util.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217
  1. /*
  2. * Wireless utility functions
  3. *
  4. * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
  5. */
  6. #include <linux/bitops.h>
  7. #include <linux/etherdevice.h>
  8. #include <linux/slab.h>
  9. #include <linux/crc32.h>
  10. #include <net/cfg80211.h>
  11. #include <net/ip.h>
  12. #include "core.h"
  13. struct ieee80211_rate *
  14. ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  15. u32 basic_rates, int bitrate)
  16. {
  17. struct ieee80211_rate *result = &sband->bitrates[0];
  18. int i;
  19. for (i = 0; i < sband->n_bitrates; i++) {
  20. if (!(basic_rates & BIT(i)))
  21. continue;
  22. if (sband->bitrates[i].bitrate > bitrate)
  23. continue;
  24. result = &sband->bitrates[i];
  25. }
  26. return result;
  27. }
  28. EXPORT_SYMBOL(ieee80211_get_response_rate);
  29. int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
  30. {
  31. /* see 802.11 17.3.8.3.2 and Annex J
  32. * there are overlapping channel numbers in 5GHz and 2GHz bands */
  33. if (band == IEEE80211_BAND_5GHZ) {
  34. if (chan >= 182 && chan <= 196)
  35. return 4000 + chan * 5;
  36. else
  37. return 5000 + chan * 5;
  38. } else { /* IEEE80211_BAND_2GHZ */
  39. if (chan == 14)
  40. return 2484;
  41. else if (chan < 14)
  42. return 2407 + chan * 5;
  43. else
  44. return 0; /* not supported */
  45. }
  46. }
  47. EXPORT_SYMBOL(ieee80211_channel_to_frequency);
  48. int ieee80211_frequency_to_channel(int freq)
  49. {
  50. /* see 802.11 17.3.8.3.2 and Annex J */
  51. if (freq == 2484)
  52. return 14;
  53. else if (freq < 2484)
  54. return (freq - 2407) / 5;
  55. else if (freq >= 4910 && freq <= 4980)
  56. return (freq - 4000) / 5;
  57. else
  58. return (freq - 5000) / 5;
  59. }
  60. EXPORT_SYMBOL(ieee80211_frequency_to_channel);
  61. struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
  62. int freq)
  63. {
  64. enum ieee80211_band band;
  65. struct ieee80211_supported_band *sband;
  66. int i;
  67. for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
  68. sband = wiphy->bands[band];
  69. if (!sband)
  70. continue;
  71. for (i = 0; i < sband->n_channels; i++) {
  72. if (sband->channels[i].center_freq == freq)
  73. return &sband->channels[i];
  74. }
  75. }
  76. return NULL;
  77. }
  78. EXPORT_SYMBOL(__ieee80211_get_channel);
  79. static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
  80. enum ieee80211_band band)
  81. {
  82. int i, want;
  83. switch (band) {
  84. case IEEE80211_BAND_5GHZ:
  85. want = 3;
  86. for (i = 0; i < sband->n_bitrates; i++) {
  87. if (sband->bitrates[i].bitrate == 60 ||
  88. sband->bitrates[i].bitrate == 120 ||
  89. sband->bitrates[i].bitrate == 240) {
  90. sband->bitrates[i].flags |=
  91. IEEE80211_RATE_MANDATORY_A;
  92. want--;
  93. }
  94. }
  95. WARN_ON(want);
  96. break;
  97. case IEEE80211_BAND_2GHZ:
  98. want = 7;
  99. for (i = 0; i < sband->n_bitrates; i++) {
  100. if (sband->bitrates[i].bitrate == 10) {
  101. sband->bitrates[i].flags |=
  102. IEEE80211_RATE_MANDATORY_B |
  103. IEEE80211_RATE_MANDATORY_G;
  104. want--;
  105. }
  106. if (sband->bitrates[i].bitrate == 20 ||
  107. sband->bitrates[i].bitrate == 55 ||
  108. sband->bitrates[i].bitrate == 110 ||
  109. sband->bitrates[i].bitrate == 60 ||
  110. sband->bitrates[i].bitrate == 120 ||
  111. sband->bitrates[i].bitrate == 240) {
  112. sband->bitrates[i].flags |=
  113. IEEE80211_RATE_MANDATORY_G;
  114. want--;
  115. }
  116. if (sband->bitrates[i].bitrate != 10 &&
  117. sband->bitrates[i].bitrate != 20 &&
  118. sband->bitrates[i].bitrate != 55 &&
  119. sband->bitrates[i].bitrate != 110)
  120. sband->bitrates[i].flags |=
  121. IEEE80211_RATE_ERP_G;
  122. }
  123. WARN_ON(want != 0 && want != 3 && want != 6);
  124. break;
  125. case IEEE80211_NUM_BANDS:
  126. WARN_ON(1);
  127. break;
  128. }
  129. }
  130. void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
  131. {
  132. enum ieee80211_band band;
  133. for (band = 0; band < IEEE80211_NUM_BANDS; band++)
  134. if (wiphy->bands[band])
  135. set_mandatory_flags_band(wiphy->bands[band], band);
  136. }
  137. bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
  138. {
  139. int i;
  140. for (i = 0; i < wiphy->n_cipher_suites; i++)
  141. if (cipher == wiphy->cipher_suites[i])
  142. return true;
  143. return false;
  144. }
  145. int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
  146. struct key_params *params, int key_idx,
