
  457. * wheel for the next timer event.
  458. */
  459. void wake_up_idle_cpu(int cpu)
  460. {
  461. struct rq *rq = cpu_rq(cpu);
  462. if (cpu == smp_processor_id())
  463. return;
  464. /*
  465. * This is safe, as this function is called with the timer
  466. * wheel base lock of (cpu) held. When the CPU is on the way
  467. * to idle and has not yet set rq->curr to idle then it will
  468. * be serialized on the timer wheel base lock and take the new
  469. * timer into account automatically.
  470. */
  471. if (rq->curr != rq->idle)
  472. return;
  473. /*
  474. * We can set TIF_RESCHED on the idle task of the other CPU
  475. * lockless. The worst case is that the other CPU runs the
  476. * idle task through an additional NOOP schedule()
  477. */
  478. set_tsk_need_resched(rq->idle);
  479. /* NEED_RESCHED must be visible before we test polling */
  480. smp_mb();
  481. if (!tsk_is_polling(rq->idle))
  482. smp_send_reschedule(cpu);
  483. }
  484. static inline bool got_nohz_idle_kick(void)
  485. {
  486. return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
  487. }
  488. #else /* CONFIG_NO_HZ */
  489. static inline bool got_nohz_idle_kick(void)
  490. {
  491. return false;
  492. }
  493. #endif /* CONFIG_NO_HZ */
  494. void sched_avg_update(struct rq *rq)
  495. {
  496. s64 period = sched_avg_period();
  497. while ((s64)(rq->clock - rq->age_stamp) > period) {
  498. /*
  499. * Inline assembly required to prevent the compiler
  500. * optimising this loop into a divmod call.
  501. * See __iter_div_u64_rem() for another example of this.
  502. */
  503. asm("" : "+rm" (rq->age_stamp));
  504. rq->age_stamp += period;
  505. rq->rt_avg /= 2;
  506. }
  507. }
  508. #else /* !CONFIG_SMP */
  509. void resched_task(struct task_struct *p)
  510. {
  511. assert_raw_spin_locked(&task_rq(p)->lock);
  512. set_tsk_need_resched(p);
  513. }
  514. #endif /* CONFIG_SMP */
  515. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  516. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  517. /*
  518. * Iterate task_group tree rooted at *from, calling @down when first entering a
  519. * node and @up when leaving it for the final time.
  520. *
  521. * Caller must hold rcu_lock or sufficient equivalent.
  522. */
  523. int walk_tg_tree_from(struct task_group *from,
  524. tg_visitor down, tg_visitor up, void *data)
  525. {
  526. struct task_group *parent, *child;
  527. int ret;
  528. parent = from;
  529. down:
  530. ret = (*down)(parent, data);
  531. if (ret)
  532. goto out;
  533. list_for_each_entry_rcu(child, &parent->children, siblings) {
  534. parent = child;
  535. goto down;
  536. up:
  537. continue;
  538. }
  539. ret = (*up)(parent, data);
  540. if (ret || parent == from)
  541. goto out;
  542. child = parent;
  543. parent = parent->parent;
  544. if (parent)
  545. goto up;
  546. out:
  547. return ret;
  548. }
  549. int tg_nop(struct task_group *tg, void *data)
  550. {
  551. return 0;
  552. }
  553. #endif
  554. void update_cpu_load(struct rq *this_rq);
  555. static void set_load_weight(struct task_struct *p)
  556. {
  557. int prio = p->static_prio - MAX_RT_PRIO;
  558. struct load_weight *load = &p->se.load;
  559. /*
  560. * SCHED_IDLE tasks get minimal weight:
  561. */
  562. if (p->policy == SCHED_IDLE) {
  563. load->weight = scale_load(WEIGHT_IDLEPRIO);
  564. load->inv_weight = WMULT_IDLEPRIO;
  565. return;
  566. }
  567. load->weight = scale_load(prio_to_weight[prio]);
  568. load->inv_weight = prio_to_wmult[prio];
  569. }
  570. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  571. {
  572. update_rq_clock(rq);
  573. sched_info_queued(p);
  574. p->sched_class->enqueue_task(rq, p, flags);
  575. }
  576. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  577. {
  578. update_rq_clock(rq);
  579. sched_info_dequeued(p);
  580. p->sched_class->dequeue_task(rq, p, flags);
  581. }
  582. /*
  583. * activate_task - move a task to the runqueue.
  584. */
  585. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  586. {
  587. if (task_contributes_to_load(p))
  588. rq->nr_uninterruptible--;
  589. enqueue_task(rq, p, flags);
  590. }
  591. /*
  592. * deactivate_task - remove a task from the runqueue.
  593. */
  594. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  595. {
  596. if (task_contributes_to_load(p))
  597. rq->nr_uninterruptible++;
  598. dequeue_task(rq, p, flags);
  599. }
  600. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  601. /*
  602. * There are no locks covering percpu hardirq/softirq time.
  603. * They are only modified in account_system_vtime, on corresponding CPU
  604. * with interrupts disabled. So, writes are safe.
  605. * They are read and saved off onto struct rq in update_rq_clock().
  606. * This may result in other CPU reading this CPU's irq time and can
  607. * race with irq/account_system_vtime on this CPU. We would either get old
  608. * or new value with a side effect of accounting a slice of irq time to wrong
  609. * task when irq is in progress while we read rq->clock. That is a worthy
  610. * compromise in place of having locks on each irq in account_system_time.
  611. */
  612. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  613. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  614. static DEFINE_PER_CPU(u64, irq_start_time);
  615. static int sched_clock_irqtime;
  616. void enable_sched_clock_irqtime(void)
  617. {
  618. sched_clock_irqtime = 1;
  619. }
  620. void disable_sched_clock_irqtime(void)
  621. {
  622. sched_clock_irqtime = 0;
  623. }
  624. #ifndef CONFIG_64BIT
  625. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  626. static inline void irq_time_write_begin(void)
  627. {
  628. __this_cpu_inc(irq_time_seq.sequence);
  629. smp_wmb();
  630. }
  631. static inline void irq_time_write_end(void)
  632. {
  633. smp_wmb();
  634. __this_cpu_inc(irq_time_seq.sequence);
  635. }
  636. static inline u64 irq_time_read(int cpu)
  637. {
  638. u64 irq_time;
  639. unsigned seq;
  640. do {
  641. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  642. irq_time = per_cpu(cpu_softirq_time, cpu) +
  643. per_cpu(cpu_hardirq_time, cpu);
  644. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  645. return irq_time;
  646. }
  647. #else /* CONFIG_64BIT */
  648. static inline void irq_time_write_begin(void)
  649. {
  650. }
  651. static inline void irq_time_write_end(void)
  652. {
  653. }
  654. static inline u64 irq_time_read(int cpu)
  655. {
  656. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  657. }
  658. #endif /* CONFIG_64BIT */
  659. /*
  660. * Called before incrementing preempt_count on {soft,}irq_enter
  661. * and before decrementing preempt_count on {soft,}irq_exit.
  662. */
  663. void account_system_vtime(struct task_struct *curr)
  664. {
  665. unsigned long flags;
  666. s64 delta;
  667. int cpu;
  668. if (!sched_clock_irqtime)
  669. return;
  670. local_irq_save(flags);
  671. cpu = smp_processor_id();
  672. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  673. __this_cpu_add(irq_start_time, delta);
  674. irq_time_write_begin();
  675. /*
  676. * We do not account for softirq time from ksoftirqd here.
  677. * We want to continue accounting softirq time to ksoftirqd thread
  678. * in that case, so as not to confuse scheduler with a special task
  679. * that do not consume any time, but still wants to run.
  680. */
  681. if (hardirq_count())
  682. __this_cpu_add(cpu_hardirq_time, delta);
  683. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  684. __this_cpu_add(cpu_softirq_time, delta);
  685. irq_time_write_end();
  686. local_irq_restore(flags);
  687. }
  688. EXPORT_SYMBOL_GPL(account_system_vtime);
  689. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  690. #ifdef CONFIG_PARAVIRT
  691. static inline u64 steal_ticks(u64 steal)
  692. {
  693. if (unlikely(steal > NSEC_PER_SEC))
  694. return div_u64(steal, TICK_NSEC);
  695. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  696. }
  697. #endif
  698. static void update_rq_clock_task(struct rq *rq, s64 delta)
  699. {
  700. /*
  701. * In theory, the compile should just see 0 here, and optimize out the call
  702. * to sched_rt_avg_update. But I don't trust it...
  703. */
  704. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  705. s64 steal = 0, irq_delta = 0;
  706. #endif
  707. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  708. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  709. /*
  710. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  711. * this case when a previous update_rq_clock() happened inside a
  712. * {soft,}irq region.
  713. *
  714. * When this happens, we stop ->clock_task and only update the
  715. * prev_irq_time stamp to account for the part that fit, so that a next
  716. * update will consume the rest. This ensures ->clock_task is
  717. * monotonic.
  718. *
  719. * It does however cause some slight miss-attribution of {soft,}irq
  720. * time, a more accurate solution would be to update the irq_time using
  721. * the current rq->clock timestamp, except that would require using
  722. * atomic ops.
  723. */
  724. if (irq_delta > delta)
  725. irq_delta = delta;
  726. rq->prev_irq_time += irq_delta;
  727. delta -= irq_delta;
  728. #endif
  729. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  730. if (static_branch((&paravirt_steal_rq_enabled))) {
  731. u64 st;
  732. steal = paravirt_steal_clock(cpu_of(rq));
  733. steal -= rq->prev_steal_time_rq;
  734. if (unlikely(steal > delta))
  735. steal = delta;
  736. st = steal_ticks(steal);
  737. steal = st * TICK_NSEC;
  738. rq->prev_steal_time_rq += steal;
  739. delta -= steal;
  740. }
  741. #endif
  742. rq->clock_task += delta;
  743. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  744. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  745. sched_rt_avg_update(rq, irq_delta + steal);
  746. #endif
  747. }
  748. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  749. static int irqtime_account_hi_update(void)
  750. {
  751. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  752. unsigned long flags;
  753. u64 latest_ns;
  754. int ret = 0;
  755. local_irq_save(flags);
  756. latest_ns = this_cpu_read(cpu_hardirq_time);
  757. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  758. ret = 1;
  759. local_irq_restore(flags);
  760. return ret;
  761. }
  762. static int irqtime_account_si_update(void)
  763. {
  764. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  765. unsigned long flags;
  766. u64 latest_ns;
  767. int ret = 0;
  768. local_irq_save(flags);
  769. latest_ns = this_cpu_read(cpu_softirq_time);
  770. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  771. ret = 1;
  772. local_irq_restore(flags);
  773. return ret;
  774. }
  775. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  776. #define sched_clock_irqtime (0)
  777. #endif
  778. void sched_set_stop_task(int cpu, struct task_struct *stop)
  779. {
  780. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  781. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  782. if (stop) {
  783. /*
  784. * Make it appear like a SCHED_FIFO task, its something
  785. * userspace knows about and won't get confused about.
  786. *
  787. * Also, it will make PI more or less work without too
  788. * much confusion -- but then, stop work should not
  789. * rely on PI working anyway.
  790. */
  791. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  792. stop->sched_class = &stop_sched_class;
  793. }
  794. cpu_rq(cpu)->stop = stop;
  795. if (old_stop) {
  796. /*
  797. * Reset it back to a normal scheduling class so that
  798. * it can die in pieces.
  799. */
  800. old_stop->sched_class = &rt_sched_class;
  801. }
  802. }
  803. /*
  804. * __normal_prio - return the priority that is based on the static prio
  805. */
  806. static inline int __normal_prio(struct task_struct *p)
  807. {
  808. return p->static_prio;
  809. }
  810. /*
  811. * Calculate the expected normal priority: i.e. priority
  812. * without taking RT-inheritance into account. Might be
  813. * boosted by interactivity modifiers. Changes upon fork,
  814. * setprio syscalls, and whenever the interactivity
  815. * estimator recalculates.
  816. */
  817. static inline int normal_prio(struct task_struct *p)
  818. {
  819. int prio;
  820. if (task_has_rt_policy(p))
  821. prio = MAX_RT_PRIO-1 - p->rt_priority;
  822. else
  823. prio = __normal_prio(p);
  824. return prio;
  825. }
  826. /*
  827. * Calculate the current priority, i.e. the priority
  828. * taken into account by the scheduler. This value might
  829. * be boosted by RT tasks, or might be boosted by
  830. * interactivity modifiers. Will be RT if the task got
  831. * RT-boosted. If not then it returns p->normal_prio.
  832. */
  833. static int effective_prio(struct task_struct *p)
  834. {
  835. p->normal_prio = normal_prio(p);
  836. /*
  837. * If we are RT tasks or we were boosted to RT priority,
  838. * keep the priority unchanged. Otherwise, update priority
  839. * to the normal priority:
  840. */
  841. if (!rt_prio(p->prio))
  842. return p->normal_prio;
  843. return p->prio;
  844. }
  845. /**
  846. * task_curr - is this task currently executing on a CPU?
  847. * @p: the task in question.
  848. */
  849. inline int task_curr(const struct task_struct *p)
  850. {
  851. return cpu_curr(task_cpu(p)) == p;
  852. }
  853. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  854. const struct sched_class *prev_class,
  855. int oldprio)
  856. {
  857. if (prev_class != p->sched_class) {
  858. if (prev_class->switched_from)
  859. prev_class->switched_from(rq, p);
  860. p->sched_class->switched_to(rq, p);
  861. } else if (oldprio != p->prio)
  862. p->sched_class->prio_changed(rq, p, oldprio);
  863. }
  864. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  865. {
  866. const struct sched_class *class;
  867. if (p->sched_class == rq->curr->sched_class) {
  868. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  869. } else {
  870. for_each_class(class) {
  871. if (class == rq->curr->sched_class)
  872. break;
  873. if (class == p->sched_class) {
  874. resched_task(rq->curr);
  875. break;
  876. }
  877. }
  878. }
  879. /*
  880. * A queue event has occurred, and we're going to schedule. In
  881. * this case, we can save a useless back to back clock update.
  882. */
  883. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  884. rq->skip_clock_update = 1;
  885. }
  886. #ifdef CONFIG_SMP
  887. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  888. {
  889. #ifdef CONFIG_SCHED_DEBUG
  890. /*
  891. * We should never call set_task_cpu() on a blocked task,
  892. * ttwu() will sort out the placement.
  893. */
  894. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  895. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  896. #ifdef CONFIG_LOCKDEP
  897. /*
  898. * The caller should hold either p->pi_lock or rq->lock, when changing
  899. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  900. *
  901. * sched_move_task() holds both and thus holding either pins the cgroup,
  902. * see set_task_rq().
  903. *
  904. * Furthermore, all task_rq users should acquire both locks, see
  905. * task_rq_lock().
  906. */
  907. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  908. lockdep_is_held(&task_rq(p)->lock)));
  909. #endif
  910. #endif
  911. trace_sched_migrate_task(p, new_cpu);
  912. if (task_cpu(p) != new_cpu) {
  913. p->se.nr_migrations++;
  914. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  915. }
  916. __set_task_cpu(p, new_cpu);
  917. }
  918. struct migration_arg {
  919. struct task_struct *task;
  920. int dest_cpu;
  921. };
  922. static int migration_cpu_stop(void *data);
  923. /*
  924. * wait_task_inactive - wait for a thread to unschedule.
  925. *
  926. * If @match_state is nonzero, it's the @p->state value just checked and
  927. * not expected to change. If it changes, i.e. @p might have woken up,
  928. * then return zero. When we succeed in waiting for @p to be off its CPU,
  929. * we return a positive number (its total switch count). If a second call
  930. * a short while later returns the same number, the caller can be sure that
  931. * @p has remained unscheduled the whole time.
  932. *
  933. * The caller must ensure that the task *will* unschedule sometime soon,
  934. * else this function might spin for a *long* time. This function can't
  935. * be called with interrupts off, or it may introduce deadlock with
  936. * smp_call_function() if an IPI is sent by the same process we are
  937. * waiting to become inactive.
  938. */
  939. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  940. {
  941. unsigned long flags;
  942. int running, on_rq;
  943. unsigned long ncsw;
  944. struct rq *rq;
  945. for (;;) {
  946. /*
  947. * We do the initial early heuristics without holding
  948. * any task-queue locks at all. We'll only try to get
  949. * the runqueue lock when things look like they will
  950. * work out!
  951. */
  952. rq = task_rq(p);
  953. /*
  954. * If the task is actively running on another CPU
  955. * still, just relax and busy-wait without holding
  956. * any locks.
  957. *
  958. * NOTE! Since we don't hold any locks, it's not
  959. * even sure that "rq" stays as the right runqueue!
  960. * But we don't care, since "task_running()" will
  961. * return false if the runqueue has changed and p
  962. * is actually now running somewhere else!
  963. */
  964. while (task_running(rq, p)) {
  965. if (match_state && unlikely(p->state != match_state))
  966. return 0;
  967. cpu_relax();
  968. }
  969. /*
  970. * Ok, time to look more closely! We need the rq
  971. * lock now, to be *sure*. If we're wrong, we'll
  972. * just go back and repeat.
  973. */
  974. rq = task_rq_lock(p, &flags);
  975. trace_sched_wait_task(p);
  976. running = task_running(rq, p);
  977. on_rq = p->on_rq;
  978. ncsw = 0;
  979. if (!match_state || p->state == match_state)
  980. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  981. task_rq_unlock(rq, p, &flags);
  982. /*
  983. * If it changed from the expected state, bail out now.
  984. */
  985. if (unlikely(!ncsw))
  986. break;
  987. /*
  988. * Was it really running after all now that we
  989. * checked with the proper locks actually held?
  990. *
  991. * Oops. Go back and try again..
  992. */
  993. if (unlikely(running)) {
  994. cpu_relax();
  995. continue;
  996. }
  997. /*
  998. * It's not enough that it's not actively running,
  999. * it must be off the runqueue _entirely_, and not
  1000. * preempted!
  1001. *
  1002. * So if it was still runnable (but just not actively
  1003. * running right now), it's preempted, and we should
  1004. * yield - it could be a while.
  1005. */
  1006. if (unlikely(on_rq)) {
  1007. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1008. set_current_state(TASK_UNINTERRUPTIBLE);
  1009. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1010. continue;
  1011. }
  1012. /*
  1013. * Ahh, all good. It wasn't running, and it wasn't
  1014. * runnable, which means that it will never become
  1015. * running in the future either. We're all done!
  1016. */
  1017. break;
  1018. }
  1019. return ncsw;
  1020. }
  1021. /***
  1022. * kick_process - kick a running thread to enter/exit the kernel
  1023. * @p: the to-be-kicked thread
  1024. *
  1025. * Cause a process which is running on another CPU to enter
  1026. * kernel-mode, without any delay. (to get signals handled.)
  1027. *
  1028. * NOTE: this function doesn't have to take the runqueue lock,
  1029. * because all it wants to ensure is that the remote task enters
  1030. * the kernel. If the IPI races and the task has been migrated
  1031. * to another CPU then no harm is done and the purpose has been
  1032. * achieved as well.
  1033. */
  1034. void kick_process(struct task_struct *p)
  1035. {
  1036. int cpu;
  1037. preempt_disable();
  1038. cpu = task_cpu(p);
  1039. if ((cpu != smp_processor_id()) && task_curr(p))
  1040. smp_send_reschedule(cpu);
  1041. preempt_enable();
  1042. }
  1043. EXPORT_SYMBOL_GPL(kick_process);
  1044. #endif /* CONFIG_SMP */
  1045. #ifdef CONFIG_SMP
  1046. /*
  1047. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1048. */
  1049. static int select_fallback_rq(int cpu, struct task_struct *p)
  1050. {
  1051. int dest_cpu;
  1052. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1053. /* Look for allowed, online CPU in same node. */
  1054. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1055. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1056. return dest_cpu;
  1057. /* Any allowed, online CPU? */
  1058. dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
  1059. if (dest_cpu < nr_cpu_ids)
  1060. return dest_cpu;
  1061. /* No more Mr. Nice Guy. */
  1062. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1063. /*
  1064. * Don't tell them about moving exiting tasks or
  1065. * kernel threads (both mm NULL), since they never
  1066. * leave kernel.
  1067. */
  1068. if (p->mm && printk_ratelimit()) {
  1069. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1070. task_pid_nr(p), p->comm, cpu);
  1071. }
  1072. return dest_cpu;
  1073. }
  1074. /*
  1075. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1076. */
  1077. static inline
  1078. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1079. {
  1080. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1081. /*
  1082. * In order not to call set_task_cpu() on a blocking task we need
  1083. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1084. * cpu.
  1085. *
  1086. * Since this is common to all placement strategies, this lives here.
  1087. *
  1088. * [ this allows ->select_task() to simply return task_cpu(p) and
  1089. * not worry about this generic constraint ]
  1090. */
  1091. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1092. !cpu_online(cpu)))
  1093. cpu = select_fallback_rq(task_cpu(p), p);
  1094. return cpu;
  1095. }
  1096. static void update_avg(u64 *avg, u64 sample)
  1097. {
  1098. s64 diff = sample - *avg;
  1099. *avg += diff >> 3;
  1100. }
  1101. #endif
  1102. static void
  1103. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1104. {
  1105. #ifdef CONFIG_SCHEDSTATS
  1106. struct rq *rq = this_rq();
  1107. #ifdef CONFIG_SMP
  1108. int this_cpu = smp_processor_id();
  1109. if (cpu == this_cpu) {
  1110. schedstat_inc(rq, ttwu_local);
  1111. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1112. } else {
  1113. struct sched_domain *sd;
  1114. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1115. rcu_read_lock();
  1116. for_each_domain(this_cpu, sd) {
  1117. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1118. schedstat_inc(sd, ttwu_wake_remote);
  1119. break;
  1120. }
  1121. }
  1122. rcu_read_unlock();
  1123. }
  1124. if (wake_flags & WF_MIGRATED)
  1125. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1126. #endif /* CONFIG_SMP */
  1127. schedstat_inc(rq, ttwu_count);
  1128. schedstat_inc(p, se.statistics.nr_wakeups);
  1129. if (wake_flags & WF_SYNC)
  1130. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1131. #endif /* CONFIG_SCHEDSTATS */
  1132. }
  1133. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1134. {
  1135. activate_task(rq, p, en_flags);
  1136. p->on_rq = 1;
  1137. /* if a worker is waking up, notify workqueue */
  1138. if (p->flags & PF_WQ_WORKER)
  1139. wq_worker_waking_up(p, cpu_of(rq));
  1140. }
  1141. /*
  1142. * Mark the task runnable and perform wakeup-preemption.
  1143. */
  1144. static void
  1145. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1146. {
  1147. trace_sched_wakeup(p, true);
  1148. check_preempt_curr(rq, p, wake_flags);
  1149. p->state = TASK_RUNNING;
  1150. #ifdef CONFIG_SMP
  1151. if (p->sched_class->task_woken)
  1152. p->sched_class->task_woken(rq, p);
  1153. if (rq->idle_stamp) {
  1154. u64 delta = rq->clock - rq->idle_stamp;
  1155. u64 max = 2*sysctl_sched_migration_cost;
  1156. if (delta > max)
  1157. rq->avg_idle = max;
  1158. else
  1159. update_avg(&rq->avg_idle, delta);
  1160. rq->idle_stamp = 0;
  1161. }
  1162. #endif
  1163. }
  1164. static void
  1165. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1166. {
  1167. #ifdef CONFIG_SMP
  1168. if (p->sched_contributes_to_load)
  1169. rq->nr_uninterruptible--;
  1170. #endif
  1171. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1172. ttwu_do_wakeup(rq, p, wake_flags);
  1173. }
  1174. /*
  1175. * Called in case the task @p isn't fully descheduled from its runqueue,
  1176. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1177. * since all we need to do is flip p->state to TASK_RUNNING, since
  1178. * the task is still ->on_rq.
  1179. */
  1180. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1181. {
  1182. struct rq *rq;
  1183. int ret = 0;
  1184. rq = __task_rq_lock(p);
  1185. if (p->on_rq) {
  1186. ttwu_do_wakeup(rq, p, wake_flags);
  1187. ret = 1;
  1188. }
  1189. __task_rq_unlock(rq);
  1190. return ret;
  1191. }
  1192. #ifdef CONFIG_SMP
  1193. static void sched_ttwu_pending(void)
  1194. {
  1195. struct rq *rq = this_rq();
  1196. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1197. struct task_struct *p;
  1198. raw_spin_lock(&rq->lock);
  1199. while (llist) {
  1200. p = llist_entry(llist, struct task_struct, wake_entry);
  1201. llist = llist_next(llist);
  1202. ttwu_do_activate(rq, p, 0);
  1203. }
  1204. raw_spin_unlock(&rq->lock);
  1205. }
  1206. void scheduler_ipi(void)
  1207. {
  1208. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1209. return;
  1210. /*
  1211. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1212. * traditionally all their work was done from the interrupt return
  1213. * path. Now that we actually do some work, we need to make sure
  1214. * we do call them.
  1215. *
  1216. * Some archs already do call them, luckily irq_enter/exit nest
  1217. * properly.
  1218. *
  1219. * Arguably we should visit all archs and update all handlers,
  1220. * however a fair share of IPIs are still resched only so this would
  1221. * somewhat pessimize the simple resched case.
  1222. */
  1223. irq_enter();
  1224. sched_ttwu_pending();
  1225. /*
  1226. * Check if someone kicked us for doing the nohz idle load balance.
  1227. */
  1228. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1229. this_rq()->idle_balance = 1;
  1230. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1231. }
  1232. irq_exit();
  1233. }
  1234. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1235. {
  1236. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1237. smp_send_reschedule(cpu);
  1238. }
  1239. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1240. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  1241. {
  1242. struct rq *rq;
  1243. int ret = 0;
  1244. rq = __task_rq_lock(p);
  1245. if (p->on_cpu) {
  1246. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1247. ttwu_do_wakeup(rq, p, wake_flags);
  1248. ret = 1;
  1249. }
  1250. __task_rq_unlock(rq);
  1251. return ret;
  1252. }
  1253. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1254. #endif /* CONFIG_SMP */
  1255. static void ttwu_queue(struct task_struct *p, int cpu)
  1256. {
  1257. struct rq *rq = cpu_rq(cpu);
  1258. #if defined(CONFIG_SMP)
  1259. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  1260. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1261. ttwu_queue_remote(p, cpu);
  1262. return;
  1263. }
  1264. #endif
  1265. raw_spin_lock(&rq->lock);
  1266. ttwu_do_activate(rq, p, 0);
  1267. raw_spin_unlock(&rq->lock);
  1268. }
  1269. /**
  1270. * try_to_wake_up - wake up a thread
  1271. * @p: the thread to be awakened
  1272. * @state: the mask of task states that can be woken
  1273. * @wake_flags: wake modifier flags (WF_*)
  1274. *
  1275. * Put it on the run-queue if it's not already there. The "current"
  1276. * thread is always on the run-queue (except when the actual
  1277. * re-schedule is in progress), and as such you're allowed to do
  1278. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1279. * runnable without the overhead of this.
