m88rs2000.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951
  1. /*
  2. Driver for M88RS2000 demodulator and tuner
  3. Copyright (C) 2012 Malcolm Priestley (tvboxspy@gmail.com)
  4. Beta Driver
  5. Include various calculation code from DS3000 driver.
  6. Copyright (C) 2009 Konstantin Dimitrov.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/device.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/string.h>
  24. #include <linux/slab.h>
  25. #include <linux/types.h>
  26. #include "dvb_frontend.h"
  27. #include "m88rs2000.h"
  28. struct m88rs2000_state {
  29. struct i2c_adapter *i2c;
  30. const struct m88rs2000_config *config;
  31. struct dvb_frontend frontend;
  32. u8 no_lock_count;
  33. u32 tuner_frequency;
  34. u32 symbol_rate;
  35. fe_code_rate_t fec_inner;
  36. u8 tuner_level;
  37. int errmode;
  38. };
  39. static int m88rs2000_debug;
  40. module_param_named(debug, m88rs2000_debug, int, 0644);
  41. MODULE_PARM_DESC(debug, "set debugging level (1=info (or-able)).");
  42. #define dprintk(level, args...) do { \
  43. if (level & m88rs2000_debug) \
  44. printk(KERN_DEBUG "m88rs2000-fe: " args); \
  45. } while (0)
  46. #define deb_info(args...) dprintk(0x01, args)
  47. #define info(format, arg...) \
  48. printk(KERN_INFO "m88rs2000-fe: " format "\n" , ## arg)
  49. static int m88rs2000_writereg(struct m88rs2000_state *state, u8 tuner,
  50. u8 reg, u8 data)
  51. {
  52. int ret;
  53. u8 addr = (tuner == 0) ? state->config->tuner_addr :
  54. state->config->demod_addr;
  55. u8 buf[] = { reg, data };
  56. struct i2c_msg msg = {
  57. .addr = addr,
  58. .flags = 0,
  59. .buf = buf,
  60. .len = 2
  61. };
  62. ret = i2c_transfer(state->i2c, &msg, 1);
  63. if (ret != 1)
  64. deb_info("%s: writereg error (reg == 0x%02x, val == 0x%02x, "
  65. "ret == %i)\n", __func__, reg, data, ret);
  66. return (ret != 1) ? -EREMOTEIO : 0;
  67. }
  68. static int m88rs2000_demod_write(struct m88rs2000_state *state, u8 reg, u8 data)
  69. {
  70. return m88rs2000_writereg(state, 1, reg, data);
  71. }
  72. static int m88rs2000_tuner_write(struct m88rs2000_state *state, u8 reg, u8 data)
  73. {
  74. m88rs2000_demod_write(state, 0x81, 0x84);
  75. udelay(10);
  76. return m88rs2000_writereg(state, 0, reg, data);
  77. }
  78. static int m88rs2000_write(struct dvb_frontend *fe, const u8 buf[], int len)
  79. {
  80. struct m88rs2000_state *state = fe->demodulator_priv;
  81. if (len != 2)
  82. return -EINVAL;
  83. return m88rs2000_writereg(state, 1, buf[0], buf[1]);
  84. }
  85. static u8 m88rs2000_readreg(struct m88rs2000_state *state, u8 tuner, u8 reg)
  86. {
  87. int ret;
  88. u8 b0[] = { reg };
  89. u8 b1[] = { 0 };
  90. u8 addr = (tuner == 0) ? state->config->tuner_addr :
  91. state->config->demod_addr;
  92. struct i2c_msg msg[] = {
  93. {
  94. .addr = addr,
  95. .flags = 0,
  96. .buf = b0,
  97. .len = 1
  98. }, {
  99. .addr = addr,
  100. .flags = I2C_M_RD,
  101. .buf = b1,
  102. .len = 1
  103. }
  104. };
  105. ret = i2c_transfer(state->i2c, msg, 2);
  106. if (ret != 2)
  107. deb_info("%s: readreg error (reg == 0x%02x, ret == %i)\n",
  108. __func__, reg, ret);
  109. return b1[0];
  110. }
  111. static u8 m88rs2000_demod_read(struct m88rs2000_state *state, u8 reg)
