amd64_edac.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
  22. * later.
  23. */
  24. static int ddr2_dbam_revCG[] = {
  25. [0] = 32,
  26. [1] = 64,
  27. [2] = 128,
  28. [3] = 256,
  29. [4] = 512,
  30. [5] = 1024,
  31. [6] = 2048,
  32. };
  33. static int ddr2_dbam_revD[] = {
  34. [0] = 32,
  35. [1] = 64,
  36. [2 ... 3] = 128,
  37. [4] = 256,
  38. [5] = 512,
  39. [6] = 256,
  40. [7] = 512,
  41. [8 ... 9] = 1024,
  42. [10] = 2048,
  43. };
  44. static int ddr2_dbam[] = { [0] = 128,
  45. [1] = 256,
  46. [2 ... 4] = 512,
  47. [5 ... 6] = 1024,
  48. [7 ... 8] = 2048,
  49. [9 ... 10] = 4096,
  50. [11] = 8192,
  51. };
  52. static int ddr3_dbam[] = { [0] = -1,
  53. [1] = 256,
  54. [2] = 512,
  55. [3 ... 4] = -1,
  56. [5 ... 6] = 1024,
  57. [7 ... 8] = 2048,
  58. [9 ... 10] = 4096,
  59. [11] = 8192,
  60. };
  61. /*
  62. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  63. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  64. * or higher value'.
  65. *
  66. *FIXME: Produce a better mapping/linearisation.
  67. */
  68. struct scrubrate {
  69. u32 scrubval; /* bit pattern for scrub rate */
  70. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  71. } scrubrates[] = {
  72. { 0x01, 1600000000UL},
  73. { 0x02, 800000000UL},
  74. { 0x03, 400000000UL},
  75. { 0x04, 200000000UL},
  76. { 0x05, 100000000UL},
  77. { 0x06, 50000000UL},
  78. { 0x07, 25000000UL},
  79. { 0x08, 12284069UL},
  80. { 0x09, 6274509UL},
  81. { 0x0A, 3121951UL},
  82. { 0x0B, 1560975UL},
  83. { 0x0C, 781440UL},
  84. { 0x0D, 390720UL},
  85. { 0x0E, 195300UL},
  86. { 0x0F, 97650UL},
  87. { 0x10, 48854UL},
  88. { 0x11, 24427UL},
  89. { 0x12, 12213UL},
  90. { 0x13, 6101UL},
  91. { 0x14, 3051UL},
  92. { 0x15, 1523UL},
  93. { 0x16, 761UL},
  94. { 0x00, 0UL}, /* scrubbing off */
  95. };
  96. /*
  97. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  98. * hardware and can involve L2 cache, dcache as well as the main memory. With
  99. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  100. * functionality.
  101. *
  102. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  103. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  104. * bytes/sec for the setting.
  105. *
  106. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  107. * other archs, we might not have access to the caches directly.
  108. */
  109. /*
  110. * scan the scrub rate mapping table for a close or matching bandwidth value to
  111. * issue. If requested is too big, then use last maximum value found.
  112. */
  113. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  114. {
  115. u32 scrubval;
  116. int i;
  117. /*
  118. * map the configured rate (new_bw) to a value specific to the AMD64
  119. * memory controller and apply to register. Search for the first
  120. * bandwidth entry that is greater or equal than the setting requested
  121. * and program that. If at last entry, turn off DRAM scrubbing.
  122. */
  123. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  124. /*
  125. * skip scrub rates which aren't recommended
  126. * (see F10 BKDG, F3x58)
  127. */
  128. if (scrubrates[i].scrubval < min_rate)
  129. continue;
  130. if (scrubrates[i].bandwidth <= new_bw)
  131. break;
  132. /*
  133. * if no suitable bandwidth found, turn off DRAM scrubbing
  134. * entirely by falling back to the last element in the
  135. * scrubrates array.
  136. */
  137. }
  138. scrubval = scrubrates[i].scrubval;
  139. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  140. if (scrubval)
  141. return scrubrates[i].bandwidth;
  142. return 0;
  143. }
  144. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  145. {
  146. struct amd64_pvt *pvt = mci->pvt_info;
  147. return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
  148. }
  149. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  150. {
  151. struct amd64_pvt *pvt = mci->pvt_info;
  152. u32 scrubval = 0;
  153. int i, retval = -EINVAL;
  154. amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
  155. scrubval = scrubval & 0x001F;
  156. amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
  157. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  158. if (scrubrates[i].scrubval == scrubval) {
  159. retval = scrubrates[i].bandwidth;
  160. break;
  161. }
  162. }
  163. return retval;
  164. }
  165. /* Map from a CSROW entry to the mask entry that operates on it */
  166. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  167. {
  168. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
  169. return csrow;
  170. else
  171. return csrow >> 1;
  172. }
  173. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  174. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  175. {
  176. if (dct == 0)
  177. return pvt->dcsb0[csrow];
  178. else
  179. return pvt->dcsb1[csrow];
  180. }
  181. /*
  182. * Return the 'mask' address the i'th CS entry. This function is needed because
  183. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  184. * different.
  185. */
  186. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  187. {
  188. if (dct == 0)
  189. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  190. else
  191. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  192. }
  193. /*
  194. * In *base and *limit, pass back the full 40-bit base and limit physical
  195. * addresses for the node given by node_id. This information is obtained from
  196. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  197. * base and limit addresses are of type SysAddr, as defined at the start of
  198. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  199. * in the address range they represent.
  200. */
  201. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  202. u64 *base, u64 *limit)
  203. {
  204. *base = pvt->dram_base[node_id];
  205. *limit = pvt->dram_limit[node_id];
  206. }
  207. /*
  208. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  209. * with node_id
  210. */
  211. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  212. u64 sys_addr, int node_id)
  213. {
  214. u64 base, limit, addr;
  215. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  216. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  217. * all ones if the most significant implemented address bit is 1.
  218. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  219. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  220. * Application Programming.
  221. */
  222. addr = sys_addr & 0x000000ffffffffffull;
  223. return (addr >= base) && (addr <= limit);
  224. }
  225. /*
  226. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  227. * mem_ctl_info structure for the node that the SysAddr maps to.
  228. *
  229. * On failure, return NULL.
  230. */
  231. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  232. u64 sys_addr)
  233. {
  234. struct amd64_pvt *pvt;
  235. int node_id;
  236. u32 intlv_en, bits;
  237. /*
  238. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  239. * 3.4.4.2) registers to map the SysAddr to a node ID.
  240. */
  241. pvt = mci->pvt_info;
  242. /*
  243. * The value of this field should be the same for all DRAM Base
  244. * registers. Therefore we arbitrarily choose to read it from the
  245. * register for node 0.
  246. */
  247. intlv_en = pvt->dram_IntlvEn[0];
  248. if (intlv_en == 0) {
  249. for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
  250. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  251. goto found;
  252. }
  253. goto err_no_match;
  254. }
  255. if (unlikely((intlv_en != 0x01) &&
  256. (intlv_en != 0x03) &&
  257. (intlv_en != 0x07))) {
  258. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  259. return NULL;
  260. }
  261. bits = (((u32) sys_addr) >> 12) & intlv_en;
  262. for (node_id = 0; ; ) {
  263. if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
  264. break; /* intlv_sel field matches */
  265. if (++node_id >= DRAM_REG_COUNT)
  266. goto err_no_match;
  267. }
  268. /* sanity test for sys_addr */
  269. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  270. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  271. "range for node %d with node interleaving enabled.\n",
  272. __func__, sys_addr, node_id);
  273. return NULL;
  274. }
  275. found:
  276. return edac_mc_find(node_id);
  277. err_no_match:
  278. debugf2("sys_addr 0x%lx doesn't match any node\n",
  279. (unsigned long)sys_addr);
  280. return NULL;
  281. }
  282. /*
  283. * Extract the DRAM CS base address from selected csrow register.
  284. */
  285. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  286. {
  287. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  288. pvt->dcs_shift;
  289. }
  290. /*
  291. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  292. */
  293. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  294. {
  295. u64 dcsm_bits, other_bits;
  296. u64 mask;
  297. /* Extract bits from DRAM CS Mask. */
  298. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  299. other_bits = pvt->dcsm_mask;
  300. other_bits = ~(other_bits << pvt->dcs_shift);
  301. /*
  302. * The extracted bits from DCSM belong in the spaces represented by
  303. * the cleared bits in other_bits.
  304. */
  305. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  306. return mask;
  307. }
  308. /*
  309. * @input_addr is an InputAddr associated with the node given by mci. Return the
  310. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  311. */
  312. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  313. {
  314. struct amd64_pvt *pvt;
  315. int csrow;
  316. u64 base, mask;
  317. pvt = mci->pvt_info;
  318. /*
  319. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  320. * base/mask register pair, test the condition shown near the start of
  321. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  322. */
  323. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  324. /* This DRAM chip select is disabled on this node */
  325. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  326. continue;
  327. base = base_from_dct_base(pvt, csrow);
  328. mask = ~mask_from_dct_mask(pvt, csrow);
  329. if ((input_addr & mask) == (base & mask)) {
  330. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  331. (unsigned long)input_addr, csrow,
  332. pvt->mc_node_id);
  333. return csrow;
  334. }
  335. }
  336. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  337. (unsigned long)input_addr, pvt->mc_node_id);
  338. return -1;
  339. }
  340. /*
  341. * Return the base value defined by the DRAM Base register for the node
  342. * represented by mci. This function returns the full 40-bit value despite the
  343. * fact that the register only stores bits 39-24 of the value. See section
  344. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  345. */
  346. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  347. {
  348. struct amd64_pvt *pvt = mci->pvt_info;
  349. return pvt->dram_base[pvt->mc_node_id];
  350. }
  351. /*
  352. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  353. * for the node represented by mci. Info is passed back in *hole_base,
  354. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  355. * info is invalid. Info may be invalid for either of the following reasons:
  356. *
  357. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  358. * Address Register does not exist.
