sched.c 220 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. #endif
  217. #ifdef CONFIG_RT_GROUP_SCHED
  218. struct sched_rt_entity **rt_se;
  219. struct rt_rq **rt_rq;
  220. struct rt_bandwidth rt_bandwidth;
  221. #endif
  222. struct rcu_head rcu;
  223. struct list_head list;
  224. struct task_group *parent;
  225. struct list_head siblings;
  226. struct list_head children;
  227. };
  228. #define root_task_group init_task_group
  229. /* task_group_lock serializes add/remove of task groups and also changes to
  230. * a task group's cpu shares.
  231. */
  232. static DEFINE_SPINLOCK(task_group_lock);
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. #ifdef CONFIG_SMP
  235. static int root_task_group_empty(void)
  236. {
  237. return list_empty(&root_task_group.children);
  238. }
  239. #endif
  240. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  241. /*
  242. * A weight of 0 or 1 can cause arithmetics problems.
  243. * A weight of a cfs_rq is the sum of weights of which entities
  244. * are queued on this cfs_rq, so a weight of a entity should not be
  245. * too large, so as the shares value of a task group.
  246. * (The default weight is 1024 - so there's no practical
  247. * limitation from this.)
  248. */
  249. #define MIN_SHARES 2
  250. #define MAX_SHARES (1UL << 18)
  251. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  252. #endif
  253. /* Default task group.
  254. * Every task in system belong to this group at bootup.
  255. */
  256. struct task_group init_task_group;
  257. #endif /* CONFIG_CGROUP_SCHED */
  258. /* CFS-related fields in a runqueue */
  259. struct cfs_rq {
  260. struct load_weight load;
  261. unsigned long nr_running;
  262. u64 exec_clock;
  263. u64 min_vruntime;
  264. struct rb_root tasks_timeline;
  265. struct rb_node *rb_leftmost;
  266. struct list_head tasks;
  267. struct list_head *balance_iterator;
  268. /*
  269. * 'curr' points to currently running entity on this cfs_rq.
  270. * It is set to NULL otherwise (i.e when none are currently running).
  271. */
  272. struct sched_entity *curr, *next, *last;
  273. unsigned int nr_spread_over;
  274. #ifdef CONFIG_FAIR_GROUP_SCHED
  275. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  276. /*
  277. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  278. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  279. * (like users, containers etc.)
  280. *
  281. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  282. * list is used during load balance.
  283. */
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * this cpu's part of tg->shares
  300. */
  301. unsigned long shares;
  302. /*
  303. * load.weight at the time we set shares
  304. */
  305. unsigned long rq_weight;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. #ifdef CONFIG_SMP
  359. struct cpupri cpupri;
  360. #endif
  361. };
  362. /*
  363. * By default the system creates a single root-domain with all cpus as
  364. * members (mimicking the global state we have today).
  365. */
  366. static struct root_domain def_root_domain;
  367. #endif
  368. /*
  369. * This is the main, per-CPU runqueue data structure.
  370. *
  371. * Locking rule: those places that want to lock multiple runqueues
  372. * (such as the load balancing or the thread migration code), lock
  373. * acquire operations must be ordered by ascending &runqueue.
  374. */
  375. struct rq {
  376. /* runqueue lock: */
  377. raw_spinlock_t lock;
  378. /*
  379. * nr_running and cpu_load should be in the same cacheline because
  380. * remote CPUs use both these fields when doing load calculation.
  381. */
  382. unsigned long nr_running;
  383. #define CPU_LOAD_IDX_MAX 5
  384. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  385. unsigned long last_load_update_tick;
  386. #ifdef CONFIG_NO_HZ
  387. u64 nohz_stamp;
  388. unsigned char nohz_balance_kick;
  389. #endif
  390. unsigned int skip_clock_update;
  391. /* capture load from *all* tasks on this cpu: */
  392. struct load_weight load;
  393. unsigned long nr_load_updates;
  394. u64 nr_switches;
  395. struct cfs_rq cfs;
  396. struct rt_rq rt;
  397. #ifdef CONFIG_FAIR_GROUP_SCHED
  398. /* list of leaf cfs_rq on this cpu: */
  399. struct list_head leaf_cfs_rq_list;
  400. #endif
  401. #ifdef CONFIG_RT_GROUP_SCHED
  402. struct list_head leaf_rt_rq_list;
  403. #endif
  404. /*
  405. * This is part of a global counter where only the total sum
  406. * over all CPUs matters. A task can increase this counter on
  407. * one CPU and if it got migrated afterwards it may decrease
  408. * it on another CPU. Always updated under the runqueue lock:
  409. */
  410. unsigned long nr_uninterruptible;
  411. struct task_struct *curr, *idle;
  412. unsigned long next_balance;
  413. struct mm_struct *prev_mm;
  414. u64 clock;
  415. atomic_t nr_iowait;
  416. #ifdef CONFIG_SMP
  417. struct root_domain *rd;
  418. struct sched_domain *sd;
  419. unsigned long cpu_power;
  420. unsigned char idle_at_tick;
  421. /* For active balancing */
  422. int post_schedule;
  423. int active_balance;
  424. int push_cpu;
  425. struct cpu_stop_work active_balance_work;
  426. /* cpu of this runqueue: */
  427. int cpu;
  428. int online;
  429. unsigned long avg_load_per_task;
  430. u64 rt_avg;
  431. u64 age_stamp;
  432. u64 idle_stamp;
  433. u64 avg_idle;
  434. #endif
  435. /* calc_load related fields */
  436. unsigned long calc_load_update;
  437. long calc_load_active;
  438. #ifdef CONFIG_SCHED_HRTICK
  439. #ifdef CONFIG_SMP
  440. int hrtick_csd_pending;
  441. struct call_single_data hrtick_csd;
  442. #endif
  443. struct hrtimer hrtick_timer;
  444. #endif
  445. #ifdef CONFIG_SCHEDSTATS
  446. /* latency stats */
  447. struct sched_info rq_sched_info;
  448. unsigned long long rq_cpu_time;
  449. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  450. /* sys_sched_yield() stats */
  451. unsigned int yld_count;
  452. /* schedule() stats */
  453. unsigned int sched_switch;
  454. unsigned int sched_count;
  455. unsigned int sched_goidle;
  456. /* try_to_wake_up() stats */
  457. unsigned int ttwu_count;
  458. unsigned int ttwu_local;
  459. /* BKL stats */
  460. unsigned int bkl_count;
  461. #endif
  462. };
  463. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  464. static inline
  465. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  466. {
  467. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  468. /*
  469. * A queue event has occurred, and we're going to schedule. In
  470. * this case, we can save a useless back to back clock update.