  1280. *
  1281. * Returns %true if @p was woken up, %false if it was already running
  1282. * or @state didn't match @p's state.
  1283. */
  1284. static int
  1285. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1286. {
  1287. unsigned long flags;
  1288. int cpu, success = 0;
  1289. smp_wmb();
  1290. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1291. if (!(p->state & state))
  1292. goto out;
  1293. success = 1; /* we're going to change ->state */
  1294. cpu = task_cpu(p);
  1295. if (p->on_rq && ttwu_remote(p, wake_flags))
  1296. goto stat;
  1297. #ifdef CONFIG_SMP
  1298. /*
  1299. * If the owning (remote) cpu is still in the middle of schedule() with
  1300. * this task as prev, wait until its done referencing the task.
  1301. */
  1302. while (p->on_cpu) {
  1303. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1304. /*
  1305. * In case the architecture enables interrupts in
  1306. * context_switch(), we cannot busy wait, since that
  1307. * would lead to deadlocks when an interrupt hits and
  1308. * tries to wake up @prev. So bail and do a complete
  1309. * remote wakeup.
  1310. */
  1311. if (ttwu_activate_remote(p, wake_flags))
  1312. goto stat;
  1313. #else
  1314. cpu_relax();
  1315. #endif
  1316. }
  1317. /*
  1318. * Pairs with the smp_wmb() in finish_lock_switch().
  1319. */
  1320. smp_rmb();
  1321. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1322. p->state = TASK_WAKING;
  1323. if (p->sched_class->task_waking)
  1324. p->sched_class->task_waking(p);
  1325. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1326. if (task_cpu(p) != cpu) {
  1327. wake_flags |= WF_MIGRATED;
  1328. set_task_cpu(p, cpu);
  1329. }
  1330. #endif /* CONFIG_SMP */
  1331. ttwu_queue(p, cpu);
  1332. stat:
  1333. ttwu_stat(p, cpu, wake_flags);
  1334. out:
  1335. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1336. return success;
  1337. }
  1338. /**
  1339. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1340. * @p: the thread to be awakened
  1341. *
  1342. * Put @p on the run-queue if it's not already there. The caller must
  1343. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1344. * the current task.
  1345. */
  1346. static void try_to_wake_up_local(struct task_struct *p)
  1347. {
  1348. struct rq *rq = task_rq(p);
  1349. BUG_ON(rq != this_rq());
  1350. BUG_ON(p == current);
  1351. lockdep_assert_held(&rq->lock);
  1352. if (!raw_spin_trylock(&p->pi_lock)) {
  1353. raw_spin_unlock(&rq->lock);
  1354. raw_spin_lock(&p->pi_lock);
  1355. raw_spin_lock(&rq->lock);
  1356. }
  1357. if (!(p->state & TASK_NORMAL))
  1358. goto out;
  1359. if (!p->on_rq)
  1360. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1361. ttwu_do_wakeup(rq, p, 0);
  1362. ttwu_stat(p, smp_processor_id(), 0);
  1363. out:
  1364. raw_spin_unlock(&p->pi_lock);
  1365. }
  1366. /**
  1367. * wake_up_process - Wake up a specific process
  1368. * @p: The process to be woken up.
  1369. *
  1370. * Attempt to wake up the nominated process and move it to the set of runnable
  1371. * processes. Returns 1 if the process was woken up, 0 if it was already
  1372. * running.
  1373. *
  1374. * It may be assumed that this function implies a write memory barrier before
  1375. * changing the task state if and only if any tasks are woken up.
  1376. */
  1377. int wake_up_process(struct task_struct *p)
  1378. {
  1379. return try_to_wake_up(p, TASK_ALL, 0);
  1380. }
  1381. EXPORT_SYMBOL(wake_up_process);
  1382. int wake_up_state(struct task_struct *p, unsigned int state)
  1383. {
  1384. return try_to_wake_up(p, state, 0);
  1385. }
  1386. /*
  1387. * Perform scheduler related setup for a newly forked process p.
  1388. * p is forked by current.
  1389. *
  1390. * __sched_fork() is basic setup used by init_idle() too:
  1391. */
  1392. static void __sched_fork(struct task_struct *p)
  1393. {
  1394. p->on_rq = 0;
  1395. p->se.on_rq = 0;
  1396. p->se.exec_start = 0;
  1397. p->se.sum_exec_runtime = 0;
  1398. p->se.prev_sum_exec_runtime = 0;
  1399. p->se.nr_migrations = 0;
  1400. p->se.vruntime = 0;
  1401. INIT_LIST_HEAD(&p->se.group_node);
  1402. #ifdef CONFIG_SCHEDSTATS
  1403. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1404. #endif
  1405. INIT_LIST_HEAD(&p->rt.run_list);
  1406. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1407. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1408. #endif
  1409. }
  1410. /*
  1411. * fork()/clone()-time setup:
  1412. */
  1413. void sched_fork(struct task_struct *p)
  1414. {
  1415. unsigned long flags;
  1416. int cpu = get_cpu();
  1417. __sched_fork(p);
  1418. /*
  1419. * We mark the process as running here. This guarantees that
  1420. * nobody will actually run it, and a signal or other external
  1421. * event cannot wake it up and insert it on the runqueue either.
  1422. */
  1423. p->state = TASK_RUNNING;
  1424. /*
  1425. * Make sure we do not leak PI boosting priority to the child.
  1426. */
  1427. p->prio = current->normal_prio;
  1428. /*
  1429. * Revert to default priority/policy on fork if requested.
  1430. */
  1431. if (unlikely(p->sched_reset_on_fork)) {
  1432. if (task_has_rt_policy(p)) {
  1433. p->policy = SCHED_NORMAL;
  1434. p->static_prio = NICE_TO_PRIO(0);
  1435. p->rt_priority = 0;
  1436. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1437. p->static_prio = NICE_TO_PRIO(0);
  1438. p->prio = p->normal_prio = __normal_prio(p);
  1439. set_load_weight(p);
  1440. /*
  1441. * We don't need the reset flag anymore after the fork. It has
  1442. * fulfilled its duty:
  1443. */
  1444. p->sched_reset_on_fork = 0;
  1445. }
  1446. if (!rt_prio(p->prio))
  1447. p->sched_class = &fair_sched_class;
  1448. if (p->sched_class->task_fork)
  1449. p->sched_class->task_fork(p);
  1450. /*
  1451. * The child is not yet in the pid-hash so no cgroup attach races,
  1452. * and the cgroup is pinned to this child due to cgroup_fork()
  1453. * is ran before sched_fork().
  1454. *
  1455. * Silence PROVE_RCU.
  1456. */
  1457. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1458. set_task_cpu(p, cpu);
  1459. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1460. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1461. if (likely(sched_info_on()))
  1462. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1463. #endif
  1464. #if defined(CONFIG_SMP)
  1465. p->on_cpu = 0;
  1466. #endif
  1467. #ifdef CONFIG_PREEMPT_COUNT
  1468. /* Want to start with kernel preemption disabled. */
  1469. task_thread_info(p)->preempt_count = 1;
  1470. #endif
  1471. #ifdef CONFIG_SMP
  1472. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1473. #endif
  1474. put_cpu();
  1475. }
  1476. /*
  1477. * wake_up_new_task - wake up a newly created task for the first time.
  1478. *
  1479. * This function will do some initial scheduler statistics housekeeping
  1480. * that must be done for every newly created context, then puts the task
  1481. * on the runqueue and wakes it.
  1482. */
  1483. void wake_up_new_task(struct task_struct *p)
  1484. {
  1485. unsigned long flags;
  1486. struct rq *rq;
  1487. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1488. #ifdef CONFIG_SMP
  1489. /*
  1490. * Fork balancing, do it here and not earlier because:
  1491. * - cpus_allowed can change in the fork path
  1492. * - any previously selected cpu might disappear through hotplug
  1493. */
  1494. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1495. #endif
  1496. rq = __task_rq_lock(p);
  1497. activate_task(rq, p, 0);
  1498. p->on_rq = 1;
  1499. trace_sched_wakeup_new(p, true);
  1500. check_preempt_curr(rq, p, WF_FORK);
  1501. #ifdef CONFIG_SMP
  1502. if (p->sched_class->task_woken)
  1503. p->sched_class->task_woken(rq, p);
  1504. #endif
  1505. task_rq_unlock(rq, p, &flags);
  1506. }
  1507. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1508. /**
  1509. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1510. * @notifier: notifier struct to register
  1511. */
  1512. void preempt_notifier_register(struct preempt_notifier *notifier)
  1513. {
  1514. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1515. }
  1516. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1517. /**
  1518. * preempt_notifier_unregister - no longer interested in preemption notifications
  1519. * @notifier: notifier struct to unregister
  1520. *
  1521. * This is safe to call from within a preemption notifier.
  1522. */
  1523. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1524. {
  1525. hlist_del(&notifier->link);
  1526. }
  1527. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1528. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1529. {
  1530. struct preempt_notifier *notifier;
  1531. struct hlist_node *node;
  1532. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1533. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1534. }
  1535. static void
  1536. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1537. struct task_struct *next)
  1538. {
  1539. struct preempt_notifier *notifier;
  1540. struct hlist_node *node;
  1541. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1542. notifier->ops->sched_out(notifier, next);
  1543. }
  1544. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1545. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1546. {
  1547. }
  1548. static void
  1549. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1550. struct task_struct *next)
  1551. {
  1552. }
  1553. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1554. /**
  1555. * prepare_task_switch - prepare to switch tasks
  1556. * @rq: the runqueue preparing to switch
  1557. * @prev: the current task that is being switched out
  1558. * @next: the task we are going to switch to.
  1559. *
  1560. * This is called with the rq lock held and interrupts off. It must
  1561. * be paired with a subsequent finish_task_switch after the context
  1562. * switch.
  1563. *
  1564. * prepare_task_switch sets up locking and calls architecture specific
  1565. * hooks.
  1566. */
  1567. static inline void
  1568. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1569. struct task_struct *next)
  1570. {
  1571. sched_info_switch(prev, next);
  1572. perf_event_task_sched_out(prev, next);
  1573. fire_sched_out_preempt_notifiers(prev, next);
  1574. prepare_lock_switch(rq, next);
  1575. prepare_arch_switch(next);
  1576. trace_sched_switch(prev, next);
  1577. }
  1578. /**
  1579. * finish_task_switch - clean up after a task-switch
  1580. * @rq: runqueue associated with task-switch
  1581. * @prev: the thread we just switched away from.
  1582. *
  1583. * finish_task_switch must be called after the context switch, paired
  1584. * with a prepare_task_switch call before the context switch.
  1585. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1586. * and do any other architecture-specific cleanup actions.
  1587. *
  1588. * Note that we may have delayed dropping an mm in context_switch(). If
  1589. * so, we finish that here outside of the runqueue lock. (Doing it
  1590. * with the lock held can cause deadlocks; see schedule() for
  1591. * details.)
  1592. */
  1593. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1594. __releases(rq->lock)
  1595. {
  1596. struct mm_struct *mm = rq->prev_mm;
  1597. long prev_state;
  1598. rq->prev_mm = NULL;
  1599. /*
  1600. * A task struct has one reference for the use as "current".
  1601. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1602. * schedule one last time. The schedule call will never return, and
  1603. * the scheduled task must drop that reference.
  1604. * The test for TASK_DEAD must occur while the runqueue locks are
  1605. * still held, otherwise prev could be scheduled on another cpu, die
  1606. * there before we look at prev->state, and then the reference would
  1607. * be dropped twice.
  1608. * Manfred Spraul <manfred@colorfullife.com>
  1609. */
  1610. prev_state = prev->state;
  1611. finish_arch_switch(prev);
  1612. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1613. local_irq_disable();
  1614. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1615. perf_event_task_sched_in(prev, current);
  1616. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1617. local_irq_enable();
  1618. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1619. finish_lock_switch(rq, prev);
  1620. fire_sched_in_preempt_notifiers(current);
  1621. if (mm)
  1622. mmdrop(mm);
  1623. if (unlikely(prev_state == TASK_DEAD)) {
  1624. /*
  1625. * Remove function-return probe instances associated with this
  1626. * task and put them back on the free list.
  1627. */
  1628. kprobe_flush_task(prev);
  1629. put_task_struct(prev);
  1630. }
  1631. }
  1632. #ifdef CONFIG_SMP
  1633. /* assumes rq->lock is held */
  1634. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1635. {
  1636. if (prev->sched_class->pre_schedule)
  1637. prev->sched_class->pre_schedule(rq, prev);
  1638. }
  1639. /* rq->lock is NOT held, but preemption is disabled */
  1640. static inline void post_schedule(struct rq *rq)
  1641. {
  1642. if (rq->post_schedule) {
  1643. unsigned long flags;
  1644. raw_spin_lock_irqsave(&rq->lock, flags);
  1645. if (rq->curr->sched_class->post_schedule)
  1646. rq->curr->sched_class->post_schedule(rq);
  1647. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1648. rq->post_schedule = 0;
  1649. }
  1650. }
  1651. #else
  1652. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1653. {
  1654. }
  1655. static inline void post_schedule(struct rq *rq)
  1656. {
  1657. }
  1658. #endif
  1659. /**
  1660. * schedule_tail - first thing a freshly forked thread must call.
  1661. * @prev: the thread we just switched away from.
  1662. */
  1663. asmlinkage void schedule_tail(struct task_struct *prev)
  1664. __releases(rq->lock)
  1665. {
  1666. struct rq *rq = this_rq();
  1667. finish_task_switch(rq, prev);
  1668. /*
  1669. * FIXME: do we need to worry about rq being invalidated by the
  1670. * task_switch?
  1671. */
  1672. post_schedule(rq);
  1673. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1674. /* In this case, finish_task_switch does not reenable preemption */
  1675. preempt_enable();
  1676. #endif
  1677. if (current->set_child_tid)
  1678. put_user(task_pid_vnr(current), current->set_child_tid);
  1679. }
  1680. /*
  1681. * context_switch - switch to the new MM and the new
  1682. * thread's register state.
  1683. */
  1684. static inline void
  1685. context_switch(struct rq *rq, struct task_struct *prev,
  1686. struct task_struct *next)
  1687. {
  1688. struct mm_struct *mm, *oldmm;
  1689. prepare_task_switch(rq, prev, next);
  1690. mm = next->mm;
  1691. oldmm = prev->active_mm;
  1692. /*
  1693. * For paravirt, this is coupled with an exit in switch_to to
  1694. * combine the page table reload and the switch backend into
  1695. * one hypercall.
  1696. */
  1697. arch_start_context_switch(prev);
  1698. if (!mm) {
  1699. next->active_mm = oldmm;
  1700. atomic_inc(&oldmm->mm_count);
  1701. enter_lazy_tlb(oldmm, next);
  1702. } else
  1703. switch_mm(oldmm, mm, next);
  1704. if (!prev->mm) {
  1705. prev->active_mm = NULL;
  1706. rq->prev_mm = oldmm;
  1707. }
  1708. /*
  1709. * Since the runqueue lock will be released by the next
  1710. * task (which is an invalid locking op but in the case
  1711. * of the scheduler it's an obvious special-case), so we
  1712. * do an early lockdep release here:
  1713. */
  1714. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1715. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1716. #endif
  1717. /* Here we just switch the register state and the stack. */
  1718. switch_to(prev, next, prev);
  1719. barrier();
  1720. /*
  1721. * this_rq must be evaluated again because prev may have moved
  1722. * CPUs since it called schedule(), thus the 'rq' on its stack
  1723. * frame will be invalid.
  1724. */
  1725. finish_task_switch(this_rq(), prev);
  1726. }
  1727. /*
  1728. * nr_running, nr_uninterruptible and nr_context_switches:
  1729. *
  1730. * externally visible scheduler statistics: current number of runnable
  1731. * threads, current number of uninterruptible-sleeping threads, total
  1732. * number of context switches performed since bootup.
  1733. */
  1734. unsigned long nr_running(void)
  1735. {
  1736. unsigned long i, sum = 0;
  1737. for_each_online_cpu(i)
  1738. sum += cpu_rq(i)->nr_running;
  1739. return sum;
  1740. }
  1741. unsigned long nr_uninterruptible(void)
  1742. {
  1743. unsigned long i, sum = 0;
  1744. for_each_possible_cpu(i)
  1745. sum += cpu_rq(i)->nr_uninterruptible;
  1746. /*
  1747. * Since we read the counters lockless, it might be slightly
  1748. * inaccurate. Do not allow it to go below zero though:
  1749. */
  1750. if (unlikely((long)sum < 0))
  1751. sum = 0;
  1752. return sum;
  1753. }
  1754. unsigned long long nr_context_switches(void)
  1755. {
  1756. int i;
  1757. unsigned long long sum = 0;
  1758. for_each_possible_cpu(i)
  1759. sum += cpu_rq(i)->nr_switches;
  1760. return sum;
  1761. }
  1762. unsigned long nr_iowait(void)
  1763. {
  1764. unsigned long i, sum = 0;
  1765. for_each_possible_cpu(i)
  1766. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1767. return sum;
  1768. }
  1769. unsigned long nr_iowait_cpu(int cpu)
  1770. {
  1771. struct rq *this = cpu_rq(cpu);
  1772. return atomic_read(&this->nr_iowait);
  1773. }
  1774. unsigned long this_cpu_load(void)
  1775. {
  1776. struct rq *this = this_rq();
  1777. return this->cpu_load[0];
  1778. }
  1779. /* Variables and functions for calc_load */
  1780. static atomic_long_t calc_load_tasks;
  1781. static unsigned long calc_load_update;
  1782. unsigned long avenrun[3];
  1783. EXPORT_SYMBOL(avenrun);
  1784. static long calc_load_fold_active(struct rq *this_rq)
  1785. {
  1786. long nr_active, delta = 0;
  1787. nr_active = this_rq->nr_running;
  1788. nr_active += (long) this_rq->nr_uninterruptible;
  1789. if (nr_active != this_rq->calc_load_active) {
  1790. delta = nr_active - this_rq->calc_load_active;
  1791. this_rq->calc_load_active = nr_active;
  1792. }
  1793. return delta;
  1794. }
  1795. static unsigned long
  1796. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1797. {
  1798. load *= exp;
  1799. load += active * (FIXED_1 - exp);
  1800. load += 1UL << (FSHIFT - 1);
  1801. return load >> FSHIFT;
  1802. }
  1803. #ifdef CONFIG_NO_HZ
  1804. /*
  1805. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  1806. *
  1807. * When making the ILB scale, we should try to pull this in as well.
  1808. */
  1809. static atomic_long_t calc_load_tasks_idle;
  1810. void calc_load_account_idle(struct rq *this_rq)
  1811. {
  1812. long delta;
  1813. delta = calc_load_fold_active(this_rq);
  1814. if (delta)
  1815. atomic_long_add(delta, &calc_load_tasks_idle);
  1816. }
  1817. static long calc_load_fold_idle(void)
  1818. {
  1819. long delta = 0;
  1820. /*
  1821. * Its got a race, we don't care...
  1822. */
  1823. if (atomic_long_read(&calc_load_tasks_idle))
  1824. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  1825. return delta;
  1826. }
  1827. /**
  1828. * fixed_power_int - compute: x^n, in O(log n) time
  1829. *
  1830. * @x: base of the power
  1831. * @frac_bits: fractional bits of @x
  1832. * @n: power to raise @x to.
  1833. *
  1834. * By exploiting the relation between the definition of the natural power
  1835. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1836. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1837. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1838. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1839. * of course trivially computable in O(log_2 n), the length of our binary
  1840. * vector.
  1841. */
  1842. static unsigned long
  1843. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1844. {
  1845. unsigned long result = 1UL << frac_bits;
  1846. if (n) for (;;) {
  1847. if (n & 1) {
  1848. result *= x;
  1849. result += 1UL << (frac_bits - 1);
  1850. result >>= frac_bits;
  1851. }
  1852. n >>= 1;
  1853. if (!n)
  1854. break;
  1855. x *= x;
  1856. x += 1UL << (frac_bits - 1);
  1857. x >>= frac_bits;
  1858. }
  1859. return result;
  1860. }
  1861. /*
  1862. * a1 = a0 * e + a * (1 - e)
  1863. *
  1864. * a2 = a1 * e + a * (1 - e)
  1865. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1866. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1867. *
  1868. * a3 = a2 * e + a * (1 - e)
  1869. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1870. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1871. *
  1872. * ...
  1873. *
  1874. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1875. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1876. * = a0 * e^n + a * (1 - e^n)
  1877. *
  1878. * [1] application of the geometric series:
  1879. *
  1880. * n 1 - x^(n+1)
  1881. * S_n := \Sum x^i = -------------
  1882. * i=0 1 - x
  1883. */
  1884. static unsigned long
  1885. calc_load_n(unsigned long load, unsigned long exp,
  1886. unsigned long active, unsigned int n)
  1887. {
  1888. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1889. }
  1890. /*
  1891. * NO_HZ can leave us missing all per-cpu ticks calling
  1892. * calc_load_account_active(), but since an idle CPU folds its delta into
  1893. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1894. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1895. *
  1896. * Once we've updated the global active value, we need to apply the exponential
  1897. * weights adjusted to the number of cycles missed.
  1898. */
  1899. static void calc_global_nohz(unsigned long ticks)
  1900. {
  1901. long delta, active, n;
  1902. if (time_before(jiffies, calc_load_update))
  1903. return;
  1904. /*
  1905. * If we crossed a calc_load_update boundary, make sure to fold
  1906. * any pending idle changes, the respective CPUs might have
  1907. * missed the tick driven calc_load_account_active() update
  1908. * due to NO_HZ.
  1909. */
  1910. delta = calc_load_fold_idle();
  1911. if (delta)
  1912. atomic_long_add(delta, &calc_load_tasks);
  1913. /*
  1914. * If we were idle for multiple load cycles, apply them.
  1915. */
  1916. if (ticks >= LOAD_FREQ) {
  1917. n = ticks / LOAD_FREQ;
  1918. active = atomic_long_read(&calc_load_tasks);
  1919. active = active > 0 ? active * FIXED_1 : 0;
  1920. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1921. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1922. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1923. calc_load_update += n * LOAD_FREQ;
  1924. }
  1925. /*
  1926. * Its possible the remainder of the above division also crosses
  1927. * a LOAD_FREQ period, the regular check in calc_global_load()
  1928. * which comes after this will take care of that.
  1929. *
  1930. * Consider us being 11 ticks before a cycle completion, and us
  1931. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  1932. * age us 4 cycles, and the test in calc_global_load() will
  1933. * pick up the final one.
  1934. */
  1935. }
  1936. #else
  1937. void calc_load_account_idle(struct rq *this_rq)
  1938. {
  1939. }
  1940. static inline long calc_load_fold_idle(void)
  1941. {
  1942. return 0;
  1943. }
  1944. static void calc_global_nohz(unsigned long ticks)
  1945. {
  1946. }
  1947. #endif
  1948. /**
  1949. * get_avenrun - get the load average array
  1950. * @loads: pointer to dest load array
  1951. * @offset: offset to add
  1952. * @shift: shift count to shift the result left
  1953. *
  1954. * These values are estimates at best, so no need for locking.
  1955. */
  1956. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1957. {
  1958. loads[0] = (avenrun[0] + offset) << shift;
  1959. loads[1] = (avenrun[1] + offset) << shift;
  1960. loads[2] = (avenrun[2] + offset) << shift;
  1961. }
  1962. /*
  1963. * calc_load - update the avenrun load estimates 10 ticks after the
  1964. * CPUs have updated calc_load_tasks.
  1965. */
  1966. void calc_global_load(unsigned long ticks)
  1967. {
  1968. long active;
  1969. calc_global_nohz(ticks);
  1970. if (time_before(jiffies, calc_load_update + 10))
  1971. return;
  1972. active = atomic_long_read(&calc_load_tasks);
  1973. active = active > 0 ? active * FIXED_1 : 0;
  1974. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  1975. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  1976. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  1977. calc_load_update += LOAD_FREQ;
  1978. }
  1979. /*
  1980. * Called from update_cpu_load() to periodically update this CPU's
  1981. * active count.
  1982. */
  1983. static void calc_load_account_active(struct rq *this_rq)
  1984. {
  1985. long delta;
  1986. if (time_before(jiffies, this_rq->calc_load_update))
  1987. return;
  1988. delta = calc_load_fold_active(this_rq);
  1989. delta += calc_load_fold_idle();
  1990. if (delta)
  1991. atomic_long_add(delta, &calc_load_tasks);
  1992. this_rq->calc_load_update += LOAD_FREQ;
  1993. }
  1994. /*
  1995. * The exact cpuload at various idx values, calculated at every tick would be
  1996. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  1997. *
  1998. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  1999. * on nth tick when cpu may be busy, then we have:
  2000. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2001. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2002. *
  2003. * decay_load_missed() below does efficient calculation of
  2004. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2005. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2006. *
  2007. * The calculation is approximated on a 128 point scale.
  2008. * degrade_zero_ticks is the number of ticks after which load at any
  2009. * particular idx is approximated to be zero.
  2010. * degrade_factor is a precomputed table, a row for each load idx.
  2011. * Each column corresponds to degradation factor for a power of two ticks,
  2012. * based on 128 point scale.
  2013. * Example:
  2014. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2015. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2016. *
  2017. * With this power of 2 load factors, we can degrade the load n times
  2018. * by looking at 1 bits in n and doing as many mult/shift instead of
  2019. * n mult/shifts needed by the exact degradation.
  2020. */
  2021. #define DEGRADE_SHIFT 7
  2022. static const unsigned char
  2023. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2024. static const unsigned char
  2025. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2026. {0, 0, 0, 0, 0, 0, 0, 0},
  2027. {64, 32, 8, 0, 0, 0, 0, 0},
  2028. {96, 72, 40, 12, 1, 0, 0},
  2029. {112, 98, 75, 43, 15, 1, 0},
  2030. {120, 112, 98, 76, 45, 16, 2} };
  2031. /*
  2032. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2033. * would be when CPU is idle and so we just decay the old load without
  2034. * adding any new load.
  2035. */
  2036. static unsigned long
  2037. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2038. {
  2039. int j = 0;
  2040. if (!missed_updates)
  2041. return load;
  2042. if (missed_updates >= degrade_zero_ticks[idx])
  2043. return 0;
  2044. if (idx == 1)
  2045. return load >> missed_updates;
  2046. while (missed_updates) {
  2047. if (missed_updates % 2)
  2048. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2049. missed_updates >>= 1;
  2050. j++;
  2051. }
  2052. return load;
  2053. }
  2054. /*
  2055. * Update rq->cpu_load[] statistics. This function is usually called every
  2056. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2057. * every tick. We fix it up based on jiffies.
