timekeeping.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900
  1. /*
  2. * linux/kernel/time/timekeeping.c
  3. *
  4. * Kernel timekeeping code and accessor functions
  5. *
  6. * This code was moved from linux/kernel/timer.c.
  7. * Please see that file for copyright and history logs.
  8. *
  9. */
  10. #include <linux/module.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/percpu.h>
  13. #include <linux/init.h>
  14. #include <linux/mm.h>
  15. #include <linux/sched.h>
  16. #include <linux/sysdev.h>
  17. #include <linux/clocksource.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/time.h>
  20. #include <linux/tick.h>
  21. #include <linux/stop_machine.h>
  22. /* Structure holding internal timekeeping values. */
  23. struct timekeeper {
  24. /* Current clocksource used for timekeeping. */
  25. struct clocksource *clock;
  26. /* The shift value of the current clocksource. */
  27. int shift;
  28. /* Number of clock cycles in one NTP interval. */
  29. cycle_t cycle_interval;
  30. /* Number of clock shifted nano seconds in one NTP interval. */
  31. u64 xtime_interval;
  32. /* Raw nano seconds accumulated per NTP interval. */
  33. u32 raw_interval;
  34. /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
  35. u64 xtime_nsec;
  36. /* Difference between accumulated time and NTP time in ntp
  37. * shifted nano seconds. */
  38. s64 ntp_error;
  39. /* Shift conversion between clock shifted nano seconds and
  40. * ntp shifted nano seconds. */
  41. int ntp_error_shift;
  42. /* NTP adjusted clock multiplier */
  43. u32 mult;
  44. };
  45. struct timekeeper timekeeper;
  46. /**
  47. * timekeeper_setup_internals - Set up internals to use clocksource clock.
  48. *
  49. * @clock: Pointer to clocksource.
  50. *
  51. * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
  52. * pair and interval request.
  53. *
  54. * Unless you're the timekeeping code, you should not be using this!
  55. */
  56. static void timekeeper_setup_internals(struct clocksource *clock)
  57. {
  58. cycle_t interval;
  59. u64 tmp;
  60. timekeeper.clock = clock;
  61. clock->cycle_last = clock->read(clock);
  62. /* Do the ns -> cycle conversion first, using original mult */
  63. tmp = NTP_INTERVAL_LENGTH;
  64. tmp <<= clock->shift;
  65. tmp += clock->mult/2;
  66. do_div(tmp, clock->mult);
  67. if (tmp == 0)
  68. tmp = 1;
  69. interval = (cycle_t) tmp;
  70. timekeeper.cycle_interval = interval;
  71. /* Go back from cycles -> shifted ns */
  72. timekeeper.xtime_interval = (u64) interval * clock->mult;
  73. timekeeper.raw_interval =
  74. ((u64) interval * clock->mult) >> clock->shift;
  75. timekeeper.xtime_nsec = 0;
  76. timekeeper.shift = clock->shift;
  77. timekeeper.ntp_error = 0;
  78. timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
  79. /*
  80. * The timekeeper keeps its own mult values for the currently
  81. * active clocksource. These value will be adjusted via NTP
  82. * to counteract clock drifting.
  83. */
  84. timekeeper.mult = clock->mult;
  85. }
  86. /* Timekeeper helper functions. */
  87. static inline s64 timekeeping_get_ns(void)
  88. {
  89. cycle_t cycle_now, cycle_delta;
  90. struct clocksource *clock;
  91. /* read clocksource: */
  92. clock = timekeeper.clock;
  93. cycle_now = clock->read(clock);
  94. /* calculate the delta since the last update_wall_time: */
  95. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  96. /* return delta convert to nanoseconds using ntp adjusted mult. */
  97. return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
  98. timekeeper.shift);
  99. }
  100. static inline s64 timekeeping_get_ns_raw(void)
  101. {
  102. cycle_t cycle_now, cycle_delta;
  103. struct clocksource *clock;
  104. /* read clocksource: */
  105. clock = timekeeper.clock;
  106. cycle_now = clock->read(clock);
  107. /* calculate the delta since the last update_wall_time: */
  108. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  109. /* return delta convert to nanoseconds using ntp adjusted mult. */
  110. return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
  111. }
  112. /*
  113. * This read-write spinlock protects us from races in SMP while
  114. * playing with xtime.