  147. bool pairwise, const u8 *mac_addr)
  148. {
  149. if (key_idx > 5)
  150. return -EINVAL;
  151. if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
  152. return -EINVAL;
  153. if (pairwise && !mac_addr)
  154. return -EINVAL;
  155. /*
  156. * Disallow pairwise keys with non-zero index unless it's WEP
  157. * or a vendor specific cipher (because current deployments use
  158. * pairwise WEP keys with non-zero indices and for vendor specific
  159. * ciphers this should be validated in the driver or hardware level
  160. * - but 802.11i clearly specifies to use zero)
  161. */
  162. if (pairwise && key_idx &&
  163. ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
  164. (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
  165. (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
  166. return -EINVAL;
  167. switch (params->cipher) {
  168. case WLAN_CIPHER_SUITE_WEP40:
  169. if (params->key_len != WLAN_KEY_LEN_WEP40)
  170. return -EINVAL;
  171. break;
  172. case WLAN_CIPHER_SUITE_TKIP:
  173. if (params->key_len != WLAN_KEY_LEN_TKIP)
  174. return -EINVAL;
  175. break;
  176. case WLAN_CIPHER_SUITE_CCMP:
  177. if (params->key_len != WLAN_KEY_LEN_CCMP)
  178. return -EINVAL;
  179. break;
  180. case WLAN_CIPHER_SUITE_WEP104:
  181. if (params->key_len != WLAN_KEY_LEN_WEP104)
  182. return -EINVAL;
  183. break;
  184. case WLAN_CIPHER_SUITE_AES_CMAC:
  185. if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
  186. return -EINVAL;
  187. break;
  188. default:
  189. /*
  190. * We don't know anything about this algorithm,
  191. * allow using it -- but the driver must check
  192. * all parameters! We still check below whether
  193. * or not the driver supports this algorithm,
  194. * of course.
  195. */
  196. break;
  197. }
  198. if (params->seq) {
  199. switch (params->cipher) {
  200. case WLAN_CIPHER_SUITE_WEP40:
  201. case WLAN_CIPHER_SUITE_WEP104:
  202. /* These ciphers do not use key sequence */
  203. return -EINVAL;
  204. case WLAN_CIPHER_SUITE_TKIP:
  205. case WLAN_CIPHER_SUITE_CCMP:
  206. case WLAN_CIPHER_SUITE_AES_CMAC:
  207. if (params->seq_len != 6)
  208. return -EINVAL;
  209. break;
  210. }
  211. }
  212. if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
  213. return -EINVAL;
  214. return 0;
  215. }
  216. /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
  217. /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
  218. const unsigned char rfc1042_header[] __aligned(2) =
  219. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
  220. EXPORT_SYMBOL(rfc1042_header);
  221. /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
  222. const unsigned char bridge_tunnel_header[] __aligned(2) =
  223. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
  224. EXPORT_SYMBOL(bridge_tunnel_header);
  225. unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
  226. {
  227. unsigned int hdrlen = 24;
  228. if (ieee80211_is_data(fc)) {
  229. if (ieee80211_has_a4(fc))
  230. hdrlen = 30;
  231. if (ieee80211_is_data_qos(fc)) {
  232. hdrlen += IEEE80211_QOS_CTL_LEN;
  233. if (ieee80211_has_order(fc))
  234. hdrlen += IEEE80211_HT_CTL_LEN;
  235. }
  236. goto out;
  237. }
  238. if (ieee80211_is_ctl(fc)) {
  239. /*
  240. * ACK and CTS are 10 bytes, all others 16. To see how
  241. * to get this condition consider
  242. * subtype mask: 0b0000000011110000 (0x00F0)
  243. * ACK subtype: 0b0000000011010000 (0x00D0)
  244. * CTS subtype: 0b0000000011000000 (0x00C0)
  245. * bits that matter: ^^^ (0x00E0)
  246. * value of those: 0b0000000011000000 (0x00C0)
  247. */
  248. if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
  249. hdrlen = 10;
  250. else
  251. hdrlen = 16;
  252. }
  253. out:
  254. return hdrlen;
  255. }
  256. EXPORT_SYMBOL(ieee80211_hdrlen);
  257. unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
  258. {
  259. const struct ieee80211_hdr *hdr =
  260. (const struct ieee80211_hdr *)skb->data;
  261. unsigned int hdrlen;
  262. if (unlikely(skb->len < 10))
  263. return 0;
  264. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  265. if (unlikely(hdrlen > skb->len))
  266. return 0;
  267. return hdrlen;
  268. }
  269. EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
  270. static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
  271. {
  272. int ae = meshhdr->flags & MESH_FLAGS_AE;
  273. /* 7.1.3.5a.2 */
  274. switch (ae) {
  275. case 0:
  276. return 6;
  277. case MESH_FLAGS_AE_A4:
  278. return 12;
