kprobes.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. /*
  2. * Kernel Probes (KProbes)
  3. * arch/ia64/kernel/kprobes.c
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. *
  19. * Copyright (C) IBM Corporation, 2002, 2004
  20. * Copyright (C) Intel Corporation, 2005
  21. *
  22. * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
  23. * <anil.s.keshavamurthy@intel.com> adapted from i386
  24. */
  25. #include <linux/config.h>
  26. #include <linux/kprobes.h>
  27. #include <linux/ptrace.h>
  28. #include <linux/spinlock.h>
  29. #include <linux/string.h>
  30. #include <linux/slab.h>
  31. #include <linux/preempt.h>
  32. #include <linux/moduleloader.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/kdebug.h>
  35. extern void jprobe_inst_return(void);
  36. /* kprobe_status settings */
  37. #define KPROBE_HIT_ACTIVE 0x00000001
  38. #define KPROBE_HIT_SS 0x00000002
  39. static struct kprobe *current_kprobe, *kprobe_prev;
  40. static unsigned long kprobe_status, kprobe_status_prev;
  41. static struct pt_regs jprobe_saved_regs;
  42. enum instruction_type {A, I, M, F, B, L, X, u};
  43. static enum instruction_type bundle_encoding[32][3] = {
  44. { M, I, I }, /* 00 */
  45. { M, I, I }, /* 01 */
  46. { M, I, I }, /* 02 */
  47. { M, I, I }, /* 03 */
  48. { M, L, X }, /* 04 */
  49. { M, L, X }, /* 05 */
  50. { u, u, u }, /* 06 */
  51. { u, u, u }, /* 07 */
  52. { M, M, I }, /* 08 */
  53. { M, M, I }, /* 09 */
  54. { M, M, I }, /* 0A */
  55. { M, M, I }, /* 0B */
  56. { M, F, I }, /* 0C */
  57. { M, F, I }, /* 0D */
  58. { M, M, F }, /* 0E */
  59. { M, M, F }, /* 0F */
  60. { M, I, B }, /* 10 */
  61. { M, I, B }, /* 11 */
  62. { M, B, B }, /* 12 */
  63. { M, B, B }, /* 13 */
  64. { u, u, u }, /* 14 */
  65. { u, u, u }, /* 15 */
  66. { B, B, B }, /* 16 */
  67. { B, B, B }, /* 17 */
  68. { M, M, B }, /* 18 */
  69. { M, M, B }, /* 19 */
  70. { u, u, u }, /* 1A */
  71. { u, u, u }, /* 1B */
  72. { M, F, B }, /* 1C */
  73. { M, F, B }, /* 1D */
  74. { u, u, u }, /* 1E */
  75. { u, u, u }, /* 1F */
  76. };
  77. /*
  78. * In this function we check to see if the instruction
  79. * is IP relative instruction and update the kprobe
  80. * inst flag accordingly
  81. */
  82. static void update_kprobe_inst_flag(uint template, uint slot, uint major_opcode,
  83. unsigned long kprobe_inst, struct kprobe *p)
  84. {
  85. p->ainsn.inst_flag = 0;
  86. p->ainsn.target_br_reg = 0;
  87. if (bundle_encoding[template][slot] == B) {
  88. switch (major_opcode) {
  89. case INDIRECT_CALL_OPCODE:
  90. p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
  91. p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
  92. break;
  93. case IP_RELATIVE_PREDICT_OPCODE:
  94. case IP_RELATIVE_BRANCH_OPCODE:
  95. p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
  96. break;
  97. case IP_RELATIVE_CALL_OPCODE:
  98. p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
  99. p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
  100. p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
  101. break;
  102. }
  103. } else if (bundle_encoding[template][slot] == X) {
  104. switch (major_opcode) {
  105. case LONG_CALL_OPCODE:
  106. p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
  107. p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
  108. break;
  109. }
  110. }
  111. return;
  112. }
  113. /*
  114. * In this function we check to see if the instruction
  115. * on which we are inserting kprobe is supported.