  115. */
  116. __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
  117. /*
  118. * The current time
  119. * wall_to_monotonic is what we need to add to xtime (or xtime corrected
  120. * for sub jiffie times) to get to monotonic time. Monotonic is pegged
  121. * at zero at system boot time, so wall_to_monotonic will be negative,
  122. * however, we will ALWAYS keep the tv_nsec part positive so we can use
  123. * the usual normalization.
  124. *
  125. * wall_to_monotonic is moved after resume from suspend for the monotonic
  126. * time not to jump. We need to add total_sleep_time to wall_to_monotonic
  127. * to get the real boot based time offset.
  128. *
  129. * - wall_to_monotonic is no longer the boot time, getboottime must be
  130. * used instead.
  131. */
  132. static struct timespec xtime __attribute__ ((aligned (16)));
  133. static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
  134. static struct timespec total_sleep_time;
  135. /*
  136. * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
  137. */
  138. struct timespec raw_time;
  139. /* flag for if timekeeping is suspended */
  140. int __read_mostly timekeeping_suspended;
  141. /* must hold xtime_lock */
  142. void timekeeping_leap_insert(int leapsecond)
  143. {
  144. xtime.tv_sec += leapsecond;
  145. wall_to_monotonic.tv_sec -= leapsecond;
  146. update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
  147. timekeeper.mult);
  148. }
  149. /**
  150. * timekeeping_forward_now - update clock to the current time
  151. *
  152. * Forward the current clock to update its state since the last call to
  153. * update_wall_time(). This is useful before significant clock changes,
  154. * as it avoids having to deal with this time offset explicitly.
  155. */
  156. static void timekeeping_forward_now(void)
  157. {
  158. cycle_t cycle_now, cycle_delta;
  159. struct clocksource *clock;
  160. s64 nsec;
  161. clock = timekeeper.clock;
  162. cycle_now = clock->read(clock);
  163. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  164. clock->cycle_last = cycle_now;
  165. nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
  166. timekeeper.shift);
  167. /* If arch requires, add in gettimeoffset() */
  168. nsec += arch_gettimeoffset();
  169. timespec_add_ns(&xtime, nsec);
  170. nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
  171. timespec_add_ns(&raw_time, nsec);
  172. }
  173. /**
  174. * getnstimeofday - Returns the time of day in a timespec
  175. * @ts: pointer to the timespec to be set
  176. *
  177. * Returns the time of day in a timespec.
  178. */
  179. void getnstimeofday(struct timespec *ts)
  180. {
  181. unsigned long seq;
  182. s64 nsecs;
  183. WARN_ON(timekeeping_suspended);
  184. do {
  185. seq = read_seqbegin(&xtime_lock);
  186. *ts = xtime;
  187. nsecs = timekeeping_get_ns();
  188. /* If arch requires, add in gettimeoffset() */
  189. nsecs += arch_gettimeoffset();
  190. } while (read_seqretry(&xtime_lock, seq));
  191. timespec_add_ns(ts, nsecs);
  192. }
  193. EXPORT_SYMBOL(getnstimeofday);
  194. ktime_t ktime_get(void)
  195. {
  196. unsigned int seq;
  197. s64 secs, nsecs;
  198. WARN_ON(timekeeping_suspended);
  199. do {
  200. seq = read_seqbegin(&xtime_lock);
  201. secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
  202. nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
  203. nsecs += timekeeping_get_ns();
  204. } while (read_seqretry(&xtime_lock, seq));
  205. /*
  206. * Use ktime_set/ktime_add_ns to create a proper ktime on
  207. * 32-bit architectures without CONFIG_KTIME_SCALAR.