  279. case MESH_FLAGS_AE_A5_A6:
  280. return 18;
  281. case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6):
  282. return 24;
  283. default:
  284. return 6;
  285. }
  286. }
  287. int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
  288. enum nl80211_iftype iftype)
  289. {
  290. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  291. u16 hdrlen, ethertype;
  292. u8 *payload;
  293. u8 dst[ETH_ALEN];
  294. u8 src[ETH_ALEN] __aligned(2);
  295. if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
  296. return -1;
  297. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  298. /* convert IEEE 802.11 header + possible LLC headers into Ethernet
  299. * header
  300. * IEEE 802.11 address fields:
  301. * ToDS FromDS Addr1 Addr2 Addr3 Addr4
  302. * 0 0 DA SA BSSID n/a
  303. * 0 1 DA BSSID SA n/a
  304. * 1 0 BSSID SA DA n/a
  305. * 1 1 RA TA DA SA
  306. */
  307. memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
  308. memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
  309. switch (hdr->frame_control &
  310. cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
  311. case cpu_to_le16(IEEE80211_FCTL_TODS):
  312. if (unlikely(iftype != NL80211_IFTYPE_AP &&
  313. iftype != NL80211_IFTYPE_AP_VLAN &&
  314. iftype != NL80211_IFTYPE_P2P_GO))
  315. return -1;
  316. break;
  317. case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
  318. if (unlikely(iftype != NL80211_IFTYPE_WDS &&
  319. iftype != NL80211_IFTYPE_MESH_POINT &&
  320. iftype != NL80211_IFTYPE_AP_VLAN &&
  321. iftype != NL80211_IFTYPE_STATION))
  322. return -1;
  323. if (iftype == NL80211_IFTYPE_MESH_POINT) {
  324. struct ieee80211s_hdr *meshdr =
  325. (struct ieee80211s_hdr *) (skb->data + hdrlen);
  326. /* make sure meshdr->flags is on the linear part */
  327. if (!pskb_may_pull(skb, hdrlen + 1))
  328. return -1;
  329. if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
  330. skb_copy_bits(skb, hdrlen +
  331. offsetof(struct ieee80211s_hdr, eaddr1),
  332. dst, ETH_ALEN);
  333. skb_copy_bits(skb, hdrlen +
  334. offsetof(struct ieee80211s_hdr, eaddr2),
  335. src, ETH_ALEN);
  336. }
  337. hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
  338. }
  339. break;
  340. case cpu_to_le16(IEEE80211_FCTL_FROMDS):
  341. if ((iftype != NL80211_IFTYPE_STATION &&
  342. iftype != NL80211_IFTYPE_P2P_CLIENT &&
  343. iftype != NL80211_IFTYPE_MESH_POINT) ||
  344. (is_multicast_ether_addr(dst) &&
  345. !compare_ether_addr(src, addr)))
  346. return -1;
  347. if (iftype == NL80211_IFTYPE_MESH_POINT) {
  348. struct ieee80211s_hdr *meshdr =
  349. (struct ieee80211s_hdr *) (skb->data + hdrlen);
  350. /* make sure meshdr->flags is on the linear part */
  351. if (!pskb_may_pull(skb, hdrlen + 1))
  352. return -1;
  353. if (meshdr->flags & MESH_FLAGS_AE_A4)
  354. skb_copy_bits(skb, hdrlen +
  355. offsetof(struct ieee80211s_hdr, eaddr1),
  356. src, ETH_ALEN);
  357. hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
  358. }
  359. break;
  360. case cpu_to_le16(0):
  361. if (iftype != NL80211_IFTYPE_ADHOC)
  362. return -1;
  363. break;
  364. }
  365. if (!pskb_may_pull(skb, hdrlen + 8))
  366. return -1;
  367. payload = skb->data + hdrlen;
  368. ethertype = (payload[6] << 8) | payload[7];
  369. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  370. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  371. compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
  372. /* remove RFC1042 or Bridge-Tunnel encapsulation and
  373. * replace EtherType */
  374. skb_pull(skb, hdrlen + 6);
  375. memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
  376. memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
  377. } else {
  378. struct ethhdr *ehdr;
  379. __be16 len;
  380. skb_pull(skb, hdrlen);
  381. len = htons(skb->len);
  382. ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
  383. memcpy(ehdr->h_dest, dst, ETH_ALEN);
  384. memcpy(ehdr->h_source, src, ETH_ALEN);
  385. ehdr->h_proto = len;
  386. }
  387. return 0;
  388. }
  389. EXPORT_SYMBOL(ieee80211_data_to_8023);
  390. int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
  391. enum nl80211_iftype iftype, u8 *bssid, bool qos)
  392. {
  393. struct ieee80211_hdr hdr;
  394. u16 hdrlen, ethertype;
  395. __le16 fc;
  396. const u8 *encaps_data;
  397. int encaps_len, skip_header_bytes;
  398. int nh_pos, h_pos;
  399. int head_need;
  400. if (unlikely(skb->len < ETH_HLEN))
  401. return -EINVAL;
  402. nh_pos = skb_network_header(skb) - skb->data;