  116. * Returns 0 if supported
  117. * Returns -EINVAL if unsupported
  118. */
  119. static int unsupported_inst(uint template, uint slot, uint major_opcode,
  120. unsigned long kprobe_inst, struct kprobe *p)
  121. {
  122. unsigned long addr = (unsigned long)p->addr;
  123. if (bundle_encoding[template][slot] == I) {
  124. switch (major_opcode) {
  125. case 0x0: //I_UNIT_MISC_OPCODE:
  126. /*
  127. * Check for Integer speculation instruction
  128. * - Bit 33-35 to be equal to 0x1
  129. */
  130. if (((kprobe_inst >> 33) & 0x7) == 1) {
  131. printk(KERN_WARNING
  132. "Kprobes on speculation inst at <0x%lx> not supported\n",
  133. addr);
  134. return -EINVAL;
  135. }
  136. /*
  137. * IP relative mov instruction
  138. * - Bit 27-35 to be equal to 0x30
  139. */
  140. if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
  141. printk(KERN_WARNING
  142. "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
  143. addr);
  144. return -EINVAL;
  145. }
  146. }
  147. }
  148. return 0;
  149. }
  150. /*
  151. * In this function we check to see if the instruction
  152. * (qp) cmpx.crel.ctype p1,p2=r2,r3
  153. * on which we are inserting kprobe is cmp instruction
  154. * with ctype as unc.
  155. */
  156. static uint is_cmp_ctype_unc_inst(uint template, uint slot, uint major_opcode,
  157. unsigned long kprobe_inst)
  158. {
  159. cmp_inst_t cmp_inst;
  160. uint ctype_unc = 0;
  161. if (!((bundle_encoding[template][slot] == I) ||
  162. (bundle_encoding[template][slot] == M)))
  163. goto out;
  164. if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
  165. (major_opcode == 0xE)))
  166. goto out;
  167. cmp_inst.l = kprobe_inst;
  168. if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
  169. /* Integere compare - Register Register (A6 type)*/
  170. if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
  171. &&(cmp_inst.f.c == 1))
  172. ctype_unc = 1;
  173. } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
  174. /* Integere compare - Immediate Register (A8 type)*/
  175. if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
  176. ctype_unc = 1;
  177. }
  178. out:
  179. return ctype_unc;
  180. }
  181. /*
  182. * In this function we override the bundle with
  183. * the break instruction at the given slot.
  184. */
  185. static void prepare_break_inst(uint template, uint slot, uint major_opcode,
  186. unsigned long kprobe_inst, struct kprobe *p)
  187. {
  188. unsigned long break_inst = BREAK_INST;
  189. bundle_t *bundle = &p->ainsn.insn.bundle;
  190. /*
  191. * Copy the original kprobe_inst qualifying predicate(qp)
  192. * to the break instruction iff !is_cmp_ctype_unc_inst
  193. * because for cmp instruction with ctype equal to unc,
  194. * which is a special instruction always needs to be
  195. * executed regradless of qp
  196. */
  197. if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
  198. break_inst |= (0x3f & kprobe_inst);
  199. switch (slot) {
  200. case 0:
  201. bundle->quad0.slot0 = break_inst;
  202. break;
  203. case 1:
  204. bundle->quad0.slot1_p0 = break_inst;
  205. bundle->quad1.slot1_p1 = break_inst >> (64-46);
  206. break;
  207. case 2:
  208. bundle->quad1.slot2 = break_inst;
  209. break;
  210. }
  211. /*
  212. * Update the instruction flag, so that we can
  213. * emulate the instruction properly after we
  214. * single step on original instruction
  215. */
  216. update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
  217. }
  218. static inline void get_kprobe_inst(bundle_t *bundle, uint slot,
  219. unsigned long *kprobe_inst, uint *major_opcode)
  220. {
  221. unsigned long kprobe_inst_p0, kprobe_inst_p1;
  222. unsigned int template;
  223. template = bundle->quad0.template;
  224. switch (slot) {
  225. case 0:
  226. *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
  227. *kprobe_inst = bundle->quad0.slot0;
  228. break;
  229. case 1:
  230. *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
  231. kprobe_inst_p0 = bundle->quad0.slot1_p0;
  232. kprobe_inst_p1 = bundle->quad1.slot1_p1;
  233. *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
  234. break;
  235. case 2:
  236. *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
  237. *kprobe_inst = bundle->quad1.slot2;
  238. break;
  239. }
  240. }
  241. static int valid_kprobe_addr(int template, int slot, unsigned long addr)
  242. {
  243. if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
  244. printk(KERN_WARNING "Attempting to insert unaligned kprobe at 0x%lx\n",
  245. addr);
  246. return -EINVAL;
  247. }
  248. return 0;
  249. }
  250. static inline void save_previous_kprobe(void)
  251. {
  252. kprobe_prev = current_kprobe;
  253. kprobe_status_prev = kprobe_status;
  254. }
  255. static inline void restore_previous_kprobe(void)
  256. {
  257. current_kprobe = kprobe_prev;
  258. kprobe_status = kprobe_status_prev;
  259. }
  260. static inline void set_current_kprobe(struct kprobe *p)
  261. {
  262. current_kprobe = p;
  263. }