  112. {
  113. return m88rs2000_readreg(state, 1, reg);
  114. }
  115. static u8 m88rs2000_tuner_read(struct m88rs2000_state *state, u8 reg)
  116. {
  117. m88rs2000_demod_write(state, 0x81, 0x85);
  118. udelay(10);
  119. return m88rs2000_readreg(state, 0, reg);
  120. }
  121. static int m88rs2000_set_symbolrate(struct dvb_frontend *fe, u32 srate)
  122. {
  123. struct m88rs2000_state *state = fe->demodulator_priv;
  124. int ret;
  125. u32 temp;
  126. u8 b[3];
  127. if ((srate < 1000000) || (srate > 45000000))
  128. return -EINVAL;
  129. temp = srate / 1000;
  130. temp *= 11831;
  131. temp /= 68;
  132. temp -= 3;
  133. b[0] = (u8) (temp >> 16) & 0xff;
  134. b[1] = (u8) (temp >> 8) & 0xff;
  135. b[2] = (u8) temp & 0xff;
  136. ret = m88rs2000_demod_write(state, 0x93, b[2]);
  137. ret |= m88rs2000_demod_write(state, 0x94, b[1]);
  138. ret |= m88rs2000_demod_write(state, 0x95, b[0]);
  139. deb_info("m88rs2000: m88rs2000_set_symbolrate\n");
  140. return ret;
  141. }
  142. static int m88rs2000_send_diseqc_msg(struct dvb_frontend *fe,
  143. struct dvb_diseqc_master_cmd *m)
  144. {
  145. struct m88rs2000_state *state = fe->demodulator_priv;
  146. int i;
  147. u8 reg;
  148. deb_info("%s\n", __func__);
  149. m88rs2000_demod_write(state, 0x9a, 0x30);
  150. reg = m88rs2000_demod_read(state, 0xb2);
  151. reg &= 0x3f;
  152. m88rs2000_demod_write(state, 0xb2, reg);
  153. for (i = 0; i < m->msg_len; i++)
  154. m88rs2000_demod_write(state, 0xb3 + i, m->msg[i]);
  155. reg = m88rs2000_demod_read(state, 0xb1);
  156. reg &= 0x87;
  157. reg |= ((m->msg_len - 1) << 3) | 0x07;
  158. reg &= 0x7f;
  159. m88rs2000_demod_write(state, 0xb1, reg);
  160. for (i = 0; i < 15; i++) {
  161. if ((m88rs2000_demod_read(state, 0xb1) & 0x40) == 0x0)
  162. break;
  163. msleep(20);
  164. }
  165. reg = m88rs2000_demod_read(state, 0xb1);
  166. if ((reg & 0x40) > 0x0) {
  167. reg &= 0x7f;
  168. reg |= 0x40;
  169. m88rs2000_demod_write(state, 0xb1, reg);
  170. }
  171. reg = m88rs2000_demod_read(state, 0xb2);
  172. reg &= 0x3f;
  173. reg |= 0x80;
  174. m88rs2000_demod_write(state, 0xb2, reg);
  175. m88rs2000_demod_write(state, 0x9a, 0xb0);
  176. return 0;
  177. }
  178. static int m88rs2000_send_diseqc_burst(struct dvb_frontend *fe,
  179. fe_sec_mini_cmd_t burst)
  180. {
  181. struct m88rs2000_state *state = fe->demodulator_priv;
  182. u8 reg0, reg1;
  183. deb_info("%s\n", __func__);
  184. m88rs2000_demod_write(state, 0x9a, 0x30);
  185. msleep(50);
  186. reg0 = m88rs2000_demod_read(state, 0xb1);
  187. reg1 = m88rs2000_demod_read(state, 0xb2);
  188. /* TODO complete this section */
  189. m88rs2000_demod_write(state, 0xb2, reg1);
  190. m88rs2000_demod_write(state, 0xb1, reg0);
  191. m88rs2000_demod_write(state, 0x9a, 0xb0);
  192. return 0;
  193. }
  194. static int m88rs2000_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
  195. {
  196. struct m88rs2000_state *state = fe->demodulator_priv;
  197. u8 reg0, reg1;
  198. m88rs2000_demod_write(state, 0x9a, 0x30);
  199. reg0 = m88rs2000_demod_read(state, 0xb1);
  200. reg1 = m88rs2000_demod_read(state, 0xb2);
  201. reg1 &= 0x3f;
  202. switch (tone) {
  203. case SEC_TONE_ON:
  204. reg0 |= 0x4;
  205. reg0 &= 0xbc;
  206. break;