  2058. */
  2059. void update_cpu_load(struct rq *this_rq)
  2060. {
  2061. unsigned long this_load = this_rq->load.weight;
  2062. unsigned long curr_jiffies = jiffies;
  2063. unsigned long pending_updates;
  2064. int i, scale;
  2065. this_rq->nr_load_updates++;
  2066. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2067. if (curr_jiffies == this_rq->last_load_update_tick)
  2068. return;
  2069. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2070. this_rq->last_load_update_tick = curr_jiffies;
  2071. /* Update our load: */
  2072. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2073. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2074. unsigned long old_load, new_load;
  2075. /* scale is effectively 1 << i now, and >> i divides by scale */
  2076. old_load = this_rq->cpu_load[i];
  2077. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2078. new_load = this_load;
  2079. /*
  2080. * Round up the averaging division if load is increasing. This
  2081. * prevents us from getting stuck on 9 if the load is 10, for
  2082. * example.
  2083. */
  2084. if (new_load > old_load)
  2085. new_load += scale - 1;
  2086. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2087. }
  2088. sched_avg_update(this_rq);
  2089. }
  2090. static void update_cpu_load_active(struct rq *this_rq)
  2091. {
  2092. update_cpu_load(this_rq);
  2093. calc_load_account_active(this_rq);
  2094. }
  2095. #ifdef CONFIG_SMP
  2096. /*
  2097. * sched_exec - execve() is a valuable balancing opportunity, because at
  2098. * this point the task has the smallest effective memory and cache footprint.
  2099. */
  2100. void sched_exec(void)
  2101. {
  2102. struct task_struct *p = current;
  2103. unsigned long flags;
  2104. int dest_cpu;
  2105. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2106. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2107. if (dest_cpu == smp_processor_id())
  2108. goto unlock;
  2109. if (likely(cpu_active(dest_cpu))) {
  2110. struct migration_arg arg = { p, dest_cpu };
  2111. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2112. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2113. return;
  2114. }
  2115. unlock:
  2116. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2117. }
  2118. #endif
  2119. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2120. EXPORT_PER_CPU_SYMBOL(kstat);
  2121. /*
  2122. * Return any ns on the sched_clock that have not yet been accounted in
  2123. * @p in case that task is currently running.
  2124. *
  2125. * Called with task_rq_lock() held on @rq.
  2126. */
  2127. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2128. {
  2129. u64 ns = 0;
  2130. if (task_current(rq, p)) {
  2131. update_rq_clock(rq);
  2132. ns = rq->clock_task - p->se.exec_start;
  2133. if ((s64)ns < 0)
  2134. ns = 0;
  2135. }
  2136. return ns;
  2137. }
  2138. unsigned long long task_delta_exec(struct task_struct *p)
  2139. {
  2140. unsigned long flags;
  2141. struct rq *rq;
  2142. u64 ns = 0;
  2143. rq = task_rq_lock(p, &flags);
  2144. ns = do_task_delta_exec(p, rq);
  2145. task_rq_unlock(rq, p, &flags);
  2146. return ns;
  2147. }
  2148. /*
  2149. * Return accounted runtime for the task.
  2150. * In case the task is currently running, return the runtime plus current's
  2151. * pending runtime that have not been accounted yet.
  2152. */
  2153. unsigned long long task_sched_runtime(struct task_struct *p)
  2154. {
  2155. unsigned long flags;
  2156. struct rq *rq;
  2157. u64 ns = 0;
  2158. rq = task_rq_lock(p, &flags);
  2159. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2160. task_rq_unlock(rq, p, &flags);
  2161. return ns;
  2162. }
  2163. /*
  2164. * Account user cpu time to a process.
  2165. * @p: the process that the cpu time gets accounted to
  2166. * @cputime: the cpu time spent in user space since the last update
  2167. * @cputime_scaled: cputime scaled by cpu frequency
  2168. */
  2169. void account_user_time(struct task_struct *p, cputime_t cputime,
  2170. cputime_t cputime_scaled)
  2171. {
  2172. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2173. cputime64_t tmp;
  2174. /* Add user time to process. */
  2175. p->utime = cputime_add(p->utime, cputime);
  2176. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2177. account_group_user_time(p, cputime);
  2178. /* Add user time to cpustat. */
  2179. tmp = cputime_to_cputime64(cputime);
  2180. if (TASK_NICE(p) > 0)
  2181. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2182. else
  2183. cpustat->user = cputime64_add(cpustat->user, tmp);
  2184. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2185. /* Account for user time used */
  2186. acct_update_integrals(p);
  2187. }
  2188. /*
  2189. * Account guest cpu time to a process.
  2190. * @p: the process that the cpu time gets accounted to
  2191. * @cputime: the cpu time spent in virtual machine since the last update
  2192. * @cputime_scaled: cputime scaled by cpu frequency
  2193. */
  2194. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2195. cputime_t cputime_scaled)
  2196. {
  2197. cputime64_t tmp;
  2198. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2199. tmp = cputime_to_cputime64(cputime);
  2200. /* Add guest time to process. */
  2201. p->utime = cputime_add(p->utime, cputime);
  2202. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2203. account_group_user_time(p, cputime);
  2204. p->gtime = cputime_add(p->gtime, cputime);
  2205. /* Add guest time to cpustat. */
  2206. if (TASK_NICE(p) > 0) {
  2207. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2208. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2209. } else {
  2210. cpustat->user = cputime64_add(cpustat->user, tmp);
  2211. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2212. }
  2213. }
  2214. /*
  2215. * Account system cpu time to a process and desired cpustat field
  2216. * @p: the process that the cpu time gets accounted to
  2217. * @cputime: the cpu time spent in kernel space since the last update
  2218. * @cputime_scaled: cputime scaled by cpu frequency
  2219. * @target_cputime64: pointer to cpustat field that has to be updated
  2220. */
  2221. static inline
  2222. void __account_system_time(struct task_struct *p, cputime_t cputime,
  2223. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  2224. {
  2225. cputime64_t tmp = cputime_to_cputime64(cputime);
  2226. /* Add system time to process. */
  2227. p->stime = cputime_add(p->stime, cputime);
  2228. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2229. account_group_system_time(p, cputime);
  2230. /* Add system time to cpustat. */
  2231. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  2232. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2233. /* Account for system time used */
  2234. acct_update_integrals(p);
  2235. }
  2236. /*
  2237. * Account system cpu time to a process.
  2238. * @p: the process that the cpu time gets accounted to
  2239. * @hardirq_offset: the offset to subtract from hardirq_count()
  2240. * @cputime: the cpu time spent in kernel space since the last update
  2241. * @cputime_scaled: cputime scaled by cpu frequency
  2242. */
  2243. void account_system_time(struct task_struct *p, int hardirq_offset,
  2244. cputime_t cputime, cputime_t cputime_scaled)
  2245. {
  2246. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2247. cputime64_t *target_cputime64;
  2248. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2249. account_guest_time(p, cputime, cputime_scaled);
  2250. return;
  2251. }
  2252. if (hardirq_count() - hardirq_offset)
  2253. target_cputime64 = &cpustat->irq;
  2254. else if (in_serving_softirq())
  2255. target_cputime64 = &cpustat->softirq;
  2256. else
  2257. target_cputime64 = &cpustat->system;
  2258. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  2259. }
  2260. /*
  2261. * Account for involuntary wait time.
  2262. * @cputime: the cpu time spent in involuntary wait
  2263. */
  2264. void account_steal_time(cputime_t cputime)
  2265. {
  2266. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2267. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2268. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2269. }
  2270. /*
  2271. * Account for idle time.
  2272. * @cputime: the cpu time spent in idle wait
  2273. */
  2274. void account_idle_time(cputime_t cputime)
  2275. {
  2276. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2277. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2278. struct rq *rq = this_rq();
  2279. if (atomic_read(&rq->nr_iowait) > 0)
  2280. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2281. else
  2282. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2283. }
  2284. static __always_inline bool steal_account_process_tick(void)
  2285. {
  2286. #ifdef CONFIG_PARAVIRT
  2287. if (static_branch(&paravirt_steal_enabled)) {
  2288. u64 steal, st = 0;
  2289. steal = paravirt_steal_clock(smp_processor_id());
  2290. steal -= this_rq()->prev_steal_time;
  2291. st = steal_ticks(steal);
  2292. this_rq()->prev_steal_time += st * TICK_NSEC;
  2293. account_steal_time(st);
  2294. return st;
  2295. }
  2296. #endif
  2297. return false;
  2298. }
  2299. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2300. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  2301. /*
  2302. * Account a tick to a process and cpustat
  2303. * @p: the process that the cpu time gets accounted to
  2304. * @user_tick: is the tick from userspace
  2305. * @rq: the pointer to rq
  2306. *
  2307. * Tick demultiplexing follows the order
  2308. * - pending hardirq update
  2309. * - pending softirq update
  2310. * - user_time
  2311. * - idle_time
  2312. * - system time
  2313. * - check for guest_time
  2314. * - else account as system_time
  2315. *
  2316. * Check for hardirq is done both for system and user time as there is
  2317. * no timer going off while we are on hardirq and hence we may never get an
  2318. * opportunity to update it solely in system time.
  2319. * p->stime and friends are only updated on system time and not on irq
  2320. * softirq as those do not count in task exec_runtime any more.
  2321. */
  2322. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2323. struct rq *rq)
  2324. {
  2325. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2326. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  2327. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2328. if (steal_account_process_tick())
  2329. return;
  2330. if (irqtime_account_hi_update()) {
  2331. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2332. } else if (irqtime_account_si_update()) {
  2333. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2334. } else if (this_cpu_ksoftirqd() == p) {
  2335. /*
  2336. * ksoftirqd time do not get accounted in cpu_softirq_time.
  2337. * So, we have to handle it separately here.
  2338. * Also, p->stime needs to be updated for ksoftirqd.
  2339. */
  2340. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2341. &cpustat->softirq);
  2342. } else if (user_tick) {
  2343. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2344. } else if (p == rq->idle) {
  2345. account_idle_time(cputime_one_jiffy);
  2346. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  2347. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2348. } else {
  2349. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2350. &cpustat->system);
  2351. }
  2352. }
  2353. static void irqtime_account_idle_ticks(int ticks)
  2354. {
  2355. int i;
  2356. struct rq *rq = this_rq();
  2357. for (i = 0; i < ticks; i++)
  2358. irqtime_account_process_tick(current, 0, rq);
  2359. }
  2360. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  2361. static void irqtime_account_idle_ticks(int ticks) {}
  2362. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2363. struct rq *rq) {}
  2364. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  2365. /*
  2366. * Account a single tick of cpu time.
  2367. * @p: the process that the cpu time gets accounted to
  2368. * @user_tick: indicates if the tick is a user or a system tick
  2369. */
  2370. void account_process_tick(struct task_struct *p, int user_tick)
  2371. {
  2372. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2373. struct rq *rq = this_rq();
  2374. if (sched_clock_irqtime) {
  2375. irqtime_account_process_tick(p, user_tick, rq);
  2376. return;
  2377. }
  2378. if (steal_account_process_tick())
  2379. return;
  2380. if (user_tick)
  2381. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2382. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2383. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2384. one_jiffy_scaled);
  2385. else
  2386. account_idle_time(cputime_one_jiffy);
  2387. }
  2388. /*
  2389. * Account multiple ticks of steal time.
  2390. * @p: the process from which the cpu time has been stolen
  2391. * @ticks: number of stolen ticks
  2392. */
  2393. void account_steal_ticks(unsigned long ticks)
  2394. {
  2395. account_steal_time(jiffies_to_cputime(ticks));
  2396. }
  2397. /*
  2398. * Account multiple ticks of idle time.
  2399. * @ticks: number of stolen ticks
  2400. */
  2401. void account_idle_ticks(unsigned long ticks)
  2402. {
  2403. if (sched_clock_irqtime) {
  2404. irqtime_account_idle_ticks(ticks);
  2405. return;
  2406. }
  2407. account_idle_time(jiffies_to_cputime(ticks));
  2408. }
  2409. #endif
  2410. /*
  2411. * Use precise platform statistics if available:
  2412. */
  2413. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2414. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2415. {
  2416. *ut = p->utime;
  2417. *st = p->stime;
  2418. }
  2419. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2420. {
  2421. struct task_cputime cputime;
  2422. thread_group_cputime(p, &cputime);
  2423. *ut = cputime.utime;
  2424. *st = cputime.stime;
  2425. }
  2426. #else
  2427. #ifndef nsecs_to_cputime
  2428. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2429. #endif
  2430. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2431. {
  2432. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2433. /*
  2434. * Use CFS's precise accounting:
  2435. */
  2436. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2437. if (total) {
  2438. u64 temp = rtime;
  2439. temp *= utime;
  2440. do_div(temp, total);
  2441. utime = (cputime_t)temp;
  2442. } else
  2443. utime = rtime;
  2444. /*
  2445. * Compare with previous values, to keep monotonicity:
  2446. */
  2447. p->prev_utime = max(p->prev_utime, utime);
  2448. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2449. *ut = p->prev_utime;
  2450. *st = p->prev_stime;
  2451. }
  2452. /*
  2453. * Must be called with siglock held.
  2454. */
  2455. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2456. {
  2457. struct signal_struct *sig = p->signal;
  2458. struct task_cputime cputime;
  2459. cputime_t rtime, utime, total;
  2460. thread_group_cputime(p, &cputime);
  2461. total = cputime_add(cputime.utime, cputime.stime);
  2462. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2463. if (total) {
  2464. u64 temp = rtime;
  2465. temp *= cputime.utime;
  2466. do_div(temp, total);
  2467. utime = (cputime_t)temp;
  2468. } else
  2469. utime = rtime;
  2470. sig->prev_utime = max(sig->prev_utime, utime);
  2471. sig->prev_stime = max(sig->prev_stime,
  2472. cputime_sub(rtime, sig->prev_utime));
  2473. *ut = sig->prev_utime;
  2474. *st = sig->prev_stime;
  2475. }
  2476. #endif
  2477. /*
  2478. * This function gets called by the timer code, with HZ frequency.
  2479. * We call it with interrupts disabled.
  2480. */
  2481. void scheduler_tick(void)
  2482. {
  2483. int cpu = smp_processor_id();
  2484. struct rq *rq = cpu_rq(cpu);
  2485. struct task_struct *curr = rq->curr;
  2486. sched_clock_tick();
  2487. raw_spin_lock(&rq->lock);
  2488. update_rq_clock(rq);
  2489. update_cpu_load_active(rq);
  2490. curr->sched_class->task_tick(rq, curr, 0);
  2491. raw_spin_unlock(&rq->lock);
  2492. perf_event_task_tick();
  2493. #ifdef CONFIG_SMP
  2494. rq->idle_balance = idle_cpu(cpu);
  2495. trigger_load_balance(rq, cpu);
  2496. #endif
  2497. }
  2498. notrace unsigned long get_parent_ip(unsigned long addr)
  2499. {
  2500. if (in_lock_functions(addr)) {
  2501. addr = CALLER_ADDR2;
  2502. if (in_lock_functions(addr))
  2503. addr = CALLER_ADDR3;
  2504. }
  2505. return addr;
  2506. }
  2507. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2508. defined(CONFIG_PREEMPT_TRACER))
  2509. void __kprobes add_preempt_count(int val)
  2510. {
  2511. #ifdef CONFIG_DEBUG_PREEMPT
  2512. /*
  2513. * Underflow?
  2514. */
  2515. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2516. return;
  2517. #endif
  2518. preempt_count() += val;
  2519. #ifdef CONFIG_DEBUG_PREEMPT
  2520. /*
  2521. * Spinlock count overflowing soon?
  2522. */
  2523. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2524. PREEMPT_MASK - 10);
  2525. #endif
  2526. if (preempt_count() == val)
  2527. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2528. }
  2529. EXPORT_SYMBOL(add_preempt_count);
  2530. void __kprobes sub_preempt_count(int val)
  2531. {
  2532. #ifdef CONFIG_DEBUG_PREEMPT
  2533. /*
  2534. * Underflow?
  2535. */
  2536. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2537. return;
  2538. /*
  2539. * Is the spinlock portion underflowing?
  2540. */
  2541. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2542. !(preempt_count() & PREEMPT_MASK)))
  2543. return;
  2544. #endif
  2545. if (preempt_count() == val)
  2546. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2547. preempt_count() -= val;
  2548. }
  2549. EXPORT_SYMBOL(sub_preempt_count);
  2550. #endif
  2551. /*
  2552. * Print scheduling while atomic bug:
  2553. */
  2554. static noinline void __schedule_bug(struct task_struct *prev)
  2555. {
  2556. struct pt_regs *regs = get_irq_regs();
  2557. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2558. prev->comm, prev->pid, preempt_count());
  2559. debug_show_held_locks(prev);
  2560. print_modules();
  2561. if (irqs_disabled())
  2562. print_irqtrace_events(prev);
  2563. if (regs)
  2564. show_regs(regs);
  2565. else
  2566. dump_stack();
  2567. }
  2568. /*
  2569. * Various schedule()-time debugging checks and statistics:
  2570. */
  2571. static inline void schedule_debug(struct task_struct *prev)
  2572. {
  2573. /*
  2574. * Test if we are atomic. Since do_exit() needs to call into
  2575. * schedule() atomically, we ignore that path for now.
  2576. * Otherwise, whine if we are scheduling when we should not be.
  2577. */
  2578. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2579. __schedule_bug(prev);
  2580. rcu_sleep_check();
  2581. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2582. schedstat_inc(this_rq(), sched_count);
  2583. }
  2584. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2585. {
  2586. if (prev->on_rq || rq->skip_clock_update < 0)
  2587. update_rq_clock(rq);
  2588. prev->sched_class->put_prev_task(rq, prev);
  2589. }
  2590. /*
  2591. * Pick up the highest-prio task:
  2592. */
  2593. static inline struct task_struct *
  2594. pick_next_task(struct rq *rq)
  2595. {
  2596. const struct sched_class *class;
  2597. struct task_struct *p;
  2598. /*
  2599. * Optimization: we know that if all tasks are in
  2600. * the fair class we can call that function directly:
  2601. */
  2602. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2603. p = fair_sched_class.pick_next_task(rq);
  2604. if (likely(p))
  2605. return p;
  2606. }
  2607. for_each_class(class) {
  2608. p = class->pick_next_task(rq);
  2609. if (p)
  2610. return p;
  2611. }
  2612. BUG(); /* the idle class will always have a runnable task */
  2613. }
  2614. /*
  2615. * __schedule() is the main scheduler function.
  2616. */
  2617. static void __sched __schedule(void)
  2618. {
  2619. struct task_struct *prev, *next;
  2620. unsigned long *switch_count;
  2621. struct rq *rq;
  2622. int cpu;
  2623. need_resched:
  2624. preempt_disable();
  2625. cpu = smp_processor_id();
  2626. rq = cpu_rq(cpu);
  2627. rcu_note_context_switch(cpu);
  2628. prev = rq->curr;
  2629. schedule_debug(prev);
  2630. if (sched_feat(HRTICK))
  2631. hrtick_clear(rq);
  2632. raw_spin_lock_irq(&rq->lock);
  2633. switch_count = &prev->nivcsw;
  2634. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2635. if (unlikely(signal_pending_state(prev->state, prev))) {
  2636. prev->state = TASK_RUNNING;
  2637. } else {
  2638. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2639. prev->on_rq = 0;
  2640. /*
  2641. * If a worker went to sleep, notify and ask workqueue
  2642. * whether it wants to wake up a task to maintain
  2643. * concurrency.
  2644. */
  2645. if (prev->flags & PF_WQ_WORKER) {
  2646. struct task_struct *to_wakeup;
  2647. to_wakeup = wq_worker_sleeping(prev, cpu);
  2648. if (to_wakeup)
  2649. try_to_wake_up_local(to_wakeup);
  2650. }
  2651. }
  2652. switch_count = &prev->nvcsw;
  2653. }
  2654. pre_schedule(rq, prev);
  2655. if (unlikely(!rq->nr_running))
  2656. idle_balance(cpu, rq);
  2657. put_prev_task(rq, prev);
  2658. next = pick_next_task(rq);
  2659. clear_tsk_need_resched(prev);
  2660. rq->skip_clock_update = 0;
  2661. if (likely(prev != next)) {
  2662. rq->nr_switches++;
  2663. rq->curr = next;
  2664. ++*switch_count;
  2665. context_switch(rq, prev, next); /* unlocks the rq */
  2666. /*
  2667. * The context switch have flipped the stack from under us
  2668. * and restored the local variables which were saved when
  2669. * this task called schedule() in the past. prev == current
  2670. * is still correct, but it can be moved to another cpu/rq.
  2671. */
  2672. cpu = smp_processor_id();
  2673. rq = cpu_rq(cpu);
  2674. } else
  2675. raw_spin_unlock_irq(&rq->lock);
  2676. post_schedule(rq);
  2677. preempt_enable_no_resched();
  2678. if (need_resched())
  2679. goto need_resched;
  2680. }
  2681. static inline void sched_submit_work(struct task_struct *tsk)
  2682. {
  2683. if (!tsk->state)
  2684. return;
  2685. /*
  2686. * If we are going to sleep and we have plugged IO queued,
  2687. * make sure to submit it to avoid deadlocks.
  2688. */
  2689. if (blk_needs_flush_plug(tsk))
  2690. blk_schedule_flush_plug(tsk);
  2691. }
  2692. asmlinkage void __sched schedule(void)
  2693. {
  2694. struct task_struct *tsk = current;
  2695. sched_submit_work(tsk);
  2696. __schedule();
  2697. }
  2698. EXPORT_SYMBOL(schedule);
  2699. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2700. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2701. {
  2702. if (lock->owner != owner)
  2703. return false;
  2704. /*
  2705. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2706. * lock->owner still matches owner, if that fails, owner might
  2707. * point to free()d memory, if it still matches, the rcu_read_lock()
  2708. * ensures the memory stays valid.
  2709. */
  2710. barrier();
  2711. return owner->on_cpu;
  2712. }
  2713. /*
  2714. * Look out! "owner" is an entirely speculative pointer
  2715. * access and not reliable.
  2716. */
  2717. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2718. {
  2719. if (!sched_feat(OWNER_SPIN))
  2720. return 0;
  2721. rcu_read_lock();
  2722. while (owner_running(lock, owner)) {
  2723. if (need_resched())
  2724. break;
  2725. arch_mutex_cpu_relax();
  2726. }
  2727. rcu_read_unlock();
  2728. /*
  2729. * We break out the loop above on need_resched() and when the
  2730. * owner changed, which is a sign for heavy contention. Return
  2731. * success only when lock->owner is NULL.
  2732. */
  2733. return lock->owner == NULL;
  2734. }
  2735. #endif
  2736. #ifdef CONFIG_PREEMPT
  2737. /*
  2738. * this is the entry point to schedule() from in-kernel preemption
  2739. * off of preempt_enable. Kernel preemptions off return from interrupt
  2740. * occur there and call schedule directly.
  2741. */
  2742. asmlinkage void __sched notrace preempt_schedule(void)
  2743. {
  2744. struct thread_info *ti = current_thread_info();
  2745. /*
  2746. * If there is a non-zero preempt_count or interrupts are disabled,
  2747. * we do not want to preempt the current task. Just return..
  2748. */
  2749. if (likely(ti->preempt_count || irqs_disabled()))
  2750. return;
  2751. do {
  2752. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2753. __schedule();
  2754. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2755. /*
  2756. * Check again in case we missed a preemption opportunity
  2757. * between schedule and now.
  2758. */
  2759. barrier();
  2760. } while (need_resched());
  2761. }
  2762. EXPORT_SYMBOL(preempt_schedule);
  2763. /*
  2764. * this is the entry point to schedule() from kernel preemption
  2765. * off of irq context.
  2766. * Note, that this is called and return with irqs disabled. This will
  2767. * protect us against recursive calling from irq.
  2768. */
  2769. asmlinkage void __sched preempt_schedule_irq(void)
  2770. {
  2771. struct thread_info *ti = current_thread_info();
  2772. /* Catch callers which need to be fixed */
  2773. BUG_ON(ti->preempt_count || !irqs_disabled());
  2774. do {
  2775. add_preempt_count(PREEMPT_ACTIVE);
  2776. local_irq_enable();
  2777. __schedule();
  2778. local_irq_disable();
  2779. sub_preempt_count(PREEMPT_ACTIVE);
  2780. /*
  2781. * Check again in case we missed a preemption opportunity
  2782. * between schedule and now.
  2783. */
  2784. barrier();
  2785. } while (need_resched());
  2786. }
  2787. #endif /* CONFIG_PREEMPT */
  2788. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2789. void *key)
  2790. {
  2791. return try_to_wake_up(curr->private, mode, wake_flags);
  2792. }
  2793. EXPORT_SYMBOL(default_wake_function);
  2794. /*
  2795. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2796. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2797. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2798. *
  2799. * There are circumstances in which we can try to wake a task which has already
  2800. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2801. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2802. */
  2803. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2804. int nr_exclusive, int wake_flags, void *key)
  2805. {
  2806. wait_queue_t *curr, *next;
  2807. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2808. unsigned flags = curr->flags;
  2809. if (curr->func(curr, mode, wake_flags, key) &&
  2810. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2811. break;
  2812. }
  2813. }
  2814. /**
  2815. * __wake_up - wake up threads blocked on a waitqueue.
  2816. * @q: the waitqueue
  2817. * @mode: which threads
  2818. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2819. * @key: is directly passed to the wakeup function
  2820. *
  2821. * It may be assumed that this function implies a write memory barrier before
  2822. * changing the task state if and only if any tasks are woken up.
  2823. */
  2824. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2825. int nr_exclusive, void *key)
  2826. {
  2827. unsigned long flags;
  2828. spin_lock_irqsave(&q->lock, flags);
  2829. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2830. spin_unlock_irqrestore(&q->lock, flags);
  2831. }
  2832. EXPORT_SYMBOL(__wake_up);
  2833. /*
  2834. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2835. */
  2836. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  2837. {
  2838. __wake_up_common(q, mode, 1, 0, NULL);
  2839. }
  2840. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2841. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2842. {
  2843. __wake_up_common(q, mode, 1, 0, key);
  2844. }
  2845. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2846. /**
  2847. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2848. * @q: the waitqueue
  2849. * @mode: which threads
  2850. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2851. * @key: opaque value to be passed to wakeup targets
  2852. *
  2853. * The sync wakeup differs that the waker knows that it will schedule
  2854. * away soon, so while the target thread will be woken up, it will not
  2855. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2856. * with each other. This can prevent needless bouncing between CPUs.
  2857. *
  2858. * On UP it can prevent extra preemption.
  2859. *
  2860. * It may be assumed that this function implies a write memory barrier before
  2861. * changing the task state if and only if any tasks are woken up.