  208. */
  209. return ktime_add_ns(ktime_set(secs, 0), nsecs);
  210. }
  211. EXPORT_SYMBOL_GPL(ktime_get);
  212. /**
  213. * ktime_get_ts - get the monotonic clock in timespec format
  214. * @ts: pointer to timespec variable
  215. *
  216. * The function calculates the monotonic clock from the realtime
  217. * clock and the wall_to_monotonic offset and stores the result
  218. * in normalized timespec format in the variable pointed to by @ts.
  219. */
  220. void ktime_get_ts(struct timespec *ts)
  221. {
  222. struct timespec tomono;
  223. unsigned int seq;
  224. s64 nsecs;
  225. WARN_ON(timekeeping_suspended);
  226. do {
  227. seq = read_seqbegin(&xtime_lock);
  228. *ts = xtime;
  229. tomono = wall_to_monotonic;
  230. nsecs = timekeeping_get_ns();
  231. } while (read_seqretry(&xtime_lock, seq));
  232. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
  233. ts->tv_nsec + tomono.tv_nsec + nsecs);
  234. }
  235. EXPORT_SYMBOL_GPL(ktime_get_ts);
  236. /**
  237. * do_gettimeofday - Returns the time of day in a timeval
  238. * @tv: pointer to the timeval to be set
  239. *
  240. * NOTE: Users should be converted to using getnstimeofday()
  241. */
  242. void do_gettimeofday(struct timeval *tv)
  243. {
  244. struct timespec now;
  245. getnstimeofday(&now);
  246. tv->tv_sec = now.tv_sec;
  247. tv->tv_usec = now.tv_nsec/1000;
  248. }
  249. EXPORT_SYMBOL(do_gettimeofday);
  250. /**
  251. * do_settimeofday - Sets the time of day
  252. * @tv: pointer to the timespec variable containing the new time
  253. *
  254. * Sets the time of day to the new time and update NTP and notify hrtimers
  255. */
  256. int do_settimeofday(struct timespec *tv)
  257. {
  258. struct timespec ts_delta;
  259. unsigned long flags;
  260. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  261. return -EINVAL;
  262. write_seqlock_irqsave(&xtime_lock, flags);
  263. timekeeping_forward_now();
  264. ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
  265. ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
  266. wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
  267. xtime = *tv;
  268. timekeeper.ntp_error = 0;
  269. ntp_clear();
  270. update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
  271. timekeeper.mult);
  272. write_sequnlock_irqrestore(&xtime_lock, flags);
  273. /* signal hrtimers about time change */
  274. clock_was_set();
  275. return 0;
  276. }
  277. EXPORT_SYMBOL(do_settimeofday);
  278. /**
  279. * change_clocksource - Swaps clocksources if a new one is available
  280. *
  281. * Accumulates current time interval and initializes new clocksource
  282. */
  283. static int change_clocksource(void *data)
  284. {
  285. struct clocksource *new, *old;
  286. new = (struct clocksource *) data;
  287. timekeeping_forward_now();
  288. if (!new->enable || new->enable(new) == 0) {
  289. old = timekeeper.clock;
  290. timekeeper_setup_internals(new);
  291. if (old->disable)
  292. old->disable(old);
  293. }
  294. return 0;
  295. }
  296. /**
  297. * timekeeping_notify - Install a new clock source
  298. * @clock: pointer to the clock source
  299. *
  300. * This function is called from clocksource.c after a new, better clock
  301. * source has been registered. The caller holds the clocksource_mutex.