  207. case SEC_TONE_OFF:
  208. reg1 |= 0x80;
  209. break;
  210. default:
  211. break;
  212. }
  213. m88rs2000_demod_write(state, 0xb2, reg1);
  214. m88rs2000_demod_write(state, 0xb1, reg0);
  215. m88rs2000_demod_write(state, 0x9a, 0xb0);
  216. return 0;
  217. }
  218. struct inittab {
  219. u8 cmd;
  220. u8 reg;
  221. u8 val;
  222. };
  223. struct inittab m88rs2000_setup[] = {
  224. {DEMOD_WRITE, 0x9a, 0x30},
  225. {DEMOD_WRITE, 0x00, 0x01},
  226. {WRITE_DELAY, 0x19, 0x00},
  227. {DEMOD_WRITE, 0x00, 0x00},
  228. {DEMOD_WRITE, 0x9a, 0xb0},
  229. {DEMOD_WRITE, 0x81, 0xc1},
  230. {TUNER_WRITE, 0x42, 0x73},
  231. {TUNER_WRITE, 0x05, 0x07},
  232. {TUNER_WRITE, 0x20, 0x27},
  233. {TUNER_WRITE, 0x07, 0x02},
  234. {TUNER_WRITE, 0x11, 0xff},
  235. {TUNER_WRITE, 0x60, 0xf9},
  236. {TUNER_WRITE, 0x08, 0x01},
  237. {TUNER_WRITE, 0x00, 0x41},
  238. {DEMOD_WRITE, 0x81, 0x81},
  239. {DEMOD_WRITE, 0x86, 0xc6},
  240. {DEMOD_WRITE, 0x9a, 0x30},
  241. {DEMOD_WRITE, 0xf0, 0x22},
  242. {DEMOD_WRITE, 0xf1, 0xbf},
  243. {DEMOD_WRITE, 0xb0, 0x45},
  244. {DEMOD_WRITE, 0xb2, 0x01}, /* set voltage pin always set 1*/
  245. {DEMOD_WRITE, 0x9a, 0xb0},
  246. {0xff, 0xaa, 0xff}
  247. };
  248. struct inittab m88rs2000_shutdown[] = {
  249. {DEMOD_WRITE, 0x9a, 0x30},
  250. {DEMOD_WRITE, 0xb0, 0x00},
  251. {DEMOD_WRITE, 0xf1, 0x89},
  252. {DEMOD_WRITE, 0x00, 0x01},
  253. {DEMOD_WRITE, 0x9a, 0xb0},
  254. {TUNER_WRITE, 0x00, 0x40},
  255. {DEMOD_WRITE, 0x81, 0x81},
  256. {0xff, 0xaa, 0xff}
  257. };
  258. struct inittab tuner_reset[] = {
  259. {TUNER_WRITE, 0x42, 0x73},
  260. {TUNER_WRITE, 0x05, 0x07},
  261. {TUNER_WRITE, 0x20, 0x27},
  262. {TUNER_WRITE, 0x07, 0x02},
  263. {TUNER_WRITE, 0x11, 0xff},
  264. {TUNER_WRITE, 0x60, 0xf9},
  265. {TUNER_WRITE, 0x08, 0x01},
  266. {TUNER_WRITE, 0x00, 0x41},
  267. {0xff, 0xaa, 0xff}
  268. };
  269. struct inittab fe_reset[] = {
  270. {DEMOD_WRITE, 0x00, 0x01},
  271. {DEMOD_WRITE, 0xf1, 0xbf},
  272. {DEMOD_WRITE, 0x00, 0x01},
  273. {DEMOD_WRITE, 0x20, 0x81},
  274. {DEMOD_WRITE, 0x21, 0x80},
  275. {DEMOD_WRITE, 0x10, 0x33},
  276. {DEMOD_WRITE, 0x11, 0x44},
  277. {DEMOD_WRITE, 0x12, 0x07},
  278. {DEMOD_WRITE, 0x18, 0x20},
  279. {DEMOD_WRITE, 0x28, 0x04},
  280. {DEMOD_WRITE, 0x29, 0x8e},
  281. {DEMOD_WRITE, 0x3b, 0xff},
  282. {DEMOD_WRITE, 0x32, 0x10},
  283. {DEMOD_WRITE, 0x33, 0x02},
  284. {DEMOD_WRITE, 0x34, 0x30},
  285. {DEMOD_WRITE, 0x35, 0xff},
  286. {DEMOD_WRITE, 0x38, 0x50},
  287. {DEMOD_WRITE, 0x39, 0x68},
  288. {DEMOD_WRITE, 0x3c, 0x7f},
  289. {DEMOD_WRITE, 0x3d, 0x0f},
  290. {DEMOD_WRITE, 0x45, 0x20},
  291. {DEMOD_WRITE, 0x46, 0x24},
  292. {DEMOD_WRITE, 0x47, 0x7c},
  293. {DEMOD_WRITE, 0x48, 0x16},
  294. {DEMOD_WRITE, 0x49, 0x04},
  295. {DEMOD_WRITE, 0x4a, 0x01},
  296. {DEMOD_WRITE, 0x4b, 0x78},
  297. {DEMOD_WRITE, 0X4d, 0xd2},
  298. {DEMOD_WRITE, 0x4e, 0x6d},
  299. {DEMOD_WRITE, 0x50, 0x30},
  300. {DEMOD_WRITE, 0x51, 0x30},
  301. {DEMOD_WRITE, 0x54, 0x7b},
  302. {DEMOD_WRITE, 0x56, 0x09},
  303. {DEMOD_WRITE, 0x58, 0x59},
  304. {DEMOD_WRITE, 0x59, 0x37},
  305. {DEMOD_WRITE, 0x63, 0xfa},
  306. {0xff, 0xaa, 0xff}
  307. };
  308. struct inittab fe_trigger[] = {
  309. {DEMOD_WRITE, 0x97, 0x04},
  310. {DEMOD_WRITE, 0x99, 0x77},