  471. */
  472. if (test_tsk_need_resched(p))
  473. rq->skip_clock_update = 1;
  474. }
  475. static inline int cpu_of(struct rq *rq)
  476. {
  477. #ifdef CONFIG_SMP
  478. return rq->cpu;
  479. #else
  480. return 0;
  481. #endif
  482. }
  483. #define rcu_dereference_check_sched_domain(p) \
  484. rcu_dereference_check((p), \
  485. rcu_read_lock_sched_held() || \
  486. lockdep_is_held(&sched_domains_mutex))
  487. /*
  488. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  489. * See detach_destroy_domains: synchronize_sched for details.
  490. *
  491. * The domain tree of any CPU may only be accessed from within
  492. * preempt-disabled sections.
  493. */
  494. #define for_each_domain(cpu, __sd) \
  495. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  496. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  497. #define this_rq() (&__get_cpu_var(runqueues))
  498. #define task_rq(p) cpu_rq(task_cpu(p))
  499. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  500. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  501. #ifdef CONFIG_CGROUP_SCHED
  502. /*
  503. * Return the group to which this tasks belongs.
  504. *
  505. * We use task_subsys_state_check() and extend the RCU verification
  506. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  507. * holds that lock for each task it moves into the cgroup. Therefore
  508. * by holding that lock, we pin the task to the current cgroup.
  509. */
  510. static inline struct task_group *task_group(struct task_struct *p)
  511. {
  512. struct cgroup_subsys_state *css;
  513. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  514. lockdep_is_held(&task_rq(p)->lock));
  515. return container_of(css, struct task_group, css);
  516. }
  517. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  518. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  519. {
  520. #ifdef CONFIG_FAIR_GROUP_SCHED
  521. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  522. p->se.parent = task_group(p)->se[cpu];
  523. #endif
  524. #ifdef CONFIG_RT_GROUP_SCHED
  525. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  526. p->rt.parent = task_group(p)->rt_se[cpu];
  527. #endif
  528. }
  529. #else /* CONFIG_CGROUP_SCHED */
  530. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  531. static inline struct task_group *task_group(struct task_struct *p)
  532. {
  533. return NULL;
  534. }
  535. #endif /* CONFIG_CGROUP_SCHED */
  536. inline void update_rq_clock(struct rq *rq)
  537. {
  538. if (!rq->skip_clock_update)
  539. rq->clock = sched_clock_cpu(cpu_of(rq));
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked
  551. * @cpu: the processor in question.
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(int cpu)
  558. {
  559. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  560. }
  561. /*
  562. * Debugging: various feature bits
  563. */
  564. #define SCHED_FEAT(name, enabled) \
  565. __SCHED_FEAT_##name ,
  566. enum {
  567. #include "sched_features.h"
  568. };
  569. #undef SCHED_FEAT
  570. #define SCHED_FEAT(name, enabled) \
  571. (1UL << __SCHED_FEAT_##name) * enabled |
  572. const_debug unsigned int sysctl_sched_features =
  573. #include "sched_features.h"
  574. 0;
  575. #undef SCHED_FEAT
  576. #ifdef CONFIG_SCHED_DEBUG
  577. #define SCHED_FEAT(name, enabled) \
  578. #name ,
  579. static __read_mostly char *sched_feat_names[] = {
  580. #include "sched_features.h"
  581. NULL
  582. };
  583. #undef SCHED_FEAT
  584. static int sched_feat_show(struct seq_file *m, void *v)
  585. {
  586. int i;
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. if (!(sysctl_sched_features & (1UL << i)))
  589. seq_puts(m, "NO_");
  590. seq_printf(m, "%s ", sched_feat_names[i]);
  591. }
  592. seq_puts(m, "\n");
  593. return 0;
  594. }
  595. static ssize_t
  596. sched_feat_write(struct file *filp, const char __user *ubuf,
  597. size_t cnt, loff_t *ppos)
  598. {
  599. char buf[64];
  600. char *cmp = buf;
  601. int neg = 0;
  602. int i;
  603. if (cnt > 63)
  604. cnt = 63;
  605. if (copy_from_user(&buf, ubuf, cnt))
  606. return -EFAULT;
  607. buf[cnt] = 0;
  608. if (strncmp(buf, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. int len = strlen(sched_feat_names[i]);
  614. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  615. if (neg)
  616. sysctl_sched_features &= ~(1UL << i);
  617. else
  618. sysctl_sched_features |= (1UL << i);
  619. break;
  620. }
  621. }
  622. if (!sched_feat_names[i])
  623. return -EINVAL;
  624. *ppos += cnt;
  625. return cnt;
  626. }
  627. static int sched_feat_open(struct inode *inode, struct file *filp)
  628. {
  629. return single_open(filp, sched_feat_show, NULL);
  630. }
  631. static const struct file_operations sched_feat_fops = {
  632. .open = sched_feat_open,
  633. .write = sched_feat_write,
  634. .read = seq_read,
  635. .llseek = seq_lseek,
  636. .release = single_release,
  637. };
  638. static __init int sched_init_debug(void)
  639. {
  640. debugfs_create_file("sched_features", 0644, NULL, NULL,
  641. &sched_feat_fops);
  642. return 0;
  643. }
  644. late_initcall(sched_init_debug);
  645. #endif
  646. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  647. /*
  648. * Number of tasks to iterate in a single balance run.