  359. *
  360. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  361. * indicating that its contents are not valid.
  362. *
  363. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  364. * complete 32-bit values despite the fact that the bitfields in the DHAR
  365. * only represent bits 31-24 of the base and offset values.
  366. */
  367. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  368. u64 *hole_offset, u64 *hole_size)
  369. {
  370. struct amd64_pvt *pvt = mci->pvt_info;
  371. u64 base;
  372. /* only revE and later have the DRAM Hole Address Register */
  373. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  374. debugf1(" revision %d for node %d does not support DHAR\n",
  375. pvt->ext_model, pvt->mc_node_id);
  376. return 1;
  377. }
  378. /* only valid for Fam10h */
  379. if (boot_cpu_data.x86 == 0x10 &&
  380. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  381. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  382. return 1;
  383. }
  384. if ((pvt->dhar & DHAR_VALID) == 0) {
  385. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  386. pvt->mc_node_id);
  387. return 1;
  388. }
  389. /* This node has Memory Hoisting */
  390. /* +------------------+--------------------+--------------------+-----
  391. * | memory | DRAM hole | relocated |
  392. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  393. * | | | DRAM hole |
  394. * | | | [0x100000000, |
  395. * | | | (0x100000000+ |
  396. * | | | (0xffffffff-x))] |
  397. * +------------------+--------------------+--------------------+-----
  398. *
  399. * Above is a diagram of physical memory showing the DRAM hole and the
  400. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  401. * starts at address x (the base address) and extends through address
  402. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  403. * addresses in the hole so that they start at 0x100000000.
  404. */
  405. base = dhar_base(pvt->dhar);
  406. *hole_base = base;
  407. *hole_size = (0x1ull << 32) - base;
  408. if (boot_cpu_data.x86 > 0xf)
  409. *hole_offset = f10_dhar_offset(pvt->dhar);
  410. else
  411. *hole_offset = k8_dhar_offset(pvt->dhar);
  412. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  413. pvt->mc_node_id, (unsigned long)*hole_base,
  414. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  415. return 0;
  416. }
  417. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  418. /*
  419. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  420. * assumed that sys_addr maps to the node given by mci.
  421. *
  422. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  423. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  424. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  425. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  426. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  427. * These parts of the documentation are unclear. I interpret them as follows:
  428. *
  429. * When node n receives a SysAddr, it processes the SysAddr as follows:
  430. *
  431. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  432. * Limit registers for node n. If the SysAddr is not within the range
  433. * specified by the base and limit values, then node n ignores the Sysaddr
  434. * (since it does not map to node n). Otherwise continue to step 2 below.
  435. *
  436. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  437. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  438. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  439. * hole. If not, skip to step 3 below. Else get the value of the
  440. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  441. * offset defined by this value from the SysAddr.
  442. *
  443. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  444. * Base register for node n. To obtain the DramAddr, subtract the base
  445. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  446. */
  447. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  448. {
  449. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  450. int ret = 0;
  451. dram_base = get_dram_base(mci);
  452. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  453. &hole_size);
  454. if (!ret) {
  455. if ((sys_addr >= (1ull << 32)) &&
  456. (sys_addr < ((1ull << 32) + hole_size))) {
  457. /* use DHAR to translate SysAddr to DramAddr */
  458. dram_addr = sys_addr - hole_offset;
  459. debugf2("using DHAR to translate SysAddr 0x%lx to "
  460. "DramAddr 0x%lx\n",
  461. (unsigned long)sys_addr,
  462. (unsigned long)dram_addr);
  463. return dram_addr;
  464. }
  465. }
  466. /*
  467. * Translate the SysAddr to a DramAddr as shown near the start of
  468. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  469. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  470. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  471. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  472. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  473. * Programmer's Manual Volume 1 Application Programming.
  474. */
  475. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  476. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  477. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  478. (unsigned long)dram_addr);
  479. return dram_addr;
  480. }
  481. /*
  482. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  483. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  484. * for node interleaving.
  485. */
  486. static int num_node_interleave_bits(unsigned intlv_en)
  487. {
  488. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  489. int n;
  490. BUG_ON(intlv_en > 7);
  491. n = intlv_shift_table[intlv_en];
  492. return n;
  493. }
  494. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  495. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  496. {
  497. struct amd64_pvt *pvt;
  498. int intlv_shift;
  499. u64 input_addr;
  500. pvt = mci->pvt_info;
  501. /*
  502. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  503. * concerning translating a DramAddr to an InputAddr.
  504. */
  505. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  506. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  507. (dram_addr & 0xfff);
  508. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  509. intlv_shift, (unsigned long)dram_addr,
  510. (unsigned long)input_addr);
  511. return input_addr;
  512. }
  513. /*
  514. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  515. * assumed that @sys_addr maps to the node given by mci.
  516. */
  517. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  518. {
  519. u64 input_addr;
  520. input_addr =
  521. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  522. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  523. (unsigned long)sys_addr, (unsigned long)input_addr);
  524. return input_addr;
  525. }
  526. /*
  527. * @input_addr is an InputAddr associated with the node represented by mci.
  528. * Translate @input_addr to a DramAddr and return the result.
  529. */
  530. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  531. {
  532. struct amd64_pvt *pvt;
  533. int node_id, intlv_shift;
  534. u64 bits, dram_addr;
  535. u32 intlv_sel;
  536. /*
  537. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  538. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  539. * this procedure. When translating from a DramAddr to an InputAddr, the
  540. * bits used for node interleaving are discarded. Here we recover these
  541. * bits from the IntlvSel field of the DRAM Limit register (section
  542. * 3.4.4.2) for the node that input_addr is associated with.
  543. */
  544. pvt = mci->pvt_info;
  545. node_id = pvt->mc_node_id;
  546. BUG_ON((node_id < 0) || (node_id > 7));
  547. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  548. if (intlv_shift == 0) {
  549. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  550. "same value\n", (unsigned long)input_addr);
  551. return input_addr;
  552. }
  553. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  554. (input_addr & 0xfff);
  555. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  556. dram_addr = bits + (intlv_sel << 12);
  557. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  558. "(%d node interleave bits)\n", (unsigned long)input_addr,
  559. (unsigned long)dram_addr, intlv_shift);
  560. return dram_addr;
  561. }
  562. /*
  563. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  564. * @dram_addr to a SysAddr.
  565. */
  566. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  567. {
  568. struct amd64_pvt *pvt = mci->pvt_info;
  569. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  570. int ret = 0;
  571. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  572. &hole_size);
  573. if (!ret) {
  574. if ((dram_addr >= hole_base) &&
  575. (dram_addr < (hole_base + hole_size))) {
  576. sys_addr = dram_addr + hole_offset;
  577. debugf1("using DHAR to translate DramAddr 0x%lx to "
  578. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  579. (unsigned long)sys_addr);
  580. return sys_addr;
  581. }
  582. }
  583. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  584. sys_addr = dram_addr + base;
  585. /*
  586. * The sys_addr we have computed up to this point is a 40-bit value
  587. * because the k8 deals with 40-bit values. However, the value we are
  588. * supposed to return is a full 64-bit physical address. The AMD
  589. * x86-64 architecture specifies that the most significant implemented
  590. * address bit through bit 63 of a physical address must be either all
  591. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  592. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  593. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  594. * Programming.
  595. */
  596. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  597. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  598. pvt->mc_node_id, (unsigned long)dram_addr,
  599. (unsigned long)sys_addr);
  600. return sys_addr;
  601. }
  602. /*
  603. * @input_addr is an InputAddr associated with the node given by mci. Translate
  604. * @input_addr to a SysAddr.
  605. */
  606. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  607. u64 input_addr)
  608. {
  609. return dram_addr_to_sys_addr(mci,
  610. input_addr_to_dram_addr(mci, input_addr));
  611. }
  612. /*
  613. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  614. * Pass back these values in *input_addr_min and *input_addr_max.
  615. */
  616. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  617. u64 *input_addr_min, u64 *input_addr_max)
  618. {
  619. struct amd64_pvt *pvt;
  620. u64 base, mask;
  621. pvt = mci->pvt_info;
  622. BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
  623. base = base_from_dct_base(pvt, csrow);
  624. mask = mask_from_dct_mask(pvt, csrow);
  625. *input_addr_min = base & ~mask;
  626. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  627. }
  628. /* Map the Error address to a PAGE and PAGE OFFSET. */
  629. static inline void error_address_to_page_and_offset(u64 error_address,
  630. u32 *page, u32 *offset)
  631. {
  632. *page = (u32) (error_address >> PAGE_SHIFT);
  633. *offset = ((u32) error_address) & ~PAGE_MASK;
  634. }
  635. /*
  636. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  637. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  638. * of a node that detected an ECC memory error. mci represents the node that
  639. * the error address maps to (possibly different from the node that detected
  640. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  641. * error.