  2862. */
  2863. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2864. int nr_exclusive, void *key)
  2865. {
  2866. unsigned long flags;
  2867. int wake_flags = WF_SYNC;
  2868. if (unlikely(!q))
  2869. return;
  2870. if (unlikely(!nr_exclusive))
  2871. wake_flags = 0;
  2872. spin_lock_irqsave(&q->lock, flags);
  2873. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2874. spin_unlock_irqrestore(&q->lock, flags);
  2875. }
  2876. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2877. /*
  2878. * __wake_up_sync - see __wake_up_sync_key()
  2879. */
  2880. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2881. {
  2882. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2883. }
  2884. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2885. /**
  2886. * complete: - signals a single thread waiting on this completion
  2887. * @x: holds the state of this particular completion
  2888. *
  2889. * This will wake up a single thread waiting on this completion. Threads will be
  2890. * awakened in the same order in which they were queued.
  2891. *
  2892. * See also complete_all(), wait_for_completion() and related routines.
  2893. *
  2894. * It may be assumed that this function implies a write memory barrier before
  2895. * changing the task state if and only if any tasks are woken up.
  2896. */
  2897. void complete(struct completion *x)
  2898. {
  2899. unsigned long flags;
  2900. spin_lock_irqsave(&x->wait.lock, flags);
  2901. x->done++;
  2902. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2903. spin_unlock_irqrestore(&x->wait.lock, flags);
  2904. }
  2905. EXPORT_SYMBOL(complete);
  2906. /**
  2907. * complete_all: - signals all threads waiting on this completion
  2908. * @x: holds the state of this particular completion
  2909. *
  2910. * This will wake up all threads waiting on this particular completion event.
  2911. *
  2912. * It may be assumed that this function implies a write memory barrier before
  2913. * changing the task state if and only if any tasks are woken up.
  2914. */
  2915. void complete_all(struct completion *x)
  2916. {
  2917. unsigned long flags;
  2918. spin_lock_irqsave(&x->wait.lock, flags);
  2919. x->done += UINT_MAX/2;
  2920. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2921. spin_unlock_irqrestore(&x->wait.lock, flags);
  2922. }
  2923. EXPORT_SYMBOL(complete_all);
  2924. static inline long __sched
  2925. do_wait_for_common(struct completion *x, long timeout, int state)
  2926. {
  2927. if (!x->done) {
  2928. DECLARE_WAITQUEUE(wait, current);
  2929. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2930. do {
  2931. if (signal_pending_state(state, current)) {
  2932. timeout = -ERESTARTSYS;
  2933. break;
  2934. }
  2935. __set_current_state(state);
  2936. spin_unlock_irq(&x->wait.lock);
  2937. timeout = schedule_timeout(timeout);
  2938. spin_lock_irq(&x->wait.lock);
  2939. } while (!x->done && timeout);
  2940. __remove_wait_queue(&x->wait, &wait);
  2941. if (!x->done)
  2942. return timeout;
  2943. }
  2944. x->done--;
  2945. return timeout ?: 1;
  2946. }
  2947. static long __sched
  2948. wait_for_common(struct completion *x, long timeout, int state)
  2949. {
  2950. might_sleep();
  2951. spin_lock_irq(&x->wait.lock);
  2952. timeout = do_wait_for_common(x, timeout, state);
  2953. spin_unlock_irq(&x->wait.lock);
  2954. return timeout;
  2955. }
  2956. /**
  2957. * wait_for_completion: - waits for completion of a task
  2958. * @x: holds the state of this particular completion
  2959. *
  2960. * This waits to be signaled for completion of a specific task. It is NOT
  2961. * interruptible and there is no timeout.
  2962. *
  2963. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2964. * and interrupt capability. Also see complete().
  2965. */
  2966. void __sched wait_for_completion(struct completion *x)
  2967. {
  2968. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2969. }
  2970. EXPORT_SYMBOL(wait_for_completion);
  2971. /**
  2972. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2973. * @x: holds the state of this particular completion
  2974. * @timeout: timeout value in jiffies
  2975. *
  2976. * This waits for either a completion of a specific task to be signaled or for a
  2977. * specified timeout to expire. The timeout is in jiffies. It is not
  2978. * interruptible.
  2979. *
  2980. * The return value is 0 if timed out, and positive (at least 1, or number of
  2981. * jiffies left till timeout) if completed.
  2982. */
  2983. unsigned long __sched
  2984. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2985. {
  2986. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2987. }
  2988. EXPORT_SYMBOL(wait_for_completion_timeout);
  2989. /**
  2990. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2991. * @x: holds the state of this particular completion
  2992. *
  2993. * This waits for completion of a specific task to be signaled. It is
  2994. * interruptible.
  2995. *
  2996. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2997. */
  2998. int __sched wait_for_completion_interruptible(struct completion *x)
  2999. {
  3000. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3001. if (t == -ERESTARTSYS)
  3002. return t;
  3003. return 0;
  3004. }
  3005. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3006. /**
  3007. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3008. * @x: holds the state of this particular completion
  3009. * @timeout: timeout value in jiffies
  3010. *
  3011. * This waits for either a completion of a specific task to be signaled or for a
  3012. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3013. *
  3014. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3015. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3016. */
  3017. long __sched
  3018. wait_for_completion_interruptible_timeout(struct completion *x,
  3019. unsigned long timeout)
  3020. {
  3021. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3022. }
  3023. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3024. /**
  3025. * wait_for_completion_killable: - waits for completion of a task (killable)
  3026. * @x: holds the state of this particular completion
  3027. *
  3028. * This waits to be signaled for completion of a specific task. It can be
  3029. * interrupted by a kill signal.
  3030. *
  3031. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3032. */
  3033. int __sched wait_for_completion_killable(struct completion *x)
  3034. {
  3035. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3036. if (t == -ERESTARTSYS)
  3037. return t;
  3038. return 0;
  3039. }
  3040. EXPORT_SYMBOL(wait_for_completion_killable);
  3041. /**
  3042. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3043. * @x: holds the state of this particular completion
  3044. * @timeout: timeout value in jiffies
  3045. *
  3046. * This waits for either a completion of a specific task to be
  3047. * signaled or for a specified timeout to expire. It can be
  3048. * interrupted by a kill signal. The timeout is in jiffies.
  3049. *
  3050. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3051. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3052. */
  3053. long __sched
  3054. wait_for_completion_killable_timeout(struct completion *x,
  3055. unsigned long timeout)
  3056. {
  3057. return wait_for_common(x, timeout, TASK_KILLABLE);
  3058. }
  3059. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3060. /**
  3061. * try_wait_for_completion - try to decrement a completion without blocking
  3062. * @x: completion structure
  3063. *
  3064. * Returns: 0 if a decrement cannot be done without blocking
  3065. * 1 if a decrement succeeded.
  3066. *
  3067. * If a completion is being used as a counting completion,
  3068. * attempt to decrement the counter without blocking. This
  3069. * enables us to avoid waiting if the resource the completion
  3070. * is protecting is not available.
  3071. */
  3072. bool try_wait_for_completion(struct completion *x)
  3073. {
  3074. unsigned long flags;
  3075. int ret = 1;
  3076. spin_lock_irqsave(&x->wait.lock, flags);
  3077. if (!x->done)
  3078. ret = 0;
  3079. else
  3080. x->done--;
  3081. spin_unlock_irqrestore(&x->wait.lock, flags);
  3082. return ret;
  3083. }
  3084. EXPORT_SYMBOL(try_wait_for_completion);
  3085. /**
  3086. * completion_done - Test to see if a completion has any waiters
  3087. * @x: completion structure
  3088. *
  3089. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3090. * 1 if there are no waiters.
  3091. *
  3092. */
  3093. bool completion_done(struct completion *x)
  3094. {
  3095. unsigned long flags;
  3096. int ret = 1;
  3097. spin_lock_irqsave(&x->wait.lock, flags);
  3098. if (!x->done)
  3099. ret = 0;
  3100. spin_unlock_irqrestore(&x->wait.lock, flags);
  3101. return ret;
  3102. }
  3103. EXPORT_SYMBOL(completion_done);
  3104. static long __sched
  3105. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3106. {
  3107. unsigned long flags;
  3108. wait_queue_t wait;
  3109. init_waitqueue_entry(&wait, current);
  3110. __set_current_state(state);
  3111. spin_lock_irqsave(&q->lock, flags);
  3112. __add_wait_queue(q, &wait);
  3113. spin_unlock(&q->lock);
  3114. timeout = schedule_timeout(timeout);
  3115. spin_lock_irq(&q->lock);
  3116. __remove_wait_queue(q, &wait);
  3117. spin_unlock_irqrestore(&q->lock, flags);
  3118. return timeout;
  3119. }
  3120. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3121. {
  3122. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3123. }
  3124. EXPORT_SYMBOL(interruptible_sleep_on);
  3125. long __sched
  3126. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3127. {
  3128. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3129. }
  3130. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3131. void __sched sleep_on(wait_queue_head_t *q)
  3132. {
  3133. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3134. }
  3135. EXPORT_SYMBOL(sleep_on);
  3136. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3137. {
  3138. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3139. }
  3140. EXPORT_SYMBOL(sleep_on_timeout);
  3141. #ifdef CONFIG_RT_MUTEXES
  3142. /*
  3143. * rt_mutex_setprio - set the current priority of a task
  3144. * @p: task
  3145. * @prio: prio value (kernel-internal form)
  3146. *
  3147. * This function changes the 'effective' priority of a task. It does
  3148. * not touch ->normal_prio like __setscheduler().
  3149. *
  3150. * Used by the rt_mutex code to implement priority inheritance logic.
  3151. */
  3152. void rt_mutex_setprio(struct task_struct *p, int prio)
  3153. {
  3154. int oldprio, on_rq, running;
  3155. struct rq *rq;
  3156. const struct sched_class *prev_class;
  3157. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3158. rq = __task_rq_lock(p);
  3159. trace_sched_pi_setprio(p, prio);
  3160. oldprio = p->prio;
  3161. prev_class = p->sched_class;
  3162. on_rq = p->on_rq;
  3163. running = task_current(rq, p);
  3164. if (on_rq)
  3165. dequeue_task(rq, p, 0);
  3166. if (running)
  3167. p->sched_class->put_prev_task(rq, p);
  3168. if (rt_prio(prio))
  3169. p->sched_class = &rt_sched_class;
  3170. else
  3171. p->sched_class = &fair_sched_class;
  3172. p->prio = prio;
  3173. if (running)
  3174. p->sched_class->set_curr_task(rq);
  3175. if (on_rq)
  3176. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3177. check_class_changed(rq, p, prev_class, oldprio);
  3178. __task_rq_unlock(rq);
  3179. }
  3180. #endif
  3181. void set_user_nice(struct task_struct *p, long nice)
  3182. {
  3183. int old_prio, delta, on_rq;
  3184. unsigned long flags;
  3185. struct rq *rq;
  3186. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3187. return;
  3188. /*
  3189. * We have to be careful, if called from sys_setpriority(),
  3190. * the task might be in the middle of scheduling on another CPU.
  3191. */
  3192. rq = task_rq_lock(p, &flags);
  3193. /*
  3194. * The RT priorities are set via sched_setscheduler(), but we still
  3195. * allow the 'normal' nice value to be set - but as expected
  3196. * it wont have any effect on scheduling until the task is
  3197. * SCHED_FIFO/SCHED_RR:
  3198. */
  3199. if (task_has_rt_policy(p)) {
  3200. p->static_prio = NICE_TO_PRIO(nice);
  3201. goto out_unlock;
  3202. }
  3203. on_rq = p->on_rq;
  3204. if (on_rq)
  3205. dequeue_task(rq, p, 0);
  3206. p->static_prio = NICE_TO_PRIO(nice);
  3207. set_load_weight(p);
  3208. old_prio = p->prio;
  3209. p->prio = effective_prio(p);
  3210. delta = p->prio - old_prio;
  3211. if (on_rq) {
  3212. enqueue_task(rq, p, 0);
  3213. /*
  3214. * If the task increased its priority or is running and
  3215. * lowered its priority, then reschedule its CPU:
  3216. */
  3217. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3218. resched_task(rq->curr);
  3219. }
  3220. out_unlock:
  3221. task_rq_unlock(rq, p, &flags);
  3222. }
  3223. EXPORT_SYMBOL(set_user_nice);
  3224. /*
  3225. * can_nice - check if a task can reduce its nice value
  3226. * @p: task
  3227. * @nice: nice value
  3228. */
  3229. int can_nice(const struct task_struct *p, const int nice)
  3230. {
  3231. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3232. int nice_rlim = 20 - nice;
  3233. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3234. capable(CAP_SYS_NICE));
  3235. }
  3236. #ifdef __ARCH_WANT_SYS_NICE
  3237. /*
  3238. * sys_nice - change the priority of the current process.
  3239. * @increment: priority increment
  3240. *
  3241. * sys_setpriority is a more generic, but much slower function that
  3242. * does similar things.
  3243. */
  3244. SYSCALL_DEFINE1(nice, int, increment)
  3245. {
  3246. long nice, retval;
  3247. /*
  3248. * Setpriority might change our priority at the same moment.
  3249. * We don't have to worry. Conceptually one call occurs first
  3250. * and we have a single winner.
  3251. */
  3252. if (increment < -40)
  3253. increment = -40;
  3254. if (increment > 40)
  3255. increment = 40;
  3256. nice = TASK_NICE(current) + increment;
  3257. if (nice < -20)
  3258. nice = -20;
  3259. if (nice > 19)
  3260. nice = 19;
  3261. if (increment < 0 && !can_nice(current, nice))
  3262. return -EPERM;
  3263. retval = security_task_setnice(current, nice);
  3264. if (retval)
  3265. return retval;
  3266. set_user_nice(current, nice);
  3267. return 0;
  3268. }
  3269. #endif
  3270. /**
  3271. * task_prio - return the priority value of a given task.
  3272. * @p: the task in question.
  3273. *
  3274. * This is the priority value as seen by users in /proc.
  3275. * RT tasks are offset by -200. Normal tasks are centered
  3276. * around 0, value goes from -16 to +15.
  3277. */
  3278. int task_prio(const struct task_struct *p)
  3279. {
  3280. return p->prio - MAX_RT_PRIO;
  3281. }
  3282. /**
  3283. * task_nice - return the nice value of a given task.
  3284. * @p: the task in question.
  3285. */
  3286. int task_nice(const struct task_struct *p)
  3287. {
  3288. return TASK_NICE(p);
  3289. }
  3290. EXPORT_SYMBOL(task_nice);
  3291. /**
  3292. * idle_cpu - is a given cpu idle currently?
  3293. * @cpu: the processor in question.
  3294. */
  3295. int idle_cpu(int cpu)
  3296. {
  3297. struct rq *rq = cpu_rq(cpu);
  3298. if (rq->curr != rq->idle)
  3299. return 0;
  3300. if (rq->nr_running)
  3301. return 0;
  3302. #ifdef CONFIG_SMP
  3303. if (!llist_empty(&rq->wake_list))
  3304. return 0;
  3305. #endif
  3306. return 1;
  3307. }
  3308. /**
  3309. * idle_task - return the idle task for a given cpu.
  3310. * @cpu: the processor in question.
  3311. */
  3312. struct task_struct *idle_task(int cpu)
  3313. {
  3314. return cpu_rq(cpu)->idle;
  3315. }
  3316. /**
  3317. * find_process_by_pid - find a process with a matching PID value.
  3318. * @pid: the pid in question.
  3319. */
  3320. static struct task_struct *find_process_by_pid(pid_t pid)
  3321. {
  3322. return pid ? find_task_by_vpid(pid) : current;
  3323. }
  3324. /* Actually do priority change: must hold rq lock. */
  3325. static void
  3326. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3327. {
  3328. p->policy = policy;
  3329. p->rt_priority = prio;
  3330. p->normal_prio = normal_prio(p);
  3331. /* we are holding p->pi_lock already */
  3332. p->prio = rt_mutex_getprio(p);
  3333. if (rt_prio(p->prio))
  3334. p->sched_class = &rt_sched_class;
  3335. else
  3336. p->sched_class = &fair_sched_class;
  3337. set_load_weight(p);
  3338. }
  3339. /*
  3340. * check the target process has a UID that matches the current process's
  3341. */
  3342. static bool check_same_owner(struct task_struct *p)
  3343. {
  3344. const struct cred *cred = current_cred(), *pcred;
  3345. bool match;
  3346. rcu_read_lock();
  3347. pcred = __task_cred(p);
  3348. if (cred->user->user_ns == pcred->user->user_ns)
  3349. match = (cred->euid == pcred->euid ||
  3350. cred->euid == pcred->uid);
  3351. else
  3352. match = false;
  3353. rcu_read_unlock();
  3354. return match;
  3355. }
  3356. static int __sched_setscheduler(struct task_struct *p, int policy,
  3357. const struct sched_param *param, bool user)
  3358. {
  3359. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3360. unsigned long flags;
  3361. const struct sched_class *prev_class;
  3362. struct rq *rq;
  3363. int reset_on_fork;
  3364. /* may grab non-irq protected spin_locks */
  3365. BUG_ON(in_interrupt());
  3366. recheck:
  3367. /* double check policy once rq lock held */
  3368. if (policy < 0) {
  3369. reset_on_fork = p->sched_reset_on_fork;
  3370. policy = oldpolicy = p->policy;
  3371. } else {
  3372. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3373. policy &= ~SCHED_RESET_ON_FORK;
  3374. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3375. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3376. policy != SCHED_IDLE)
  3377. return -EINVAL;
  3378. }
  3379. /*
  3380. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3381. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3382. * SCHED_BATCH and SCHED_IDLE is 0.
  3383. */
  3384. if (param->sched_priority < 0 ||
  3385. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3386. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3387. return -EINVAL;
  3388. if (rt_policy(policy) != (param->sched_priority != 0))
  3389. return -EINVAL;
  3390. /*
  3391. * Allow unprivileged RT tasks to decrease priority:
  3392. */
  3393. if (user && !capable(CAP_SYS_NICE)) {
  3394. if (rt_policy(policy)) {
  3395. unsigned long rlim_rtprio =
  3396. task_rlimit(p, RLIMIT_RTPRIO);
  3397. /* can't set/change the rt policy */
  3398. if (policy != p->policy && !rlim_rtprio)
  3399. return -EPERM;
  3400. /* can't increase priority */
  3401. if (param->sched_priority > p->rt_priority &&
  3402. param->sched_priority > rlim_rtprio)
  3403. return -EPERM;
  3404. }
  3405. /*
  3406. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3407. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3408. */
  3409. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3410. if (!can_nice(p, TASK_NICE(p)))
  3411. return -EPERM;
  3412. }
  3413. /* can't change other user's priorities */
  3414. if (!check_same_owner(p))
  3415. return -EPERM;
  3416. /* Normal users shall not reset the sched_reset_on_fork flag */
  3417. if (p->sched_reset_on_fork && !reset_on_fork)
  3418. return -EPERM;
  3419. }
  3420. if (user) {
  3421. retval = security_task_setscheduler(p);
  3422. if (retval)
  3423. return retval;
  3424. }
  3425. /*
  3426. * make sure no PI-waiters arrive (or leave) while we are
  3427. * changing the priority of the task:
  3428. *
  3429. * To be able to change p->policy safely, the appropriate
  3430. * runqueue lock must be held.
  3431. */
  3432. rq = task_rq_lock(p, &flags);
  3433. /*
  3434. * Changing the policy of the stop threads its a very bad idea
  3435. */
  3436. if (p == rq->stop) {
  3437. task_rq_unlock(rq, p, &flags);
  3438. return -EINVAL;
  3439. }
  3440. /*
  3441. * If not changing anything there's no need to proceed further:
  3442. */
  3443. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3444. param->sched_priority == p->rt_priority))) {
  3445. __task_rq_unlock(rq);
  3446. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3447. return 0;
  3448. }
  3449. #ifdef CONFIG_RT_GROUP_SCHED
  3450. if (user) {
  3451. /*
  3452. * Do not allow realtime tasks into groups that have no runtime
  3453. * assigned.
  3454. */
  3455. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3456. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3457. !task_group_is_autogroup(task_group(p))) {
  3458. task_rq_unlock(rq, p, &flags);
  3459. return -EPERM;
  3460. }
  3461. }
  3462. #endif
  3463. /* recheck policy now with rq lock held */
  3464. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3465. policy = oldpolicy = -1;
  3466. task_rq_unlock(rq, p, &flags);
  3467. goto recheck;
  3468. }
  3469. on_rq = p->on_rq;
  3470. running = task_current(rq, p);
  3471. if (on_rq)
  3472. deactivate_task(rq, p, 0);
  3473. if (running)
  3474. p->sched_class->put_prev_task(rq, p);
  3475. p->sched_reset_on_fork = reset_on_fork;
  3476. oldprio = p->prio;
  3477. prev_class = p->sched_class;
  3478. __setscheduler(rq, p, policy, param->sched_priority);
  3479. if (running)
  3480. p->sched_class->set_curr_task(rq);
  3481. if (on_rq)
  3482. activate_task(rq, p, 0);
  3483. check_class_changed(rq, p, prev_class, oldprio);
  3484. task_rq_unlock(rq, p, &flags);
  3485. rt_mutex_adjust_pi(p);
  3486. return 0;
  3487. }
  3488. /**
  3489. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3490. * @p: the task in question.
  3491. * @policy: new policy.
  3492. * @param: structure containing the new RT priority.
  3493. *
  3494. * NOTE that the task may be already dead.
  3495. */
  3496. int sched_setscheduler(struct task_struct *p, int policy,
  3497. const struct sched_param *param)
  3498. {
  3499. return __sched_setscheduler(p, policy, param, true);
  3500. }
  3501. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3502. /**
  3503. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3504. * @p: the task in question.
  3505. * @policy: new policy.
  3506. * @param: structure containing the new RT priority.
  3507. *
  3508. * Just like sched_setscheduler, only don't bother checking if the
  3509. * current context has permission. For example, this is needed in
  3510. * stop_machine(): we create temporary high priority worker threads,
  3511. * but our caller might not have that capability.
  3512. */
  3513. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3514. const struct sched_param *param)
  3515. {
  3516. return __sched_setscheduler(p, policy, param, false);
  3517. }
  3518. static int
  3519. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3520. {
  3521. struct sched_param lparam;
  3522. struct task_struct *p;
  3523. int retval;
  3524. if (!param || pid < 0)
  3525. return -EINVAL;
  3526. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3527. return -EFAULT;
  3528. rcu_read_lock();
  3529. retval = -ESRCH;
  3530. p = find_process_by_pid(pid);
  3531. if (p != NULL)
  3532. retval = sched_setscheduler(p, policy, &lparam);
  3533. rcu_read_unlock();
  3534. return retval;
  3535. }
  3536. /**
  3537. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3538. * @pid: the pid in question.
  3539. * @policy: new policy.
  3540. * @param: structure containing the new RT priority.
  3541. */
  3542. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3543. struct sched_param __user *, param)
  3544. {
  3545. /* negative values for policy are not valid */
  3546. if (policy < 0)
  3547. return -EINVAL;
  3548. return do_sched_setscheduler(pid, policy, param);
  3549. }
  3550. /**
  3551. * sys_sched_setparam - set/change the RT priority of a thread
  3552. * @pid: the pid in question.
  3553. * @param: structure containing the new RT priority.
  3554. */
  3555. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3556. {
  3557. return do_sched_setscheduler(pid, -1, param);
  3558. }
  3559. /**
  3560. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3561. * @pid: the pid in question.
  3562. */
  3563. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3564. {
  3565. struct task_struct *p;
  3566. int retval;
  3567. if (pid < 0)
  3568. return -EINVAL;
  3569. retval = -ESRCH;
  3570. rcu_read_lock();
  3571. p = find_process_by_pid(pid);
  3572. if (p) {
  3573. retval = security_task_getscheduler(p);
  3574. if (!retval)
  3575. retval = p->policy
  3576. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3577. }
  3578. rcu_read_unlock();
  3579. return retval;
  3580. }
  3581. /**
  3582. * sys_sched_getparam - get the RT priority of a thread
  3583. * @pid: the pid in question.
  3584. * @param: structure containing the RT priority.
  3585. */
  3586. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3587. {
  3588. struct sched_param lp;
  3589. struct task_struct *p;
  3590. int retval;
  3591. if (!param || pid < 0)
  3592. return -EINVAL;
  3593. rcu_read_lock();
  3594. p = find_process_by_pid(pid);
  3595. retval = -ESRCH;
  3596. if (!p)
  3597. goto out_unlock;
  3598. retval = security_task_getscheduler(p);
  3599. if (retval)
  3600. goto out_unlock;
  3601. lp.sched_priority = p->rt_priority;
  3602. rcu_read_unlock();
  3603. /*
  3604. * This one might sleep, we cannot do it with a spinlock held ...
  3605. */
  3606. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3607. return retval;
  3608. out_unlock:
  3609. rcu_read_unlock();
  3610. return retval;
  3611. }
  3612. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3613. {
  3614. cpumask_var_t cpus_allowed, new_mask;
  3615. struct task_struct *p;
  3616. int retval;
  3617. get_online_cpus();
  3618. rcu_read_lock();
  3619. p = find_process_by_pid(pid);
  3620. if (!p) {
  3621. rcu_read_unlock();
  3622. put_online_cpus();
  3623. return -ESRCH;
  3624. }
  3625. /* Prevent p going away */
  3626. get_task_struct(p);
  3627. rcu_read_unlock();
  3628. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3629. retval = -ENOMEM;
  3630. goto out_put_task;
  3631. }
  3632. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3633. retval = -ENOMEM;
  3634. goto out_free_cpus_allowed;
  3635. }
  3636. retval = -EPERM;
  3637. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  3638. goto out_unlock;
  3639. retval = security_task_setscheduler(p);
  3640. if (retval)
  3641. goto out_unlock;
  3642. cpuset_cpus_allowed(p, cpus_allowed);
  3643. cpumask_and(new_mask, in_mask, cpus_allowed);
  3644. again:
  3645. retval = set_cpus_allowed_ptr(p, new_mask);
  3646. if (!retval) {
  3647. cpuset_cpus_allowed(p, cpus_allowed);
  3648. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3649. /*
  3650. * We must have raced with a concurrent cpuset
  3651. * update. Just reset the cpus_allowed to the
  3652. * cpuset's cpus_allowed
  3653. */
  3654. cpumask_copy(new_mask, cpus_allowed);
  3655. goto again;
  3656. }
  3657. }
  3658. out_unlock:
  3659. free_cpumask_var(new_mask);
  3660. out_free_cpus_allowed:
  3661. free_cpumask_var(cpus_allowed);
  3662. out_put_task:
  3663. put_task_struct(p);
  3664. put_online_cpus();
  3665. return retval;
  3666. }
  3667. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3668. struct cpumask *new_mask)
  3669. {
  3670. if (len < cpumask_size())
  3671. cpumask_clear(new_mask);
  3672. else if (len > cpumask_size())
  3673. len = cpumask_size();
  3674. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3675. }
  3676. /**
  3677. * sys_sched_setaffinity - set the cpu affinity of a process
  3678. * @pid: pid of the process
  3679. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3680. * @user_mask_ptr: user-space pointer to the new cpu mask
  3681. */
  3682. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3683. unsigned long __user *, user_mask_ptr)
  3684. {
  3685. cpumask_var_t new_mask;
  3686. int retval;
  3687. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3688. return -ENOMEM;
  3689. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3690. if (retval == 0)
  3691. retval = sched_setaffinity(pid, new_mask);
  3692. free_cpumask_var(new_mask);
  3693. return retval;
  3694. }
  3695. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3696. {
  3697. struct task_struct *p;
  3698. unsigned long flags;
  3699. int retval;
  3700. get_online_cpus();
  3701. rcu_read_lock();
  3702. retval = -ESRCH;
  3703. p = find_process_by_pid(pid);
  3704. if (!p)
  3705. goto out_unlock;
  3706. retval = security_task_getscheduler(p);
  3707. if (retval)
  3708. goto out_unlock;
  3709. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3710. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3711. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3712. out_unlock:
  3713. rcu_read_unlock();
  3714. put_online_cpus();
  3715. return retval;
  3716. }
  3717. /**
  3718. * sys_sched_getaffinity - get the cpu affinity of a process
  3719. * @pid: pid of the process
  3720. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3721. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3722. */
  3723. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3724. unsigned long __user *, user_mask_ptr)
  3725. {
  3726. int ret;
  3727. cpumask_var_t mask;
  3728. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3729. return -EINVAL;
  3730. if (len & (sizeof(unsigned long)-1))
  3731. return -EINVAL;
  3732. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3733. return -ENOMEM;
  3734. ret = sched_getaffinity(pid, mask);
  3735. if (ret == 0) {
  3736. size_t retlen = min_t(size_t, len, cpumask_size());
  3737. if (copy_to_user(user_mask_ptr, mask, retlen))
  3738. ret = -EFAULT;
  3739. else
  3740. ret = retlen;
  3741. }
  3742. free_cpumask_var(mask);
  3743. return ret;
  3744. }
  3745. /**
  3746. * sys_sched_yield - yield the current processor to other threads.