  649. * Limited because this is done with IRQs disabled.
  650. */
  651. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  652. /*
  653. * ratelimit for updating the group shares.
  654. * default: 0.25ms
  655. */
  656. unsigned int sysctl_sched_shares_ratelimit = 250000;
  657. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  658. /*
  659. * Inject some fuzzyness into changing the per-cpu group shares
  660. * this avoids remote rq-locks at the expense of fairness.
  661. * default: 4
  662. */
  663. unsigned int sysctl_sched_shares_thresh = 4;
  664. /*
  665. * period over which we average the RT time consumption, measured
  666. * in ms.
  667. *
  668. * default: 1s
  669. */
  670. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  671. /*
  672. * period over which we measure -rt task cpu usage in us.
  673. * default: 1s
  674. */
  675. unsigned int sysctl_sched_rt_period = 1000000;
  676. static __read_mostly int scheduler_running;
  677. /*
  678. * part of the period that we allow rt tasks to run in us.
  679. * default: 0.95s
  680. */
  681. int sysctl_sched_rt_runtime = 950000;
  682. static inline u64 global_rt_period(void)
  683. {
  684. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  685. }
  686. static inline u64 global_rt_runtime(void)
  687. {
  688. if (sysctl_sched_rt_runtime < 0)
  689. return RUNTIME_INF;
  690. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  691. }
  692. #ifndef prepare_arch_switch
  693. # define prepare_arch_switch(next) do { } while (0)
  694. #endif
  695. #ifndef finish_arch_switch
  696. # define finish_arch_switch(prev) do { } while (0)
  697. #endif
  698. static inline int task_current(struct rq *rq, struct task_struct *p)
  699. {
  700. return rq->curr == p;
  701. }
  702. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  703. static inline int task_running(struct rq *rq, struct task_struct *p)
  704. {
  705. return task_current(rq, p);
  706. }
  707. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  708. {
  709. }
  710. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  711. {
  712. #ifdef CONFIG_DEBUG_SPINLOCK
  713. /* this is a valid case when another task releases the spinlock */
  714. rq->lock.owner = current;
  715. #endif
  716. /*
  717. * If we are tracking spinlock dependencies then we have to
  718. * fix up the runqueue lock - which gets 'carried over' from
  719. * prev into current:
  720. */
  721. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  722. raw_spin_unlock_irq(&rq->lock);
  723. }
  724. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  725. static inline int task_running(struct rq *rq, struct task_struct *p)
  726. {
  727. #ifdef CONFIG_SMP
  728. return p->oncpu;
  729. #else
  730. return task_current(rq, p);
  731. #endif
  732. }
  733. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * We can optimise this out completely for !SMP, because the
  738. * SMP rebalancing from interrupt is the only thing that cares
  739. * here.
  740. */
  741. next->oncpu = 1;
  742. #endif
  743. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. raw_spin_unlock_irq(&rq->lock);
  745. #else
  746. raw_spin_unlock(&rq->lock);
  747. #endif
  748. }
  749. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * After ->oncpu is cleared, the task can be moved to a different CPU.
  754. * We must ensure this doesn't happen until the switch is completely
  755. * finished.
  756. */
  757. smp_wmb();
  758. prev->oncpu = 0;
  759. #endif
  760. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. local_irq_enable();
  762. #endif
  763. }
  764. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  765. /*
  766. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  767. * against ttwu().
  768. */
  769. static inline int task_is_waking(struct task_struct *p)
  770. {
  771. return unlikely(p->state == TASK_WAKING);
  772. }
  773. /*
  774. * __task_rq_lock - lock the runqueue a given task resides on.
  775. * Must be called interrupts disabled.
  776. */
  777. static inline struct rq *__task_rq_lock(struct task_struct *p)
  778. __acquires(rq->lock)
  779. {
  780. struct rq *rq;
  781. for (;;) {
  782. rq = task_rq(p);
  783. raw_spin_lock(&rq->lock);
  784. if (likely(rq == task_rq(p)))
  785. return rq;
  786. raw_spin_unlock(&rq->lock);
  787. }
  788. }
  789. /*
  790. * task_rq_lock - lock the runqueue a given task resides on and disable
  791. * interrupts. Note the ordering: we can safely lookup the task_rq without
  792. * explicitly disabling preemption.
  793. */
  794. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  795. __acquires(rq->lock)
  796. {
  797. struct rq *rq;
  798. for (;;) {
  799. local_irq_save(*flags);
  800. rq = task_rq(p);
  801. raw_spin_lock(&rq->lock);
  802. if (likely(rq == task_rq(p)))
  803. return rq;
  804. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  805. }
  806. }
  807. static void __task_rq_unlock(struct rq *rq)
  808. __releases(rq->lock)
  809. {
  810. raw_spin_unlock(&rq->lock);
  811. }
  812. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  813. __releases(rq->lock)
  814. {
  815. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  816. }
  817. /*
  818. * this_rq_lock - lock this runqueue and disable interrupts.