  403. h_pos = skb_transport_header(skb) - skb->data;
  404. /* convert Ethernet header to proper 802.11 header (based on
  405. * operation mode) */
  406. ethertype = (skb->data[12] << 8) | skb->data[13];
  407. fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
  408. switch (iftype) {
  409. case NL80211_IFTYPE_AP:
  410. case NL80211_IFTYPE_AP_VLAN:
  411. case NL80211_IFTYPE_P2P_GO:
  412. fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
  413. /* DA BSSID SA */
  414. memcpy(hdr.addr1, skb->data, ETH_ALEN);
  415. memcpy(hdr.addr2, addr, ETH_ALEN);
  416. memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
  417. hdrlen = 24;
  418. break;
  419. case NL80211_IFTYPE_STATION:
  420. case NL80211_IFTYPE_P2P_CLIENT:
  421. fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
  422. /* BSSID SA DA */
  423. memcpy(hdr.addr1, bssid, ETH_ALEN);
  424. memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
  425. memcpy(hdr.addr3, skb->data, ETH_ALEN);
  426. hdrlen = 24;
  427. break;
  428. case NL80211_IFTYPE_ADHOC:
  429. /* DA SA BSSID */
  430. memcpy(hdr.addr1, skb->data, ETH_ALEN);
  431. memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
  432. memcpy(hdr.addr3, bssid, ETH_ALEN);
  433. hdrlen = 24;
  434. break;
  435. default:
  436. return -EOPNOTSUPP;
  437. }
  438. if (qos) {
  439. fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
  440. hdrlen += 2;
  441. }
  442. hdr.frame_control = fc;
  443. hdr.duration_id = 0;
  444. hdr.seq_ctrl = 0;
  445. skip_header_bytes = ETH_HLEN;
  446. if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
  447. encaps_data = bridge_tunnel_header;
  448. encaps_len = sizeof(bridge_tunnel_header);
  449. skip_header_bytes -= 2;
  450. } else if (ethertype > 0x600) {
  451. encaps_data = rfc1042_header;
  452. encaps_len = sizeof(rfc1042_header);
  453. skip_header_bytes -= 2;
  454. } else {
  455. encaps_data = NULL;
  456. encaps_len = 0;
  457. }
  458. skb_pull(skb, skip_header_bytes);
  459. nh_pos -= skip_header_bytes;
  460. h_pos -= skip_header_bytes;
  461. head_need = hdrlen + encaps_len - skb_headroom(skb);
  462. if (head_need > 0 || skb_cloned(skb)) {
  463. head_need = max(head_need, 0);
  464. if (head_need)
  465. skb_orphan(skb);
  466. if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
  467. return -ENOMEM;
  468. skb->truesize += head_need;
  469. }
  470. if (encaps_data) {
  471. memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
  472. nh_pos += encaps_len;
  473. h_pos += encaps_len;
  474. }
  475. memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
  476. nh_pos += hdrlen;
  477. h_pos += hdrlen;
  478. /* Update skb pointers to various headers since this modified frame
  479. * is going to go through Linux networking code that may potentially
  480. * need things like pointer to IP header. */
  481. skb_set_mac_header(skb, 0);
  482. skb_set_network_header(skb, nh_pos);
  483. skb_set_transport_header(skb, h_pos);
  484. return 0;
  485. }
  486. EXPORT_SYMBOL(ieee80211_data_from_8023);
  487. void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
  488. const u8 *addr, enum nl80211_iftype iftype,
  489. const unsigned int extra_headroom,
  490. bool has_80211_header)
  491. {
  492. struct sk_buff *frame = NULL;
  493. u16 ethertype;
  494. u8 *payload;
  495. const struct ethhdr *eth;
  496. int remaining, err;
  497. u8 dst[ETH_ALEN], src[ETH_ALEN];
  498. if (has_80211_header) {
  499. err = ieee80211_data_to_8023(skb, addr, iftype);
  500. if (err)
  501. goto out;
  502. /* skip the wrapping header */
  503. eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
  504. if (!eth)
  505. goto out;
  506. } else {
  507. eth = (struct ethhdr *) skb->data;
  508. }
  509. while (skb != frame) {
  510. u8 padding;
  511. __be16 len = eth->h_proto;
  512. unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
  513. remaining = skb->len;
  514. memcpy(dst, eth->h_dest, ETH_ALEN);
  515. memcpy(src, eth->h_source, ETH_ALEN);
  516. padding = (4 - subframe_len) & 0x3;
  517. /* the last MSDU has no padding */
  518. if (subframe_len > remaining)
  519. goto purge;
  520. skb_pull(skb, sizeof(struct ethhdr));
  521. /* reuse skb for the last subframe */
  522. if (remaining <= subframe_len + padding)
  523. frame = skb;
  524. else {
  525. unsigned int hlen = ALIGN(extra_headroom, 4);
  526. /*
  527. * Allocate and reserve two bytes more for payload
  528. * alignment since sizeof(struct ethhdr) is 14.