  642. */
  643. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  644. {
  645. int csrow;
  646. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  647. if (csrow == -1)
  648. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  649. "address 0x%lx\n", (unsigned long)sys_addr);
  650. return csrow;
  651. }
  652. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  653. static u16 extract_syndrome(struct err_regs *err)
  654. {
  655. return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
  656. }
  657. /*
  658. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  659. * are ECC capable.
  660. */
  661. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  662. {
  663. int bit;
  664. enum dev_type edac_cap = EDAC_FLAG_NONE;
  665. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  666. ? 19
  667. : 17;
  668. if (pvt->dclr0 & BIT(bit))
  669. edac_cap = EDAC_FLAG_SECDED;
  670. return edac_cap;
  671. }
  672. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
  673. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  674. {
  675. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  676. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  677. (dclr & BIT(16)) ? "un" : "",
  678. (dclr & BIT(19)) ? "yes" : "no");
  679. debugf1(" PAR/ERR parity: %s\n",
  680. (dclr & BIT(8)) ? "enabled" : "disabled");
  681. debugf1(" DCT 128bit mode width: %s\n",
  682. (dclr & BIT(11)) ? "128b" : "64b");
  683. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  684. (dclr & BIT(12)) ? "yes" : "no",
  685. (dclr & BIT(13)) ? "yes" : "no",
  686. (dclr & BIT(14)) ? "yes" : "no",
  687. (dclr & BIT(15)) ? "yes" : "no");
  688. }
  689. /* Display and decode various NB registers for debug purposes. */
  690. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  691. {
  692. int ganged;
  693. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  694. debugf1(" NB two channel DRAM capable: %s\n",
  695. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
  696. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  697. (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
  698. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
  699. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  700. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  701. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  702. "offset: 0x%08x\n",
  703. pvt->dhar,
  704. dhar_base(pvt->dhar),
  705. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
  706. : f10_dhar_offset(pvt->dhar));
  707. debugf1(" DramHoleValid: %s\n",
  708. (pvt->dhar & DHAR_VALID) ? "yes" : "no");
  709. /* everything below this point is Fam10h and above */
  710. if (boot_cpu_data.x86 == 0xf) {
  711. amd64_debug_display_dimm_sizes(0, pvt);
  712. return;
  713. }
  714. amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
  715. /* Only if NOT ganged does dclr1 have valid info */
  716. if (!dct_ganging_enabled(pvt))
  717. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  718. /*
  719. * Determine if ganged and then dump memory sizes for first controller,
  720. * and if NOT ganged dump info for 2nd controller.
  721. */
  722. ganged = dct_ganging_enabled(pvt);
  723. amd64_debug_display_dimm_sizes(0, pvt);
  724. if (!ganged)
  725. amd64_debug_display_dimm_sizes(1, pvt);
  726. }
  727. /* Read in both of DBAM registers */
  728. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  729. {
  730. amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
  731. if (boot_cpu_data.x86 >= 0x10)
  732. amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
  733. }
  734. /*
  735. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  736. *
  737. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  738. * set the shift factor for the DCSB and DCSM values.
  739. *
  740. * ->dcs_mask_notused, RevE:
  741. *
  742. * To find the max InputAddr for the csrow, start with the base address and set
  743. * all bits that are "don't care" bits in the test at the start of section
  744. * 3.5.4 (p. 84).
  745. *
  746. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  747. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  748. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  749. * gaps.
  750. *
  751. * ->dcs_mask_notused, RevF and later:
  752. *
  753. * To find the max InputAddr for the csrow, start with the base address and set
  754. * all bits that are "don't care" bits in the test at the start of NPT section
  755. * 4.5.4 (p. 87).
  756. *
  757. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  758. * between bit ranges [36:27] and [21:13].
  759. *
  760. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  761. * which are all bits in the above-mentioned gaps.
  762. */
  763. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  764. {
  765. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  766. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  767. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  768. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  769. pvt->dcs_shift = REV_E_DCS_SHIFT;
  770. pvt->cs_count = 8;
  771. pvt->num_dcsm = 8;
  772. } else {
  773. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  774. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  775. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  776. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  777. pvt->cs_count = 8;
  778. pvt->num_dcsm = 4;
  779. }
  780. }
  781. /*
  782. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  783. */
  784. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  785. {
  786. int cs, reg;
  787. amd64_set_dct_base_and_mask(pvt);
  788. for (cs = 0; cs < pvt->cs_count; cs++) {
  789. reg = K8_DCSB0 + (cs * 4);
  790. if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
  791. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  792. cs, pvt->dcsb0[cs], reg);
  793. /* If DCT are NOT ganged, then read in DCT1's base */
  794. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  795. reg = F10_DCSB1 + (cs * 4);
  796. if (!amd64_read_pci_cfg(pvt->F2, reg,
  797. &pvt->dcsb1[cs]))
  798. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  799. cs, pvt->dcsb1[cs], reg);
  800. } else {
  801. pvt->dcsb1[cs] = 0;
  802. }
  803. }
  804. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  805. reg = K8_DCSM0 + (cs * 4);
  806. if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
  807. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  808. cs, pvt->dcsm0[cs], reg);
  809. /* If DCT are NOT ganged, then read in DCT1's mask */
  810. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  811. reg = F10_DCSM1 + (cs * 4);
  812. if (!amd64_read_pci_cfg(pvt->F2, reg,
  813. &pvt->dcsm1[cs]))
  814. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  815. cs, pvt->dcsm1[cs], reg);
  816. } else {
  817. pvt->dcsm1[cs] = 0;
  818. }
  819. }
  820. }
  821. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  822. {
  823. enum mem_type type;
  824. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
  825. if (pvt->dchr0 & DDR3_MODE)
  826. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  827. else
  828. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  829. } else {
  830. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  831. }
  832. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  833. return type;
  834. }
  835. /*
  836. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  837. * and the later RevF memory controllers (DDR vs DDR2)
  838. *
  839. * Return:
  840. * number of memory channels in operation
  841. * Pass back:
  842. * contents of the DCL0_LOW register
  843. */
  844. static int k8_early_channel_count(struct amd64_pvt *pvt)
  845. {
  846. int flag, err = 0;
  847. err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
  848. if (err)
  849. return err;
  850. if (pvt->ext_model >= K8_REV_F)
  851. /* RevF (NPT) and later */
  852. flag = pvt->dclr0 & F10_WIDTH_128;
  853. else
  854. /* RevE and earlier */
  855. flag = pvt->dclr0 & REVE_WIDTH_128;
  856. /* not used */
  857. pvt->dclr1 = 0;
  858. return (flag) ? 2 : 1;
  859. }
  860. /* extract the ERROR ADDRESS for the K8 CPUs */
  861. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  862. struct err_regs *info)
  863. {
  864. return (((u64) (info->nbeah & 0xff)) << 32) +
  865. (info->nbeal & ~0x03);
  866. }
  867. /*
  868. * Read the Base and Limit registers for K8 based Memory controllers; extract
  869. * fields from the 'raw' reg into separate data fields
  870. *
  871. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  872. */
  873. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  874. {
  875. u32 low;
  876. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  877. amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
  878. /* Extract parts into separate data entries */
  879. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
  880. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  881. pvt->dram_rw_en[dram] = (low & 0x3);
  882. amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
  883. /*
  884. * Extract parts into separate data entries. Limit is the HIGHEST memory
  885. * location of the region, so lower 24 bits need to be all ones
  886. */
  887. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
  888. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  889. pvt->dram_DstNode[dram] = (low & 0x7);
  890. }
  891. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  892. struct err_regs *err_info, u64 sys_addr)
  893. {
  894. struct mem_ctl_info *src_mci;
  895. int channel, csrow;
  896. u32 page, offset;
  897. u16 syndrome;
  898. syndrome = extract_syndrome(err_info);
  899. /* CHIPKILL enabled */
  900. if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
  901. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  902. if (channel < 0) {
  903. /*
  904. * Syndrome didn't map, so we don't know which of the
  905. * 2 DIMMs is in error. So we need to ID 'both' of them
  906. * as suspect.
  907. */
  908. amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
  909. "error reporting race\n", syndrome);
  910. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  911. return;
  912. }
  913. } else {
  914. /*
  915. * non-chipkill ecc mode
  916. *
  917. * The k8 documentation is unclear about how to determine the
  918. * channel number when using non-chipkill memory. This method
  919. * was obtained from email communication with someone at AMD.
  920. * (Wish the email was placed in this comment - norsk)
  921. */
  922. channel = ((sys_addr & BIT(3)) != 0);
  923. }
  924. /*
  925. * Find out which node the error address belongs to. This may be
  926. * different from the node that detected the error.