  819. */
  820. static struct rq *this_rq_lock(void)
  821. __acquires(rq->lock)
  822. {
  823. struct rq *rq;
  824. local_irq_disable();
  825. rq = this_rq();
  826. raw_spin_lock(&rq->lock);
  827. return rq;
  828. }
  829. #ifdef CONFIG_SCHED_HRTICK
  830. /*
  831. * Use HR-timers to deliver accurate preemption points.
  832. *
  833. * Its all a bit involved since we cannot program an hrt while holding the
  834. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  835. * reschedule event.
  836. *
  837. * When we get rescheduled we reprogram the hrtick_timer outside of the
  838. * rq->lock.
  839. */
  840. /*
  841. * Use hrtick when:
  842. * - enabled by features
  843. * - hrtimer is actually high res
  844. */
  845. static inline int hrtick_enabled(struct rq *rq)
  846. {
  847. if (!sched_feat(HRTICK))
  848. return 0;
  849. if (!cpu_active(cpu_of(rq)))
  850. return 0;
  851. return hrtimer_is_hres_active(&rq->hrtick_timer);
  852. }
  853. static void hrtick_clear(struct rq *rq)
  854. {
  855. if (hrtimer_active(&rq->hrtick_timer))
  856. hrtimer_cancel(&rq->hrtick_timer);
  857. }
  858. /*
  859. * High-resolution timer tick.
  860. * Runs from hardirq context with interrupts disabled.
  861. */
  862. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  863. {
  864. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  865. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  866. raw_spin_lock(&rq->lock);
  867. update_rq_clock(rq);
  868. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  869. raw_spin_unlock(&rq->lock);
  870. return HRTIMER_NORESTART;
  871. }
  872. #ifdef CONFIG_SMP
  873. /*
  874. * called from hardirq (IPI) context
  875. */
  876. static void __hrtick_start(void *arg)
  877. {
  878. struct rq *rq = arg;
  879. raw_spin_lock(&rq->lock);
  880. hrtimer_restart(&rq->hrtick_timer);
  881. rq->hrtick_csd_pending = 0;
  882. raw_spin_unlock(&rq->lock);
  883. }
  884. /*
  885. * Called to set the hrtick timer state.
  886. *
  887. * called with rq->lock held and irqs disabled
  888. */
  889. static void hrtick_start(struct rq *rq, u64 delay)
  890. {
  891. struct hrtimer *timer = &rq->hrtick_timer;
  892. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  893. hrtimer_set_expires(timer, time);
  894. if (rq == this_rq()) {
  895. hrtimer_restart(timer);
  896. } else if (!rq->hrtick_csd_pending) {
  897. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  898. rq->hrtick_csd_pending = 1;
  899. }
  900. }
  901. static int
  902. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  903. {
  904. int cpu = (int)(long)hcpu;
  905. switch (action) {
  906. case CPU_UP_CANCELED:
  907. case CPU_UP_CANCELED_FROZEN:
  908. case CPU_DOWN_PREPARE:
  909. case CPU_DOWN_PREPARE_FROZEN:
  910. case CPU_DEAD:
  911. case CPU_DEAD_FROZEN:
  912. hrtick_clear(cpu_rq(cpu));
  913. return NOTIFY_OK;
  914. }
  915. return NOTIFY_DONE;
  916. }
  917. static __init void init_hrtick(void)
  918. {
  919. hotcpu_notifier(hotplug_hrtick, 0);
  920. }
  921. #else
  922. /*
  923. * Called to set the hrtick timer state.
  924. *
  925. * called with rq->lock held and irqs disabled
  926. */
  927. static void hrtick_start(struct rq *rq, u64 delay)
  928. {
  929. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  930. HRTIMER_MODE_REL_PINNED, 0);
  931. }
  932. static inline void init_hrtick(void)
  933. {
  934. }
  935. #endif /* CONFIG_SMP */
  936. static void init_rq_hrtick(struct rq *rq)
  937. {
  938. #ifdef CONFIG_SMP
  939. rq->hrtick_csd_pending = 0;
  940. rq->hrtick_csd.flags = 0;
  941. rq->hrtick_csd.func = __hrtick_start;
  942. rq->hrtick_csd.info = rq;
  943. #endif
  944. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  945. rq->hrtick_timer.function = hrtick;
  946. }
  947. #else /* CONFIG_SCHED_HRTICK */
  948. static inline void hrtick_clear(struct rq *rq)
  949. {
  950. }
  951. static inline void init_rq_hrtick(struct rq *rq)
  952. {
  953. }
  954. static inline void init_hrtick(void)
  955. {
  956. }
  957. #endif /* CONFIG_SCHED_HRTICK */
  958. /*
  959. * resched_task - mark a task 'to be rescheduled now'.
  960. *
  961. * On UP this means the setting of the need_resched flag, on SMP it
  962. * might also involve a cross-CPU call to trigger the scheduler on
  963. * the target CPU.
  964. */
  965. #ifdef CONFIG_SMP
  966. #ifndef tsk_is_polling
  967. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  968. #endif
  969. static void resched_task(struct task_struct *p)
  970. {
  971. int cpu;
  972. assert_raw_spin_locked(&task_rq(p)->lock);
  973. if (test_tsk_need_resched(p))
  974. return;
  975. set_tsk_need_resched(p);
  976. cpu = task_cpu(p);
  977. if (cpu == smp_processor_id())
  978. return;
  979. /* NEED_RESCHED must be visible before we test polling */
  980. smp_mb();
  981. if (!tsk_is_polling(p))
  982. smp_send_reschedule(cpu);
  983. }
  984. static void resched_cpu(int cpu)
  985. {
  986. struct rq *rq = cpu_rq(cpu);
  987. unsigned long flags;
  988. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  989. return;
  990. resched_task(cpu_curr(cpu));
  991. raw_spin_unlock_irqrestore(&rq->lock, flags);
  992. }
  993. #ifdef CONFIG_NO_HZ
  994. /*
  995. * In the semi idle case, use the nearest busy cpu for migrating timers
  996. * from an idle cpu. This is good for power-savings.