  302. */
  303. void timekeeping_notify(struct clocksource *clock)
  304. {
  305. if (timekeeper.clock == clock)
  306. return;
  307. stop_machine(change_clocksource, clock, NULL);
  308. tick_clock_notify();
  309. }
  310. /**
  311. * ktime_get_real - get the real (wall-) time in ktime_t format
  312. *
  313. * returns the time in ktime_t format
  314. */
  315. ktime_t ktime_get_real(void)
  316. {
  317. struct timespec now;
  318. getnstimeofday(&now);
  319. return timespec_to_ktime(now);
  320. }
  321. EXPORT_SYMBOL_GPL(ktime_get_real);
  322. /**
  323. * getrawmonotonic - Returns the raw monotonic time in a timespec
  324. * @ts: pointer to the timespec to be set
  325. *
  326. * Returns the raw monotonic time (completely un-modified by ntp)
  327. */
  328. void getrawmonotonic(struct timespec *ts)
  329. {
  330. unsigned long seq;
  331. s64 nsecs;
  332. do {
  333. seq = read_seqbegin(&xtime_lock);
  334. nsecs = timekeeping_get_ns_raw();
  335. *ts = raw_time;
  336. } while (read_seqretry(&xtime_lock, seq));
  337. timespec_add_ns(ts, nsecs);
  338. }
  339. EXPORT_SYMBOL(getrawmonotonic);
  340. /**
  341. * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
  342. */
  343. int timekeeping_valid_for_hres(void)
  344. {
  345. unsigned long seq;
  346. int ret;
  347. do {
  348. seq = read_seqbegin(&xtime_lock);
  349. ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
  350. } while (read_seqretry(&xtime_lock, seq));
  351. return ret;
  352. }
  353. /**
  354. * timekeeping_max_deferment - Returns max time the clocksource can be deferred
  355. *
  356. * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
  357. * ensure that the clocksource does not change!
  358. */
  359. u64 timekeeping_max_deferment(void)
  360. {
  361. return timekeeper.clock->max_idle_ns;
  362. }
  363. /**
  364. * read_persistent_clock - Return time from the persistent clock.
  365. *
  366. * Weak dummy function for arches that do not yet support it.
  367. * Reads the time from the battery backed persistent clock.
  368. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  369. *
  370. * XXX - Do be sure to remove it once all arches implement it.
  371. */
  372. void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
  373. {
  374. ts->tv_sec = 0;
  375. ts->tv_nsec = 0;
  376. }
  377. /**
  378. * read_boot_clock - Return time of the system start.
  379. *
  380. * Weak dummy function for arches that do not yet support it.
  381. * Function to read the exact time the system has been started.
  382. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  383. *
  384. * XXX - Do be sure to remove it once all arches implement it.
  385. */
  386. void __attribute__((weak)) read_boot_clock(struct timespec *ts)
  387. {
  388. ts->tv_sec = 0;
  389. ts->tv_nsec = 0;
  390. }
  391. /*
  392. * timekeeping_init - Initializes the clocksource and common timekeeping values
  393. */
  394. void __init timekeeping_init(void)
  395. {
  396. struct clocksource *clock;
  397. unsigned long flags;
  398. struct timespec now, boot;
  399. read_persistent_clock(&now);
  400. read_boot_clock(&boot);
  401. write_seqlock_irqsave(&xtime_lock, flags);
  402. ntp_init();
  403. clock = clocksource_default_clock();
  404. if (clock->enable)
  405. clock->enable(clock);
  406. timekeeper_setup_internals(clock);
  407. xtime.tv_sec = now.tv_sec;
  408. xtime.tv_nsec = now.tv_nsec;
  409. raw_time.tv_sec = 0;
  410. raw_time.tv_nsec = 0;
  411. if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
  412. boot.tv_sec = xtime.tv_sec;
  413. boot.tv_nsec = xtime.tv_nsec;
  414. }
  415. set_normalized_timespec(&wall_to_monotonic,
  416. -boot.tv_sec, -boot.tv_nsec);
  417. total_sleep_time.tv_sec = 0;
  418. total_sleep_time.tv_nsec = 0;
  419. write_sequnlock_irqrestore(&xtime_lock, flags);
  420. }
  421. /* time in seconds when suspend began */
  422. static struct timespec timekeeping_suspend_time;
  423. /**
  424. * timekeeping_resume - Resumes the generic timekeeping subsystem.