  927. */
  928. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  929. if (!src_mci) {
  930. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  931. (unsigned long)sys_addr);
  932. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  933. return;
  934. }
  935. /* Now map the sys_addr to a CSROW */
  936. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  937. if (csrow < 0) {
  938. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  939. } else {
  940. error_address_to_page_and_offset(sys_addr, &page, &offset);
  941. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  942. channel, EDAC_MOD_STR);
  943. }
  944. }
  945. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  946. {
  947. int *dbam_map;
  948. if (pvt->ext_model >= K8_REV_F)
  949. dbam_map = ddr2_dbam;
  950. else if (pvt->ext_model >= K8_REV_D)
  951. dbam_map = ddr2_dbam_revD;
  952. else
  953. dbam_map = ddr2_dbam_revCG;
  954. return dbam_map[cs_mode];
  955. }
  956. /*
  957. * Get the number of DCT channels in use.
  958. *
  959. * Return:
  960. * number of Memory Channels in operation
  961. * Pass back:
  962. * contents of the DCL0_LOW register
  963. */
  964. static int f10_early_channel_count(struct amd64_pvt *pvt)
  965. {
  966. int dbams[] = { DBAM0, DBAM1 };
  967. int i, j, channels = 0;
  968. u32 dbam;
  969. /* If we are in 128 bit mode, then we are using 2 channels */
  970. if (pvt->dclr0 & F10_WIDTH_128) {
  971. channels = 2;
  972. return channels;
  973. }
  974. /*
  975. * Need to check if in unganged mode: In such, there are 2 channels,
  976. * but they are not in 128 bit mode and thus the above 'dclr0' status
  977. * bit will be OFF.
  978. *
  979. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  980. * their CSEnable bit on. If so, then SINGLE DIMM case.
  981. */
  982. debugf0("Data width is not 128 bits - need more decoding\n");
  983. /*
  984. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  985. * is more than just one DIMM present in unganged mode. Need to check
  986. * both controllers since DIMMs can be placed in either one.
  987. */
  988. for (i = 0; i < ARRAY_SIZE(dbams); i++) {
  989. if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
  990. goto err_reg;
  991. for (j = 0; j < 4; j++) {
  992. if (DBAM_DIMM(j, dbam) > 0) {
  993. channels++;
  994. break;
  995. }
  996. }
  997. }
  998. if (channels > 2)
  999. channels = 2;
  1000. amd64_info("MCT channel count: %d\n", channels);
  1001. return channels;
  1002. err_reg:
  1003. return -1;
  1004. }
  1005. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  1006. {
  1007. int *dbam_map;
  1008. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1009. dbam_map = ddr3_dbam;
  1010. else
  1011. dbam_map = ddr2_dbam;
  1012. return dbam_map[cs_mode];
  1013. }
  1014. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1015. struct err_regs *info)
  1016. {
  1017. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1018. (info->nbeal & ~0x01);
  1019. }
  1020. /*
  1021. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1022. * fields from the 'raw' reg into separate data fields.
  1023. *
  1024. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1025. */
  1026. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1027. {
  1028. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1029. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1030. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1031. /* read the 'raw' DRAM BASE Address register */
  1032. amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
  1033. amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
  1034. /* Extract parts into separate data entries */
  1035. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1036. if (pvt->dram_rw_en[dram] == 0)
  1037. return;
  1038. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1039. pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
  1040. (((u64)low_base & 0xFFFF0000) << 8);
  1041. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1042. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1043. /* read the 'raw' LIMIT registers */
  1044. amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
  1045. amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
  1046. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1047. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1048. /*
  1049. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1050. * memory location of the region, so low 24 bits need to be all ones.
  1051. */
  1052. pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
  1053. (((u64) low_limit & 0xFFFF0000) << 8) |
  1054. 0x00FFFFFF;
  1055. }
  1056. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1057. {
  1058. if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
  1059. &pvt->dram_ctl_select_low)) {
  1060. debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
  1061. "High range addresses at: 0x%x\n",
  1062. pvt->dram_ctl_select_low,
  1063. dct_sel_baseaddr(pvt));
  1064. debugf0(" DCT mode: %s, All DCTs on: %s\n",
  1065. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
  1066. (dct_dram_enabled(pvt) ? "yes" : "no"));
  1067. if (!dct_ganging_enabled(pvt))
  1068. debugf0(" Address range split per DCT: %s\n",
  1069. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1070. debugf0(" DCT data interleave for ECC: %s, "
  1071. "DRAM cleared since last warm reset: %s\n",
  1072. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1073. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1074. debugf0(" DCT channel interleave: %s, "
  1075. "DCT interleave bits selector: 0x%x\n",
  1076. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1077. dct_sel_interleave_addr(pvt));
  1078. }
  1079. amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
  1080. &pvt->dram_ctl_select_high);
  1081. }
  1082. /*
  1083. * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1084. * Interleaving Modes.
  1085. */
  1086. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1087. int hi_range_sel, u32 intlv_en)
  1088. {
  1089. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1090. if (dct_ganging_enabled(pvt))
  1091. cs = 0;
  1092. else if (hi_range_sel)
  1093. cs = dct_sel_high;
  1094. else if (dct_interleave_enabled(pvt)) {
  1095. /*
  1096. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1097. */
  1098. if (dct_sel_interleave_addr(pvt) == 0)
  1099. cs = sys_addr >> 6 & 1;
  1100. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1101. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1102. if (dct_sel_interleave_addr(pvt) & 1)
  1103. cs = (sys_addr >> 9 & 1) ^ temp;
  1104. else
  1105. cs = (sys_addr >> 6 & 1) ^ temp;
  1106. } else if (intlv_en & 4)
  1107. cs = sys_addr >> 15 & 1;
  1108. else if (intlv_en & 2)
  1109. cs = sys_addr >> 14 & 1;
  1110. else if (intlv_en & 1)
  1111. cs = sys_addr >> 13 & 1;
  1112. else
  1113. cs = sys_addr >> 12 & 1;
  1114. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1115. cs = ~dct_sel_high & 1;
  1116. else
  1117. cs = 0;
  1118. return cs;
  1119. }
  1120. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1121. {
  1122. if (intlv_en == 1)
  1123. return 1;
  1124. else if (intlv_en == 3)
  1125. return 2;
  1126. else if (intlv_en == 7)
  1127. return 3;
  1128. return 0;
  1129. }
  1130. /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
  1131. static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1132. u32 dct_sel_base_addr,
  1133. u64 dct_sel_base_off,
  1134. u32 hole_valid, u32 hole_off,
  1135. u64 dram_base)
  1136. {
  1137. u64 chan_off;
  1138. if (hi_range_sel) {
  1139. if (!(dct_sel_base_addr & 0xFFFF0000) &&
  1140. hole_valid && (sys_addr >= 0x100000000ULL))
  1141. chan_off = hole_off << 16;
  1142. else
  1143. chan_off = dct_sel_base_off;
  1144. } else {
  1145. if (hole_valid && (sys_addr >= 0x100000000ULL))
  1146. chan_off = hole_off << 16;
  1147. else
  1148. chan_off = dram_base & 0xFFFFF8000000ULL;
  1149. }
  1150. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1151. (chan_off & 0x0000FFFFFF800000ULL);
  1152. }
  1153. /* Hack for the time being - Can we get this from BIOS?? */
  1154. #define CH0SPARE_RANK 0
  1155. #define CH1SPARE_RANK 1
  1156. /*
  1157. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1158. * spare row
  1159. */
  1160. static inline int f10_process_possible_spare(int csrow,
  1161. u32 cs, struct amd64_pvt *pvt)
  1162. {
  1163. u32 swap_done;
  1164. u32 bad_dram_cs;
  1165. /* Depending on channel, isolate respective SPARING info */
  1166. if (cs) {
  1167. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1168. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1169. if (swap_done && (csrow == bad_dram_cs))
  1170. csrow = CH1SPARE_RANK;
  1171. } else {
  1172. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1173. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1174. if (swap_done && (csrow == bad_dram_cs))
  1175. csrow = CH0SPARE_RANK;
  1176. }
  1177. return csrow;
  1178. }
  1179. /*
  1180. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1181. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1182. *
  1183. * Return:
  1184. * -EINVAL: NOT FOUND
  1185. * 0..csrow = Chip-Select Row
  1186. */
  1187. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1188. {
  1189. struct mem_ctl_info *mci;
  1190. struct amd64_pvt *pvt;
  1191. u32 cs_base, cs_mask;
  1192. int cs_found = -EINVAL;
  1193. int csrow;
  1194. mci = mcis[nid];
  1195. if (!mci)
  1196. return cs_found;
  1197. pvt = mci->pvt_info;
  1198. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1199. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  1200. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1201. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1202. continue;
  1203. /*
  1204. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1205. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1206. * of the actual address.
  1207. */
  1208. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1209. /*
  1210. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1211. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1212. */
  1213. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1214. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1215. csrow, cs_base, cs_mask);
  1216. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1217. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1218. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1219. "(CSBase & ~CSMask)=0x%x\n",
  1220. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1221. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1222. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1223. debugf1(" MATCH csrow=%d\n", cs_found);
  1224. break;
  1225. }
  1226. }
  1227. return cs_found;
  1228. }
  1229. /* For a given @dram_range, check if @sys_addr falls within it. */
  1230. static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
  1231. u64 sys_addr, int *nid, int *chan_sel)
  1232. {
  1233. int node_id, cs_found = -EINVAL, high_range = 0;
  1234. u32 intlv_en, intlv_sel, intlv_shift, hole_off;
  1235. u32 hole_valid, tmp, dct_sel_base, channel;
  1236. u64 dram_base, chan_addr, dct_sel_base_off;
  1237. dram_base = pvt->dram_base[dram_range];
  1238. intlv_en = pvt->dram_IntlvEn[dram_range];
  1239. node_id = pvt->dram_DstNode[dram_range];
  1240. intlv_sel = pvt->dram_IntlvSel[dram_range];
  1241. debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
  1242. dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
  1243. /*
  1244. * This assumes that one node's DHAR is the same as all the other
  1245. * nodes' DHAR.