  997. *
  998. * We don't do similar optimization for completely idle system, as
  999. * selecting an idle cpu will add more delays to the timers than intended
  1000. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1001. */
  1002. int get_nohz_timer_target(void)
  1003. {
  1004. int cpu = smp_processor_id();
  1005. int i;
  1006. struct sched_domain *sd;
  1007. for_each_domain(cpu, sd) {
  1008. for_each_cpu(i, sched_domain_span(sd))
  1009. if (!idle_cpu(i))
  1010. return i;
  1011. }
  1012. return cpu;
  1013. }
  1014. /*
  1015. * When add_timer_on() enqueues a timer into the timer wheel of an
  1016. * idle CPU then this timer might expire before the next timer event
  1017. * which is scheduled to wake up that CPU. In case of a completely
  1018. * idle system the next event might even be infinite time into the
  1019. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1020. * leaves the inner idle loop so the newly added timer is taken into
  1021. * account when the CPU goes back to idle and evaluates the timer
  1022. * wheel for the next timer event.
  1023. */
  1024. void wake_up_idle_cpu(int cpu)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. if (cpu == smp_processor_id())
  1028. return;
  1029. /*
  1030. * This is safe, as this function is called with the timer
  1031. * wheel base lock of (cpu) held. When the CPU is on the way
  1032. * to idle and has not yet set rq->curr to idle then it will
  1033. * be serialized on the timer wheel base lock and take the new
  1034. * timer into account automatically.
  1035. */
  1036. if (rq->curr != rq->idle)
  1037. return;
  1038. /*
  1039. * We can set TIF_RESCHED on the idle task of the other CPU
  1040. * lockless. The worst case is that the other CPU runs the
  1041. * idle task through an additional NOOP schedule()
  1042. */
  1043. set_tsk_need_resched(rq->idle);
  1044. /* NEED_RESCHED must be visible before we test polling */
  1045. smp_mb();
  1046. if (!tsk_is_polling(rq->idle))
  1047. smp_send_reschedule(cpu);
  1048. }
  1049. #endif /* CONFIG_NO_HZ */
  1050. static u64 sched_avg_period(void)
  1051. {
  1052. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1053. }
  1054. static void sched_avg_update(struct rq *rq)
  1055. {
  1056. s64 period = sched_avg_period();
  1057. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1058. /*
  1059. * Inline assembly required to prevent the compiler
  1060. * optimising this loop into a divmod call.
  1061. * See __iter_div_u64_rem() for another example of this.
  1062. */
  1063. asm("" : "+rm" (rq->age_stamp));
  1064. rq->age_stamp += period;
  1065. rq->rt_avg /= 2;
  1066. }
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. rq->rt_avg += rt_delta;
  1071. sched_avg_update(rq);
  1072. }
  1073. #else /* !CONFIG_SMP */
  1074. static void resched_task(struct task_struct *p)
  1075. {
  1076. assert_raw_spin_locked(&task_rq(p)->lock);
  1077. set_tsk_need_resched(p);
  1078. }
  1079. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1080. {
  1081. }
  1082. static void sched_avg_update(struct rq *rq)
  1083. {
  1084. }
  1085. #endif /* CONFIG_SMP */
  1086. #if BITS_PER_LONG == 32
  1087. # define WMULT_CONST (~0UL)
  1088. #else
  1089. # define WMULT_CONST (1UL << 32)
  1090. #endif
  1091. #define WMULT_SHIFT 32
  1092. /*
  1093. * Shift right and round:
  1094. */
  1095. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1096. /*
  1097. * delta *= weight / lw
  1098. */
  1099. static unsigned long
  1100. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1101. struct load_weight *lw)
  1102. {
  1103. u64 tmp;
  1104. if (!lw->inv_weight) {
  1105. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1106. lw->inv_weight = 1;
  1107. else
  1108. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1109. / (lw->weight+1);
  1110. }
  1111. tmp = (u64)delta_exec * weight;
  1112. /*
  1113. * Check whether we'd overflow the 64-bit multiplication:
  1114. */
  1115. if (unlikely(tmp > WMULT_CONST))
  1116. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1117. WMULT_SHIFT/2);
  1118. else
  1119. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1120. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1121. }
  1122. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1123. {
  1124. lw->weight += inc;
  1125. lw->inv_weight = 0;
  1126. }
  1127. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1128. {
  1129. lw->weight -= dec;
  1130. lw->inv_weight = 0;
  1131. }
  1132. /*
  1133. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1134. * of tasks with abnormal "nice" values across CPUs the contribution that
  1135. * each task makes to its run queue's load is weighted according to its
  1136. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1137. * scaled version of the new time slice allocation that they receive on time
  1138. * slice expiry etc.
  1139. */
  1140. #define WEIGHT_IDLEPRIO 3
  1141. #define WMULT_IDLEPRIO 1431655765
  1142. /*
  1143. * Nice levels are multiplicative, with a gentle 10% change for every
  1144. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1145. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1146. * that remained on nice 0.
  1147. *
  1148. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1149. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1150. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1151. * If a task goes up by ~10% and another task goes down by ~10% then
  1152. * the relative distance between them is ~25%.)