  425. * @dev: unused
  426. *
  427. * This is for the generic clocksource timekeeping.
  428. * xtime/wall_to_monotonic/jiffies/etc are
  429. * still managed by arch specific suspend/resume code.
  430. */
  431. static int timekeeping_resume(struct sys_device *dev)
  432. {
  433. unsigned long flags;
  434. struct timespec ts;
  435. read_persistent_clock(&ts);
  436. clocksource_resume();
  437. write_seqlock_irqsave(&xtime_lock, flags);
  438. if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
  439. ts = timespec_sub(ts, timekeeping_suspend_time);
  440. xtime = timespec_add(xtime, ts);
  441. wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
  442. total_sleep_time = timespec_add(total_sleep_time, ts);
  443. }
  444. /* re-base the last cycle value */
  445. timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
  446. timekeeper.ntp_error = 0;
  447. timekeeping_suspended = 0;
  448. write_sequnlock_irqrestore(&xtime_lock, flags);
  449. touch_softlockup_watchdog();
  450. clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
  451. /* Resume hrtimers */
  452. hres_timers_resume();
  453. return 0;
  454. }
  455. static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
  456. {
  457. unsigned long flags;
  458. read_persistent_clock(&timekeeping_suspend_time);
  459. write_seqlock_irqsave(&xtime_lock, flags);
  460. timekeeping_forward_now();
  461. timekeeping_suspended = 1;
  462. write_sequnlock_irqrestore(&xtime_lock, flags);
  463. clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
  464. clocksource_suspend();
  465. return 0;
  466. }
  467. /* sysfs resume/suspend bits for timekeeping */
  468. static struct sysdev_class timekeeping_sysclass = {
  469. .name = "timekeeping",
  470. .resume = timekeeping_resume,
  471. .suspend = timekeeping_suspend,
  472. };
  473. static struct sys_device device_timer = {
  474. .id = 0,
  475. .cls = &timekeeping_sysclass,
  476. };
  477. static int __init timekeeping_init_device(void)
  478. {
  479. int error = sysdev_class_register(&timekeeping_sysclass);
  480. if (!error)
  481. error = sysdev_register(&device_timer);
  482. return error;
  483. }
  484. device_initcall(timekeeping_init_device);
  485. /*
  486. * If the error is already larger, we look ahead even further
  487. * to compensate for late or lost adjustments.
  488. */
  489. static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
  490. s64 *offset)
  491. {
  492. s64 tick_error, i;
  493. u32 look_ahead, adj;
  494. s32 error2, mult;
  495. /*
  496. * Use the current error value to determine how much to look ahead.
  497. * The larger the error the slower we adjust for it to avoid problems
  498. * with losing too many ticks, otherwise we would overadjust and
  499. * produce an even larger error. The smaller the adjustment the
  500. * faster we try to adjust for it, as lost ticks can do less harm
  501. * here. This is tuned so that an error of about 1 msec is adjusted
  502. * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
  503. */
  504. error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
  505. error2 = abs(error2);
  506. for (look_ahead = 0; error2 > 0; look_ahead++)
  507. error2 >>= 2;
  508. /*
  509. * Now calculate the error in (1 << look_ahead) ticks, but first
  510. * remove the single look ahead already included in the error.
  511. */
  512. tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
  513. tick_error -= timekeeper.xtime_interval >> 1;
  514. error = ((error - tick_error) >> look_ahead) + tick_error;
  515. /* Finally calculate the adjustment shift value. */
  516. i = *interval;
  517. mult = 1;
  518. if (error < 0) {
  519. error = -error;
  520. *interval = -*interval;
  521. *offset = -*offset;
  522. mult = -1;
  523. }
  524. for (adj = 0; error > i; adj++)
  525. error >>= 1;
  526. *interval <<= adj;
  527. *offset <<= adj;
  528. return mult << adj;
  529. }
  530. /*
  531. * Adjust the multiplier to reduce the error value,
  532. * this is optimized for the most common adjustments of -1,0,1,
  533. * for other values we can do a bit more work.