  529. */
  530. frame = dev_alloc_skb(hlen + subframe_len + 2);
  531. if (!frame)
  532. goto purge;
  533. skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
  534. memcpy(skb_put(frame, ntohs(len)), skb->data,
  535. ntohs(len));
  536. eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
  537. padding);
  538. if (!eth) {
  539. dev_kfree_skb(frame);
  540. goto purge;
  541. }
  542. }
  543. skb_reset_network_header(frame);
  544. frame->dev = skb->dev;
  545. frame->priority = skb->priority;
  546. payload = frame->data;
  547. ethertype = (payload[6] << 8) | payload[7];
  548. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  549. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  550. compare_ether_addr(payload,
  551. bridge_tunnel_header) == 0)) {
  552. /* remove RFC1042 or Bridge-Tunnel
  553. * encapsulation and replace EtherType */
  554. skb_pull(frame, 6);
  555. memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
  556. memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
  557. } else {
  558. memcpy(skb_push(frame, sizeof(__be16)), &len,
  559. sizeof(__be16));
  560. memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
  561. memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
  562. }
  563. __skb_queue_tail(list, frame);
  564. }
  565. return;
  566. purge:
  567. __skb_queue_purge(list);
  568. out:
  569. dev_kfree_skb(skb);
  570. }
  571. EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
  572. /* Given a data frame determine the 802.1p/1d tag to use. */
  573. unsigned int cfg80211_classify8021d(struct sk_buff *skb)
  574. {
  575. unsigned int dscp;
  576. /* skb->priority values from 256->263 are magic values to
  577. * directly indicate a specific 802.1d priority. This is used
  578. * to allow 802.1d priority to be passed directly in from VLAN
  579. * tags, etc.
  580. */
  581. if (skb->priority >= 256 && skb->priority <= 263)
  582. return skb->priority - 256;
  583. switch (skb->protocol) {
  584. case htons(ETH_P_IP):
  585. dscp = ip_hdr(skb)->tos & 0xfc;
  586. break;
  587. default:
  588. return 0;
  589. }
  590. return dscp >> 5;
  591. }
  592. EXPORT_SYMBOL(cfg80211_classify8021d);
  593. const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
  594. {
  595. u8 *end, *pos;
  596. pos = bss->information_elements;
  597. if (pos == NULL)
  598. return NULL;
  599. end = pos + bss->len_information_elements;
  600. while (pos + 1 < end) {
  601. if (pos + 2 + pos[1] > end)
  602. break;
  603. if (pos[0] == ie)
  604. return pos;
  605. pos += 2 + pos[1];
  606. }
  607. return NULL;
  608. }
  609. EXPORT_SYMBOL(ieee80211_bss_get_ie);
  610. void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
  611. {
  612. struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
  613. struct net_device *dev = wdev->netdev;
  614. int i;
  615. if (!wdev->connect_keys)
  616. return;
  617. for (i = 0; i < 6; i++) {
  618. if (!wdev->connect_keys->params[i].cipher)
  619. continue;
  620. if (rdev->ops->add_key(wdev->wiphy, dev, i, false, NULL,
  621. &wdev->connect_keys->params[i])) {
  622. netdev_err(dev, "failed to set key %d\n", i);
  623. continue;
  624. }
  625. if (wdev->connect_keys->def == i)
  626. if (rdev->ops->set_default_key(wdev->wiphy, dev,
  627. i, true, true)) {
  628. netdev_err(dev, "failed to set defkey %d\n", i);
  629. continue;
  630. }
  631. if (wdev->connect_keys->defmgmt == i)
  632. if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
  633. netdev_err(dev, "failed to set mgtdef %d\n", i);
  634. }
  635. kfree(wdev->connect_keys);
  636. wdev->connect_keys = NULL;
  637. }
  638. static void cfg80211_process_wdev_events(struct wireless_dev *wdev)
  639. {
  640. struct cfg80211_event *ev;
  641. unsigned long flags;
  642. const u8 *bssid = NULL;
  643. spin_lock_irqsave(&wdev->event_lock, flags);
  644. while (!list_empty(&wdev->event_list)) {
  645. ev = list_first_entry(&wdev->event_list,
  646. struct cfg80211_event, list);
  647. list_del(&ev->list);
  648. spin_unlock_irqrestore(&wdev->event_lock, flags);
  649. wdev_lock(wdev);
  650. switch (ev->type) {
  651. case EVENT_CONNECT_RESULT:
  652. if (!is_zero_ether_addr(ev->cr.bssid))
  653. bssid = ev->cr.bssid;
  654. __cfg80211_connect_result(
  655. wdev->netdev, bssid,
  656. ev->cr.req_ie, ev->cr.req_ie_len,
  657. ev->cr.resp_ie, ev->cr.resp_ie_len,
  658. ev->cr.status,
  659. ev->cr.status == WLAN_STATUS_SUCCESS,
  660. NULL);
  661. break;
  662. case EVENT_ROAMED:
  663. __cfg80211_roamed(wdev, ev->rm.channel, ev->rm.bssid,
  664. ev->rm.req_ie, ev->rm.req_ie_len,
  665. ev->rm.resp_ie, ev->rm.resp_ie_len);
  666. break;
  667. case EVENT_DISCONNECTED:
  668. __cfg80211_disconnected(wdev->netdev,
  669. ev->dc.ie, ev->dc.ie_len,
  670. ev->dc.reason, true);
  671. break;
  672. case EVENT_IBSS_JOINED:
  673. __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
  674. break;
  675. }
  676. wdev_unlock(wdev);
  677. kfree(ev);