  1153. */
  1154. static const int prio_to_weight[40] = {
  1155. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1156. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1157. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1158. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1159. /* 0 */ 1024, 820, 655, 526, 423,
  1160. /* 5 */ 335, 272, 215, 172, 137,
  1161. /* 10 */ 110, 87, 70, 56, 45,
  1162. /* 15 */ 36, 29, 23, 18, 15,
  1163. };
  1164. /*
  1165. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1166. *
  1167. * In cases where the weight does not change often, we can use the
  1168. * precalculated inverse to speed up arithmetics by turning divisions
  1169. * into multiplications:
  1170. */
  1171. static const u32 prio_to_wmult[40] = {
  1172. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1173. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1174. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1175. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1176. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1177. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1178. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1179. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1180. };
  1181. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1182. enum cpuacct_stat_index {
  1183. CPUACCT_STAT_USER, /* ... user mode */
  1184. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1185. CPUACCT_STAT_NSTATS,
  1186. };
  1187. #ifdef CONFIG_CGROUP_CPUACCT
  1188. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1189. static void cpuacct_update_stats(struct task_struct *tsk,
  1190. enum cpuacct_stat_index idx, cputime_t val);
  1191. #else
  1192. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1193. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1194. enum cpuacct_stat_index idx, cputime_t val) {}
  1195. #endif
  1196. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1197. {
  1198. update_load_add(&rq->load, load);
  1199. }
  1200. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1201. {
  1202. update_load_sub(&rq->load, load);
  1203. }
  1204. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1205. typedef int (*tg_visitor)(struct task_group *, void *);
  1206. /*
  1207. * Iterate the full tree, calling @down when first entering a node and @up when
  1208. * leaving it for the final time.
  1209. */
  1210. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1211. {
  1212. struct task_group *parent, *child;
  1213. int ret;
  1214. rcu_read_lock();
  1215. parent = &root_task_group;
  1216. down:
  1217. ret = (*down)(parent, data);
  1218. if (ret)
  1219. goto out_unlock;
  1220. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1221. parent = child;
  1222. goto down;
  1223. up:
  1224. continue;
  1225. }
  1226. ret = (*up)(parent, data);
  1227. if (ret)
  1228. goto out_unlock;
  1229. child = parent;
  1230. parent = parent->parent;
  1231. if (parent)
  1232. goto up;
  1233. out_unlock:
  1234. rcu_read_unlock();
  1235. return ret;
  1236. }
  1237. static int tg_nop(struct task_group *tg, void *data)
  1238. {
  1239. return 0;
  1240. }
  1241. #endif
  1242. #ifdef CONFIG_SMP
  1243. /* Used instead of source_load when we know the type == 0 */
  1244. static unsigned long weighted_cpuload(const int cpu)
  1245. {
  1246. return cpu_rq(cpu)->load.weight;
  1247. }
  1248. /*
  1249. * Return a low guess at the load of a migration-source cpu weighted
  1250. * according to the scheduling class and "nice" value.
  1251. *
  1252. * We want to under-estimate the load of migration sources, to
  1253. * balance conservatively.
  1254. */
  1255. static unsigned long source_load(int cpu, int type)
  1256. {
  1257. struct rq *rq = cpu_rq(cpu);
  1258. unsigned long total = weighted_cpuload(cpu);
  1259. if (type == 0 || !sched_feat(LB_BIAS))
  1260. return total;
  1261. return min(rq->cpu_load[type-1], total);
  1262. }
  1263. /*
  1264. * Return a high guess at the load of a migration-target cpu weighted
  1265. * according to the scheduling class and "nice" value.
  1266. */
  1267. static unsigned long target_load(int cpu, int type)
  1268. {
  1269. struct rq *rq = cpu_rq(cpu);
  1270. unsigned long total = weighted_cpuload(cpu);
  1271. if (type == 0 || !sched_feat(LB_BIAS))
  1272. return total;
  1273. return max(rq->cpu_load[type-1], total);
  1274. }
  1275. static unsigned long power_of(int cpu)
  1276. {
  1277. return cpu_rq(cpu)->cpu_power;
  1278. }
  1279. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1280. static unsigned long cpu_avg_load_per_task(int cpu)
  1281. {
  1282. struct rq *rq = cpu_rq(cpu);
  1283. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1284. if (nr_running)
  1285. rq->avg_load_per_task = rq->load.weight / nr_running;
  1286. else
  1287. rq->avg_load_per_task = 0;
  1288. return rq->avg_load_per_task;
  1289. }
  1290. #ifdef CONFIG_FAIR_GROUP_SCHED
  1291. static __read_mostly unsigned long __percpu *update_shares_data;
  1292. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1293. /*
  1294. * Calculate and set the cpu's group shares.
  1295. */
  1296. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1297. unsigned long sd_shares,
  1298. unsigned long sd_rq_weight,
  1299. unsigned long *usd_rq_weight)
  1300. {
  1301. unsigned long shares, rq_weight;
  1302. int boost = 0;
  1303. rq_weight = usd_rq_weight[cpu];
  1304. if (!rq_weight) {
  1305. boost = 1;
  1306. rq_weight = NICE_0_LOAD;
  1307. }
  1308. /*
  1309. * \Sum_j shares_j * rq_weight_i
  1310. * shares_i = -----------------------------
  1311. * \Sum_j rq_weight_j
  1312. */
  1313. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1314. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1315. if (abs(shares - tg->se[cpu]->load.weight) >
  1316. sysctl_sched_shares_thresh) {
  1317. struct rq *rq = cpu_rq(cpu);
  1318. unsigned long flags;
  1319. raw_spin_lock_irqsave(&rq->lock, flags);
  1320. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1321. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1322. __set_se_shares(tg->se[cpu], shares);
  1323. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1324. }
  1325. }
  1326. /*
  1327. * Re-compute the task group their per cpu shares over the given domain.