  534. */
  535. static void timekeeping_adjust(s64 offset)
  536. {
  537. s64 error, interval = timekeeper.cycle_interval;
  538. int adj;
  539. error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
  540. if (error > interval) {
  541. error >>= 2;
  542. if (likely(error <= interval))
  543. adj = 1;
  544. else
  545. adj = timekeeping_bigadjust(error, &interval, &offset);
  546. } else if (error < -interval) {
  547. error >>= 2;
  548. if (likely(error >= -interval)) {
  549. adj = -1;
  550. interval = -interval;
  551. offset = -offset;
  552. } else
  553. adj = timekeeping_bigadjust(error, &interval, &offset);
  554. } else
  555. return;
  556. timekeeper.mult += adj;
  557. timekeeper.xtime_interval += interval;
  558. timekeeper.xtime_nsec -= offset;
  559. timekeeper.ntp_error -= (interval - offset) <<
  560. timekeeper.ntp_error_shift;
  561. }
  562. /**
  563. * logarithmic_accumulation - shifted accumulation of cycles
  564. *
  565. * This functions accumulates a shifted interval of cycles into
  566. * into a shifted interval nanoseconds. Allows for O(log) accumulation
  567. * loop.
  568. *
  569. * Returns the unconsumed cycles.
  570. */
  571. static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
  572. {
  573. u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
  574. u64 raw_nsecs;
  575. /* If the offset is smaller then a shifted interval, do nothing */
  576. if (offset < timekeeper.cycle_interval<<shift)
  577. return offset;
  578. /* Accumulate one shifted interval */
  579. offset -= timekeeper.cycle_interval << shift;
  580. timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
  581. timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
  582. while (timekeeper.xtime_nsec >= nsecps) {
  583. timekeeper.xtime_nsec -= nsecps;
  584. xtime.tv_sec++;
  585. second_overflow();
  586. }
  587. /* Accumulate raw time */
  588. raw_nsecs = timekeeper.raw_interval << shift;
  589. raw_nsecs += raw_time.tv_nsec;
  590. if (raw_nsecs >= NSEC_PER_SEC) {
  591. u64 raw_secs = raw_nsecs;
  592. raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
  593. raw_time.tv_sec += raw_secs;
  594. }
  595. raw_time.tv_nsec = raw_nsecs;
  596. /* Accumulate error between NTP and clock interval */
  597. timekeeper.ntp_error += tick_length << shift;
  598. timekeeper.ntp_error -= timekeeper.xtime_interval <<
  599. (timekeeper.ntp_error_shift + shift);
  600. return offset;
  601. }
  602. /**
  603. * update_wall_time - Uses the current clocksource to increment the wall time
  604. *
  605. * Called from the timer interrupt, must hold a write on xtime_lock.
  606. */
  607. void update_wall_time(void)
  608. {
  609. struct clocksource *clock;
  610. cycle_t offset;
  611. int shift = 0, maxshift;
  612. /* Make sure we're fully resumed: */
  613. if (unlikely(timekeeping_suspended))
  614. return;
  615. clock = timekeeper.clock;
  616. #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
  617. offset = timekeeper.cycle_interval;
  618. #else
  619. offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
  620. #endif
  621. timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
  622. /*
  623. * With NO_HZ we may have to accumulate many cycle_intervals
  624. * (think "ticks") worth of time at once. To do this efficiently,
  625. * we calculate the largest doubling multiple of cycle_intervals
  626. * that is smaller then the offset. We then accumulate that
  627. * chunk in one go, and then try to consume the next smaller
  628. * doubled multiple.