  1246. */
  1247. hole_off = (pvt->dhar & 0x0000FF80);
  1248. hole_valid = (pvt->dhar & 0x1);
  1249. dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
  1250. debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
  1251. hole_off, hole_valid, intlv_sel);
  1252. if (intlv_en &&
  1253. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1254. return -EINVAL;
  1255. dct_sel_base = dct_sel_baseaddr(pvt);
  1256. /*
  1257. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1258. * select between DCT0 and DCT1.
  1259. */
  1260. if (dct_high_range_enabled(pvt) &&
  1261. !dct_ganging_enabled(pvt) &&
  1262. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1263. high_range = 1;
  1264. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1265. chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
  1266. dct_sel_base_off, hole_valid,
  1267. hole_off, dram_base);
  1268. intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
  1269. /* remove Node ID (in case of memory interleaving) */
  1270. tmp = chan_addr & 0xFC0;
  1271. chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
  1272. /* remove channel interleave and hash */
  1273. if (dct_interleave_enabled(pvt) &&
  1274. !dct_high_range_enabled(pvt) &&
  1275. !dct_ganging_enabled(pvt)) {
  1276. if (dct_sel_interleave_addr(pvt) != 1)
  1277. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1278. else {
  1279. tmp = chan_addr & 0xFC0;
  1280. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1281. | tmp;
  1282. }
  1283. }
  1284. debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
  1285. chan_addr, (u32)(chan_addr >> 8));
  1286. cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
  1287. if (cs_found >= 0) {
  1288. *nid = node_id;
  1289. *chan_sel = channel;
  1290. }
  1291. return cs_found;
  1292. }
  1293. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1294. int *node, int *chan_sel)
  1295. {
  1296. int dram_range, cs_found = -EINVAL;
  1297. u64 dram_base, dram_limit;
  1298. for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
  1299. if (!pvt->dram_rw_en[dram_range])
  1300. continue;
  1301. dram_base = pvt->dram_base[dram_range];
  1302. dram_limit = pvt->dram_limit[dram_range];
  1303. if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
  1304. cs_found = f10_match_to_this_node(pvt, dram_range,
  1305. sys_addr, node,
  1306. chan_sel);
  1307. if (cs_found >= 0)
  1308. break;
  1309. }
  1310. }
  1311. return cs_found;
  1312. }
  1313. /*
  1314. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1315. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1316. *
  1317. * The @sys_addr is usually an error address received from the hardware
  1318. * (MCX_ADDR).
  1319. */
  1320. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1321. struct err_regs *err_info,
  1322. u64 sys_addr)
  1323. {
  1324. struct amd64_pvt *pvt = mci->pvt_info;
  1325. u32 page, offset;
  1326. int nid, csrow, chan = 0;
  1327. u16 syndrome;
  1328. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1329. if (csrow < 0) {
  1330. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1331. return;
  1332. }
  1333. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1334. syndrome = extract_syndrome(err_info);
  1335. /*
  1336. * We need the syndromes for channel detection only when we're
  1337. * ganged. Otherwise @chan should already contain the channel at
  1338. * this point.
  1339. */
  1340. if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
  1341. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1342. if (chan >= 0)
  1343. edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
  1344. EDAC_MOD_STR);
  1345. else
  1346. /*
  1347. * Channel unknown, report all channels on this CSROW as failed.
  1348. */
  1349. for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
  1350. edac_mc_handle_ce(mci, page, offset, syndrome,
  1351. csrow, chan, EDAC_MOD_STR);
  1352. }
  1353. /*
  1354. * debug routine to display the memory sizes of all logical DIMMs and its
  1355. * CSROWs as well
  1356. */
  1357. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
  1358. {
  1359. int dimm, size0, size1, factor = 0;
  1360. u32 dbam;
  1361. u32 *dcsb;
  1362. if (boot_cpu_data.x86 == 0xf) {
  1363. if (pvt->dclr0 & F10_WIDTH_128)
  1364. factor = 1;
  1365. /* K8 families < revF not supported yet */
  1366. if (pvt->ext_model < K8_REV_F)
  1367. return;
  1368. else
  1369. WARN_ON(ctrl != 0);
  1370. }
  1371. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1372. ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
  1373. dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1374. dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
  1375. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1376. /* Dump memory sizes for DIMM and its CSROWs */
  1377. for (dimm = 0; dimm < 4; dimm++) {
  1378. size0 = 0;
  1379. if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
  1380. size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1381. size1 = 0;
  1382. if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
  1383. size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1384. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1385. dimm * 2, size0 << factor,
  1386. dimm * 2 + 1, size1 << factor);
  1387. }
  1388. }
  1389. static struct amd64_family_type amd64_family_types[] = {
  1390. [K8_CPUS] = {
  1391. .ctl_name = "K8",
  1392. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1393. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1394. .ops = {
  1395. .early_channel_count = k8_early_channel_count,
  1396. .get_error_address = k8_get_error_address,
  1397. .read_dram_base_limit = k8_read_dram_base_limit,
  1398. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1399. .dbam_to_cs = k8_dbam_to_chip_select,
  1400. }
  1401. },
  1402. [F10_CPUS] = {
  1403. .ctl_name = "F10h",
  1404. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1405. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1406. .ops = {
  1407. .early_channel_count = f10_early_channel_count,
  1408. .get_error_address = f10_get_error_address,
  1409. .read_dram_base_limit = f10_read_dram_base_limit,
  1410. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1411. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1412. .dbam_to_cs = f10_dbam_to_chip_select,
  1413. }
  1414. },
  1415. };
  1416. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1417. unsigned int device,
  1418. struct pci_dev *related)
  1419. {
  1420. struct pci_dev *dev = NULL;
  1421. dev = pci_get_device(vendor, device, dev);
  1422. while (dev) {
  1423. if ((dev->bus->number == related->bus->number) &&
  1424. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1425. break;
  1426. dev = pci_get_device(vendor, device, dev);
  1427. }
  1428. return dev;
  1429. }
  1430. /*
  1431. * These are tables of eigenvectors (one per line) which can be used for the
  1432. * construction of the syndrome tables. The modified syndrome search algorithm
  1433. * uses those to find the symbol in error and thus the DIMM.
  1434. *
  1435. * Algorithm courtesy of Ross LaFetra from AMD.
  1436. */
  1437. static u16 x4_vectors[] = {
  1438. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1439. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1440. 0x0001, 0x0002, 0x0004, 0x0008,
  1441. 0x1013, 0x3032, 0x4044, 0x8088,
  1442. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1443. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1444. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1445. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1446. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1447. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1448. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1449. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1450. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1451. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1452. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1453. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1454. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1455. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1456. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1457. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1458. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1459. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1460. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1461. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1462. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1463. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1464. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1465. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1466. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1467. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1468. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1469. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1470. 0x4807, 0xc40e, 0x130c, 0x3208,
  1471. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1472. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1473. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1474. };
  1475. static u16 x8_vectors[] = {
  1476. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1477. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1478. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1479. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1480. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1481. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1482. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1483. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1484. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1485. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1486. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1487. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1488. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1489. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1490. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1491. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1492. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1493. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1494. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1495. };
  1496. static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
  1497. int v_dim)
  1498. {
  1499. unsigned int i, err_sym;
  1500. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1501. u16 s = syndrome;
  1502. int v_idx = err_sym * v_dim;
  1503. int v_end = (err_sym + 1) * v_dim;
  1504. /* walk over all 16 bits of the syndrome */
  1505. for (i = 1; i < (1U << 16); i <<= 1) {
  1506. /* if bit is set in that eigenvector... */
  1507. if (v_idx < v_end && vectors[v_idx] & i) {
  1508. u16 ev_comp = vectors[v_idx++];
  1509. /* ... and bit set in the modified syndrome, */
  1510. if (s & i) {
  1511. /* remove it. */
  1512. s ^= ev_comp;
  1513. if (!s)
  1514. return err_sym;
  1515. }
  1516. } else if (s & i)
  1517. /* can't get to zero, move to next symbol */
  1518. break;
  1519. }
  1520. }
  1521. debugf0("syndrome(%x) not found\n", syndrome);
  1522. return -1;
  1523. }
  1524. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1525. {
  1526. if (sym_size == 4)
  1527. switch (err_sym) {
  1528. case 0x20:
  1529. case 0x21:
  1530. return 0;
  1531. break;
  1532. case 0x22:
  1533. case 0x23:
  1534. return 1;
  1535. break;
  1536. default:
  1537. return err_sym >> 4;
  1538. break;
  1539. }
  1540. /* x8 symbols */
  1541. else
  1542. switch (err_sym) {
  1543. /* imaginary bits not in a DIMM */
  1544. case 0x10:
  1545. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1546. err_sym);
  1547. return -1;
  1548. break;
  1549. case 0x11:
  1550. return 0;
  1551. break;
  1552. case 0x12:
  1553. return 1;
  1554. break;
  1555. default:
  1556. return err_sym >> 3;
  1557. break;
  1558. }
  1559. return -1;
  1560. }
  1561. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1562. {
  1563. struct amd64_pvt *pvt = mci->pvt_info;
  1564. int err_sym = -1;
  1565. if (pvt->syn_type == 8)
  1566. err_sym = decode_syndrome(syndrome, x8_vectors,
  1567. ARRAY_SIZE(x8_vectors),
  1568. pvt->syn_type);
  1569. else if (pvt->syn_type == 4)
  1570. err_sym = decode_syndrome(syndrome, x4_vectors,
  1571. ARRAY_SIZE(x4_vectors),
  1572. pvt->syn_type);
  1573. else {
  1574. amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
  1575. return err_sym;
  1576. }
  1577. return map_err_sym_to_channel(err_sym, pvt->syn_type);
  1578. }
  1579. /*
  1580. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1581. * ADDRESS and process.