  678. spin_lock_irqsave(&wdev->event_lock, flags);
  679. }
  680. spin_unlock_irqrestore(&wdev->event_lock, flags);
  681. }
  682. void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
  683. {
  684. struct wireless_dev *wdev;
  685. ASSERT_RTNL();
  686. ASSERT_RDEV_LOCK(rdev);
  687. mutex_lock(&rdev->devlist_mtx);
  688. list_for_each_entry(wdev, &rdev->netdev_list, list)
  689. cfg80211_process_wdev_events(wdev);
  690. mutex_unlock(&rdev->devlist_mtx);
  691. }
  692. int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
  693. struct net_device *dev, enum nl80211_iftype ntype,
  694. u32 *flags, struct vif_params *params)
  695. {
  696. int err;
  697. enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
  698. ASSERT_RDEV_LOCK(rdev);
  699. /* don't support changing VLANs, you just re-create them */
  700. if (otype == NL80211_IFTYPE_AP_VLAN)
  701. return -EOPNOTSUPP;
  702. if (!rdev->ops->change_virtual_intf ||
  703. !(rdev->wiphy.interface_modes & (1 << ntype)))
  704. return -EOPNOTSUPP;
  705. /* if it's part of a bridge, reject changing type to station/ibss */
  706. if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
  707. (ntype == NL80211_IFTYPE_ADHOC ||
  708. ntype == NL80211_IFTYPE_STATION ||
  709. ntype == NL80211_IFTYPE_P2P_CLIENT))
  710. return -EBUSY;
  711. if (ntype != otype) {
  712. err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
  713. ntype);
  714. if (err)
  715. return err;
  716. dev->ieee80211_ptr->use_4addr = false;
  717. dev->ieee80211_ptr->mesh_id_up_len = 0;
  718. switch (otype) {
  719. case NL80211_IFTYPE_ADHOC:
  720. cfg80211_leave_ibss(rdev, dev, false);
  721. break;
  722. case NL80211_IFTYPE_STATION:
  723. case NL80211_IFTYPE_P2P_CLIENT:
  724. cfg80211_disconnect(rdev, dev,
  725. WLAN_REASON_DEAUTH_LEAVING, true);
  726. break;
  727. case NL80211_IFTYPE_MESH_POINT:
  728. /* mesh should be handled? */
  729. break;
  730. default:
  731. break;
  732. }
  733. cfg80211_process_rdev_events(rdev);
  734. }
  735. err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev,
  736. ntype, flags, params);
  737. WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
  738. if (!err && params && params->use_4addr != -1)
  739. dev->ieee80211_ptr->use_4addr = params->use_4addr;
  740. if (!err) {
  741. dev->priv_flags &= ~IFF_DONT_BRIDGE;
  742. switch (ntype) {
  743. case NL80211_IFTYPE_STATION:
  744. if (dev->ieee80211_ptr->use_4addr)
  745. break;
  746. /* fall through */
  747. case NL80211_IFTYPE_P2P_CLIENT:
  748. case NL80211_IFTYPE_ADHOC:
  749. dev->priv_flags |= IFF_DONT_BRIDGE;
  750. break;
  751. case NL80211_IFTYPE_P2P_GO:
  752. case NL80211_IFTYPE_AP:
  753. case NL80211_IFTYPE_AP_VLAN:
  754. case NL80211_IFTYPE_WDS:
  755. case NL80211_IFTYPE_MESH_POINT:
  756. /* bridging OK */
  757. break;
  758. case NL80211_IFTYPE_MONITOR:
  759. /* monitor can't bridge anyway */
  760. break;
  761. case NL80211_IFTYPE_UNSPECIFIED:
  762. case NUM_NL80211_IFTYPES:
  763. /* not happening */
  764. break;
  765. }
  766. }
  767. return err;
  768. }
  769. u16 cfg80211_calculate_bitrate(struct rate_info *rate)
  770. {
  771. int modulation, streams, bitrate;
  772. if (!(rate->flags & RATE_INFO_FLAGS_MCS))
  773. return rate->legacy;
  774. /* the formula below does only work for MCS values smaller than 32 */
  775. if (rate->mcs >= 32)
  776. return 0;
  777. modulation = rate->mcs & 7;
  778. streams = (rate->mcs >> 3) + 1;
  779. bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
  780. 13500000 : 6500000;
  781. if (modulation < 4)
  782. bitrate *= (modulation + 1);
  783. else if (modulation == 4)
  784. bitrate *= (modulation + 2);
  785. else
  786. bitrate *= (modulation + 3);
  787. bitrate *= streams;
  788. if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
  789. bitrate = (bitrate / 9) * 10;
  790. /* do NOT round down here */
  791. return (bitrate + 50000) / 100000;
  792. }
  793. int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
  794. u32 beacon_int)
  795. {
  796. struct wireless_dev *wdev;
  797. int res = 0;
  798. if (!beacon_int)
  799. return -EINVAL;
  800. mutex_lock(&rdev->devlist_mtx);
  801. list_for_each_entry(wdev, &rdev->netdev_list, list) {
  802. if (!wdev->beacon_interval)
  803. continue;
  804. if (wdev->beacon_interval != beacon_int) {
  805. res = -EINVAL;
  806. break;
  807. }
  808. }
  809. mutex_unlock(&rdev->devlist_mtx);
  810. return res;
  811. }
  812. int cfg80211_can_change_interface(struct cfg80211_registered_device *rdev,
  813. struct wireless_dev *wdev,
  814. enum nl80211_iftype iftype)
  815. {
  816. struct wireless_dev *wdev_iter;
  817. int num[NUM_NL80211_IFTYPES];
  818. int total = 1;
  819. int i, j;
  820. ASSERT_RTNL();
  821. /* Always allow software iftypes */
  822. if (rdev->wiphy.software_iftypes & BIT(iftype))
  823. return 0;
  824. /*
  825. * Drivers will gradually all set this flag, until all
  826. * have it we only enforce for those that set it.