  3747. *
  3748. * This function yields the current CPU to other tasks. If there are no
  3749. * other threads running on this CPU then this function will return.
  3750. */
  3751. SYSCALL_DEFINE0(sched_yield)
  3752. {
  3753. struct rq *rq = this_rq_lock();
  3754. schedstat_inc(rq, yld_count);
  3755. current->sched_class->yield_task(rq);
  3756. /*
  3757. * Since we are going to call schedule() anyway, there's
  3758. * no need to preempt or enable interrupts:
  3759. */
  3760. __release(rq->lock);
  3761. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3762. do_raw_spin_unlock(&rq->lock);
  3763. preempt_enable_no_resched();
  3764. schedule();
  3765. return 0;
  3766. }
  3767. static inline int should_resched(void)
  3768. {
  3769. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3770. }
  3771. static void __cond_resched(void)
  3772. {
  3773. add_preempt_count(PREEMPT_ACTIVE);
  3774. __schedule();
  3775. sub_preempt_count(PREEMPT_ACTIVE);
  3776. }
  3777. int __sched _cond_resched(void)
  3778. {
  3779. if (should_resched()) {
  3780. __cond_resched();
  3781. return 1;
  3782. }
  3783. return 0;
  3784. }
  3785. EXPORT_SYMBOL(_cond_resched);
  3786. /*
  3787. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3788. * call schedule, and on return reacquire the lock.
  3789. *
  3790. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3791. * operations here to prevent schedule() from being called twice (once via
  3792. * spin_unlock(), once by hand).
  3793. */
  3794. int __cond_resched_lock(spinlock_t *lock)
  3795. {
  3796. int resched = should_resched();
  3797. int ret = 0;
  3798. lockdep_assert_held(lock);
  3799. if (spin_needbreak(lock) || resched) {
  3800. spin_unlock(lock);
  3801. if (resched)
  3802. __cond_resched();
  3803. else
  3804. cpu_relax();
  3805. ret = 1;
  3806. spin_lock(lock);
  3807. }
  3808. return ret;
  3809. }
  3810. EXPORT_SYMBOL(__cond_resched_lock);
  3811. int __sched __cond_resched_softirq(void)
  3812. {
  3813. BUG_ON(!in_softirq());
  3814. if (should_resched()) {
  3815. local_bh_enable();
  3816. __cond_resched();
  3817. local_bh_disable();
  3818. return 1;
  3819. }
  3820. return 0;
  3821. }
  3822. EXPORT_SYMBOL(__cond_resched_softirq);
  3823. /**
  3824. * yield - yield the current processor to other threads.
  3825. *
  3826. * This is a shortcut for kernel-space yielding - it marks the
  3827. * thread runnable and calls sys_sched_yield().
  3828. */
  3829. void __sched yield(void)
  3830. {
  3831. set_current_state(TASK_RUNNING);
  3832. sys_sched_yield();
  3833. }
  3834. EXPORT_SYMBOL(yield);
  3835. /**
  3836. * yield_to - yield the current processor to another thread in
  3837. * your thread group, or accelerate that thread toward the
  3838. * processor it's on.
  3839. * @p: target task
  3840. * @preempt: whether task preemption is allowed or not
  3841. *
  3842. * It's the caller's job to ensure that the target task struct
  3843. * can't go away on us before we can do any checks.
  3844. *
  3845. * Returns true if we indeed boosted the target task.
  3846. */
  3847. bool __sched yield_to(struct task_struct *p, bool preempt)
  3848. {
  3849. struct task_struct *curr = current;
  3850. struct rq *rq, *p_rq;
  3851. unsigned long flags;
  3852. bool yielded = 0;
  3853. local_irq_save(flags);
  3854. rq = this_rq();
  3855. again:
  3856. p_rq = task_rq(p);
  3857. double_rq_lock(rq, p_rq);
  3858. while (task_rq(p) != p_rq) {
  3859. double_rq_unlock(rq, p_rq);
  3860. goto again;
  3861. }
  3862. if (!curr->sched_class->yield_to_task)
  3863. goto out;
  3864. if (curr->sched_class != p->sched_class)
  3865. goto out;
  3866. if (task_running(p_rq, p) || p->state)
  3867. goto out;
  3868. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3869. if (yielded) {
  3870. schedstat_inc(rq, yld_count);
  3871. /*
  3872. * Make p's CPU reschedule; pick_next_entity takes care of
  3873. * fairness.
  3874. */
  3875. if (preempt && rq != p_rq)
  3876. resched_task(p_rq->curr);
  3877. }
  3878. out:
  3879. double_rq_unlock(rq, p_rq);
  3880. local_irq_restore(flags);
  3881. if (yielded)
  3882. schedule();
  3883. return yielded;
  3884. }
  3885. EXPORT_SYMBOL_GPL(yield_to);
  3886. /*
  3887. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3888. * that process accounting knows that this is a task in IO wait state.
  3889. */
  3890. void __sched io_schedule(void)
  3891. {
  3892. struct rq *rq = raw_rq();
  3893. delayacct_blkio_start();
  3894. atomic_inc(&rq->nr_iowait);
  3895. blk_flush_plug(current);
  3896. current->in_iowait = 1;
  3897. schedule();
  3898. current->in_iowait = 0;
  3899. atomic_dec(&rq->nr_iowait);
  3900. delayacct_blkio_end();
  3901. }
  3902. EXPORT_SYMBOL(io_schedule);
  3903. long __sched io_schedule_timeout(long timeout)
  3904. {
  3905. struct rq *rq = raw_rq();
  3906. long ret;
  3907. delayacct_blkio_start();
  3908. atomic_inc(&rq->nr_iowait);
  3909. blk_flush_plug(current);
  3910. current->in_iowait = 1;
  3911. ret = schedule_timeout(timeout);
  3912. current->in_iowait = 0;
  3913. atomic_dec(&rq->nr_iowait);
  3914. delayacct_blkio_end();
  3915. return ret;
  3916. }
  3917. /**
  3918. * sys_sched_get_priority_max - return maximum RT priority.
  3919. * @policy: scheduling class.
  3920. *
  3921. * this syscall returns the maximum rt_priority that can be used
  3922. * by a given scheduling class.
  3923. */
  3924. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3925. {
  3926. int ret = -EINVAL;
  3927. switch (policy) {
  3928. case SCHED_FIFO:
  3929. case SCHED_RR:
  3930. ret = MAX_USER_RT_PRIO-1;
  3931. break;
  3932. case SCHED_NORMAL:
  3933. case SCHED_BATCH:
  3934. case SCHED_IDLE:
  3935. ret = 0;
  3936. break;
  3937. }
  3938. return ret;
  3939. }
  3940. /**
  3941. * sys_sched_get_priority_min - return minimum RT priority.
  3942. * @policy: scheduling class.
  3943. *
  3944. * this syscall returns the minimum rt_priority that can be used
  3945. * by a given scheduling class.
  3946. */
  3947. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3948. {
  3949. int ret = -EINVAL;
  3950. switch (policy) {
  3951. case SCHED_FIFO:
  3952. case SCHED_RR:
  3953. ret = 1;
  3954. break;
  3955. case SCHED_NORMAL:
  3956. case SCHED_BATCH:
  3957. case SCHED_IDLE:
  3958. ret = 0;
  3959. }
  3960. return ret;
  3961. }
  3962. /**
  3963. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3964. * @pid: pid of the process.
  3965. * @interval: userspace pointer to the timeslice value.
  3966. *
  3967. * this syscall writes the default timeslice value of a given process
  3968. * into the user-space timespec buffer. A value of '0' means infinity.
  3969. */
  3970. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3971. struct timespec __user *, interval)
  3972. {
  3973. struct task_struct *p;
  3974. unsigned int time_slice;
  3975. unsigned long flags;
  3976. struct rq *rq;
  3977. int retval;
  3978. struct timespec t;
  3979. if (pid < 0)
  3980. return -EINVAL;
  3981. retval = -ESRCH;
  3982. rcu_read_lock();
  3983. p = find_process_by_pid(pid);
  3984. if (!p)
  3985. goto out_unlock;
  3986. retval = security_task_getscheduler(p);
  3987. if (retval)
  3988. goto out_unlock;
  3989. rq = task_rq_lock(p, &flags);
  3990. time_slice = p->sched_class->get_rr_interval(rq, p);
  3991. task_rq_unlock(rq, p, &flags);
  3992. rcu_read_unlock();
  3993. jiffies_to_timespec(time_slice, &t);
  3994. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3995. return retval;
  3996. out_unlock:
  3997. rcu_read_unlock();
  3998. return retval;
  3999. }
  4000. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4001. void sched_show_task(struct task_struct *p)
  4002. {
  4003. unsigned long free = 0;
  4004. unsigned state;
  4005. state = p->state ? __ffs(p->state) + 1 : 0;
  4006. printk(KERN_INFO "%-15.15s %c", p->comm,
  4007. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4008. #if BITS_PER_LONG == 32
  4009. if (state == TASK_RUNNING)
  4010. printk(KERN_CONT " running ");
  4011. else
  4012. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4013. #else
  4014. if (state == TASK_RUNNING)
  4015. printk(KERN_CONT " running task ");
  4016. else
  4017. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4018. #endif
  4019. #ifdef CONFIG_DEBUG_STACK_USAGE
  4020. free = stack_not_used(p);
  4021. #endif
  4022. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4023. task_pid_nr(p), task_pid_nr(p->real_parent),
  4024. (unsigned long)task_thread_info(p)->flags);
  4025. show_stack(p, NULL);
  4026. }
  4027. void show_state_filter(unsigned long state_filter)
  4028. {
  4029. struct task_struct *g, *p;
  4030. #if BITS_PER_LONG == 32
  4031. printk(KERN_INFO
  4032. " task PC stack pid father\n");
  4033. #else
  4034. printk(KERN_INFO
  4035. " task PC stack pid father\n");
  4036. #endif
  4037. rcu_read_lock();
  4038. do_each_thread(g, p) {
  4039. /*
  4040. * reset the NMI-timeout, listing all files on a slow
  4041. * console might take a lot of time:
  4042. */
  4043. touch_nmi_watchdog();
  4044. if (!state_filter || (p->state & state_filter))
  4045. sched_show_task(p);
  4046. } while_each_thread(g, p);
  4047. touch_all_softlockup_watchdogs();
  4048. #ifdef CONFIG_SCHED_DEBUG
  4049. sysrq_sched_debug_show();
  4050. #endif
  4051. rcu_read_unlock();
  4052. /*
  4053. * Only show locks if all tasks are dumped:
  4054. */
  4055. if (!state_filter)
  4056. debug_show_all_locks();
  4057. }
  4058. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4059. {
  4060. idle->sched_class = &idle_sched_class;
  4061. }
  4062. /**
  4063. * init_idle - set up an idle thread for a given CPU
  4064. * @idle: task in question
  4065. * @cpu: cpu the idle task belongs to
  4066. *
  4067. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4068. * flag, to make booting more robust.
  4069. */
  4070. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4071. {
  4072. struct rq *rq = cpu_rq(cpu);
  4073. unsigned long flags;
  4074. raw_spin_lock_irqsave(&rq->lock, flags);
  4075. __sched_fork(idle);
  4076. idle->state = TASK_RUNNING;
  4077. idle->se.exec_start = sched_clock();
  4078. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4079. /*
  4080. * We're having a chicken and egg problem, even though we are
  4081. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4082. * lockdep check in task_group() will fail.
  4083. *
  4084. * Similar case to sched_fork(). / Alternatively we could
  4085. * use task_rq_lock() here and obtain the other rq->lock.
  4086. *
  4087. * Silence PROVE_RCU
  4088. */
  4089. rcu_read_lock();
  4090. __set_task_cpu(idle, cpu);
  4091. rcu_read_unlock();
  4092. rq->curr = rq->idle = idle;
  4093. #if defined(CONFIG_SMP)
  4094. idle->on_cpu = 1;
  4095. #endif
  4096. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4097. /* Set the preempt count _outside_ the spinlocks! */
  4098. task_thread_info(idle)->preempt_count = 0;
  4099. /*
  4100. * The idle tasks have their own, simple scheduling class:
  4101. */
  4102. idle->sched_class = &idle_sched_class;
  4103. ftrace_graph_init_idle_task(idle, cpu);
  4104. #if defined(CONFIG_SMP)
  4105. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4106. #endif
  4107. }
  4108. #ifdef CONFIG_SMP
  4109. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4110. {
  4111. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4112. p->sched_class->set_cpus_allowed(p, new_mask);
  4113. cpumask_copy(&p->cpus_allowed, new_mask);
  4114. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4115. }
  4116. /*
  4117. * This is how migration works:
  4118. *
  4119. * 1) we invoke migration_cpu_stop() on the target CPU using
  4120. * stop_one_cpu().
  4121. * 2) stopper starts to run (implicitly forcing the migrated thread
  4122. * off the CPU)
  4123. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4124. * 4) if it's in the wrong runqueue then the migration thread removes
  4125. * it and puts it into the right queue.
  4126. * 5) stopper completes and stop_one_cpu() returns and the migration
  4127. * is done.
  4128. */
  4129. /*
  4130. * Change a given task's CPU affinity. Migrate the thread to a
  4131. * proper CPU and schedule it away if the CPU it's executing on
  4132. * is removed from the allowed bitmask.
  4133. *
  4134. * NOTE: the caller must have a valid reference to the task, the
  4135. * task must not exit() & deallocate itself prematurely. The
  4136. * call is not atomic; no spinlocks may be held.
  4137. */
  4138. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4139. {
  4140. unsigned long flags;
  4141. struct rq *rq;
  4142. unsigned int dest_cpu;
  4143. int ret = 0;
  4144. rq = task_rq_lock(p, &flags);
  4145. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4146. goto out;
  4147. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4148. ret = -EINVAL;
  4149. goto out;
  4150. }
  4151. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4152. ret = -EINVAL;
  4153. goto out;
  4154. }
  4155. do_set_cpus_allowed(p, new_mask);
  4156. /* Can the task run on the task's current CPU? If so, we're done */
  4157. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4158. goto out;
  4159. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4160. if (p->on_rq) {
  4161. struct migration_arg arg = { p, dest_cpu };
  4162. /* Need help from migration thread: drop lock and wait. */
  4163. task_rq_unlock(rq, p, &flags);
  4164. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4165. tlb_migrate_finish(p->mm);
  4166. return 0;
  4167. }
  4168. out:
  4169. task_rq_unlock(rq, p, &flags);
  4170. return ret;
  4171. }
  4172. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4173. /*
  4174. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4175. * this because either it can't run here any more (set_cpus_allowed()
  4176. * away from this CPU, or CPU going down), or because we're
  4177. * attempting to rebalance this task on exec (sched_exec).
  4178. *
  4179. * So we race with normal scheduler movements, but that's OK, as long
  4180. * as the task is no longer on this CPU.
  4181. *
  4182. * Returns non-zero if task was successfully migrated.
  4183. */
  4184. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4185. {
  4186. struct rq *rq_dest, *rq_src;
  4187. int ret = 0;
  4188. if (unlikely(!cpu_active(dest_cpu)))
  4189. return ret;
  4190. rq_src = cpu_rq(src_cpu);
  4191. rq_dest = cpu_rq(dest_cpu);
  4192. raw_spin_lock(&p->pi_lock);
  4193. double_rq_lock(rq_src, rq_dest);
  4194. /* Already moved. */
  4195. if (task_cpu(p) != src_cpu)
  4196. goto done;
  4197. /* Affinity changed (again). */
  4198. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4199. goto fail;
  4200. /*
  4201. * If we're not on a rq, the next wake-up will ensure we're
  4202. * placed properly.
  4203. */
  4204. if (p->on_rq) {
  4205. deactivate_task(rq_src, p, 0);
  4206. set_task_cpu(p, dest_cpu);
  4207. activate_task(rq_dest, p, 0);
  4208. check_preempt_curr(rq_dest, p, 0);
  4209. }
  4210. done:
  4211. ret = 1;
  4212. fail:
  4213. double_rq_unlock(rq_src, rq_dest);
  4214. raw_spin_unlock(&p->pi_lock);
  4215. return ret;
  4216. }
  4217. /*
  4218. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4219. * and performs thread migration by bumping thread off CPU then
  4220. * 'pushing' onto another runqueue.
  4221. */
  4222. static int migration_cpu_stop(void *data)
  4223. {
  4224. struct migration_arg *arg = data;
  4225. /*
  4226. * The original target cpu might have gone down and we might
  4227. * be on another cpu but it doesn't matter.
  4228. */
  4229. local_irq_disable();
  4230. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4231. local_irq_enable();
  4232. return 0;
  4233. }
  4234. #ifdef CONFIG_HOTPLUG_CPU
  4235. /*
  4236. * Ensures that the idle task is using init_mm right before its cpu goes
  4237. * offline.
  4238. */
  4239. void idle_task_exit(void)
  4240. {
  4241. struct mm_struct *mm = current->active_mm;
  4242. BUG_ON(cpu_online(smp_processor_id()));
  4243. if (mm != &init_mm)
  4244. switch_mm(mm, &init_mm, current);
  4245. mmdrop(mm);
  4246. }
  4247. /*
  4248. * While a dead CPU has no uninterruptible tasks queued at this point,
  4249. * it might still have a nonzero ->nr_uninterruptible counter, because
  4250. * for performance reasons the counter is not stricly tracking tasks to
  4251. * their home CPUs. So we just add the counter to another CPU's counter,
  4252. * to keep the global sum constant after CPU-down:
  4253. */
  4254. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4255. {
  4256. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4257. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4258. rq_src->nr_uninterruptible = 0;
  4259. }
  4260. /*
  4261. * remove the tasks which were accounted by rq from calc_load_tasks.
  4262. */
  4263. static void calc_global_load_remove(struct rq *rq)
  4264. {
  4265. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4266. rq->calc_load_active = 0;
  4267. }
  4268. /*
  4269. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4270. * try_to_wake_up()->select_task_rq().
  4271. *
  4272. * Called with rq->lock held even though we'er in stop_machine() and
  4273. * there's no concurrency possible, we hold the required locks anyway
  4274. * because of lock validation efforts.
  4275. */
  4276. static void migrate_tasks(unsigned int dead_cpu)
  4277. {
  4278. struct rq *rq = cpu_rq(dead_cpu);
  4279. struct task_struct *next, *stop = rq->stop;
  4280. int dest_cpu;
  4281. /*
  4282. * Fudge the rq selection such that the below task selection loop
  4283. * doesn't get stuck on the currently eligible stop task.
  4284. *
  4285. * We're currently inside stop_machine() and the rq is either stuck
  4286. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4287. * either way we should never end up calling schedule() until we're
  4288. * done here.
  4289. */
  4290. rq->stop = NULL;
  4291. /* Ensure any throttled groups are reachable by pick_next_task */
  4292. unthrottle_offline_cfs_rqs(rq);
  4293. for ( ; ; ) {
  4294. /*
  4295. * There's this thread running, bail when that's the only
  4296. * remaining thread.
  4297. */
  4298. if (rq->nr_running == 1)
  4299. break;
  4300. next = pick_next_task(rq);
  4301. BUG_ON(!next);
  4302. next->sched_class->put_prev_task(rq, next);
  4303. /* Find suitable destination for @next, with force if needed. */
  4304. dest_cpu = select_fallback_rq(dead_cpu, next);
  4305. raw_spin_unlock(&rq->lock);
  4306. __migrate_task(next, dead_cpu, dest_cpu);
  4307. raw_spin_lock(&rq->lock);
  4308. }
  4309. rq->stop = stop;
  4310. }
  4311. #endif /* CONFIG_HOTPLUG_CPU */
  4312. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4313. static struct ctl_table sd_ctl_dir[] = {
  4314. {
  4315. .procname = "sched_domain",
  4316. .mode = 0555,
  4317. },
  4318. {}
  4319. };
  4320. static struct ctl_table sd_ctl_root[] = {
  4321. {
  4322. .procname = "kernel",
  4323. .mode = 0555,
  4324. .child = sd_ctl_dir,
  4325. },
  4326. {}
  4327. };
  4328. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4329. {
  4330. struct ctl_table *entry =
  4331. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4332. return entry;
  4333. }
  4334. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4335. {
  4336. struct ctl_table *entry;
  4337. /*
  4338. * In the intermediate directories, both the child directory and
  4339. * procname are dynamically allocated and could fail but the mode
  4340. * will always be set. In the lowest directory the names are
  4341. * static strings and all have proc handlers.
  4342. */
  4343. for (entry = *tablep; entry->mode; entry++) {
  4344. if (entry->child)
  4345. sd_free_ctl_entry(&entry->child);
  4346. if (entry->proc_handler == NULL)
  4347. kfree(entry->procname);
  4348. }
  4349. kfree(*tablep);
  4350. *tablep = NULL;
  4351. }
  4352. static void
  4353. set_table_entry(struct ctl_table *entry,
  4354. const char *procname, void *data, int maxlen,
  4355. mode_t mode, proc_handler *proc_handler)
  4356. {
  4357. entry->procname = procname;
  4358. entry->data = data;
  4359. entry->maxlen = maxlen;
  4360. entry->mode = mode;
  4361. entry->proc_handler = proc_handler;
  4362. }
  4363. static struct ctl_table *
  4364. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4365. {
  4366. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4367. if (table == NULL)
  4368. return NULL;
  4369. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4370. sizeof(long), 0644, proc_doulongvec_minmax);
  4371. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4372. sizeof(long), 0644, proc_doulongvec_minmax);
  4373. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4374. sizeof(int), 0644, proc_dointvec_minmax);
  4375. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4376. sizeof(int), 0644, proc_dointvec_minmax);
  4377. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4378. sizeof(int), 0644, proc_dointvec_minmax);
  4379. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4380. sizeof(int), 0644, proc_dointvec_minmax);
  4381. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4382. sizeof(int), 0644, proc_dointvec_minmax);
  4383. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4384. sizeof(int), 0644, proc_dointvec_minmax);
  4385. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4386. sizeof(int), 0644, proc_dointvec_minmax);
  4387. set_table_entry(&table[9], "cache_nice_tries",
  4388. &sd->cache_nice_tries,
  4389. sizeof(int), 0644, proc_dointvec_minmax);
  4390. set_table_entry(&table[10], "flags", &sd->flags,
  4391. sizeof(int), 0644, proc_dointvec_minmax);
  4392. set_table_entry(&table[11], "name", sd->name,
  4393. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4394. /* &table[12] is terminator */
  4395. return table;
  4396. }
  4397. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4398. {
  4399. struct ctl_table *entry, *table;
  4400. struct sched_domain *sd;
  4401. int domain_num = 0, i;
  4402. char buf[32];
  4403. for_each_domain(cpu, sd)
  4404. domain_num++;
  4405. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4406. if (table == NULL)
  4407. return NULL;
  4408. i = 0;
  4409. for_each_domain(cpu, sd) {
  4410. snprintf(buf, 32, "domain%d", i);
  4411. entry->procname = kstrdup(buf, GFP_KERNEL);
  4412. entry->mode = 0555;
  4413. entry->child = sd_alloc_ctl_domain_table(sd);
  4414. entry++;
  4415. i++;
  4416. }
  4417. return table;
  4418. }
  4419. static struct ctl_table_header *sd_sysctl_header;
  4420. static void register_sched_domain_sysctl(void)
  4421. {
  4422. int i, cpu_num = num_possible_cpus();
  4423. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4424. char buf[32];
  4425. WARN_ON(sd_ctl_dir[0].child);
  4426. sd_ctl_dir[0].child = entry;
  4427. if (entry == NULL)
  4428. return;
  4429. for_each_possible_cpu(i) {
  4430. snprintf(buf, 32, "cpu%d", i);
  4431. entry->procname = kstrdup(buf, GFP_KERNEL);
  4432. entry->mode = 0555;
  4433. entry->child = sd_alloc_ctl_cpu_table(i);
  4434. entry++;
  4435. }
  4436. WARN_ON(sd_sysctl_header);
  4437. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4438. }
  4439. /* may be called multiple times per register */
  4440. static void unregister_sched_domain_sysctl(void)
  4441. {
  4442. if (sd_sysctl_header)
  4443. unregister_sysctl_table(sd_sysctl_header);
  4444. sd_sysctl_header = NULL;
  4445. if (sd_ctl_dir[0].child)
  4446. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4447. }
  4448. #else
  4449. static void register_sched_domain_sysctl(void)
  4450. {
  4451. }
  4452. static void unregister_sched_domain_sysctl(void)
  4453. {
  4454. }
  4455. #endif
  4456. static void set_rq_online(struct rq *rq)
  4457. {
  4458. if (!rq->online) {
  4459. const struct sched_class *class;
  4460. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4461. rq->online = 1;
  4462. for_each_class(class) {
  4463. if (class->rq_online)
  4464. class->rq_online(rq);
  4465. }
  4466. }
  4467. }
  4468. static void set_rq_offline(struct rq *rq)
  4469. {
  4470. if (rq->online) {
  4471. const struct sched_class *class;
  4472. for_each_class(class) {
  4473. if (class->rq_offline)
  4474. class->rq_offline(rq);
  4475. }
  4476. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4477. rq->online = 0;
  4478. }
  4479. }
  4480. /*
  4481. * migration_call - callback that gets triggered when a CPU is added.