  1582. */
  1583. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1584. struct err_regs *info)
  1585. {
  1586. struct amd64_pvt *pvt = mci->pvt_info;
  1587. u64 sys_addr;
  1588. /* Ensure that the Error Address is VALID */
  1589. if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
  1590. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1591. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1592. return;
  1593. }
  1594. sys_addr = pvt->ops->get_error_address(mci, info);
  1595. amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1596. pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
  1597. }
  1598. /* Handle any Un-correctable Errors (UEs) */
  1599. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1600. struct err_regs *info)
  1601. {
  1602. struct amd64_pvt *pvt = mci->pvt_info;
  1603. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1604. int csrow;
  1605. u64 sys_addr;
  1606. u32 page, offset;
  1607. log_mci = mci;
  1608. if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
  1609. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1610. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1611. return;
  1612. }
  1613. sys_addr = pvt->ops->get_error_address(mci, info);
  1614. /*
  1615. * Find out which node the error address belongs to. This may be
  1616. * different from the node that detected the error.
  1617. */
  1618. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1619. if (!src_mci) {
  1620. amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
  1621. (unsigned long)sys_addr);
  1622. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1623. return;
  1624. }
  1625. log_mci = src_mci;
  1626. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1627. if (csrow < 0) {
  1628. amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
  1629. (unsigned long)sys_addr);
  1630. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1631. } else {
  1632. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1633. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1634. }
  1635. }
  1636. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1637. struct err_regs *info)
  1638. {
  1639. u32 ec = ERROR_CODE(info->nbsl);
  1640. u32 xec = EXT_ERROR_CODE(info->nbsl);
  1641. int ecc_type = (info->nbsh >> 13) & 0x3;
  1642. /* Bail early out if this was an 'observed' error */
  1643. if (PP(ec) == K8_NBSL_PP_OBS)
  1644. return;
  1645. /* Do only ECC errors */
  1646. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1647. return;
  1648. if (ecc_type == 2)
  1649. amd64_handle_ce(mci, info);
  1650. else if (ecc_type == 1)
  1651. amd64_handle_ue(mci, info);
  1652. }
  1653. void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
  1654. {
  1655. struct mem_ctl_info *mci = mcis[node_id];
  1656. struct err_regs regs;
  1657. regs.nbsl = (u32) m->status;
  1658. regs.nbsh = (u32)(m->status >> 32);
  1659. regs.nbeal = (u32) m->addr;
  1660. regs.nbeah = (u32)(m->addr >> 32);
  1661. regs.nbcfg = nbcfg;
  1662. __amd64_decode_bus_error(mci, &regs);
  1663. /*
  1664. * Check the UE bit of the NB status high register, if set generate some
  1665. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  1666. * If it was a GART error, skip that process.
  1667. *
  1668. * FIXME: this should go somewhere else, if at all.
  1669. */
  1670. if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  1671. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  1672. }
  1673. /*
  1674. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1675. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1676. */
  1677. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1678. {
  1679. /* Reserve the ADDRESS MAP Device */
  1680. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1681. if (!pvt->F1) {
  1682. amd64_err("error address map device not found: "
  1683. "vendor %x device 0x%x (broken BIOS?)\n",
  1684. PCI_VENDOR_ID_AMD, f1_id);
  1685. return -ENODEV;
  1686. }
  1687. /* Reserve the MISC Device */
  1688. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1689. if (!pvt->F3) {
  1690. pci_dev_put(pvt->F1);
  1691. pvt->F1 = NULL;
  1692. amd64_err("error F3 device not found: "
  1693. "vendor %x device 0x%x (broken BIOS?)\n",
  1694. PCI_VENDOR_ID_AMD, f3_id);
  1695. return -ENODEV;
  1696. }
  1697. debugf1("F1: %s\n", pci_name(pvt->F1));
  1698. debugf1("F2: %s\n", pci_name(pvt->F2));
  1699. debugf1("F3: %s\n", pci_name(pvt->F3));
  1700. return 0;
  1701. }
  1702. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1703. {
  1704. pci_dev_put(pvt->F1);
  1705. pci_dev_put(pvt->F3);
  1706. }
  1707. /*
  1708. * Retrieve the hardware registers of the memory controller (this includes the
  1709. * 'Address Map' and 'Misc' device regs)
  1710. */
  1711. static void read_mc_regs(struct amd64_pvt *pvt)
  1712. {
  1713. u64 msr_val;
  1714. u32 tmp;
  1715. int dram;
  1716. /*
  1717. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1718. * those are Read-As-Zero
  1719. */
  1720. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1721. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1722. /* check first whether TOP_MEM2 is enabled */
  1723. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1724. if (msr_val & (1U << 21)) {
  1725. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1726. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1727. } else
  1728. debugf0(" TOP_MEM2 disabled.\n");
  1729. amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
  1730. if (pvt->ops->read_dram_ctl_register)
  1731. pvt->ops->read_dram_ctl_register(pvt);
  1732. for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
  1733. /*
  1734. * Call CPU specific READ function to get the DRAM Base and
  1735. * Limit values from the DCT.
  1736. */
  1737. pvt->ops->read_dram_base_limit(pvt, dram);
  1738. /*
  1739. * Only print out debug info on rows with both R and W Enabled.
  1740. * Normal processing, compiler should optimize this whole 'if'
  1741. * debug output block away.
  1742. */
  1743. if (pvt->dram_rw_en[dram] != 0) {
  1744. debugf1(" DRAM-BASE[%d]: 0x%016llx "
  1745. "DRAM-LIMIT: 0x%016llx\n",
  1746. dram,
  1747. pvt->dram_base[dram],
  1748. pvt->dram_limit[dram]);
  1749. debugf1(" IntlvEn=%s %s %s "
  1750. "IntlvSel=%d DstNode=%d\n",
  1751. pvt->dram_IntlvEn[dram] ?
  1752. "Enabled" : "Disabled",
  1753. (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
  1754. (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
  1755. pvt->dram_IntlvSel[dram],
  1756. pvt->dram_DstNode[dram]);
  1757. }
  1758. }
  1759. amd64_read_dct_base_mask(pvt);
  1760. amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
  1761. amd64_read_dbam_reg(pvt);
  1762. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1763. amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
  1764. amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
  1765. if (boot_cpu_data.x86 >= 0x10) {
  1766. if (!dct_ganging_enabled(pvt)) {
  1767. amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
  1768. amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
  1769. }
  1770. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1771. }
  1772. if (boot_cpu_data.x86 == 0x10 &&
  1773. boot_cpu_data.x86_model > 7 &&
  1774. /* F3x180[EccSymbolSize]=1 => x8 symbols */
  1775. tmp & BIT(25))
  1776. pvt->syn_type = 8;
  1777. else
  1778. pvt->syn_type = 4;
  1779. amd64_dump_misc_regs(pvt);
  1780. }
  1781. /*
  1782. * NOTE: CPU Revision Dependent code
  1783. *
  1784. * Input:
  1785. * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
  1786. * k8 private pointer to -->
  1787. * DRAM Bank Address mapping register
  1788. * node_id
  1789. * DCL register where dual_channel_active is
  1790. *
  1791. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1792. *
  1793. * Bits: CSROWs
  1794. * 0-3 CSROWs 0 and 1
  1795. * 4-7 CSROWs 2 and 3
  1796. * 8-11 CSROWs 4 and 5
  1797. * 12-15 CSROWs 6 and 7
  1798. *
  1799. * Values range from: 0 to 15
  1800. * The meaning of the values depends on CPU revision and dual-channel state,
  1801. * see relevant BKDG more info.
  1802. *
  1803. * The memory controller provides for total of only 8 CSROWs in its current
  1804. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1805. * single channel or two (2) DIMMs in dual channel mode.
  1806. *
  1807. * The following code logic collapses the various tables for CSROW based on CPU
  1808. * revision.