  311. {DEMOD_WRITE, 0x9b, 0x64},
  312. {DEMOD_WRITE, 0x9e, 0x00},
  313. {DEMOD_WRITE, 0x9f, 0xf8},
  314. {DEMOD_WRITE, 0xa0, 0x20},
  315. {DEMOD_WRITE, 0xa1, 0xe0},
  316. {DEMOD_WRITE, 0xa3, 0x38},
  317. {DEMOD_WRITE, 0x98, 0xff},
  318. {DEMOD_WRITE, 0xc0, 0x0f},
  319. {DEMOD_WRITE, 0x89, 0x01},
  320. {DEMOD_WRITE, 0x00, 0x00},
  321. {WRITE_DELAY, 0x0a, 0x00},
  322. {DEMOD_WRITE, 0x00, 0x01},
  323. {DEMOD_WRITE, 0x00, 0x00},
  324. {DEMOD_WRITE, 0x9a, 0xb0},
  325. {0xff, 0xaa, 0xff}
  326. };
  327. static int m88rs2000_tab_set(struct m88rs2000_state *state,
  328. struct inittab *tab)
  329. {
  330. int ret = 0;
  331. u8 i;
  332. if (tab == NULL)
  333. return -EINVAL;
  334. for (i = 0; i < 255; i++) {
  335. switch (tab[i].cmd) {
  336. case 0x01:
  337. ret = m88rs2000_demod_write(state, tab[i].reg,
  338. tab[i].val);
  339. break;
  340. case 0x02:
  341. ret = m88rs2000_tuner_write(state, tab[i].reg,
  342. tab[i].val);
  343. break;
  344. case 0x10:
  345. if (tab[i].reg > 0)
  346. mdelay(tab[i].reg);
  347. break;
  348. case 0xff:
  349. if (tab[i].reg == 0xaa && tab[i].val == 0xff)
  350. return 0;
  351. case 0x00:
  352. break;
  353. default:
  354. return -EINVAL;
  355. }
  356. if (ret < 0)
  357. return -ENODEV;
  358. }
  359. return 0;
  360. }
  361. static int m88rs2000_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t volt)
  362. {
  363. struct m88rs2000_state *state = fe->demodulator_priv;
  364. u8 data;
  365. data = m88rs2000_demod_read(state, 0xb2);
  366. data |= 0x03; /* bit0 V/H, bit1 off/on */
  367. switch (volt) {
  368. case SEC_VOLTAGE_18:
  369. data &= ~0x03;
  370. break;
  371. case SEC_VOLTAGE_13:
  372. data &= ~0x03;
  373. data |= 0x01;
  374. break;
  375. case SEC_VOLTAGE_OFF:
  376. break;
  377. }
  378. m88rs2000_demod_write(state, 0xb2, data);
  379. return 0;
  380. }
  381. static int m88rs2000_startup(struct m88rs2000_state *state)
  382. {
  383. int ret = 0;
  384. u8 reg;
  385. reg = m88rs2000_tuner_read(state, 0x00);
  386. if ((reg & 0x40) == 0)
  387. ret = -ENODEV;
  388. return ret;
  389. }
  390. static int m88rs2000_init(struct dvb_frontend *fe)
  391. {
  392. struct m88rs2000_state *state = fe->demodulator_priv;
  393. int ret;
  394. deb_info("m88rs2000: init chip\n");
  395. /* Setup frontend from shutdown/cold */
  396. if (state->config->inittab)
  397. ret = m88rs2000_tab_set(state,
  398. (struct inittab *)state->config->inittab);
  399. else
  400. ret = m88rs2000_tab_set(state, m88rs2000_setup);
  401. return ret;
  402. }
  403. static int m88rs2000_sleep(struct dvb_frontend *fe)
  404. {
  405. struct m88rs2000_state *state = fe->demodulator_priv;
  406. int ret;
  407. /* Shutdown the frondend */
  408. ret = m88rs2000_tab_set(state, m88rs2000_shutdown);
  409. return ret;
  410. }
  411. static int m88rs2000_read_status(struct dvb_frontend *fe, fe_status_t *status)
  412. {
  413. struct m88rs2000_state *state = fe->demodulator_priv;
  414. u8 reg = m88rs2000_demod_read(state, 0x8c);
  415. *status = 0;
  416. if ((reg & 0x7) == 0x7) {
  417. *status = FE_HAS_CARRIER | FE_HAS_SIGNAL | FE_HAS_VITERBI
  418. | FE_HAS_SYNC | FE_HAS_LOCK;
  419. if (state->config->set_ts_params)
  420. state->config->set_ts_params(fe, CALL_IS_READ);