  1328. * This needs to be done in a bottom-up fashion because the rq weight of a
  1329. * parent group depends on the shares of its child groups.
  1330. */
  1331. static int tg_shares_up(struct task_group *tg, void *data)
  1332. {
  1333. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1334. unsigned long *usd_rq_weight;
  1335. struct sched_domain *sd = data;
  1336. unsigned long flags;
  1337. int i;
  1338. if (!tg->se[0])
  1339. return 0;
  1340. local_irq_save(flags);
  1341. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1342. for_each_cpu(i, sched_domain_span(sd)) {
  1343. weight = tg->cfs_rq[i]->load.weight;
  1344. usd_rq_weight[i] = weight;
  1345. rq_weight += weight;
  1346. /*
  1347. * If there are currently no tasks on the cpu pretend there
  1348. * is one of average load so that when a new task gets to
  1349. * run here it will not get delayed by group starvation.
  1350. */
  1351. if (!weight)
  1352. weight = NICE_0_LOAD;
  1353. sum_weight += weight;
  1354. shares += tg->cfs_rq[i]->shares;
  1355. }
  1356. if (!rq_weight)
  1357. rq_weight = sum_weight;
  1358. if ((!shares && rq_weight) || shares > tg->shares)
  1359. shares = tg->shares;
  1360. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1361. shares = tg->shares;
  1362. for_each_cpu(i, sched_domain_span(sd))
  1363. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1364. local_irq_restore(flags);
  1365. return 0;
  1366. }
  1367. /*
  1368. * Compute the cpu's hierarchical load factor for each task group.
  1369. * This needs to be done in a top-down fashion because the load of a child
  1370. * group is a fraction of its parents load.
  1371. */
  1372. static int tg_load_down(struct task_group *tg, void *data)
  1373. {
  1374. unsigned long load;
  1375. long cpu = (long)data;
  1376. if (!tg->parent) {
  1377. load = cpu_rq(cpu)->load.weight;
  1378. } else {
  1379. load = tg->parent->cfs_rq[cpu]->h_load;
  1380. load *= tg->cfs_rq[cpu]->shares;
  1381. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1382. }
  1383. tg->cfs_rq[cpu]->h_load = load;
  1384. return 0;
  1385. }
  1386. static void update_shares(struct sched_domain *sd)
  1387. {
  1388. s64 elapsed;
  1389. u64 now;
  1390. if (root_task_group_empty())
  1391. return;
  1392. now = local_clock();
  1393. elapsed = now - sd->last_update;
  1394. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1395. sd->last_update = now;
  1396. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1397. }
  1398. }
  1399. static void update_h_load(long cpu)
  1400. {
  1401. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1402. }
  1403. #else
  1404. static inline void update_shares(struct sched_domain *sd)
  1405. {
  1406. }
  1407. #endif
  1408. #ifdef CONFIG_PREEMPT
  1409. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1410. /*
  1411. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1412. * way at the expense of forcing extra atomic operations in all
  1413. * invocations. This assures that the double_lock is acquired using the
  1414. * same underlying policy as the spinlock_t on this architecture, which
  1415. * reduces latency compared to the unfair variant below. However, it
  1416. * also adds more overhead and therefore may reduce throughput.
  1417. */
  1418. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1419. __releases(this_rq->lock)
  1420. __acquires(busiest->lock)
  1421. __acquires(this_rq->lock)
  1422. {
  1423. raw_spin_unlock(&this_rq->lock);
  1424. double_rq_lock(this_rq, busiest);
  1425. return 1;
  1426. }
  1427. #else
  1428. /*
  1429. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1430. * latency by eliminating extra atomic operations when the locks are
  1431. * already in proper order on entry. This favors lower cpu-ids and will
  1432. * grant the double lock to lower cpus over higher ids under contention,
  1433. * regardless of entry order into the function.
  1434. */
  1435. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1436. __releases(this_rq->lock)
  1437. __acquires(busiest->lock)
  1438. __acquires(this_rq->lock)
  1439. {
  1440. int ret = 0;
  1441. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1442. if (busiest < this_rq) {
  1443. raw_spin_unlock(&this_rq->lock);
  1444. raw_spin_lock(&busiest->lock);
  1445. raw_spin_lock_nested(&this_rq->lock,
  1446. SINGLE_DEPTH_NESTING);
  1447. ret = 1;
  1448. } else
  1449. raw_spin_lock_nested(&busiest->lock,
  1450. SINGLE_DEPTH_NESTING);
  1451. }
  1452. return ret;
  1453. }
  1454. #endif /* CONFIG_PREEMPT */
  1455. /*
  1456. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1457. */
  1458. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1459. {
  1460. if (unlikely(!irqs_disabled())) {
  1461. /* printk() doesn't work good under rq->lock */
  1462. raw_spin_unlock(&this_rq->lock);
  1463. BUG_ON(1);
  1464. }
  1465. return _double_lock_balance(this_rq, busiest);
  1466. }
  1467. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1468. __releases(busiest->lock)
  1469. {
  1470. raw_spin_unlock(&busiest->lock);
  1471. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1472. }
  1473. /*
  1474. * double_rq_lock - safely lock two runqueues
  1475. *
  1476. * Note this does not disable interrupts like task_rq_lock,
  1477. * you need to do so manually before calling.