  4482. * Here we can start up the necessary migration thread for the new CPU.
  4483. */
  4484. static int __cpuinit
  4485. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4486. {
  4487. int cpu = (long)hcpu;
  4488. unsigned long flags;
  4489. struct rq *rq = cpu_rq(cpu);
  4490. switch (action & ~CPU_TASKS_FROZEN) {
  4491. case CPU_UP_PREPARE:
  4492. rq->calc_load_update = calc_load_update;
  4493. break;
  4494. case CPU_ONLINE:
  4495. /* Update our root-domain */
  4496. raw_spin_lock_irqsave(&rq->lock, flags);
  4497. if (rq->rd) {
  4498. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4499. set_rq_online(rq);
  4500. }
  4501. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4502. break;
  4503. #ifdef CONFIG_HOTPLUG_CPU
  4504. case CPU_DYING:
  4505. sched_ttwu_pending();
  4506. /* Update our root-domain */
  4507. raw_spin_lock_irqsave(&rq->lock, flags);
  4508. if (rq->rd) {
  4509. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4510. set_rq_offline(rq);
  4511. }
  4512. migrate_tasks(cpu);
  4513. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4514. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4515. migrate_nr_uninterruptible(rq);
  4516. calc_global_load_remove(rq);
  4517. break;
  4518. #endif
  4519. }
  4520. update_max_interval();
  4521. return NOTIFY_OK;
  4522. }
  4523. /*
  4524. * Register at high priority so that task migration (migrate_all_tasks)
  4525. * happens before everything else. This has to be lower priority than
  4526. * the notifier in the perf_event subsystem, though.
  4527. */
  4528. static struct notifier_block __cpuinitdata migration_notifier = {
  4529. .notifier_call = migration_call,
  4530. .priority = CPU_PRI_MIGRATION,
  4531. };
  4532. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4533. unsigned long action, void *hcpu)
  4534. {
  4535. switch (action & ~CPU_TASKS_FROZEN) {
  4536. case CPU_ONLINE:
  4537. case CPU_DOWN_FAILED:
  4538. set_cpu_active((long)hcpu, true);
  4539. return NOTIFY_OK;
  4540. default:
  4541. return NOTIFY_DONE;
  4542. }
  4543. }
  4544. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4545. unsigned long action, void *hcpu)
  4546. {
  4547. switch (action & ~CPU_TASKS_FROZEN) {
  4548. case CPU_DOWN_PREPARE:
  4549. set_cpu_active((long)hcpu, false);
  4550. return NOTIFY_OK;
  4551. default:
  4552. return NOTIFY_DONE;
  4553. }
  4554. }
  4555. static int __init migration_init(void)
  4556. {
  4557. void *cpu = (void *)(long)smp_processor_id();
  4558. int err;
  4559. /* Initialize migration for the boot CPU */
  4560. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4561. BUG_ON(err == NOTIFY_BAD);
  4562. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4563. register_cpu_notifier(&migration_notifier);
  4564. /* Register cpu active notifiers */
  4565. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4566. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4567. return 0;
  4568. }
  4569. early_initcall(migration_init);
  4570. #endif
  4571. #ifdef CONFIG_SMP
  4572. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4573. #ifdef CONFIG_SCHED_DEBUG
  4574. static __read_mostly int sched_domain_debug_enabled;
  4575. static int __init sched_domain_debug_setup(char *str)
  4576. {
  4577. sched_domain_debug_enabled = 1;
  4578. return 0;
  4579. }
  4580. early_param("sched_debug", sched_domain_debug_setup);
  4581. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4582. struct cpumask *groupmask)
  4583. {
  4584. struct sched_group *group = sd->groups;
  4585. char str[256];
  4586. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4587. cpumask_clear(groupmask);
  4588. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4589. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4590. printk("does not load-balance\n");
  4591. if (sd->parent)
  4592. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4593. " has parent");
  4594. return -1;
  4595. }
  4596. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4597. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4598. printk(KERN_ERR "ERROR: domain->span does not contain "
  4599. "CPU%d\n", cpu);
  4600. }
  4601. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4602. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4603. " CPU%d\n", cpu);
  4604. }
  4605. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4606. do {
  4607. if (!group) {
  4608. printk("\n");
  4609. printk(KERN_ERR "ERROR: group is NULL\n");
  4610. break;
  4611. }
  4612. if (!group->sgp->power) {
  4613. printk(KERN_CONT "\n");
  4614. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4615. "set\n");
  4616. break;
  4617. }
  4618. if (!cpumask_weight(sched_group_cpus(group))) {
  4619. printk(KERN_CONT "\n");
  4620. printk(KERN_ERR "ERROR: empty group\n");
  4621. break;
  4622. }
  4623. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4624. printk(KERN_CONT "\n");
  4625. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4626. break;
  4627. }
  4628. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4629. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4630. printk(KERN_CONT " %s", str);
  4631. if (group->sgp->power != SCHED_POWER_SCALE) {
  4632. printk(KERN_CONT " (cpu_power = %d)",
  4633. group->sgp->power);
  4634. }
  4635. group = group->next;
  4636. } while (group != sd->groups);
  4637. printk(KERN_CONT "\n");
  4638. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4639. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4640. if (sd->parent &&
  4641. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4642. printk(KERN_ERR "ERROR: parent span is not a superset "
  4643. "of domain->span\n");
  4644. return 0;
  4645. }
  4646. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4647. {
  4648. int level = 0;
  4649. if (!sched_domain_debug_enabled)
  4650. return;
  4651. if (!sd) {
  4652. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4653. return;
  4654. }
  4655. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4656. for (;;) {
  4657. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4658. break;
  4659. level++;
  4660. sd = sd->parent;
  4661. if (!sd)
  4662. break;
  4663. }
  4664. }
  4665. #else /* !CONFIG_SCHED_DEBUG */
  4666. # define sched_domain_debug(sd, cpu) do { } while (0)
  4667. #endif /* CONFIG_SCHED_DEBUG */
  4668. static int sd_degenerate(struct sched_domain *sd)
  4669. {
  4670. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4671. return 1;
  4672. /* Following flags need at least 2 groups */
  4673. if (sd->flags & (SD_LOAD_BALANCE |
  4674. SD_BALANCE_NEWIDLE |
  4675. SD_BALANCE_FORK |
  4676. SD_BALANCE_EXEC |
  4677. SD_SHARE_CPUPOWER |
  4678. SD_SHARE_PKG_RESOURCES)) {
  4679. if (sd->groups != sd->groups->next)
  4680. return 0;
  4681. }
  4682. /* Following flags don't use groups */
  4683. if (sd->flags & (SD_WAKE_AFFINE))
  4684. return 0;
  4685. return 1;
  4686. }
  4687. static int
  4688. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4689. {
  4690. unsigned long cflags = sd->flags, pflags = parent->flags;
  4691. if (sd_degenerate(parent))
  4692. return 1;
  4693. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4694. return 0;
  4695. /* Flags needing groups don't count if only 1 group in parent */
  4696. if (parent->groups == parent->groups->next) {
  4697. pflags &= ~(SD_LOAD_BALANCE |
  4698. SD_BALANCE_NEWIDLE |
  4699. SD_BALANCE_FORK |
  4700. SD_BALANCE_EXEC |
  4701. SD_SHARE_CPUPOWER |
  4702. SD_SHARE_PKG_RESOURCES);
  4703. if (nr_node_ids == 1)
  4704. pflags &= ~SD_SERIALIZE;
  4705. }
  4706. if (~cflags & pflags)
  4707. return 0;
  4708. return 1;
  4709. }
  4710. static void free_rootdomain(struct rcu_head *rcu)
  4711. {
  4712. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4713. cpupri_cleanup(&rd->cpupri);
  4714. free_cpumask_var(rd->rto_mask);
  4715. free_cpumask_var(rd->online);
  4716. free_cpumask_var(rd->span);
  4717. kfree(rd);
  4718. }
  4719. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4720. {
  4721. struct root_domain *old_rd = NULL;
  4722. unsigned long flags;
  4723. raw_spin_lock_irqsave(&rq->lock, flags);
  4724. if (rq->rd) {
  4725. old_rd = rq->rd;
  4726. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4727. set_rq_offline(rq);
  4728. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4729. /*
  4730. * If we dont want to free the old_rt yet then
  4731. * set old_rd to NULL to skip the freeing later
  4732. * in this function:
  4733. */
  4734. if (!atomic_dec_and_test(&old_rd->refcount))
  4735. old_rd = NULL;
  4736. }
  4737. atomic_inc(&rd->refcount);
  4738. rq->rd = rd;
  4739. cpumask_set_cpu(rq->cpu, rd->span);
  4740. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4741. set_rq_online(rq);
  4742. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4743. if (old_rd)
  4744. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4745. }
  4746. static int init_rootdomain(struct root_domain *rd)
  4747. {
  4748. memset(rd, 0, sizeof(*rd));
  4749. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4750. goto out;
  4751. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4752. goto free_span;
  4753. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4754. goto free_online;
  4755. if (cpupri_init(&rd->cpupri) != 0)
  4756. goto free_rto_mask;
  4757. return 0;
  4758. free_rto_mask:
  4759. free_cpumask_var(rd->rto_mask);
  4760. free_online:
  4761. free_cpumask_var(rd->online);
  4762. free_span:
  4763. free_cpumask_var(rd->span);
  4764. out:
  4765. return -ENOMEM;
  4766. }
  4767. /*
  4768. * By default the system creates a single root-domain with all cpus as
  4769. * members (mimicking the global state we have today).
  4770. */
  4771. struct root_domain def_root_domain;
  4772. static void init_defrootdomain(void)
  4773. {
  4774. init_rootdomain(&def_root_domain);
  4775. atomic_set(&def_root_domain.refcount, 1);
  4776. }
  4777. static struct root_domain *alloc_rootdomain(void)
  4778. {
  4779. struct root_domain *rd;
  4780. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4781. if (!rd)
  4782. return NULL;
  4783. if (init_rootdomain(rd) != 0) {
  4784. kfree(rd);
  4785. return NULL;
  4786. }
  4787. return rd;
  4788. }
  4789. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4790. {
  4791. struct sched_group *tmp, *first;
  4792. if (!sg)
  4793. return;
  4794. first = sg;
  4795. do {
  4796. tmp = sg->next;
  4797. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4798. kfree(sg->sgp);
  4799. kfree(sg);
  4800. sg = tmp;
  4801. } while (sg != first);
  4802. }
  4803. static void free_sched_domain(struct rcu_head *rcu)
  4804. {
  4805. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4806. /*
  4807. * If its an overlapping domain it has private groups, iterate and
  4808. * nuke them all.
  4809. */
  4810. if (sd->flags & SD_OVERLAP) {
  4811. free_sched_groups(sd->groups, 1);
  4812. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4813. kfree(sd->groups->sgp);
  4814. kfree(sd->groups);
  4815. }
  4816. kfree(sd);
  4817. }
  4818. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4819. {
  4820. call_rcu(&sd->rcu, free_sched_domain);
  4821. }
  4822. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4823. {
  4824. for (; sd; sd = sd->parent)
  4825. destroy_sched_domain(sd, cpu);
  4826. }
  4827. /*
  4828. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4829. * hold the hotplug lock.
  4830. */
  4831. static void
  4832. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4833. {
  4834. struct rq *rq = cpu_rq(cpu);
  4835. struct sched_domain *tmp;
  4836. /* Remove the sched domains which do not contribute to scheduling. */
  4837. for (tmp = sd; tmp; ) {
  4838. struct sched_domain *parent = tmp->parent;
  4839. if (!parent)
  4840. break;
  4841. if (sd_parent_degenerate(tmp, parent)) {
  4842. tmp->parent = parent->parent;
  4843. if (parent->parent)
  4844. parent->parent->child = tmp;
  4845. destroy_sched_domain(parent, cpu);
  4846. } else
  4847. tmp = tmp->parent;
  4848. }
  4849. if (sd && sd_degenerate(sd)) {
  4850. tmp = sd;
  4851. sd = sd->parent;
  4852. destroy_sched_domain(tmp, cpu);
  4853. if (sd)
  4854. sd->child = NULL;
  4855. }
  4856. sched_domain_debug(sd, cpu);
  4857. rq_attach_root(rq, rd);
  4858. tmp = rq->sd;
  4859. rcu_assign_pointer(rq->sd, sd);
  4860. destroy_sched_domains(tmp, cpu);
  4861. }
  4862. /* cpus with isolated domains */
  4863. static cpumask_var_t cpu_isolated_map;
  4864. /* Setup the mask of cpus configured for isolated domains */
  4865. static int __init isolated_cpu_setup(char *str)
  4866. {
  4867. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4868. cpulist_parse(str, cpu_isolated_map);
  4869. return 1;
  4870. }
  4871. __setup("isolcpus=", isolated_cpu_setup);
  4872. #ifdef CONFIG_NUMA
  4873. /**
  4874. * find_next_best_node - find the next node to include in a sched_domain
  4875. * @node: node whose sched_domain we're building
  4876. * @used_nodes: nodes already in the sched_domain
  4877. *
  4878. * Find the next node to include in a given scheduling domain. Simply
  4879. * finds the closest node not already in the @used_nodes map.
  4880. *
  4881. * Should use nodemask_t.
  4882. */
  4883. static int find_next_best_node(int node, nodemask_t *used_nodes)
  4884. {
  4885. int i, n, val, min_val, best_node = -1;
  4886. min_val = INT_MAX;
  4887. for (i = 0; i < nr_node_ids; i++) {
  4888. /* Start at @node */
  4889. n = (node + i) % nr_node_ids;
  4890. if (!nr_cpus_node(n))
  4891. continue;
  4892. /* Skip already used nodes */
  4893. if (node_isset(n, *used_nodes))
  4894. continue;
  4895. /* Simple min distance search */
  4896. val = node_distance(node, n);
  4897. if (val < min_val) {
  4898. min_val = val;
  4899. best_node = n;
  4900. }
  4901. }
  4902. if (best_node != -1)
  4903. node_set(best_node, *used_nodes);
  4904. return best_node;
  4905. }
  4906. /**
  4907. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4908. * @node: node whose cpumask we're constructing
  4909. * @span: resulting cpumask
  4910. *
  4911. * Given a node, construct a good cpumask for its sched_domain to span. It
  4912. * should be one that prevents unnecessary balancing, but also spreads tasks
  4913. * out optimally.
  4914. */
  4915. static void sched_domain_node_span(int node, struct cpumask *span)
  4916. {
  4917. nodemask_t used_nodes;
  4918. int i;
  4919. cpumask_clear(span);
  4920. nodes_clear(used_nodes);
  4921. cpumask_or(span, span, cpumask_of_node(node));
  4922. node_set(node, used_nodes);
  4923. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4924. int next_node = find_next_best_node(node, &used_nodes);
  4925. if (next_node < 0)
  4926. break;
  4927. cpumask_or(span, span, cpumask_of_node(next_node));
  4928. }
  4929. }
  4930. static const struct cpumask *cpu_node_mask(int cpu)
  4931. {
  4932. lockdep_assert_held(&sched_domains_mutex);
  4933. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  4934. return sched_domains_tmpmask;
  4935. }
  4936. static const struct cpumask *cpu_allnodes_mask(int cpu)
  4937. {
  4938. return cpu_possible_mask;
  4939. }
  4940. #endif /* CONFIG_NUMA */
  4941. static const struct cpumask *cpu_cpu_mask(int cpu)
  4942. {
  4943. return cpumask_of_node(cpu_to_node(cpu));
  4944. }
  4945. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4946. struct sd_data {
  4947. struct sched_domain **__percpu sd;
  4948. struct sched_group **__percpu sg;
  4949. struct sched_group_power **__percpu sgp;
  4950. };
  4951. struct s_data {
  4952. struct sched_domain ** __percpu sd;
  4953. struct root_domain *rd;
  4954. };
  4955. enum s_alloc {
  4956. sa_rootdomain,
  4957. sa_sd,
  4958. sa_sd_storage,
  4959. sa_none,
  4960. };
  4961. struct sched_domain_topology_level;
  4962. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4963. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4964. #define SDTL_OVERLAP 0x01
  4965. struct sched_domain_topology_level {
  4966. sched_domain_init_f init;
  4967. sched_domain_mask_f mask;
  4968. int flags;
  4969. struct sd_data data;
  4970. };
  4971. static int
  4972. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4973. {
  4974. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4975. const struct cpumask *span = sched_domain_span(sd);
  4976. struct cpumask *covered = sched_domains_tmpmask;
  4977. struct sd_data *sdd = sd->private;
  4978. struct sched_domain *child;
  4979. int i;
  4980. cpumask_clear(covered);
  4981. for_each_cpu(i, span) {
  4982. struct cpumask *sg_span;
  4983. if (cpumask_test_cpu(i, covered))
  4984. continue;
  4985. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4986. GFP_KERNEL, cpu_to_node(i));
  4987. if (!sg)
  4988. goto fail;
  4989. sg_span = sched_group_cpus(sg);
  4990. child = *per_cpu_ptr(sdd->sd, i);
  4991. if (child->child) {
  4992. child = child->child;
  4993. cpumask_copy(sg_span, sched_domain_span(child));
  4994. } else
  4995. cpumask_set_cpu(i, sg_span);
  4996. cpumask_or(covered, covered, sg_span);
  4997. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  4998. atomic_inc(&sg->sgp->ref);
  4999. if (cpumask_test_cpu(cpu, sg_span))
  5000. groups = sg;
  5001. if (!first)
  5002. first = sg;
  5003. if (last)
  5004. last->next = sg;
  5005. last = sg;
  5006. last->next = first;
  5007. }
  5008. sd->groups = groups;
  5009. return 0;
  5010. fail:
  5011. free_sched_groups(first, 0);
  5012. return -ENOMEM;
  5013. }
  5014. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5015. {
  5016. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5017. struct sched_domain *child = sd->child;
  5018. if (child)
  5019. cpu = cpumask_first(sched_domain_span(child));
  5020. if (sg) {
  5021. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5022. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5023. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5024. }
  5025. return cpu;
  5026. }
  5027. /*
  5028. * build_sched_groups will build a circular linked list of the groups
  5029. * covered by the given span, and will set each group's ->cpumask correctly,
  5030. * and ->cpu_power to 0.
  5031. *
  5032. * Assumes the sched_domain tree is fully constructed
  5033. */
  5034. static int
  5035. build_sched_groups(struct sched_domain *sd, int cpu)
  5036. {
  5037. struct sched_group *first = NULL, *last = NULL;
  5038. struct sd_data *sdd = sd->private;
  5039. const struct cpumask *span = sched_domain_span(sd);
  5040. struct cpumask *covered;
  5041. int i;
  5042. get_group(cpu, sdd, &sd->groups);
  5043. atomic_inc(&sd->groups->ref);
  5044. if (cpu != cpumask_first(sched_domain_span(sd)))
  5045. return 0;
  5046. lockdep_assert_held(&sched_domains_mutex);
  5047. covered = sched_domains_tmpmask;
  5048. cpumask_clear(covered);
  5049. for_each_cpu(i, span) {
  5050. struct sched_group *sg;
  5051. int group = get_group(i, sdd, &sg);
  5052. int j;
  5053. if (cpumask_test_cpu(i, covered))
  5054. continue;
  5055. cpumask_clear(sched_group_cpus(sg));
  5056. sg->sgp->power = 0;
  5057. for_each_cpu(j, span) {
  5058. if (get_group(j, sdd, NULL) != group)
  5059. continue;
  5060. cpumask_set_cpu(j, covered);
  5061. cpumask_set_cpu(j, sched_group_cpus(sg));
  5062. }
  5063. if (!first)
  5064. first = sg;
  5065. if (last)
  5066. last->next = sg;
  5067. last = sg;
  5068. }
  5069. last->next = first;
  5070. return 0;
  5071. }
  5072. /*
  5073. * Initialize sched groups cpu_power.
  5074. *
  5075. * cpu_power indicates the capacity of sched group, which is used while
  5076. * distributing the load between different sched groups in a sched domain.
  5077. * Typically cpu_power for all the groups in a sched domain will be same unless
  5078. * there are asymmetries in the topology. If there are asymmetries, group
  5079. * having more cpu_power will pickup more load compared to the group having
  5080. * less cpu_power.
  5081. */
  5082. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5083. {
  5084. struct sched_group *sg = sd->groups;
  5085. WARN_ON(!sd || !sg);
  5086. do {
  5087. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5088. sg = sg->next;
  5089. } while (sg != sd->groups);
  5090. if (cpu != group_first_cpu(sg))
  5091. return;
  5092. update_group_power(sd, cpu);
  5093. }
  5094. int __weak arch_sd_sibling_asym_packing(void)
  5095. {
  5096. return 0*SD_ASYM_PACKING;
  5097. }
  5098. /*
  5099. * Initializers for schedule domains
  5100. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5101. */
  5102. #ifdef CONFIG_SCHED_DEBUG
  5103. # define SD_INIT_NAME(sd, type) sd->name = #type
  5104. #else
  5105. # define SD_INIT_NAME(sd, type) do { } while (0)
  5106. #endif
  5107. #define SD_INIT_FUNC(type) \
  5108. static noinline struct sched_domain * \
  5109. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5110. { \
  5111. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5112. *sd = SD_##type##_INIT; \
  5113. SD_INIT_NAME(sd, type); \
  5114. sd->private = &tl->data; \
  5115. return sd; \
  5116. }
  5117. SD_INIT_FUNC(CPU)
  5118. #ifdef CONFIG_NUMA
  5119. SD_INIT_FUNC(ALLNODES)
  5120. SD_INIT_FUNC(NODE)
  5121. #endif
  5122. #ifdef CONFIG_SCHED_SMT
  5123. SD_INIT_FUNC(SIBLING)
  5124. #endif
  5125. #ifdef CONFIG_SCHED_MC
  5126. SD_INIT_FUNC(MC)
  5127. #endif
  5128. #ifdef CONFIG_SCHED_BOOK
  5129. SD_INIT_FUNC(BOOK)
  5130. #endif
  5131. static int default_relax_domain_level = -1;
  5132. int sched_domain_level_max;
  5133. static int __init setup_relax_domain_level(char *str)
  5134. {
  5135. unsigned long val;
  5136. val = simple_strtoul(str, NULL, 0);
  5137. if (val < sched_domain_level_max)
  5138. default_relax_domain_level = val;
  5139. return 1;
  5140. }
  5141. __setup("relax_domain_level=", setup_relax_domain_level);
  5142. static void set_domain_attribute(struct sched_domain *sd,
  5143. struct sched_domain_attr *attr)
  5144. {
  5145. int request;
  5146. if (!attr || attr->relax_domain_level < 0) {
  5147. if (default_relax_domain_level < 0)
  5148. return;
  5149. else
  5150. request = default_relax_domain_level;
  5151. } else
  5152. request = attr->relax_domain_level;
  5153. if (request < sd->level) {
  5154. /* turn off idle balance on this domain */
  5155. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5156. } else {
  5157. /* turn on idle balance on this domain */
  5158. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5159. }
  5160. }
  5161. static void __sdt_free(const struct cpumask *cpu_map);
  5162. static int __sdt_alloc(const struct cpumask *cpu_map);
  5163. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5164. const struct cpumask *cpu_map)
  5165. {
  5166. switch (what) {
  5167. case sa_rootdomain:
  5168. if (!atomic_read(&d->rd->refcount))
  5169. free_rootdomain(&d->rd->rcu); /* fall through */
  5170. case sa_sd:
  5171. free_percpu(d->sd); /* fall through */
  5172. case sa_sd_storage:
  5173. __sdt_free(cpu_map); /* fall through */
  5174. case sa_none:
  5175. break;
  5176. }
  5177. }
  5178. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5179. const struct cpumask *cpu_map)
  5180. {
  5181. memset(d, 0, sizeof(*d));
  5182. if (__sdt_alloc(cpu_map))
  5183. return sa_sd_storage;
  5184. d->sd = alloc_percpu(struct sched_domain *);
  5185. if (!d->sd)
  5186. return sa_sd_storage;
  5187. d->rd = alloc_rootdomain();
  5188. if (!d->rd)
  5189. return sa_sd;
  5190. return sa_rootdomain;
  5191. }
  5192. /*
  5193. * NULL the sd_data elements we've used to build the sched_domain and
  5194. * sched_group structure so that the subsequent __free_domain_allocs()
  5195. * will not free the data we're using.
  5196. */
  5197. static void claim_allocations(int cpu, struct sched_domain *sd)
  5198. {
  5199. struct sd_data *sdd = sd->private;
  5200. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5201. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5202. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5203. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5204. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5205. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5206. }
  5207. #ifdef CONFIG_SCHED_SMT
  5208. static const struct cpumask *cpu_smt_mask(int cpu)
  5209. {
  5210. return topology_thread_cpumask(cpu);
  5211. }
  5212. #endif
  5213. /*
  5214. * Topology list, bottom-up.