  827. */
  828. if (!(rdev->wiphy.flags & WIPHY_FLAG_ENFORCE_COMBINATIONS))
  829. return 0;
  830. memset(num, 0, sizeof(num));
  831. num[iftype] = 1;
  832. mutex_lock(&rdev->devlist_mtx);
  833. list_for_each_entry(wdev_iter, &rdev->netdev_list, list) {
  834. if (wdev_iter == wdev)
  835. continue;
  836. if (!netif_running(wdev_iter->netdev))
  837. continue;
  838. if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
  839. continue;
  840. num[wdev_iter->iftype]++;
  841. total++;
  842. }
  843. mutex_unlock(&rdev->devlist_mtx);
  844. for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
  845. const struct ieee80211_iface_combination *c;
  846. struct ieee80211_iface_limit *limits;
  847. c = &rdev->wiphy.iface_combinations[i];
  848. limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
  849. GFP_KERNEL);
  850. if (!limits)
  851. return -ENOMEM;
  852. if (total > c->max_interfaces)
  853. goto cont;
  854. for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
  855. if (rdev->wiphy.software_iftypes & BIT(iftype))
  856. continue;
  857. for (j = 0; j < c->n_limits; j++) {
  858. if (!(limits[j].types & iftype))
  859. continue;
  860. if (limits[j].max < num[iftype])
  861. goto cont;
  862. limits[j].max -= num[iftype];
  863. }
  864. }
  865. /* yay, it fits */
  866. kfree(limits);
  867. return 0;
  868. cont:
  869. kfree(limits);
  870. }
  871. return -EBUSY;
  872. }
  873. int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
  874. const u8 *rates, unsigned int n_rates,
  875. u32 *mask)
  876. {
  877. int i, j;
  878. if (!sband)
  879. return -EINVAL;
  880. if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
  881. return -EINVAL;
  882. *mask = 0;
  883. for (i = 0; i < n_rates; i++) {
  884. int rate = (rates[i] & 0x7f) * 5;
  885. bool found = false;
  886. for (j = 0; j < sband->n_bitrates; j++) {
  887. if (sband->bitrates[j].bitrate == rate) {
  888. found = true;
  889. *mask |= BIT(j);
  890. break;
  891. }
  892. }
  893. if (!found)
  894. return -EINVAL;
  895. }
  896. /*
  897. * mask must have at least one bit set here since we
  898. * didn't accept a 0-length rates array nor allowed
  899. * entries in the array that didn't exist
  900. */
  901. return 0;
  902. }
  903. u32 ieee802_11_parse_elems_crc(u8 *start, size_t len,
  904. struct ieee802_11_elems *elems,
  905. u64 filter, u32 crc)
  906. {
  907. size_t left = len;
  908. u8 *pos = start;
  909. bool calc_crc = filter != 0;
  910. memset(elems, 0, sizeof(*elems));
  911. elems->ie_start = start;
  912. elems->total_len = len;
  913. while (left >= 2) {
  914. u8 id, elen;
  915. id = *pos++;
  916. elen = *pos++;
  917. left -= 2;
  918. if (elen > left)
  919. break;
  920. if (calc_crc && id < 64 && (filter & (1ULL << id)))
  921. crc = crc32_be(crc, pos - 2, elen + 2);
  922. switch (id) {
  923. case WLAN_EID_SSID:
  924. elems->ssid = pos;
  925. elems->ssid_len = elen;
  926. break;
  927. case WLAN_EID_SUPP_RATES:
  928. elems->supp_rates = pos;
  929. elems->supp_rates_len = elen;
  930. break;
  931. case WLAN_EID_FH_PARAMS:
  932. elems->fh_params = pos;
  933. elems->fh_params_len = elen;
  934. break;
  935. case WLAN_EID_DS_PARAMS:
  936. elems->ds_params = pos;
  937. elems->ds_params_len = elen;
  938. break;
  939. case WLAN_EID_CF_PARAMS:
  940. elems->cf_params = pos;
  941. elems->cf_params_len = elen;