  421. }
  422. return 0;
  423. }
  424. static int m88rs2000_read_ber(struct dvb_frontend *fe, u32 *ber)
  425. {
  426. struct m88rs2000_state *state = fe->demodulator_priv;
  427. u8 tmp0, tmp1;
  428. m88rs2000_demod_write(state, 0x9a, 0x30);
  429. tmp0 = m88rs2000_demod_read(state, 0xd8);
  430. if ((tmp0 & 0x10) != 0) {
  431. m88rs2000_demod_write(state, 0x9a, 0xb0);
  432. *ber = 0xffffffff;
  433. return 0;
  434. }
  435. *ber = (m88rs2000_demod_read(state, 0xd7) << 8) |
  436. m88rs2000_demod_read(state, 0xd6);
  437. tmp1 = m88rs2000_demod_read(state, 0xd9);
  438. m88rs2000_demod_write(state, 0xd9, (tmp1 & ~7) | 4);
  439. /* needs twice */
  440. m88rs2000_demod_write(state, 0xd8, (tmp0 & ~8) | 0x30);
  441. m88rs2000_demod_write(state, 0xd8, (tmp0 & ~8) | 0x30);
  442. m88rs2000_demod_write(state, 0x9a, 0xb0);
  443. return 0;
  444. }
  445. static int m88rs2000_read_signal_strength(struct dvb_frontend *fe,
  446. u16 *strength)
  447. {
  448. *strength = 0;
  449. return 0;
  450. }
  451. static int m88rs2000_read_snr(struct dvb_frontend *fe, u16 *snr)
  452. {
  453. struct m88rs2000_state *state = fe->demodulator_priv;
  454. *snr = 512 * m88rs2000_demod_read(state, 0x65);
  455. return 0;
  456. }
  457. static int m88rs2000_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  458. {
  459. struct m88rs2000_state *state = fe->demodulator_priv;
  460. u8 tmp;
  461. *ucblocks = (m88rs2000_demod_read(state, 0xd5) << 8) |
  462. m88rs2000_demod_read(state, 0xd4);
  463. tmp = m88rs2000_demod_read(state, 0xd8);
  464. m88rs2000_demod_write(state, 0xd8, tmp & ~0x20);
  465. /* needs two times */
  466. m88rs2000_demod_write(state, 0xd8, tmp | 0x20);
  467. m88rs2000_demod_write(state, 0xd8, tmp | 0x20);
  468. return 0;
  469. }
  470. static int m88rs2000_tuner_gate_ctrl(struct m88rs2000_state *state, u8 offset)
  471. {
  472. int ret;
  473. ret = m88rs2000_tuner_write(state, 0x51, 0x1f - offset);
  474. ret |= m88rs2000_tuner_write(state, 0x51, 0x1f);
  475. ret |= m88rs2000_tuner_write(state, 0x50, offset);
  476. ret |= m88rs2000_tuner_write(state, 0x50, 0x00);
  477. msleep(20);
  478. return ret;
  479. }
  480. static int m88rs2000_set_tuner_rf(struct dvb_frontend *fe)
  481. {
  482. struct m88rs2000_state *state = fe->demodulator_priv;
  483. int reg;
  484. reg = m88rs2000_tuner_read(state, 0x3d);
  485. reg &= 0x7f;
  486. if (reg < 0x16)
  487. reg = 0xa1;
  488. else if (reg == 0x16)
  489. reg = 0x99;
  490. else
  491. reg = 0xf9;
  492. m88rs2000_tuner_write(state, 0x60, reg);
  493. reg = m88rs2000_tuner_gate_ctrl(state, 0x08);
  494. if (fe->ops.i2c_gate_ctrl)
  495. fe->ops.i2c_gate_ctrl(fe, 0);
  496. return reg;
  497. }
  498. static int m88rs2000_set_tuner(struct dvb_frontend *fe, u16 *offset)
  499. {
  500. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  501. struct m88rs2000_state *state = fe->demodulator_priv;
  502. int ret;
  503. u32 frequency = c->frequency;
  504. s32 offset_khz;
  505. s32 tmp;
  506. u32 symbol_rate = (c->symbol_rate / 1000);
  507. u32 f3db, gdiv28;
  508. u16 value, ndiv, lpf_coeff;
  509. u8 lpf_mxdiv, mlpf_max, mlpf_min, nlpf;
  510. u8 lo = 0x01, div4 = 0x0;
  511. /* Reset Tuner */
  512. ret = m88rs2000_tab_set(state, tuner_reset);