  5215. */
  5216. static struct sched_domain_topology_level default_topology[] = {
  5217. #ifdef CONFIG_SCHED_SMT
  5218. { sd_init_SIBLING, cpu_smt_mask, },
  5219. #endif
  5220. #ifdef CONFIG_SCHED_MC
  5221. { sd_init_MC, cpu_coregroup_mask, },
  5222. #endif
  5223. #ifdef CONFIG_SCHED_BOOK
  5224. { sd_init_BOOK, cpu_book_mask, },
  5225. #endif
  5226. { sd_init_CPU, cpu_cpu_mask, },
  5227. #ifdef CONFIG_NUMA
  5228. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  5229. { sd_init_ALLNODES, cpu_allnodes_mask, },
  5230. #endif
  5231. { NULL, },
  5232. };
  5233. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5234. static int __sdt_alloc(const struct cpumask *cpu_map)
  5235. {
  5236. struct sched_domain_topology_level *tl;
  5237. int j;
  5238. for (tl = sched_domain_topology; tl->init; tl++) {
  5239. struct sd_data *sdd = &tl->data;
  5240. sdd->sd = alloc_percpu(struct sched_domain *);
  5241. if (!sdd->sd)
  5242. return -ENOMEM;
  5243. sdd->sg = alloc_percpu(struct sched_group *);
  5244. if (!sdd->sg)
  5245. return -ENOMEM;
  5246. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5247. if (!sdd->sgp)
  5248. return -ENOMEM;
  5249. for_each_cpu(j, cpu_map) {
  5250. struct sched_domain *sd;
  5251. struct sched_group *sg;
  5252. struct sched_group_power *sgp;
  5253. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5254. GFP_KERNEL, cpu_to_node(j));
  5255. if (!sd)
  5256. return -ENOMEM;
  5257. *per_cpu_ptr(sdd->sd, j) = sd;
  5258. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5259. GFP_KERNEL, cpu_to_node(j));
  5260. if (!sg)
  5261. return -ENOMEM;
  5262. *per_cpu_ptr(sdd->sg, j) = sg;
  5263. sgp = kzalloc_node(sizeof(struct sched_group_power),
  5264. GFP_KERNEL, cpu_to_node(j));
  5265. if (!sgp)
  5266. return -ENOMEM;
  5267. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5268. }
  5269. }
  5270. return 0;
  5271. }
  5272. static void __sdt_free(const struct cpumask *cpu_map)
  5273. {
  5274. struct sched_domain_topology_level *tl;
  5275. int j;
  5276. for (tl = sched_domain_topology; tl->init; tl++) {
  5277. struct sd_data *sdd = &tl->data;
  5278. for_each_cpu(j, cpu_map) {
  5279. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  5280. if (sd && (sd->flags & SD_OVERLAP))
  5281. free_sched_groups(sd->groups, 0);
  5282. kfree(*per_cpu_ptr(sdd->sd, j));
  5283. kfree(*per_cpu_ptr(sdd->sg, j));
  5284. kfree(*per_cpu_ptr(sdd->sgp, j));
  5285. }
  5286. free_percpu(sdd->sd);
  5287. free_percpu(sdd->sg);
  5288. free_percpu(sdd->sgp);
  5289. }
  5290. }
  5291. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5292. struct s_data *d, const struct cpumask *cpu_map,
  5293. struct sched_domain_attr *attr, struct sched_domain *child,
  5294. int cpu)
  5295. {
  5296. struct sched_domain *sd = tl->init(tl, cpu);
  5297. if (!sd)
  5298. return child;
  5299. set_domain_attribute(sd, attr);
  5300. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5301. if (child) {
  5302. sd->level = child->level + 1;
  5303. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5304. child->parent = sd;
  5305. }
  5306. sd->child = child;
  5307. return sd;
  5308. }
  5309. /*
  5310. * Build sched domains for a given set of cpus and attach the sched domains
  5311. * to the individual cpus
  5312. */
  5313. static int build_sched_domains(const struct cpumask *cpu_map,
  5314. struct sched_domain_attr *attr)
  5315. {
  5316. enum s_alloc alloc_state = sa_none;
  5317. struct sched_domain *sd;
  5318. struct s_data d;
  5319. int i, ret = -ENOMEM;
  5320. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5321. if (alloc_state != sa_rootdomain)
  5322. goto error;
  5323. /* Set up domains for cpus specified by the cpu_map. */
  5324. for_each_cpu(i, cpu_map) {
  5325. struct sched_domain_topology_level *tl;
  5326. sd = NULL;
  5327. for (tl = sched_domain_topology; tl->init; tl++) {
  5328. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5329. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5330. sd->flags |= SD_OVERLAP;
  5331. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5332. break;
  5333. }
  5334. while (sd->child)
  5335. sd = sd->child;
  5336. *per_cpu_ptr(d.sd, i) = sd;
  5337. }
  5338. /* Build the groups for the domains */
  5339. for_each_cpu(i, cpu_map) {
  5340. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5341. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5342. if (sd->flags & SD_OVERLAP) {
  5343. if (build_overlap_sched_groups(sd, i))
  5344. goto error;
  5345. } else {
  5346. if (build_sched_groups(sd, i))
  5347. goto error;
  5348. }
  5349. }
  5350. }
  5351. /* Calculate CPU power for physical packages and nodes */
  5352. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5353. if (!cpumask_test_cpu(i, cpu_map))
  5354. continue;
  5355. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5356. claim_allocations(i, sd);
  5357. init_sched_groups_power(i, sd);
  5358. }
  5359. }
  5360. /* Attach the domains */
  5361. rcu_read_lock();
  5362. for_each_cpu(i, cpu_map) {
  5363. sd = *per_cpu_ptr(d.sd, i);
  5364. cpu_attach_domain(sd, d.rd, i);
  5365. }
  5366. rcu_read_unlock();
  5367. ret = 0;
  5368. error:
  5369. __free_domain_allocs(&d, alloc_state, cpu_map);
  5370. return ret;
  5371. }
  5372. static cpumask_var_t *doms_cur; /* current sched domains */
  5373. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5374. static struct sched_domain_attr *dattr_cur;
  5375. /* attribues of custom domains in 'doms_cur' */
  5376. /*
  5377. * Special case: If a kmalloc of a doms_cur partition (array of
  5378. * cpumask) fails, then fallback to a single sched domain,
  5379. * as determined by the single cpumask fallback_doms.
  5380. */
  5381. static cpumask_var_t fallback_doms;
  5382. /*
  5383. * arch_update_cpu_topology lets virtualized architectures update the
  5384. * cpu core maps. It is supposed to return 1 if the topology changed
  5385. * or 0 if it stayed the same.
  5386. */
  5387. int __attribute__((weak)) arch_update_cpu_topology(void)
  5388. {
  5389. return 0;
  5390. }
  5391. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5392. {
  5393. int i;
  5394. cpumask_var_t *doms;
  5395. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5396. if (!doms)
  5397. return NULL;
  5398. for (i = 0; i < ndoms; i++) {
  5399. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5400. free_sched_domains(doms, i);
  5401. return NULL;
  5402. }
  5403. }
  5404. return doms;
  5405. }
  5406. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5407. {
  5408. unsigned int i;
  5409. for (i = 0; i < ndoms; i++)
  5410. free_cpumask_var(doms[i]);
  5411. kfree(doms);
  5412. }
  5413. /*
  5414. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5415. * For now this just excludes isolated cpus, but could be used to
  5416. * exclude other special cases in the future.
  5417. */
  5418. static int init_sched_domains(const struct cpumask *cpu_map)
  5419. {
  5420. int err;
  5421. arch_update_cpu_topology();
  5422. ndoms_cur = 1;
  5423. doms_cur = alloc_sched_domains(ndoms_cur);
  5424. if (!doms_cur)
  5425. doms_cur = &fallback_doms;
  5426. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5427. dattr_cur = NULL;
  5428. err = build_sched_domains(doms_cur[0], NULL);
  5429. register_sched_domain_sysctl();
  5430. return err;
  5431. }
  5432. /*
  5433. * Detach sched domains from a group of cpus specified in cpu_map
  5434. * These cpus will now be attached to the NULL domain
  5435. */
  5436. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5437. {
  5438. int i;
  5439. rcu_read_lock();
  5440. for_each_cpu(i, cpu_map)
  5441. cpu_attach_domain(NULL, &def_root_domain, i);
  5442. rcu_read_unlock();
  5443. }
  5444. /* handle null as "default" */
  5445. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5446. struct sched_domain_attr *new, int idx_new)
  5447. {
  5448. struct sched_domain_attr tmp;
  5449. /* fast path */
  5450. if (!new && !cur)
  5451. return 1;
  5452. tmp = SD_ATTR_INIT;
  5453. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5454. new ? (new + idx_new) : &tmp,
  5455. sizeof(struct sched_domain_attr));
  5456. }
  5457. /*
  5458. * Partition sched domains as specified by the 'ndoms_new'
  5459. * cpumasks in the array doms_new[] of cpumasks. This compares
  5460. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5461. * It destroys each deleted domain and builds each new domain.
  5462. *
  5463. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5464. * The masks don't intersect (don't overlap.) We should setup one
  5465. * sched domain for each mask. CPUs not in any of the cpumasks will
  5466. * not be load balanced. If the same cpumask appears both in the
  5467. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5468. * it as it is.
  5469. *
  5470. * The passed in 'doms_new' should be allocated using
  5471. * alloc_sched_domains. This routine takes ownership of it and will
  5472. * free_sched_domains it when done with it. If the caller failed the
  5473. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5474. * and partition_sched_domains() will fallback to the single partition
  5475. * 'fallback_doms', it also forces the domains to be rebuilt.
  5476. *
  5477. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5478. * ndoms_new == 0 is a special case for destroying existing domains,
  5479. * and it will not create the default domain.
  5480. *
  5481. * Call with hotplug lock held
  5482. */
  5483. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5484. struct sched_domain_attr *dattr_new)
  5485. {
  5486. int i, j, n;
  5487. int new_topology;
  5488. mutex_lock(&sched_domains_mutex);
  5489. /* always unregister in case we don't destroy any domains */
  5490. unregister_sched_domain_sysctl();
  5491. /* Let architecture update cpu core mappings. */
  5492. new_topology = arch_update_cpu_topology();
  5493. n = doms_new ? ndoms_new : 0;
  5494. /* Destroy deleted domains */
  5495. for (i = 0; i < ndoms_cur; i++) {
  5496. for (j = 0; j < n && !new_topology; j++) {
  5497. if (cpumask_equal(doms_cur[i], doms_new[j])
  5498. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5499. goto match1;
  5500. }
  5501. /* no match - a current sched domain not in new doms_new[] */
  5502. detach_destroy_domains(doms_cur[i]);
  5503. match1:
  5504. ;
  5505. }
  5506. if (doms_new == NULL) {
  5507. ndoms_cur = 0;
  5508. doms_new = &fallback_doms;
  5509. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5510. WARN_ON_ONCE(dattr_new);
  5511. }
  5512. /* Build new domains */
  5513. for (i = 0; i < ndoms_new; i++) {
  5514. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5515. if (cpumask_equal(doms_new[i], doms_cur[j])
  5516. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5517. goto match2;
  5518. }
  5519. /* no match - add a new doms_new */
  5520. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5521. match2:
  5522. ;
  5523. }
  5524. /* Remember the new sched domains */
  5525. if (doms_cur != &fallback_doms)
  5526. free_sched_domains(doms_cur, ndoms_cur);
  5527. kfree(dattr_cur); /* kfree(NULL) is safe */
  5528. doms_cur = doms_new;
  5529. dattr_cur = dattr_new;
  5530. ndoms_cur = ndoms_new;
  5531. register_sched_domain_sysctl();
  5532. mutex_unlock(&sched_domains_mutex);
  5533. }
  5534. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5535. static void reinit_sched_domains(void)
  5536. {
  5537. get_online_cpus();
  5538. /* Destroy domains first to force the rebuild */
  5539. partition_sched_domains(0, NULL, NULL);
  5540. rebuild_sched_domains();
  5541. put_online_cpus();
  5542. }
  5543. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5544. {
  5545. unsigned int level = 0;
  5546. if (sscanf(buf, "%u", &level) != 1)
  5547. return -EINVAL;
  5548. /*
  5549. * level is always be positive so don't check for
  5550. * level < POWERSAVINGS_BALANCE_NONE which is 0
  5551. * What happens on 0 or 1 byte write,
  5552. * need to check for count as well?
  5553. */
  5554. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  5555. return -EINVAL;
  5556. if (smt)
  5557. sched_smt_power_savings = level;
  5558. else
  5559. sched_mc_power_savings = level;
  5560. reinit_sched_domains();
  5561. return count;
  5562. }
  5563. #ifdef CONFIG_SCHED_MC
  5564. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  5565. struct sysdev_class_attribute *attr,
  5566. char *page)
  5567. {
  5568. return sprintf(page, "%u\n", sched_mc_power_savings);
  5569. }
  5570. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  5571. struct sysdev_class_attribute *attr,
  5572. const char *buf, size_t count)
  5573. {
  5574. return sched_power_savings_store(buf, count, 0);
  5575. }
  5576. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  5577. sched_mc_power_savings_show,
  5578. sched_mc_power_savings_store);
  5579. #endif
  5580. #ifdef CONFIG_SCHED_SMT
  5581. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  5582. struct sysdev_class_attribute *attr,
  5583. char *page)
  5584. {
  5585. return sprintf(page, "%u\n", sched_smt_power_savings);
  5586. }
  5587. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  5588. struct sysdev_class_attribute *attr,
  5589. const char *buf, size_t count)
  5590. {
  5591. return sched_power_savings_store(buf, count, 1);
  5592. }
  5593. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  5594. sched_smt_power_savings_show,
  5595. sched_smt_power_savings_store);
  5596. #endif
  5597. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5598. {
  5599. int err = 0;
  5600. #ifdef CONFIG_SCHED_SMT
  5601. if (smt_capable())
  5602. err = sysfs_create_file(&cls->kset.kobj,
  5603. &attr_sched_smt_power_savings.attr);
  5604. #endif
  5605. #ifdef CONFIG_SCHED_MC
  5606. if (!err && mc_capable())
  5607. err = sysfs_create_file(&cls->kset.kobj,
  5608. &attr_sched_mc_power_savings.attr);
  5609. #endif
  5610. return err;
  5611. }
  5612. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  5613. /*
  5614. * Update cpusets according to cpu_active mask. If cpusets are
  5615. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5616. * around partition_sched_domains().
  5617. */
  5618. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5619. void *hcpu)
  5620. {
  5621. switch (action & ~CPU_TASKS_FROZEN) {
  5622. case CPU_ONLINE:
  5623. case CPU_DOWN_FAILED:
  5624. cpuset_update_active_cpus();
  5625. return NOTIFY_OK;
  5626. default:
  5627. return NOTIFY_DONE;
  5628. }
  5629. }
  5630. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5631. void *hcpu)
  5632. {
  5633. switch (action & ~CPU_TASKS_FROZEN) {
  5634. case CPU_DOWN_PREPARE:
  5635. cpuset_update_active_cpus();
  5636. return NOTIFY_OK;
  5637. default:
  5638. return NOTIFY_DONE;
  5639. }
  5640. }
  5641. void __init sched_init_smp(void)
  5642. {
  5643. cpumask_var_t non_isolated_cpus;
  5644. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5645. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5646. get_online_cpus();
  5647. mutex_lock(&sched_domains_mutex);
  5648. init_sched_domains(cpu_active_mask);
  5649. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5650. if (cpumask_empty(non_isolated_cpus))
  5651. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5652. mutex_unlock(&sched_domains_mutex);
  5653. put_online_cpus();
  5654. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5655. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5656. /* RT runtime code needs to handle some hotplug events */
  5657. hotcpu_notifier(update_runtime, 0);
  5658. init_hrtick();
  5659. /* Move init over to a non-isolated CPU */
  5660. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5661. BUG();
  5662. sched_init_granularity();
  5663. free_cpumask_var(non_isolated_cpus);
  5664. init_sched_rt_class();
  5665. }
  5666. #else
  5667. void __init sched_init_smp(void)
  5668. {
  5669. sched_init_granularity();
  5670. }
  5671. #endif /* CONFIG_SMP */
  5672. const_debug unsigned int sysctl_timer_migration = 1;
  5673. int in_sched_functions(unsigned long addr)
  5674. {
  5675. return in_lock_functions(addr) ||
  5676. (addr >= (unsigned long)__sched_text_start
  5677. && addr < (unsigned long)__sched_text_end);
  5678. }
  5679. #ifdef CONFIG_CGROUP_SCHED
  5680. struct task_group root_task_group;
  5681. #endif
  5682. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5683. void __init sched_init(void)
  5684. {
  5685. int i, j;
  5686. unsigned long alloc_size = 0, ptr;
  5687. #ifdef CONFIG_FAIR_GROUP_SCHED
  5688. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5689. #endif
  5690. #ifdef CONFIG_RT_GROUP_SCHED
  5691. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5692. #endif
  5693. #ifdef CONFIG_CPUMASK_OFFSTACK
  5694. alloc_size += num_possible_cpus() * cpumask_size();
  5695. #endif
  5696. if (alloc_size) {
  5697. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5698. #ifdef CONFIG_FAIR_GROUP_SCHED
  5699. root_task_group.se = (struct sched_entity **)ptr;
  5700. ptr += nr_cpu_ids * sizeof(void **);
  5701. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5702. ptr += nr_cpu_ids * sizeof(void **);
  5703. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5704. #ifdef CONFIG_RT_GROUP_SCHED
  5705. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5706. ptr += nr_cpu_ids * sizeof(void **);
  5707. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5708. ptr += nr_cpu_ids * sizeof(void **);
  5709. #endif /* CONFIG_RT_GROUP_SCHED */
  5710. #ifdef CONFIG_CPUMASK_OFFSTACK
  5711. for_each_possible_cpu(i) {
  5712. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5713. ptr += cpumask_size();
  5714. }
  5715. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5716. }
  5717. #ifdef CONFIG_SMP
  5718. init_defrootdomain();
  5719. #endif
  5720. init_rt_bandwidth(&def_rt_bandwidth,
  5721. global_rt_period(), global_rt_runtime());
  5722. #ifdef CONFIG_RT_GROUP_SCHED
  5723. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5724. global_rt_period(), global_rt_runtime());
  5725. #endif /* CONFIG_RT_GROUP_SCHED */
  5726. #ifdef CONFIG_CGROUP_SCHED
  5727. list_add(&root_task_group.list, &task_groups);
  5728. INIT_LIST_HEAD(&root_task_group.children);
  5729. INIT_LIST_HEAD(&root_task_group.siblings);
  5730. autogroup_init(&init_task);
  5731. #endif /* CONFIG_CGROUP_SCHED */
  5732. for_each_possible_cpu(i) {
  5733. struct rq *rq;
  5734. rq = cpu_rq(i);
  5735. raw_spin_lock_init(&rq->lock);
  5736. rq->nr_running = 0;
  5737. rq->calc_load_active = 0;
  5738. rq->calc_load_update = jiffies + LOAD_FREQ;
  5739. init_cfs_rq(&rq->cfs);
  5740. init_rt_rq(&rq->rt, rq);
  5741. #ifdef CONFIG_FAIR_GROUP_SCHED
  5742. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5743. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5744. /*
  5745. * How much cpu bandwidth does root_task_group get?
  5746. *
  5747. * In case of task-groups formed thr' the cgroup filesystem, it
  5748. * gets 100% of the cpu resources in the system. This overall
  5749. * system cpu resource is divided among the tasks of
  5750. * root_task_group and its child task-groups in a fair manner,
  5751. * based on each entity's (task or task-group's) weight
  5752. * (se->load.weight).
  5753. *
  5754. * In other words, if root_task_group has 10 tasks of weight
  5755. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5756. * then A0's share of the cpu resource is:
  5757. *
  5758. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5759. *
  5760. * We achieve this by letting root_task_group's tasks sit
  5761. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5762. */
  5763. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5764. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5765. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5766. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5767. #ifdef CONFIG_RT_GROUP_SCHED
  5768. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5769. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5770. #endif
  5771. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5772. rq->cpu_load[j] = 0;
  5773. rq->last_load_update_tick = jiffies;
  5774. #ifdef CONFIG_SMP
  5775. rq->sd = NULL;
  5776. rq->rd = NULL;
  5777. rq->cpu_power = SCHED_POWER_SCALE;
  5778. rq->post_schedule = 0;
  5779. rq->active_balance = 0;
  5780. rq->next_balance = jiffies;
  5781. rq->push_cpu = 0;
  5782. rq->cpu = i;
  5783. rq->online = 0;
  5784. rq->idle_stamp = 0;
  5785. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5786. rq_attach_root(rq, &def_root_domain);
  5787. #ifdef CONFIG_NO_HZ
  5788. rq->nohz_balance_kick = 0;
  5789. #endif
  5790. #endif
  5791. init_rq_hrtick(rq);
  5792. atomic_set(&rq->nr_iowait, 0);
  5793. }
  5794. set_load_weight(&init_task);
  5795. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5796. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5797. #endif
  5798. #ifdef CONFIG_RT_MUTEXES
  5799. plist_head_init(&init_task.pi_waiters);
  5800. #endif
  5801. /*
  5802. * The boot idle thread does lazy MMU switching as well:
  5803. */
  5804. atomic_inc(&init_mm.mm_count);
  5805. enter_lazy_tlb(&init_mm, current);
  5806. /*
  5807. * Make us the idle thread. Technically, schedule() should not be
  5808. * called from this thread, however somewhere below it might be,
  5809. * but because we are the idle thread, we just pick up running again
  5810. * when this runqueue becomes "idle".
  5811. */
  5812. init_idle(current, smp_processor_id());
  5813. calc_load_update = jiffies + LOAD_FREQ;
  5814. /*
  5815. * During early bootup we pretend to be a normal task:
  5816. */
  5817. current->sched_class = &fair_sched_class;
  5818. #ifdef CONFIG_SMP
  5819. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5820. /* May be allocated at isolcpus cmdline parse time */
  5821. if (cpu_isolated_map == NULL)
  5822. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5823. #endif
  5824. init_sched_fair_class();
  5825. scheduler_running = 1;
  5826. }
  5827. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5828. static inline int preempt_count_equals(int preempt_offset)
  5829. {
  5830. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5831. return (nested == preempt_offset);
  5832. }
  5833. void __might_sleep(const char *file, int line, int preempt_offset)
  5834. {
  5835. static unsigned long prev_jiffy; /* ratelimiting */
  5836. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5837. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5838. system_state != SYSTEM_RUNNING || oops_in_progress)
  5839. return;
  5840. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5841. return;
  5842. prev_jiffy = jiffies;
  5843. printk(KERN_ERR
  5844. "BUG: sleeping function called from invalid context at %s:%d\n",
  5845. file, line);
  5846. printk(KERN_ERR
  5847. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5848. in_atomic(), irqs_disabled(),
  5849. current->pid, current->comm);
  5850. debug_show_held_locks(current);
  5851. if (irqs_disabled())
  5852. print_irqtrace_events(current);
  5853. dump_stack();
  5854. }
  5855. EXPORT_SYMBOL(__might_sleep);
  5856. #endif
  5857. #ifdef CONFIG_MAGIC_SYSRQ
  5858. static void normalize_task(struct rq *rq, struct task_struct *p)
  5859. {
  5860. const struct sched_class *prev_class = p->sched_class;
  5861. int old_prio = p->prio;
  5862. int on_rq;
  5863. on_rq = p->on_rq;
  5864. if (on_rq)
  5865. deactivate_task(rq, p, 0);
  5866. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5867. if (on_rq) {
  5868. activate_task(rq, p, 0);
  5869. resched_task(rq->curr);
  5870. }
  5871. check_class_changed(rq, p, prev_class, old_prio);
  5872. }
  5873. void normalize_rt_tasks(void)
  5874. {
  5875. struct task_struct *g, *p;
  5876. unsigned long flags;
  5877. struct rq *rq;
  5878. read_lock_irqsave(&tasklist_lock, flags);
  5879. do_each_thread(g, p) {
  5880. /*
  5881. * Only normalize user tasks:
  5882. */
  5883. if (!p->mm)
  5884. continue;
  5885. p->se.exec_start = 0;
  5886. #ifdef CONFIG_SCHEDSTATS
  5887. p->se.statistics.wait_start = 0;
  5888. p->se.statistics.sleep_start = 0;
  5889. p->se.statistics.block_start = 0;
  5890. #endif
  5891. if (!rt_task(p)) {
  5892. /*
  5893. * Renice negative nice level userspace
  5894. * tasks back to 0:
  5895. */
  5896. if (TASK_NICE(p) < 0 && p->mm)
  5897. set_user_nice(p, 0);
  5898. continue;
  5899. }
  5900. raw_spin_lock(&p->pi_lock);
  5901. rq = __task_rq_lock(p);
  5902. normalize_task(rq, p);
  5903. __task_rq_unlock(rq);
  5904. raw_spin_unlock(&p->pi_lock);
  5905. } while_each_thread(g, p);
  5906. read_unlock_irqrestore(&tasklist_lock, flags);
  5907. }
  5908. #endif /* CONFIG_MAGIC_SYSRQ */
  5909. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5910. /*
  5911. * These functions are only useful for the IA64 MCA handling, or kdb.
  5912. *
  5913. * They can only be called when the whole system has been
  5914. * stopped - every CPU needs to be quiescent, and no scheduling
  5915. * activity can take place. Using them for anything else would
  5916. * be a serious bug, and as a result, they aren't even visible
  5917. * under any other configuration.
  5918. */
  5919. /**
  5920. * curr_task - return the current task for a given cpu.
  5921. * @cpu: the processor in question.
  5922. *
  5923. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5924. */
  5925. struct task_struct *curr_task(int cpu)
  5926. {
  5927. return cpu_curr(cpu);
  5928. }
  5929. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5930. #ifdef CONFIG_IA64
  5931. /**
  5932. * set_curr_task - set the current task for a given cpu.
  5933. * @cpu: the processor in question.
  5934. * @p: the task pointer to set.
  5935. *
  5936. * Description: This function must only be used when non-maskable interrupts
  5937. * are serviced on a separate stack. It allows the architecture to switch the
  5938. * notion of the current task on a cpu in a non-blocking manner. This function
  5939. * must be called with all CPU's synchronized, and interrupts disabled, the
  5940. * and caller must save the original value of the current task (see
  5941. * curr_task() above) and restore that value before reenabling interrupts and
  5942. * re-starting the system.
  5943. *
  5944. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5945. */
  5946. void set_curr_task(int cpu, struct task_struct *p)
  5947. {
  5948. cpu_curr(cpu) = p;
  5949. }
  5950. #endif
  5951. #ifdef CONFIG_RT_GROUP_SCHED
  5952. #else /* !CONFIG_RT_GROUP_SCHED */
  5953. #endif /* CONFIG_RT_GROUP_SCHED */
  5954. #ifdef CONFIG_CGROUP_SCHED
  5955. /* task_group_lock serializes the addition/removal of task groups */
  5956. static DEFINE_SPINLOCK(task_group_lock);
  5957. static void free_sched_group(struct task_group *tg)
  5958. {
  5959. free_fair_sched_group(tg);
  5960. free_rt_sched_group(tg);
  5961. autogroup_free(tg);
  5962. kfree(tg);
  5963. }
  5964. /* allocate runqueue etc for a new task group */
  5965. struct task_group *sched_create_group(struct task_group *parent)
  5966. {
  5967. struct task_group *tg;
  5968. unsigned long flags;
  5969. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5970. if (!tg)
  5971. return ERR_PTR(-ENOMEM);
  5972. if (!alloc_fair_sched_group(tg, parent))
  5973. goto err;
  5974. if (!alloc_rt_sched_group(tg, parent))
  5975. goto err;
  5976. spin_lock_irqsave(&task_group_lock, flags);
  5977. list_add_rcu(&tg->list, &task_groups);
  5978. WARN_ON(!parent); /* root should already exist */
  5979. tg->parent = parent;
  5980. INIT_LIST_HEAD(&tg->children);
  5981. list_add_rcu(&tg->siblings, &parent->children);
  5982. spin_unlock_irqrestore(&task_group_lock, flags);
  5983. return tg;
  5984. err:
  5985. free_sched_group(tg);
  5986. return ERR_PTR(-ENOMEM);
  5987. }
  5988. /* rcu callback to free various structures associated with a task group */
  5989. static void free_sched_group_rcu(struct rcu_head *rhp)
  5990. {
  5991. /* now it should be safe to free those cfs_rqs */
  5992. free_sched_group(container_of(rhp, struct task_group, rcu));
  5993. }
  5994. /* Destroy runqueue etc associated with a task group */
  5995. void sched_destroy_group(struct task_group *tg)
  5996. {
  5997. unsigned long flags;
  5998. int i;
  5999. /* end participation in shares distribution */
  6000. for_each_possible_cpu(i)
  6001. unregister_fair_sched_group(tg, i);
  6002. spin_lock_irqsave(&task_group_lock, flags);
  6003. list_del_rcu(&tg->list);
  6004. list_del_rcu(&tg->siblings);
  6005. spin_unlock_irqrestore(&task_group_lock, flags);
  6006. /* wait for possible concurrent references to cfs_rqs complete */
  6007. call_rcu(&tg->rcu, free_sched_group_rcu);
  6008. }
  6009. /* change task's runqueue when it moves between groups.