  1809. *
  1810. * Returns:
  1811. * The number of PAGE_SIZE pages on the specified CSROW number it
  1812. * encompasses
  1813. *
  1814. */
  1815. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  1816. {
  1817. u32 cs_mode, nr_pages;
  1818. /*
  1819. * The math on this doesn't look right on the surface because x/2*4 can
  1820. * be simplified to x*2 but this expression makes use of the fact that
  1821. * it is integral math where 1/2=0. This intermediate value becomes the
  1822. * number of bits to shift the DBAM register to extract the proper CSROW
  1823. * field.
  1824. */
  1825. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  1826. nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
  1827. /*
  1828. * If dual channel then double the memory size of single channel.
  1829. * Channel count is 1 or 2
  1830. */
  1831. nr_pages <<= (pvt->channel_count - 1);
  1832. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  1833. debugf0(" nr_pages= %u channel-count = %d\n",
  1834. nr_pages, pvt->channel_count);
  1835. return nr_pages;
  1836. }
  1837. /*
  1838. * Initialize the array of csrow attribute instances, based on the values
  1839. * from pci config hardware registers.
  1840. */
  1841. static int init_csrows(struct mem_ctl_info *mci)
  1842. {
  1843. struct csrow_info *csrow;
  1844. struct amd64_pvt *pvt = mci->pvt_info;
  1845. u64 input_addr_min, input_addr_max, sys_addr;
  1846. u32 val;
  1847. int i, empty = 1;
  1848. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
  1849. pvt->nbcfg = val;
  1850. pvt->ctl_error_info.nbcfg = val;
  1851. debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1852. pvt->mc_node_id, val,
  1853. !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
  1854. for (i = 0; i < pvt->cs_count; i++) {
  1855. csrow = &mci->csrows[i];
  1856. if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
  1857. debugf1("----CSROW %d EMPTY for node %d\n", i,
  1858. pvt->mc_node_id);
  1859. continue;
  1860. }
  1861. debugf1("----CSROW %d VALID for MC node %d\n",
  1862. i, pvt->mc_node_id);
  1863. empty = 0;
  1864. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  1865. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  1866. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  1867. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  1868. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  1869. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  1870. csrow->page_mask = ~mask_from_dct_mask(pvt, i);
  1871. /* 8 bytes of resolution */
  1872. csrow->mtype = amd64_determine_memory_type(pvt, i);
  1873. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  1874. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  1875. (unsigned long)input_addr_min,
  1876. (unsigned long)input_addr_max);
  1877. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  1878. (unsigned long)sys_addr, csrow->page_mask);
  1879. debugf1(" nr_pages: %u first_page: 0x%lx "
  1880. "last_page: 0x%lx\n",
  1881. (unsigned)csrow->nr_pages,
  1882. csrow->first_page, csrow->last_page);
  1883. /*
  1884. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1885. */
  1886. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  1887. csrow->edac_mode =
  1888. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  1889. EDAC_S4ECD4ED : EDAC_SECDED;
  1890. else
  1891. csrow->edac_mode = EDAC_NONE;
  1892. }
  1893. return empty;
  1894. }
  1895. /* get all cores on this DCT */
  1896. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
  1897. {
  1898. int cpu;
  1899. for_each_online_cpu(cpu)
  1900. if (amd_get_nb_id(cpu) == nid)
  1901. cpumask_set_cpu(cpu, mask);
  1902. }
  1903. /* check MCG_CTL on all the cpus on this node */
  1904. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  1905. {
  1906. cpumask_var_t mask;
  1907. int cpu, nbe;
  1908. bool ret = false;
  1909. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1910. amd64_warn("%s: Error allocating mask\n", __func__);
  1911. return false;
  1912. }
  1913. get_cpus_on_this_dct_cpumask(mask, nid);
  1914. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1915. for_each_cpu(cpu, mask) {
  1916. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1917. nbe = reg->l & K8_MSR_MCGCTL_NBE;
  1918. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1919. cpu, reg->q,
  1920. (nbe ? "enabled" : "disabled"));
  1921. if (!nbe)
  1922. goto out;
  1923. }
  1924. ret = true;
  1925. out:
  1926. free_cpumask_var(mask);
  1927. return ret;
  1928. }
  1929. static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
  1930. {
  1931. cpumask_var_t cmask;
  1932. int cpu;
  1933. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1934. amd64_warn("%s: error allocating mask\n", __func__);
  1935. return false;
  1936. }
  1937. get_cpus_on_this_dct_cpumask(cmask, nid);
  1938. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1939. for_each_cpu(cpu, cmask) {
  1940. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1941. if (on) {
  1942. if (reg->l & K8_MSR_MCGCTL_NBE)
  1943. s->flags.nb_mce_enable = 1;
  1944. reg->l |= K8_MSR_MCGCTL_NBE;
  1945. } else {
  1946. /*
  1947. * Turn off NB MCE reporting only when it was off before
  1948. */
  1949. if (!s->flags.nb_mce_enable)
  1950. reg->l &= ~K8_MSR_MCGCTL_NBE;
  1951. }
  1952. }
  1953. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1954. free_cpumask_var(cmask);
  1955. return 0;
  1956. }
  1957. static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1958. struct pci_dev *F3)
  1959. {
  1960. bool ret = true;
  1961. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  1962. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1963. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1964. return false;
  1965. }
  1966. amd64_read_pci_cfg(F3, K8_NBCTL, &value);
  1967. /* turn on UECCEn and CECCEn bits */
  1968. s->old_nbctl = value & mask;
  1969. s->nbctl_valid = true;
  1970. value |= mask;
  1971. pci_write_config_dword(F3, K8_NBCTL, value);
  1972. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  1973. debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1974. nid, value,
  1975. !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
  1976. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  1977. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1978. s->flags.nb_ecc_prev = 0;
  1979. /* Attempt to turn on DRAM ECC Enable */
  1980. value |= K8_NBCFG_ECC_ENABLE;
  1981. pci_write_config_dword(F3, K8_NBCFG, value);
  1982. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  1983. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  1984. amd64_warn("Hardware rejected DRAM ECC enable,"
  1985. "check memory DIMM configuration.\n");
  1986. ret = false;
  1987. } else {
  1988. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1989. }
  1990. } else {
  1991. s->flags.nb_ecc_prev = 1;
  1992. }
  1993. debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1994. nid, value,
  1995. !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
  1996. return ret;
  1997. }
  1998. static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1999. struct pci_dev *F3)
  2000. {
  2001. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2002. if (!s->nbctl_valid)
  2003. return;
  2004. amd64_read_pci_cfg(F3, K8_NBCTL, &value);
  2005. value &= ~mask;
  2006. value |= s->old_nbctl;
  2007. pci_write_config_dword(F3, K8_NBCTL, value);
  2008. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  2009. if (!s->flags.nb_ecc_prev) {
  2010. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  2011. value &= ~K8_NBCFG_ECC_ENABLE;
  2012. pci_write_config_dword(F3, K8_NBCFG, value);
  2013. }
  2014. /* restore the NB Enable MCGCTL bit */
  2015. if (toggle_ecc_err_reporting(s, nid, OFF))
  2016. amd64_warn("Error restoring NB MCGCTL settings!\n");
  2017. }
  2018. /*
  2019. * EDAC requires that the BIOS have ECC enabled before
  2020. * taking over the processing of ECC errors. A command line
  2021. * option allows to force-enable hardware ECC later in
  2022. * enable_ecc_error_reporting().
  2023. */
  2024. static const char *ecc_msg =
  2025. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2026. " Either enable ECC checking or force module loading by setting "
  2027. "'ecc_enable_override'.\n"
  2028. " (Note that use of the override may cause unknown side effects.)\n";
  2029. static bool ecc_enabled(struct pci_dev *F3, u8 nid)
  2030. {
  2031. u32 value;
  2032. u8 ecc_en = 0;
  2033. bool nb_mce_en = false;
  2034. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  2035. ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
  2036. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  2037. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  2038. if (!nb_mce_en)
  2039. amd64_notice("NB MCE bank disabled, set MSR "
  2040. "0x%08x[4] on node %d to enable.\n",
  2041. MSR_IA32_MCG_CTL, nid);
  2042. if (!ecc_en || !nb_mce_en) {
  2043. amd64_notice("%s", ecc_msg);
  2044. return false;
  2045. }
  2046. return true;
  2047. }
  2048. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2049. ARRAY_SIZE(amd64_inj_attrs) +
  2050. 1];
  2051. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2052. static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  2053. {
  2054. unsigned int i = 0, j = 0;
  2055. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2056. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2057. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2058. sysfs_attrs[i] = amd64_inj_attrs[j];
  2059. sysfs_attrs[i] = terminator;
  2060. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2061. }
  2062. static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
  2063. {
  2064. struct amd64_pvt *pvt = mci->pvt_info;
  2065. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2066. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2067. if (pvt->nbcap & K8_NBCAP_SECDED)
  2068. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2069. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  2070. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2071. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2072. mci->mod_name = EDAC_MOD_STR;
  2073. mci->mod_ver = EDAC_AMD64_VERSION;
  2074. mci->ctl_name = pvt->ctl_name;
  2075. mci->dev_name = pci_name(pvt->F2);
  2076. mci->ctl_page_to_phys = NULL;
  2077. /* memory scrubber interface */
  2078. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2079. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2080. }
  2081. /*
  2082. * returns a pointer to the family descriptor on success, NULL otherwise.