  513. /* Calculate frequency divider */
  514. if (frequency < 1060000) {
  515. lo |= 0x10;
  516. div4 = 0x1;
  517. ndiv = (frequency * 14 * 4) / FE_CRYSTAL_KHZ;
  518. } else
  519. ndiv = (frequency * 14 * 2) / FE_CRYSTAL_KHZ;
  520. ndiv = ndiv + ndiv % 2;
  521. ndiv = ndiv - 1024;
  522. ret = m88rs2000_tuner_write(state, 0x10, 0x80 | lo);
  523. /* Set frequency divider */
  524. ret |= m88rs2000_tuner_write(state, 0x01, (ndiv >> 8) & 0xf);
  525. ret |= m88rs2000_tuner_write(state, 0x02, ndiv & 0xff);
  526. ret |= m88rs2000_tuner_write(state, 0x03, 0x06);
  527. ret |= m88rs2000_tuner_gate_ctrl(state, 0x10);
  528. if (ret < 0)
  529. return -ENODEV;
  530. /* Tuner Frequency Range */
  531. ret = m88rs2000_tuner_write(state, 0x10, lo);
  532. ret |= m88rs2000_tuner_gate_ctrl(state, 0x08);
  533. /* Tuner RF */
  534. ret |= m88rs2000_set_tuner_rf(fe);
  535. gdiv28 = (FE_CRYSTAL_KHZ / 1000 * 1694 + 500) / 1000;
  536. ret |= m88rs2000_tuner_write(state, 0x04, gdiv28 & 0xff);
  537. ret |= m88rs2000_tuner_gate_ctrl(state, 0x04);
  538. if (ret < 0)
  539. return -ENODEV;
  540. value = m88rs2000_tuner_read(state, 0x26);
  541. f3db = (symbol_rate * 135) / 200 + 2000;
  542. f3db += FREQ_OFFSET_LOW_SYM_RATE;
  543. if (f3db < 7000)
  544. f3db = 7000;
  545. if (f3db > 40000)
  546. f3db = 40000;
  547. gdiv28 = gdiv28 * 207 / (value * 2 + 151);
  548. mlpf_max = gdiv28 * 135 / 100;
  549. mlpf_min = gdiv28 * 78 / 100;
  550. if (mlpf_max > 63)
  551. mlpf_max = 63;
  552. lpf_coeff = 2766;
  553. nlpf = (f3db * gdiv28 * 2 / lpf_coeff /
  554. (FE_CRYSTAL_KHZ / 1000) + 1) / 2;
  555. if (nlpf > 23)
  556. nlpf = 23;
  557. if (nlpf < 1)
  558. nlpf = 1;
  559. lpf_mxdiv = (nlpf * (FE_CRYSTAL_KHZ / 1000)
  560. * lpf_coeff * 2 / f3db + 1) / 2;
  561. if (lpf_mxdiv < mlpf_min) {
  562. nlpf++;
  563. lpf_mxdiv = (nlpf * (FE_CRYSTAL_KHZ / 1000)
  564. * lpf_coeff * 2 / f3db + 1) / 2;
  565. }
  566. if (lpf_mxdiv > mlpf_max)
  567. lpf_mxdiv = mlpf_max;
  568. ret = m88rs2000_tuner_write(state, 0x04, lpf_mxdiv);
  569. ret |= m88rs2000_tuner_write(state, 0x06, nlpf);
  570. ret |= m88rs2000_tuner_gate_ctrl(state, 0x04);
  571. ret |= m88rs2000_tuner_gate_ctrl(state, 0x01);
  572. msleep(80);
  573. /* calculate offset assuming 96000kHz*/
  574. offset_khz = (ndiv - ndiv % 2 + 1024) * FE_CRYSTAL_KHZ
  575. / 14 / (div4 + 1) / 2;
  576. offset_khz -= frequency;
  577. tmp = offset_khz;
  578. tmp *= 65536;
  579. tmp = (2 * tmp + 96000) / (2 * 96000);
  580. if (tmp < 0)
  581. tmp += 65536;
  582. *offset = tmp & 0xffff;
  583. if (fe->ops.i2c_gate_ctrl)
  584. fe->ops.i2c_gate_ctrl(fe, 0);
  585. return (ret < 0) ? -EINVAL : 0;
  586. }
  587. static int m88rs2000_set_fec(struct m88rs2000_state *state,
  588. fe_code_rate_t fec)
  589. {
  590. u16 fec_set;
  591. switch (fec) {
  592. /* This is not confirmed kept for reference */
  593. /* case FEC_1_2:
  594. fec_set = 0x88;
  595. break;
  596. case FEC_2_3:
  597. fec_set = 0x68;
  598. break;
  599. case FEC_3_4:
  600. fec_set = 0x48;
  601. break;
  602. case FEC_5_6:
  603. fec_set = 0x28;
  604. break;
  605. case FEC_7_8:
  606. fec_set = 0x18;
  607. break; */
  608. case FEC_AUTO:
  609. default:
  610. fec_set = 0x08;
  611. }