  264. int arch_prepare_kprobe(struct kprobe *p)
  265. {
  266. unsigned long addr = (unsigned long) p->addr;
  267. unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
  268. unsigned long kprobe_inst=0;
  269. unsigned int slot = addr & 0xf, template, major_opcode = 0;
  270. bundle_t *bundle = &p->ainsn.insn.bundle;
  271. memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
  272. memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));
  273. template = bundle->quad0.template;
  274. if(valid_kprobe_addr(template, slot, addr))
  275. return -EINVAL;
  276. /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
  277. if (slot == 1 && bundle_encoding[template][1] == L)
  278. slot++;
  279. /* Get kprobe_inst and major_opcode from the bundle */
  280. get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
  281. if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p))
  282. return -EINVAL;
  283. prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
  284. return 0;
  285. }
  286. void arch_arm_kprobe(struct kprobe *p)
  287. {
  288. unsigned long addr = (unsigned long)p->addr;
  289. unsigned long arm_addr = addr & ~0xFULL;
  290. memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
  291. flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
  292. }
  293. void arch_disarm_kprobe(struct kprobe *p)
  294. {
  295. unsigned long addr = (unsigned long)p->addr;
  296. unsigned long arm_addr = addr & ~0xFULL;
  297. /* p->opcode contains the original unaltered bundle */
  298. memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
  299. flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
  300. }
  301. void arch_remove_kprobe(struct kprobe *p)
  302. {
  303. }
  304. /*
  305. * We are resuming execution after a single step fault, so the pt_regs
  306. * structure reflects the register state after we executed the instruction
  307. * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust
  308. * the ip to point back to the original stack address. To set the IP address
  309. * to original stack address, handle the case where we need to fixup the
  310. * relative IP address and/or fixup branch register.
  311. */
  312. static void resume_execution(struct kprobe *p, struct pt_regs *regs)
  313. {
  314. unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
  315. unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
  316. unsigned long template;
  317. int slot = ((unsigned long)p->addr & 0xf);
  318. template = p->opcode.bundle.quad0.template;
  319. if (slot == 1 && bundle_encoding[template][1] == L)
  320. slot = 2;
  321. if (p->ainsn.inst_flag) {
  322. if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
  323. /* Fix relative IP address */
  324. regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
  325. }
  326. if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
  327. /*
  328. * Fix target branch register, software convention is
  329. * to use either b0 or b6 or b7, so just checking
  330. * only those registers
  331. */
  332. switch (p->ainsn.target_br_reg) {
  333. case 0:
  334. if ((regs->b0 == bundle_addr) ||
  335. (regs->b0 == bundle_addr + 0x10)) {
  336. regs->b0 = (regs->b0 - bundle_addr) +
  337. resume_addr;
  338. }
  339. break;
  340. case 6:
  341. if ((regs->b6 == bundle_addr) ||
  342. (regs->b6 == bundle_addr + 0x10)) {
  343. regs->b6 = (regs->b6 - bundle_addr) +
  344. resume_addr;
  345. }
  346. break;
  347. case 7:
  348. if ((regs->b7 == bundle_addr) ||
  349. (regs->b7 == bundle_addr + 0x10)) {
  350. regs->b7 = (regs->b7 - bundle_addr) +
  351. resume_addr;
  352. }
  353. break;
  354. } /* end switch */
  355. }
  356. goto turn_ss_off;
  357. }
  358. if (slot == 2) {
  359. if (regs->cr_iip == bundle_addr + 0x10) {
  360. regs->cr_iip = resume_addr + 0x10;
  361. }
  362. } else {
  363. if (regs->cr_iip == bundle_addr) {
  364. regs->cr_iip = resume_addr;
  365. }
  366. }
  367. turn_ss_off:
  368. /* Turn off Single Step bit */
  369. ia64_psr(regs)->ss = 0;
  370. }
  371. static void prepare_ss(struct kprobe *p, struct pt_regs *regs)
  372. {
  373. unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
  374. unsigned long slot = (unsigned long)p->addr & 0xf;
  375. /* Update instruction pointer (IIP) and slot number (IPSR.ri) */
  376. regs->cr_iip = bundle_addr & ~0xFULL;
  377. if (slot > 2)
  378. slot = 0;
  379. ia64_psr(regs)->ri = slot;
  380. /* turn on single stepping */
  381. ia64_psr(regs)->ss = 1;
  382. }
  383. static int pre_kprobes_handler(struct die_args *args)
  384. {
  385. struct kprobe *p;
  386. int ret = 0;
  387. struct pt_regs *regs = args->regs;
  388. kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
  389. preempt_disable();
  390. /* Handle recursion cases */
  391. if (kprobe_running()) {
  392. p = get_kprobe(addr);
  393. if (p) {
  394. if (kprobe_status == KPROBE_HIT_SS) {
  395. unlock_kprobes();
  396. goto no_kprobe;
  397. }
  398. /* We have reentered the pre_kprobe_handler(), since
  399. * another probe was hit while within the handler.