  2083. */
  2084. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  2085. {
  2086. u8 fam = boot_cpu_data.x86;
  2087. struct amd64_family_type *fam_type = NULL;
  2088. switch (fam) {
  2089. case 0xf:
  2090. fam_type = &amd64_family_types[K8_CPUS];
  2091. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  2092. pvt->ctl_name = fam_type->ctl_name;
  2093. pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  2094. break;
  2095. case 0x10:
  2096. fam_type = &amd64_family_types[F10_CPUS];
  2097. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  2098. pvt->ctl_name = fam_type->ctl_name;
  2099. pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  2100. break;
  2101. default:
  2102. amd64_err("Unsupported family!\n");
  2103. return NULL;
  2104. }
  2105. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2106. amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
  2107. (fam == 0xf ?
  2108. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2109. : "revE or earlier ")
  2110. : ""), pvt->mc_node_id);
  2111. return fam_type;
  2112. }
  2113. static int amd64_init_one_instance(struct pci_dev *F2)
  2114. {
  2115. struct amd64_pvt *pvt = NULL;
  2116. struct amd64_family_type *fam_type = NULL;
  2117. struct mem_ctl_info *mci = NULL;
  2118. int err = 0, ret;
  2119. u8 nid = get_node_id(F2);
  2120. ret = -ENOMEM;
  2121. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2122. if (!pvt)
  2123. goto err_ret;
  2124. pvt->mc_node_id = nid;
  2125. pvt->F2 = F2;
  2126. ret = -EINVAL;
  2127. fam_type = amd64_per_family_init(pvt);
  2128. if (!fam_type)
  2129. goto err_free;
  2130. ret = -ENODEV;
  2131. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2132. if (err)
  2133. goto err_free;
  2134. read_mc_regs(pvt);
  2135. /*
  2136. * We need to determine how many memory channels there are. Then use
  2137. * that information for calculating the size of the dynamic instance
  2138. * tables in the 'mci' structure.
  2139. */
  2140. ret = -EINVAL;
  2141. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2142. if (pvt->channel_count < 0)
  2143. goto err_siblings;
  2144. ret = -ENOMEM;
  2145. mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, nid);
  2146. if (!mci)
  2147. goto err_siblings;
  2148. mci->pvt_info = pvt;
  2149. mci->dev = &pvt->F2->dev;
  2150. setup_mci_misc_attrs(mci);
  2151. if (init_csrows(mci))
  2152. mci->edac_cap = EDAC_FLAG_NONE;
  2153. set_mc_sysfs_attrs(mci);
  2154. ret = -ENODEV;
  2155. if (edac_mc_add_mc(mci)) {
  2156. debugf1("failed edac_mc_add_mc()\n");
  2157. goto err_add_mc;
  2158. }
  2159. /* register stuff with EDAC MCE */
  2160. if (report_gart_errors)
  2161. amd_report_gart_errors(true);
  2162. amd_register_ecc_decoder(amd64_decode_bus_error);
  2163. mcis[nid] = mci;
  2164. atomic_inc(&drv_instances);
  2165. return 0;
  2166. err_add_mc:
  2167. edac_mc_free(mci);
  2168. err_siblings:
  2169. free_mc_sibling_devs(pvt);
  2170. err_free:
  2171. kfree(pvt);
  2172. err_ret:
  2173. return ret;
  2174. }
  2175. static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
  2176. const struct pci_device_id *mc_type)
  2177. {
  2178. u8 nid = get_node_id(pdev);
  2179. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2180. struct ecc_settings *s;
  2181. int ret = 0;
  2182. ret = pci_enable_device(pdev);
  2183. if (ret < 0) {
  2184. debugf0("ret=%d\n", ret);
  2185. return -EIO;
  2186. }
  2187. ret = -ENOMEM;
  2188. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2189. if (!s)
  2190. goto err_out;
  2191. ecc_stngs[nid] = s;
  2192. if (!ecc_enabled(F3, nid)) {
  2193. ret = -ENODEV;
  2194. if (!ecc_enable_override)
  2195. goto err_enable;
  2196. amd64_warn("Forcing ECC on!\n");
  2197. if (!enable_ecc_error_reporting(s, nid, F3))
  2198. goto err_enable;
  2199. }
  2200. ret = amd64_init_one_instance(pdev);
  2201. if (ret < 0) {
  2202. amd64_err("Error probing instance: %d\n", nid);
  2203. restore_ecc_error_reporting(s, nid, F3);
  2204. }
  2205. return ret;
  2206. err_enable:
  2207. kfree(s);
  2208. ecc_stngs[nid] = NULL;
  2209. err_out:
  2210. return ret;
  2211. }
  2212. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2213. {
  2214. struct mem_ctl_info *mci;
  2215. struct amd64_pvt *pvt;
  2216. u8 nid = get_node_id(pdev);
  2217. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2218. struct ecc_settings *s = ecc_stngs[nid];
  2219. /* Remove from EDAC CORE tracking list */
  2220. mci = edac_mc_del_mc(&pdev->dev);
  2221. if (!mci)
  2222. return;
  2223. pvt = mci->pvt_info;
  2224. restore_ecc_error_reporting(s, nid, F3);
  2225. free_mc_sibling_devs(pvt);
  2226. /* unregister from EDAC MCE */
  2227. amd_report_gart_errors(false);
  2228. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2229. kfree(ecc_stngs[nid]);
  2230. ecc_stngs[nid] = NULL;
  2231. /* Free the EDAC CORE resources */
  2232. mci->pvt_info = NULL;
  2233. mcis[nid] = NULL;
  2234. kfree(pvt);
  2235. edac_mc_free(mci);
  2236. }
  2237. /*
  2238. * This table is part of the interface for loading drivers for PCI devices. The
  2239. * PCI core identifies what devices are on a system during boot, and then
  2240. * inquiry this table to see if this driver is for a given device found.
  2241. */
  2242. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2243. {
  2244. .vendor = PCI_VENDOR_ID_AMD,
  2245. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2246. .subvendor = PCI_ANY_ID,
  2247. .subdevice = PCI_ANY_ID,
  2248. .class = 0,
  2249. .class_mask = 0,
  2250. },
  2251. {
  2252. .vendor = PCI_VENDOR_ID_AMD,
  2253. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2254. .subvendor = PCI_ANY_ID,
  2255. .subdevice = PCI_ANY_ID,
  2256. .class = 0,
  2257. .class_mask = 0,
  2258. },
  2259. {0, }
  2260. };
  2261. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2262. static struct pci_driver amd64_pci_driver = {
  2263. .name = EDAC_MOD_STR,
  2264. .probe = amd64_probe_one_instance,
  2265. .remove = __devexit_p(amd64_remove_one_instance),
  2266. .id_table = amd64_pci_table,
  2267. };
  2268. static void setup_pci_device(void)
  2269. {
  2270. struct mem_ctl_info *mci;
  2271. struct amd64_pvt *pvt;
  2272. if (amd64_ctl_pci)
  2273. return;
  2274. mci = mcis[0];
  2275. if (mci) {
  2276. pvt = mci->pvt_info;
  2277. amd64_ctl_pci =
  2278. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2279. if (!amd64_ctl_pci) {
  2280. pr_warning("%s(): Unable to create PCI control\n",
  2281. __func__);
  2282. pr_warning("%s(): PCI error report via EDAC not set\n",
  2283. __func__);
  2284. }
  2285. }
  2286. }
  2287. static int __init amd64_edac_init(void)
  2288. {
  2289. int err = -ENODEV;
  2290. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2291. opstate_init();
  2292. if (amd_cache_northbridges() < 0)
  2293. goto err_ret;
  2294. err = -ENOMEM;
  2295. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2296. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2297. if (!(mcis && ecc_stngs))
  2298. goto err_ret;
  2299. msrs = msrs_alloc();
  2300. if (!msrs)
  2301. goto err_free;
  2302. err = pci_register_driver(&amd64_pci_driver);
  2303. if (err)
  2304. goto err_pci;
  2305. err = -ENODEV;
  2306. if (!atomic_read(&drv_instances))
  2307. goto err_no_instances;
  2308. setup_pci_device();
  2309. return 0;
  2310. err_no_instances:
  2311. pci_unregister_driver(&amd64_pci_driver);
  2312. err_pci:
  2313. msrs_free(msrs);
  2314. msrs = NULL;
  2315. err_free:
  2316. kfree(mcis);
  2317. mcis = NULL;
  2318. kfree(ecc_stngs);
  2319. ecc_stngs = NULL;
  2320. err_ret:
  2321. return err;
  2322. }
  2323. static void __exit amd64_edac_exit(void)
  2324. {
  2325. if (amd64_ctl_pci)
  2326. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2327. pci_unregister_driver(&amd64_pci_driver);
  2328. kfree(ecc_stngs);
  2329. ecc_stngs = NULL;
  2330. kfree(mcis);
  2331. mcis = NULL;
  2332. msrs_free(msrs);
  2333. msrs = NULL;
  2334. }
  2335. module_init(amd64_edac_init);
  2336. module_exit(amd64_edac_exit);
  2337. MODULE_LICENSE("GPL");
  2338. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2339. "Dave Peterson, Thayne Harbaugh");
  2340. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2341. EDAC_AMD64_VERSION);
  2342. module_param(edac_op_state, int, 0444);
  2343. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");