  612. m88rs2000_demod_write(state, 0x76, fec_set);
  613. return 0;
  614. }
  615. static fe_code_rate_t m88rs2000_get_fec(struct m88rs2000_state *state)
  616. {
  617. u8 reg;
  618. m88rs2000_demod_write(state, 0x9a, 0x30);
  619. reg = m88rs2000_demod_read(state, 0x76);
  620. m88rs2000_demod_write(state, 0x9a, 0xb0);
  621. switch (reg) {
  622. case 0x88:
  623. return FEC_1_2;
  624. case 0x68:
  625. return FEC_2_3;
  626. case 0x48:
  627. return FEC_3_4;
  628. case 0x28:
  629. return FEC_5_6;
  630. case 0x18:
  631. return FEC_7_8;
  632. case 0x08:
  633. default:
  634. break;
  635. }
  636. return FEC_AUTO;
  637. }
  638. static int m88rs2000_set_frontend(struct dvb_frontend *fe)
  639. {
  640. struct m88rs2000_state *state = fe->demodulator_priv;
  641. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  642. fe_status_t status;
  643. int i, ret;
  644. u16 offset = 0;
  645. u8 reg;
  646. state->no_lock_count = 0;
  647. if (c->delivery_system != SYS_DVBS) {
  648. deb_info("%s: unsupported delivery "
  649. "system selected (%d)\n",
  650. __func__, c->delivery_system);
  651. return -EOPNOTSUPP;
  652. }
  653. /* Set Tuner */
  654. ret = m88rs2000_set_tuner(fe, &offset);
  655. if (ret < 0)
  656. return -ENODEV;
  657. ret = m88rs2000_demod_write(state, 0x9a, 0x30);
  658. /* Unknown usually 0xc6 sometimes 0xc1 */
  659. reg = m88rs2000_demod_read(state, 0x86);
  660. ret |= m88rs2000_demod_write(state, 0x86, reg);
  661. /* Offset lower nibble always 0 */
  662. ret |= m88rs2000_demod_write(state, 0x9c, (offset >> 8));
  663. ret |= m88rs2000_demod_write(state, 0x9d, offset & 0xf0);
  664. /* Reset Demod */
  665. ret = m88rs2000_tab_set(state, fe_reset);
  666. if (ret < 0)
  667. return -ENODEV;
  668. /* Unknown */
  669. reg = m88rs2000_demod_read(state, 0x70);
  670. ret = m88rs2000_demod_write(state, 0x70, reg);
  671. /* Set FEC */
  672. ret |= m88rs2000_set_fec(state, c->fec_inner);
  673. ret |= m88rs2000_demod_write(state, 0x85, 0x1);
  674. ret |= m88rs2000_demod_write(state, 0x8a, 0xbf);
  675. ret |= m88rs2000_demod_write(state, 0x8d, 0x1e);
  676. ret |= m88rs2000_demod_write(state, 0x90, 0xf1);
  677. ret |= m88rs2000_demod_write(state, 0x91, 0x08);
  678. if (ret < 0)
  679. return -ENODEV;
  680. /* Set Symbol Rate */
  681. ret = m88rs2000_set_symbolrate(fe, c->symbol_rate);
  682. if (ret < 0)
  683. return -ENODEV;
  684. /* Set up Demod */
  685. ret = m88rs2000_tab_set(state, fe_trigger);
  686. if (ret < 0)
  687. return -ENODEV;
  688. for (i = 0; i < 25; i++) {
  689. reg = m88rs2000_demod_read(state, 0x8c);
  690. if ((reg & 0x7) == 0x7) {
  691. status = FE_HAS_LOCK;
  692. break;
  693. }
  694. state->no_lock_count++;
  695. if (state->no_lock_count == 15) {
  696. reg = m88rs2000_demod_read(state, 0x70);
  697. reg ^= 0x4;
  698. m88rs2000_demod_write(state, 0x70, reg);
  699. state->no_lock_count = 0;
  700. }
  701. if (state->no_lock_count == 20)
  702. m88rs2000_set_tuner_rf(fe);
  703. msleep(20);
  704. }
  705. if (status & FE_HAS_LOCK) {
  706. state->fec_inner = m88rs2000_get_fec(state);
  707. /* Uknown suspect SNR level */
  708. reg = m88rs2000_demod_read(state, 0x65);
  709. }
  710. state->tuner_frequency = c->frequency;