  6010. * The caller of this function should have put the task in its new group
  6011. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6012. * reflect its new group.
  6013. */
  6014. void sched_move_task(struct task_struct *tsk)
  6015. {
  6016. int on_rq, running;
  6017. unsigned long flags;
  6018. struct rq *rq;
  6019. rq = task_rq_lock(tsk, &flags);
  6020. running = task_current(rq, tsk);
  6021. on_rq = tsk->on_rq;
  6022. if (on_rq)
  6023. dequeue_task(rq, tsk, 0);
  6024. if (unlikely(running))
  6025. tsk->sched_class->put_prev_task(rq, tsk);
  6026. #ifdef CONFIG_FAIR_GROUP_SCHED
  6027. if (tsk->sched_class->task_move_group)
  6028. tsk->sched_class->task_move_group(tsk, on_rq);
  6029. else
  6030. #endif
  6031. set_task_rq(tsk, task_cpu(tsk));
  6032. if (unlikely(running))
  6033. tsk->sched_class->set_curr_task(rq);
  6034. if (on_rq)
  6035. enqueue_task(rq, tsk, 0);
  6036. task_rq_unlock(rq, tsk, &flags);
  6037. }
  6038. #endif /* CONFIG_CGROUP_SCHED */
  6039. #ifdef CONFIG_FAIR_GROUP_SCHED
  6040. #endif
  6041. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6042. static unsigned long to_ratio(u64 period, u64 runtime)
  6043. {
  6044. if (runtime == RUNTIME_INF)
  6045. return 1ULL << 20;
  6046. return div64_u64(runtime << 20, period);
  6047. }
  6048. #endif
  6049. #ifdef CONFIG_RT_GROUP_SCHED
  6050. /*
  6051. * Ensure that the real time constraints are schedulable.
  6052. */
  6053. static DEFINE_MUTEX(rt_constraints_mutex);
  6054. /* Must be called with tasklist_lock held */
  6055. static inline int tg_has_rt_tasks(struct task_group *tg)
  6056. {
  6057. struct task_struct *g, *p;
  6058. do_each_thread(g, p) {
  6059. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6060. return 1;
  6061. } while_each_thread(g, p);
  6062. return 0;
  6063. }
  6064. struct rt_schedulable_data {
  6065. struct task_group *tg;
  6066. u64 rt_period;
  6067. u64 rt_runtime;
  6068. };
  6069. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6070. {
  6071. struct rt_schedulable_data *d = data;
  6072. struct task_group *child;
  6073. unsigned long total, sum = 0;
  6074. u64 period, runtime;
  6075. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6076. runtime = tg->rt_bandwidth.rt_runtime;
  6077. if (tg == d->tg) {
  6078. period = d->rt_period;
  6079. runtime = d->rt_runtime;
  6080. }
  6081. /*
  6082. * Cannot have more runtime than the period.
  6083. */
  6084. if (runtime > period && runtime != RUNTIME_INF)
  6085. return -EINVAL;
  6086. /*
  6087. * Ensure we don't starve existing RT tasks.
  6088. */
  6089. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6090. return -EBUSY;
  6091. total = to_ratio(period, runtime);
  6092. /*
  6093. * Nobody can have more than the global setting allows.
  6094. */
  6095. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6096. return -EINVAL;
  6097. /*
  6098. * The sum of our children's runtime should not exceed our own.
  6099. */
  6100. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6101. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6102. runtime = child->rt_bandwidth.rt_runtime;
  6103. if (child == d->tg) {
  6104. period = d->rt_period;
  6105. runtime = d->rt_runtime;
  6106. }
  6107. sum += to_ratio(period, runtime);
  6108. }
  6109. if (sum > total)
  6110. return -EINVAL;
  6111. return 0;
  6112. }
  6113. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6114. {
  6115. int ret;
  6116. struct rt_schedulable_data data = {
  6117. .tg = tg,
  6118. .rt_period = period,
  6119. .rt_runtime = runtime,
  6120. };
  6121. rcu_read_lock();
  6122. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6123. rcu_read_unlock();
  6124. return ret;
  6125. }
  6126. static int tg_set_rt_bandwidth(struct task_group *tg,
  6127. u64 rt_period, u64 rt_runtime)
  6128. {
  6129. int i, err = 0;
  6130. mutex_lock(&rt_constraints_mutex);
  6131. read_lock(&tasklist_lock);
  6132. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6133. if (err)
  6134. goto unlock;
  6135. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6136. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6137. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6138. for_each_possible_cpu(i) {
  6139. struct rt_rq *rt_rq = tg->rt_rq[i];
  6140. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6141. rt_rq->rt_runtime = rt_runtime;
  6142. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6143. }
  6144. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6145. unlock:
  6146. read_unlock(&tasklist_lock);
  6147. mutex_unlock(&rt_constraints_mutex);
  6148. return err;
  6149. }
  6150. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6151. {
  6152. u64 rt_runtime, rt_period;
  6153. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6154. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6155. if (rt_runtime_us < 0)
  6156. rt_runtime = RUNTIME_INF;
  6157. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6158. }
  6159. long sched_group_rt_runtime(struct task_group *tg)
  6160. {
  6161. u64 rt_runtime_us;
  6162. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6163. return -1;
  6164. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6165. do_div(rt_runtime_us, NSEC_PER_USEC);
  6166. return rt_runtime_us;
  6167. }
  6168. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6169. {
  6170. u64 rt_runtime, rt_period;
  6171. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6172. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6173. if (rt_period == 0)
  6174. return -EINVAL;
  6175. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6176. }
  6177. long sched_group_rt_period(struct task_group *tg)
  6178. {
  6179. u64 rt_period_us;
  6180. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6181. do_div(rt_period_us, NSEC_PER_USEC);
  6182. return rt_period_us;
  6183. }
  6184. static int sched_rt_global_constraints(void)
  6185. {
  6186. u64 runtime, period;
  6187. int ret = 0;
  6188. if (sysctl_sched_rt_period <= 0)
  6189. return -EINVAL;
  6190. runtime = global_rt_runtime();
  6191. period = global_rt_period();
  6192. /*
  6193. * Sanity check on the sysctl variables.
  6194. */
  6195. if (runtime > period && runtime != RUNTIME_INF)
  6196. return -EINVAL;
  6197. mutex_lock(&rt_constraints_mutex);
  6198. read_lock(&tasklist_lock);
  6199. ret = __rt_schedulable(NULL, 0, 0);
  6200. read_unlock(&tasklist_lock);
  6201. mutex_unlock(&rt_constraints_mutex);
  6202. return ret;
  6203. }
  6204. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6205. {
  6206. /* Don't accept realtime tasks when there is no way for them to run */
  6207. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6208. return 0;
  6209. return 1;
  6210. }
  6211. #else /* !CONFIG_RT_GROUP_SCHED */
  6212. static int sched_rt_global_constraints(void)
  6213. {
  6214. unsigned long flags;
  6215. int i;
  6216. if (sysctl_sched_rt_period <= 0)
  6217. return -EINVAL;
  6218. /*
  6219. * There's always some RT tasks in the root group
  6220. * -- migration, kstopmachine etc..
  6221. */
  6222. if (sysctl_sched_rt_runtime == 0)
  6223. return -EBUSY;
  6224. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6225. for_each_possible_cpu(i) {
  6226. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6227. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6228. rt_rq->rt_runtime = global_rt_runtime();
  6229. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6230. }
  6231. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6232. return 0;
  6233. }
  6234. #endif /* CONFIG_RT_GROUP_SCHED */
  6235. int sched_rt_handler(struct ctl_table *table, int write,
  6236. void __user *buffer, size_t *lenp,
  6237. loff_t *ppos)
  6238. {
  6239. int ret;
  6240. int old_period, old_runtime;
  6241. static DEFINE_MUTEX(mutex);
  6242. mutex_lock(&mutex);
  6243. old_period = sysctl_sched_rt_period;
  6244. old_runtime = sysctl_sched_rt_runtime;
  6245. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6246. if (!ret && write) {
  6247. ret = sched_rt_global_constraints();
  6248. if (ret) {
  6249. sysctl_sched_rt_period = old_period;
  6250. sysctl_sched_rt_runtime = old_runtime;
  6251. } else {
  6252. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6253. def_rt_bandwidth.rt_period =
  6254. ns_to_ktime(global_rt_period());
  6255. }
  6256. }
  6257. mutex_unlock(&mutex);
  6258. return ret;
  6259. }
  6260. #ifdef CONFIG_CGROUP_SCHED
  6261. /* return corresponding task_group object of a cgroup */
  6262. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6263. {
  6264. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6265. struct task_group, css);
  6266. }
  6267. static struct cgroup_subsys_state *
  6268. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6269. {
  6270. struct task_group *tg, *parent;
  6271. if (!cgrp->parent) {
  6272. /* This is early initialization for the top cgroup */
  6273. return &root_task_group.css;
  6274. }
  6275. parent = cgroup_tg(cgrp->parent);
  6276. tg = sched_create_group(parent);
  6277. if (IS_ERR(tg))
  6278. return ERR_PTR(-ENOMEM);
  6279. return &tg->css;
  6280. }
  6281. static void
  6282. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6283. {
  6284. struct task_group *tg = cgroup_tg(cgrp);
  6285. sched_destroy_group(tg);
  6286. }
  6287. static int
  6288. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  6289. {
  6290. #ifdef CONFIG_RT_GROUP_SCHED
  6291. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  6292. return -EINVAL;
  6293. #else
  6294. /* We don't support RT-tasks being in separate groups */
  6295. if (tsk->sched_class != &fair_sched_class)
  6296. return -EINVAL;
  6297. #endif
  6298. return 0;
  6299. }
  6300. static void
  6301. cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  6302. {
  6303. sched_move_task(tsk);
  6304. }
  6305. static void
  6306. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6307. struct cgroup *old_cgrp, struct task_struct *task)
  6308. {
  6309. /*
  6310. * cgroup_exit() is called in the copy_process() failure path.
  6311. * Ignore this case since the task hasn't ran yet, this avoids
  6312. * trying to poke a half freed task state from generic code.
  6313. */
  6314. if (!(task->flags & PF_EXITING))
  6315. return;
  6316. sched_move_task(task);
  6317. }
  6318. #ifdef CONFIG_FAIR_GROUP_SCHED
  6319. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6320. u64 shareval)
  6321. {
  6322. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6323. }
  6324. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6325. {
  6326. struct task_group *tg = cgroup_tg(cgrp);
  6327. return (u64) scale_load_down(tg->shares);
  6328. }
  6329. #ifdef CONFIG_CFS_BANDWIDTH
  6330. static DEFINE_MUTEX(cfs_constraints_mutex);
  6331. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6332. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6333. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6334. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6335. {
  6336. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6337. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6338. if (tg == &root_task_group)
  6339. return -EINVAL;
  6340. /*
  6341. * Ensure we have at some amount of bandwidth every period. This is
  6342. * to prevent reaching a state of large arrears when throttled via
  6343. * entity_tick() resulting in prolonged exit starvation.
  6344. */
  6345. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6346. return -EINVAL;
  6347. /*
  6348. * Likewise, bound things on the otherside by preventing insane quota
  6349. * periods. This also allows us to normalize in computing quota
  6350. * feasibility.
  6351. */
  6352. if (period > max_cfs_quota_period)
  6353. return -EINVAL;
  6354. mutex_lock(&cfs_constraints_mutex);
  6355. ret = __cfs_schedulable(tg, period, quota);
  6356. if (ret)
  6357. goto out_unlock;
  6358. runtime_enabled = quota != RUNTIME_INF;
  6359. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6360. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6361. raw_spin_lock_irq(&cfs_b->lock);
  6362. cfs_b->period = ns_to_ktime(period);
  6363. cfs_b->quota = quota;
  6364. __refill_cfs_bandwidth_runtime(cfs_b);
  6365. /* restart the period timer (if active) to handle new period expiry */
  6366. if (runtime_enabled && cfs_b->timer_active) {
  6367. /* force a reprogram */
  6368. cfs_b->timer_active = 0;
  6369. __start_cfs_bandwidth(cfs_b);
  6370. }
  6371. raw_spin_unlock_irq(&cfs_b->lock);
  6372. for_each_possible_cpu(i) {
  6373. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6374. struct rq *rq = cfs_rq->rq;
  6375. raw_spin_lock_irq(&rq->lock);
  6376. cfs_rq->runtime_enabled = runtime_enabled;
  6377. cfs_rq->runtime_remaining = 0;
  6378. if (cfs_rq->throttled)
  6379. unthrottle_cfs_rq(cfs_rq);
  6380. raw_spin_unlock_irq(&rq->lock);
  6381. }
  6382. out_unlock:
  6383. mutex_unlock(&cfs_constraints_mutex);
  6384. return ret;
  6385. }
  6386. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6387. {
  6388. u64 quota, period;
  6389. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6390. if (cfs_quota_us < 0)
  6391. quota = RUNTIME_INF;
  6392. else
  6393. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6394. return tg_set_cfs_bandwidth(tg, period, quota);
  6395. }
  6396. long tg_get_cfs_quota(struct task_group *tg)
  6397. {
  6398. u64 quota_us;
  6399. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6400. return -1;
  6401. quota_us = tg->cfs_bandwidth.quota;
  6402. do_div(quota_us, NSEC_PER_USEC);
  6403. return quota_us;
  6404. }
  6405. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6406. {
  6407. u64 quota, period;
  6408. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6409. quota = tg->cfs_bandwidth.quota;
  6410. if (period <= 0)
  6411. return -EINVAL;
  6412. return tg_set_cfs_bandwidth(tg, period, quota);
  6413. }
  6414. long tg_get_cfs_period(struct task_group *tg)
  6415. {
  6416. u64 cfs_period_us;
  6417. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6418. do_div(cfs_period_us, NSEC_PER_USEC);
  6419. return cfs_period_us;
  6420. }
  6421. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6422. {
  6423. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6424. }
  6425. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6426. s64 cfs_quota_us)
  6427. {
  6428. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6429. }
  6430. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6431. {
  6432. return tg_get_cfs_period(cgroup_tg(cgrp));
  6433. }
  6434. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6435. u64 cfs_period_us)
  6436. {
  6437. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6438. }
  6439. struct cfs_schedulable_data {
  6440. struct task_group *tg;
  6441. u64 period, quota;
  6442. };
  6443. /*
  6444. * normalize group quota/period to be quota/max_period
  6445. * note: units are usecs
  6446. */
  6447. static u64 normalize_cfs_quota(struct task_group *tg,
  6448. struct cfs_schedulable_data *d)
  6449. {
  6450. u64 quota, period;
  6451. if (tg == d->tg) {
  6452. period = d->period;
  6453. quota = d->quota;
  6454. } else {
  6455. period = tg_get_cfs_period(tg);
  6456. quota = tg_get_cfs_quota(tg);
  6457. }
  6458. /* note: these should typically be equivalent */
  6459. if (quota == RUNTIME_INF || quota == -1)
  6460. return RUNTIME_INF;
  6461. return to_ratio(period, quota);
  6462. }
  6463. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6464. {
  6465. struct cfs_schedulable_data *d = data;
  6466. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6467. s64 quota = 0, parent_quota = -1;
  6468. if (!tg->parent) {
  6469. quota = RUNTIME_INF;
  6470. } else {
  6471. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6472. quota = normalize_cfs_quota(tg, d);
  6473. parent_quota = parent_b->hierarchal_quota;
  6474. /*
  6475. * ensure max(child_quota) <= parent_quota, inherit when no
  6476. * limit is set
  6477. */
  6478. if (quota == RUNTIME_INF)
  6479. quota = parent_quota;
  6480. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6481. return -EINVAL;
  6482. }
  6483. cfs_b->hierarchal_quota = quota;
  6484. return 0;
  6485. }
  6486. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6487. {
  6488. int ret;
  6489. struct cfs_schedulable_data data = {
  6490. .tg = tg,
  6491. .period = period,
  6492. .quota = quota,
  6493. };
  6494. if (quota != RUNTIME_INF) {
  6495. do_div(data.period, NSEC_PER_USEC);
  6496. do_div(data.quota, NSEC_PER_USEC);
  6497. }
  6498. rcu_read_lock();
  6499. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6500. rcu_read_unlock();
  6501. return ret;
  6502. }
  6503. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6504. struct cgroup_map_cb *cb)
  6505. {
  6506. struct task_group *tg = cgroup_tg(cgrp);
  6507. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6508. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6509. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6510. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6511. return 0;
  6512. }
  6513. #endif /* CONFIG_CFS_BANDWIDTH */
  6514. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6515. #ifdef CONFIG_RT_GROUP_SCHED
  6516. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6517. s64 val)
  6518. {
  6519. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6520. }
  6521. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6522. {
  6523. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6524. }
  6525. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6526. u64 rt_period_us)
  6527. {
  6528. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6529. }
  6530. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6531. {
  6532. return sched_group_rt_period(cgroup_tg(cgrp));
  6533. }
  6534. #endif /* CONFIG_RT_GROUP_SCHED */
  6535. static struct cftype cpu_files[] = {
  6536. #ifdef CONFIG_FAIR_GROUP_SCHED
  6537. {
  6538. .name = "shares",
  6539. .read_u64 = cpu_shares_read_u64,
  6540. .write_u64 = cpu_shares_write_u64,
  6541. },
  6542. #endif
  6543. #ifdef CONFIG_CFS_BANDWIDTH
  6544. {
  6545. .name = "cfs_quota_us",
  6546. .read_s64 = cpu_cfs_quota_read_s64,
  6547. .write_s64 = cpu_cfs_quota_write_s64,
  6548. },
  6549. {
  6550. .name = "cfs_period_us",
  6551. .read_u64 = cpu_cfs_period_read_u64,
  6552. .write_u64 = cpu_cfs_period_write_u64,
  6553. },
  6554. {
  6555. .name = "stat",
  6556. .read_map = cpu_stats_show,
  6557. },
  6558. #endif
  6559. #ifdef CONFIG_RT_GROUP_SCHED
  6560. {
  6561. .name = "rt_runtime_us",
  6562. .read_s64 = cpu_rt_runtime_read,
  6563. .write_s64 = cpu_rt_runtime_write,
  6564. },
  6565. {
  6566. .name = "rt_period_us",
  6567. .read_u64 = cpu_rt_period_read_uint,
  6568. .write_u64 = cpu_rt_period_write_uint,
  6569. },
  6570. #endif
  6571. };
  6572. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6573. {
  6574. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6575. }
  6576. struct cgroup_subsys cpu_cgroup_subsys = {
  6577. .name = "cpu",
  6578. .create = cpu_cgroup_create,
  6579. .destroy = cpu_cgroup_destroy,
  6580. .can_attach_task = cpu_cgroup_can_attach_task,
  6581. .attach_task = cpu_cgroup_attach_task,
  6582. .exit = cpu_cgroup_exit,
  6583. .populate = cpu_cgroup_populate,
  6584. .subsys_id = cpu_cgroup_subsys_id,
  6585. .early_init = 1,
  6586. };
  6587. #endif /* CONFIG_CGROUP_SCHED */
  6588. #ifdef CONFIG_CGROUP_CPUACCT
  6589. /*
  6590. * CPU accounting code for task groups.
  6591. *
  6592. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6593. * (balbir@in.ibm.com).
  6594. */
  6595. /* track cpu usage of a group of tasks and its child groups */
  6596. struct cpuacct {
  6597. struct cgroup_subsys_state css;
  6598. /* cpuusage holds pointer to a u64-type object on every cpu */
  6599. u64 __percpu *cpuusage;
  6600. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  6601. struct cpuacct *parent;
  6602. };
  6603. struct cgroup_subsys cpuacct_subsys;
  6604. /* return cpu accounting group corresponding to this container */
  6605. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  6606. {
  6607. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  6608. struct cpuacct, css);
  6609. }
  6610. /* return cpu accounting group to which this task belongs */
  6611. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6612. {
  6613. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6614. struct cpuacct, css);
  6615. }
  6616. /* create a new cpu accounting group */
  6617. static struct cgroup_subsys_state *cpuacct_create(
  6618. struct cgroup_subsys *ss, struct cgroup *cgrp)
  6619. {
  6620. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6621. int i;
  6622. if (!ca)
  6623. goto out;
  6624. ca->cpuusage = alloc_percpu(u64);
  6625. if (!ca->cpuusage)
  6626. goto out_free_ca;
  6627. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  6628. if (percpu_counter_init(&ca->cpustat[i], 0))
  6629. goto out_free_counters;
  6630. if (cgrp->parent)
  6631. ca->parent = cgroup_ca(cgrp->parent);
  6632. return &ca->css;
  6633. out_free_counters:
  6634. while (--i >= 0)
  6635. percpu_counter_destroy(&ca->cpustat[i]);
  6636. free_percpu(ca->cpuusage);
  6637. out_free_ca:
  6638. kfree(ca);
  6639. out:
  6640. return ERR_PTR(-ENOMEM);
  6641. }
  6642. /* destroy an existing cpu accounting group */
  6643. static void
  6644. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6645. {
  6646. struct cpuacct *ca = cgroup_ca(cgrp);
  6647. int i;
  6648. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  6649. percpu_counter_destroy(&ca->cpustat[i]);
  6650. free_percpu(ca->cpuusage);
  6651. kfree(ca);
  6652. }
  6653. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6654. {
  6655. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6656. u64 data;
  6657. #ifndef CONFIG_64BIT
  6658. /*
  6659. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6660. */
  6661. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6662. data = *cpuusage;
  6663. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6664. #else
  6665. data = *cpuusage;
  6666. #endif
  6667. return data;
  6668. }
  6669. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6670. {
  6671. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6672. #ifndef CONFIG_64BIT
  6673. /*
  6674. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6675. */
  6676. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6677. *cpuusage = val;
  6678. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6679. #else
  6680. *cpuusage = val;
  6681. #endif
  6682. }
  6683. /* return total cpu usage (in nanoseconds) of a group */
  6684. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6685. {
  6686. struct cpuacct *ca = cgroup_ca(cgrp);
  6687. u64 totalcpuusage = 0;
  6688. int i;
  6689. for_each_present_cpu(i)
  6690. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6691. return totalcpuusage;
  6692. }
  6693. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6694. u64 reset)
  6695. {
  6696. struct cpuacct *ca = cgroup_ca(cgrp);
  6697. int err = 0;
  6698. int i;
  6699. if (reset) {
  6700. err = -EINVAL;
  6701. goto out;
  6702. }
  6703. for_each_present_cpu(i)
  6704. cpuacct_cpuusage_write(ca, i, 0);
  6705. out:
  6706. return err;
  6707. }
  6708. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6709. struct seq_file *m)
  6710. {
  6711. struct cpuacct *ca = cgroup_ca(cgroup);
  6712. u64 percpu;
  6713. int i;
  6714. for_each_present_cpu(i) {
  6715. percpu = cpuacct_cpuusage_read(ca, i);
  6716. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6717. }
  6718. seq_printf(m, "\n");
  6719. return 0;
  6720. }
  6721. static const char *cpuacct_stat_desc[] = {
  6722. [CPUACCT_STAT_USER] = "user",
  6723. [CPUACCT_STAT_SYSTEM] = "system",
  6724. };
  6725. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6726. struct cgroup_map_cb *cb)
  6727. {
  6728. struct cpuacct *ca = cgroup_ca(cgrp);
  6729. int i;
  6730. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  6731. s64 val = percpu_counter_read(&ca->cpustat[i]);
  6732. val = cputime64_to_clock_t(val);
  6733. cb->fill(cb, cpuacct_stat_desc[i], val);
  6734. }
  6735. return 0;
  6736. }
  6737. static struct cftype files[] = {
  6738. {
  6739. .name = "usage",
  6740. .read_u64 = cpuusage_read,
  6741. .write_u64 = cpuusage_write,
  6742. },
  6743. {
  6744. .name = "usage_percpu",
  6745. .read_seq_string = cpuacct_percpu_seq_read,
  6746. },
  6747. {
  6748. .name = "stat",
  6749. .read_map = cpuacct_stats_show,
  6750. },
  6751. };
  6752. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6753. {
  6754. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  6755. }
  6756. /*
  6757. * charge this task's execution time to its accounting group.
  6758. *
  6759. * called with rq->lock held.
  6760. */
  6761. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6762. {
  6763. struct cpuacct *ca;
  6764. int cpu;
  6765. if (unlikely(!cpuacct_subsys.active))
  6766. return;
  6767. cpu = task_cpu(tsk);
  6768. rcu_read_lock();
  6769. ca = task_ca(tsk);
  6770. for (; ca; ca = ca->parent) {
  6771. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6772. *cpuusage += cputime;
  6773. }
  6774. rcu_read_unlock();
  6775. }
  6776. /*
  6777. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  6778. * in cputime_t units. As a result, cpuacct_update_stats calls
  6779. * percpu_counter_add with values large enough to always overflow the
  6780. * per cpu batch limit causing bad SMP scalability.
  6781. *
  6782. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  6783. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  6784. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  6785. */
  6786. #ifdef CONFIG_SMP
  6787. #define CPUACCT_BATCH \
  6788. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  6789. #else
  6790. #define CPUACCT_BATCH 0
  6791. #endif
  6792. /*
  6793. * Charge the system/user time to the task's accounting group.
  6794. */
  6795. void cpuacct_update_stats(struct task_struct *tsk,
  6796. enum cpuacct_stat_index idx, cputime_t val)
  6797. {
  6798. struct cpuacct *ca;
  6799. int batch = CPUACCT_BATCH;
  6800. if (unlikely(!cpuacct_subsys.active))
  6801. return;
  6802. rcu_read_lock();
  6803. ca = task_ca(tsk);
  6804. do {
  6805. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  6806. ca = ca->parent;
  6807. } while (ca);
  6808. rcu_read_unlock();
  6809. }
  6810. struct cgroup_subsys cpuacct_subsys = {
  6811. .name = "cpuacct",
  6812. .create = cpuacct_create,
  6813. .destroy = cpuacct_destroy,
  6814. .populate = cpuacct_populate,
  6815. .subsys_id = cpuacct_subsys_id,
  6816. };
  6817. #endif /* CONFIG_CGROUP_CPUACCT */