  629. */
  630. shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
  631. shift = max(0, shift);
  632. /* Bound shift to one less then what overflows tick_length */
  633. maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
  634. shift = min(shift, maxshift);
  635. while (offset >= timekeeper.cycle_interval) {
  636. offset = logarithmic_accumulation(offset, shift);
  637. if(offset < timekeeper.cycle_interval<<shift)
  638. shift--;
  639. }
  640. /* correct the clock when NTP error is too big */
  641. timekeeping_adjust(offset);
  642. /*
  643. * Since in the loop above, we accumulate any amount of time
  644. * in xtime_nsec over a second into xtime.tv_sec, its possible for
  645. * xtime_nsec to be fairly small after the loop. Further, if we're
  646. * slightly speeding the clocksource up in timekeeping_adjust(),
  647. * its possible the required corrective factor to xtime_nsec could
  648. * cause it to underflow.
  649. *
  650. * Now, we cannot simply roll the accumulated second back, since
  651. * the NTP subsystem has been notified via second_overflow. So
  652. * instead we push xtime_nsec forward by the amount we underflowed,
  653. * and add that amount into the error.
  654. *
  655. * We'll correct this error next time through this function, when
  656. * xtime_nsec is not as small.
  657. */
  658. if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
  659. s64 neg = -(s64)timekeeper.xtime_nsec;
  660. timekeeper.xtime_nsec = 0;
  661. timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
  662. }
  663. /*
  664. * Store full nanoseconds into xtime after rounding it up and
  665. * add the remainder to the error difference.
  666. */
  667. xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
  668. timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
  669. timekeeper.ntp_error += timekeeper.xtime_nsec <<
  670. timekeeper.ntp_error_shift;
  671. /*
  672. * Finally, make sure that after the rounding
  673. * xtime.tv_nsec isn't larger then NSEC_PER_SEC
  674. */
  675. if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
  676. xtime.tv_nsec -= NSEC_PER_SEC;
  677. xtime.tv_sec++;
  678. second_overflow();
  679. }
  680. /* check to see if there is a new clocksource to use */
  681. update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
  682. timekeeper.mult);
  683. }
  684. /**
  685. * getboottime - Return the real time of system boot.
  686. * @ts: pointer to the timespec to be set
  687. *
  688. * Returns the time of day in a timespec.
  689. *
  690. * This is based on the wall_to_monotonic offset and the total suspend
  691. * time. Calls to settimeofday will affect the value returned (which
  692. * basically means that however wrong your real time clock is at boot time,
  693. * you get the right time here).
  694. */
  695. void getboottime(struct timespec *ts)
  696. {
  697. struct timespec boottime = {
  698. .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
  699. .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
  700. };
  701. set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
  702. }
  703. EXPORT_SYMBOL_GPL(getboottime);
  704. /**
  705. * monotonic_to_bootbased - Convert the monotonic time to boot based.
  706. * @ts: pointer to the timespec to be converted
  707. */
  708. void monotonic_to_bootbased(struct timespec *ts)
  709. {
  710. *ts = timespec_add(*ts, total_sleep_time);
  711. }
  712. EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
  713. unsigned long get_seconds(void)
  714. {
  715. return xtime.tv_sec;
  716. }
  717. EXPORT_SYMBOL(get_seconds);
  718. struct timespec __current_kernel_time(void)
  719. {
  720. return xtime;
  721. }
  722. struct timespec __get_wall_to_monotonic(void)
  723. {
  724. return wall_to_monotonic;
  725. }
  726. struct timespec current_kernel_time(void)
  727. {
  728. struct timespec now;
  729. unsigned long seq;
  730. do {
  731. seq = read_seqbegin(&xtime_lock);
  732. now = xtime;
  733. } while (read_seqretry(&xtime_lock, seq));
  734. return now;
  735. }
  736. EXPORT_SYMBOL(current_kernel_time);
  737. struct timespec get_monotonic_coarse(void)
  738. {
  739. struct timespec now, mono;
  740. unsigned long seq;
  741. do {
  742. seq = read_seqbegin(&xtime_lock);
  743. now = xtime;
  744. mono = wall_to_monotonic;
  745. } while (read_seqretry(&xtime_lock, seq));
  746. set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
  747. now.tv_nsec + mono.tv_nsec);
  748. return now;
  749. }