  942. break;
  943. case WLAN_EID_TIM:
  944. if (elen >= sizeof(struct ieee80211_tim_ie)) {
  945. elems->tim = (void *)pos;
  946. elems->tim_len = elen;
  947. }
  948. break;
  949. case WLAN_EID_IBSS_PARAMS:
  950. elems->ibss_params = pos;
  951. elems->ibss_params_len = elen;
  952. break;
  953. case WLAN_EID_CHALLENGE:
  954. elems->challenge = pos;
  955. elems->challenge_len = elen;
  956. break;
  957. case WLAN_EID_VENDOR_SPECIFIC:
  958. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  959. pos[2] == 0xf2) {
  960. /* Microsoft OUI (00:50:F2) */
  961. if (calc_crc)
  962. crc = crc32_be(crc, pos - 2, elen + 2);
  963. if (pos[3] == 1) {
  964. /* OUI Type 1 - WPA IE */
  965. elems->wpa = pos;
  966. elems->wpa_len = elen;
  967. } else if (elen >= 5 && pos[3] == 2) {
  968. /* OUI Type 2 - WMM IE */
  969. if (pos[4] == 0) {
  970. elems->wmm_info = pos;
  971. elems->wmm_info_len = elen;
  972. } else if (pos[4] == 1) {
  973. elems->wmm_param = pos;
  974. elems->wmm_param_len = elen;
  975. }
  976. }
  977. }
  978. break;
  979. case WLAN_EID_RSN:
  980. elems->rsn = pos;
  981. elems->rsn_len = elen;
  982. break;
  983. case WLAN_EID_ERP_INFO:
  984. elems->erp_info = pos;
  985. elems->erp_info_len = elen;
  986. break;
  987. case WLAN_EID_EXT_SUPP_RATES:
  988. elems->ext_supp_rates = pos;
  989. elems->ext_supp_rates_len = elen;
  990. break;
  991. case WLAN_EID_HT_CAPABILITY:
  992. if (elen >= sizeof(struct ieee80211_ht_cap))
  993. elems->ht_cap_elem = (void *)pos;
  994. break;
  995. case WLAN_EID_HT_INFORMATION:
  996. if (elen >= sizeof(struct ieee80211_ht_info))
  997. elems->ht_info_elem = (void *)pos;
  998. break;
  999. case WLAN_EID_MESH_ID:
  1000. elems->mesh_id = pos;
  1001. elems->mesh_id_len = elen;
  1002. break;
  1003. case WLAN_EID_MESH_CONFIG:
  1004. if (elen >= sizeof(struct ieee80211_meshconf_ie))
  1005. elems->mesh_config = (void *)pos;
  1006. break;
  1007. case WLAN_EID_PEER_MGMT:
  1008. elems->peering = pos;
  1009. elems->peering_len = elen;
  1010. break;
  1011. case WLAN_EID_PREQ:
  1012. elems->preq = pos;
  1013. elems->preq_len = elen;
  1014. break;
  1015. case WLAN_EID_PREP:
  1016. elems->prep = pos;
  1017. elems->prep_len = elen;
  1018. break;
  1019. case WLAN_EID_PERR:
  1020. elems->perr = pos;
  1021. elems->perr_len = elen;
  1022. break;
  1023. case WLAN_EID_RANN:
  1024. if (elen >= sizeof(struct ieee80211_rann_ie))
  1025. elems->rann = (void *)pos;
  1026. break;
  1027. case WLAN_EID_CHANNEL_SWITCH:
  1028. elems->ch_switch_elem = pos;
  1029. elems->ch_switch_elem_len = elen;
  1030. break;
  1031. case WLAN_EID_QUIET:
  1032. if (!elems->quiet_elem) {
  1033. elems->quiet_elem = pos;
  1034. elems->quiet_elem_len = elen;
  1035. }
  1036. elems->num_of_quiet_elem++;
  1037. break;
  1038. case WLAN_EID_COUNTRY:
  1039. elems->country_elem = pos;
  1040. elems->country_elem_len = elen;
  1041. break;
  1042. case WLAN_EID_PWR_CONSTRAINT:
  1043. elems->pwr_constr_elem = pos;
  1044. elems->pwr_constr_elem_len = elen;
  1045. break;
  1046. case WLAN_EID_TIMEOUT_INTERVAL:
  1047. elems->timeout_int = pos;
  1048. elems->timeout_int_len = elen;
  1049. break;
  1050. default:
  1051. break;
  1052. }
  1053. left -= elen;
  1054. pos += elen;
  1055. }
  1056. return crc;
  1057. }
  1058. EXPORT_SYMBOL(ieee802_11_parse_elems_crc);