  711. state->symbol_rate = c->symbol_rate;
  712. return 0;
  713. }
  714. static int m88rs2000_get_frontend(struct dvb_frontend *fe)
  715. {
  716. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  717. struct m88rs2000_state *state = fe->demodulator_priv;
  718. c->fec_inner = state->fec_inner;
  719. c->frequency = state->tuner_frequency;
  720. c->symbol_rate = state->symbol_rate;
  721. return 0;
  722. }
  723. static int m88rs2000_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  724. {
  725. struct m88rs2000_state *state = fe->demodulator_priv;
  726. if (enable)
  727. m88rs2000_demod_write(state, 0x81, 0x84);
  728. else
  729. m88rs2000_demod_write(state, 0x81, 0x81);
  730. udelay(10);
  731. return 0;
  732. }
  733. static void m88rs2000_release(struct dvb_frontend *fe)
  734. {
  735. struct m88rs2000_state *state = fe->demodulator_priv;
  736. kfree(state);
  737. }
  738. static struct dvb_frontend_ops m88rs2000_ops = {
  739. .delsys = { SYS_DVBS },
  740. .info = {
  741. .name = "M88RS2000 DVB-S",
  742. .frequency_min = 950000,
  743. .frequency_max = 2150000,
  744. .frequency_stepsize = 1000, /* kHz for QPSK frontends */
  745. .frequency_tolerance = 5000,
  746. .symbol_rate_min = 1000000,
  747. .symbol_rate_max = 45000000,
  748. .symbol_rate_tolerance = 500, /* ppm */
  749. .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  750. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
  751. FE_CAN_QPSK |
  752. FE_CAN_FEC_AUTO
  753. },
  754. .release = m88rs2000_release,
  755. .init = m88rs2000_init,
  756. .sleep = m88rs2000_sleep,
  757. .write = m88rs2000_write,
  758. .i2c_gate_ctrl = m88rs2000_i2c_gate_ctrl,
  759. .read_status = m88rs2000_read_status,
  760. .read_ber = m88rs2000_read_ber,
  761. .read_signal_strength = m88rs2000_read_signal_strength,
  762. .read_snr = m88rs2000_read_snr,
  763. .read_ucblocks = m88rs2000_read_ucblocks,
  764. .diseqc_send_master_cmd = m88rs2000_send_diseqc_msg,
  765. .diseqc_send_burst = m88rs2000_send_diseqc_burst,
  766. .set_tone = m88rs2000_set_tone,
  767. .set_voltage = m88rs2000_set_voltage,
  768. .set_frontend = m88rs2000_set_frontend,
  769. .get_frontend = m88rs2000_get_frontend,
  770. };
  771. struct dvb_frontend *m88rs2000_attach(const struct m88rs2000_config *config,
  772. struct i2c_adapter *i2c)
  773. {
  774. struct m88rs2000_state *state = NULL;
  775. /* allocate memory for the internal state */
  776. state = kzalloc(sizeof(struct m88rs2000_state), GFP_KERNEL);
  777. if (state == NULL)
  778. goto error;
  779. /* setup the state */
  780. state->config = config;
  781. state->i2c = i2c;
  782. state->tuner_frequency = 0;
  783. state->symbol_rate = 0;
  784. state->fec_inner = 0;
  785. if (m88rs2000_startup(state) < 0)
  786. goto error;
  787. /* create dvb_frontend */
  788. memcpy(&state->frontend.ops, &m88rs2000_ops,
  789. sizeof(struct dvb_frontend_ops));
  790. state->frontend.demodulator_priv = state;
  791. return &state->frontend;
  792. error:
  793. kfree(state);
  794. return NULL;
  795. }
  796. EXPORT_SYMBOL(m88rs2000_attach);
  797. MODULE_DESCRIPTION("M88RS2000 DVB-S Demodulator driver");
  798. MODULE_AUTHOR("Malcolm Priestley tvboxspy@gmail.com");
  799. MODULE_LICENSE("GPL");
  800. MODULE_VERSION("1.13");