  400. * We here save the original kprobes variables and
  401. * just single step on the instruction of the new probe
  402. * without calling any user handlers.
  403. */
  404. save_previous_kprobe();
  405. set_current_kprobe(p);
  406. p->nmissed++;
  407. prepare_ss(p, regs);
  408. kprobe_status = KPROBE_REENTER;
  409. return 1;
  410. } else if (args->err == __IA64_BREAK_JPROBE) {
  411. /*
  412. * jprobe instrumented function just completed
  413. */
  414. p = current_kprobe;
  415. if (p->break_handler && p->break_handler(p, regs)) {
  416. goto ss_probe;
  417. }
  418. } else {
  419. /* Not our break */
  420. goto no_kprobe;
  421. }
  422. }
  423. lock_kprobes();
  424. p = get_kprobe(addr);
  425. if (!p) {
  426. unlock_kprobes();
  427. goto no_kprobe;
  428. }
  429. kprobe_status = KPROBE_HIT_ACTIVE;
  430. set_current_kprobe(p);
  431. if (p->pre_handler && p->pre_handler(p, regs))
  432. /*
  433. * Our pre-handler is specifically requesting that we just
  434. * do a return. This is handling the case where the
  435. * pre-handler is really our special jprobe pre-handler.
  436. */
  437. return 1;
  438. ss_probe:
  439. prepare_ss(p, regs);
  440. kprobe_status = KPROBE_HIT_SS;
  441. return 1;
  442. no_kprobe:
  443. preempt_enable_no_resched();
  444. return ret;
  445. }
  446. static int post_kprobes_handler(struct pt_regs *regs)
  447. {
  448. if (!kprobe_running())
  449. return 0;
  450. if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
  451. kprobe_status = KPROBE_HIT_SSDONE;
  452. current_kprobe->post_handler(current_kprobe, regs, 0);
  453. }
  454. resume_execution(current_kprobe, regs);
  455. /*Restore back the original saved kprobes variables and continue. */
  456. if (kprobe_status == KPROBE_REENTER) {
  457. restore_previous_kprobe();
  458. goto out;
  459. }
  460. unlock_kprobes();
  461. out:
  462. preempt_enable_no_resched();
  463. return 1;
  464. }
  465. static int kprobes_fault_handler(struct pt_regs *regs, int trapnr)
  466. {
  467. if (!kprobe_running())
  468. return 0;
  469. if (current_kprobe->fault_handler &&
  470. current_kprobe->fault_handler(current_kprobe, regs, trapnr))
  471. return 1;
  472. if (kprobe_status & KPROBE_HIT_SS) {
  473. resume_execution(current_kprobe, regs);
  474. unlock_kprobes();
  475. preempt_enable_no_resched();
  476. }
  477. return 0;
  478. }
  479. int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
  480. void *data)
  481. {
  482. struct die_args *args = (struct die_args *)data;
  483. switch(val) {
  484. case DIE_BREAK:
  485. if (pre_kprobes_handler(args))
  486. return NOTIFY_STOP;
  487. break;
  488. case DIE_SS:
  489. if (post_kprobes_handler(args->regs))
  490. return NOTIFY_STOP;
  491. break;
  492. case DIE_PAGE_FAULT:
  493. if (kprobes_fault_handler(args->regs, args->trapnr))
  494. return NOTIFY_STOP;
  495. default:
  496. break;
  497. }
  498. return NOTIFY_DONE;
  499. }
  500. int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  501. {
  502. struct jprobe *jp = container_of(p, struct jprobe, kp);
  503. unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
  504. /* save architectural state */
  505. jprobe_saved_regs = *regs;
  506. /* after rfi, execute the jprobe instrumented function */
  507. regs->cr_iip = addr & ~0xFULL;
  508. ia64_psr(regs)->ri = addr & 0xf;
  509. regs->r1 = ((struct fnptr *)(jp->entry))->gp;
  510. /*
  511. * fix the return address to our jprobe_inst_return() function
  512. * in the jprobes.S file
  513. */
  514. regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
  515. return 1;
  516. }
  517. int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  518. {
  519. *regs = jprobe_saved_regs;
  520. return 1;
  521. }