  1478. */
  1479. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1480. __acquires(rq1->lock)
  1481. __acquires(rq2->lock)
  1482. {
  1483. BUG_ON(!irqs_disabled());
  1484. if (rq1 == rq2) {
  1485. raw_spin_lock(&rq1->lock);
  1486. __acquire(rq2->lock); /* Fake it out ;) */
  1487. } else {
  1488. if (rq1 < rq2) {
  1489. raw_spin_lock(&rq1->lock);
  1490. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1491. } else {
  1492. raw_spin_lock(&rq2->lock);
  1493. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1494. }
  1495. }
  1496. }
  1497. /*
  1498. * double_rq_unlock - safely unlock two runqueues
  1499. *
  1500. * Note this does not restore interrupts like task_rq_unlock,
  1501. * you need to do so manually after calling.
  1502. */
  1503. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1504. __releases(rq1->lock)
  1505. __releases(rq2->lock)
  1506. {
  1507. raw_spin_unlock(&rq1->lock);
  1508. if (rq1 != rq2)
  1509. raw_spin_unlock(&rq2->lock);
  1510. else
  1511. __release(rq2->lock);
  1512. }
  1513. #endif
  1514. #ifdef CONFIG_FAIR_GROUP_SCHED
  1515. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1516. {
  1517. #ifdef CONFIG_SMP
  1518. cfs_rq->shares = shares;
  1519. #endif
  1520. }
  1521. #endif
  1522. static void calc_load_account_idle(struct rq *this_rq);
  1523. static void update_sysctl(void);
  1524. static int get_update_sysctl_factor(void);
  1525. static void update_cpu_load(struct rq *this_rq);
  1526. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1527. {
  1528. set_task_rq(p, cpu);
  1529. #ifdef CONFIG_SMP
  1530. /*
  1531. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1532. * successfuly executed on another CPU. We must ensure that updates of
  1533. * per-task data have been completed by this moment.
  1534. */
  1535. smp_wmb();
  1536. task_thread_info(p)->cpu = cpu;
  1537. #endif
  1538. }
  1539. static const struct sched_class rt_sched_class;
  1540. #define sched_class_highest (&rt_sched_class)
  1541. #define for_each_class(class) \
  1542. for (class = sched_class_highest; class; class = class->next)
  1543. #include "sched_stats.h"
  1544. static void inc_nr_running(struct rq *rq)
  1545. {
  1546. rq->nr_running++;
  1547. }
  1548. static void dec_nr_running(struct rq *rq)
  1549. {
  1550. rq->nr_running--;
  1551. }
  1552. static void set_load_weight(struct task_struct *p)
  1553. {
  1554. if (task_has_rt_policy(p)) {
  1555. p->se.load.weight = 0;
  1556. p->se.load.inv_weight = WMULT_CONST;
  1557. return;
  1558. }
  1559. /*
  1560. * SCHED_IDLE tasks get minimal weight:
  1561. */
  1562. if (p->policy == SCHED_IDLE) {
  1563. p->se.load.weight = WEIGHT_IDLEPRIO;
  1564. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1565. return;
  1566. }
  1567. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1568. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1569. }
  1570. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1571. {
  1572. update_rq_clock(rq);
  1573. sched_info_queued(p);
  1574. p->sched_class->enqueue_task(rq, p, flags);
  1575. p->se.on_rq = 1;
  1576. }
  1577. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1578. {
  1579. update_rq_clock(rq);
  1580. sched_info_dequeued(p);
  1581. p->sched_class->dequeue_task(rq, p, flags);
  1582. p->se.on_rq = 0;
  1583. }
  1584. /*
  1585. * activate_task - move a task to the runqueue.
  1586. */
  1587. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1588. {
  1589. if (task_contributes_to_load(p))
  1590. rq->nr_uninterruptible--;
  1591. enqueue_task(rq, p, flags);
  1592. inc_nr_running(rq);
  1593. }
  1594. /*
  1595. * deactivate_task - remove a task from the runqueue.
  1596. */
  1597. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1598. {
  1599. if (task_contributes_to_load(p))
  1600. rq->nr_uninterruptible++;
  1601. dequeue_task(rq, p, flags);
  1602. dec_nr_running(rq);
  1603. }
  1604. #include "sched_idletask.c"
  1605. #include "sched_fair.c"
  1606. #include "sched_rt.c"
  1607. #ifdef CONFIG_SCHED_DEBUG
  1608. # include "sched_debug.c"
  1609. #endif
  1610. /*
  1611. * __normal_prio - return the priority that is based on the static prio
  1612. */
  1613. static inline int __normal_prio(struct task_struct *p)
  1614. {
  1615. return p->static_prio;
  1616. }
  1617. /*
  1618. * Calculate the expected normal priority: i.e. priority
  1619. * without taking RT-inheritance into account. Might be
  1620. * boosted by interactivity modifiers. Changes upon fork,
  1621. * setprio syscalls, and whenever the interactivity
  1622. * estimator recalculates.
  1623. */
  1624. static inline int normal_prio(struct task_struct *p)
  1625. {
  1626. int prio;
  1627. if (task_has_rt_policy(p))
  1628. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1629. else
  1630. prio = __normal_prio(p);
  1631. return prio;
  1632. }
  1633. /*
  1634. * Calculate the current priority, i.e. the priority
  1635. * taken into account by the scheduler. This value might
  1636. * be boosted by RT tasks, or might be boosted by
  1637. * interactivity modifiers. Will be RT if the task got
  1638. * RT-boosted. If not then it returns p->normal_prio.
  1639. */
  1640. static int effective_prio(struct task_struct *p)
  1641. {
  1642. p->normal_prio = normal_prio(p);
  1643. /*
  1644. * If we are RT tasks or we were boosted to RT priority,
  1645. * keep the priority unchanged. Otherwise, update priority
  1646. * to the normal priority:
  1647. */
  1648. if (!rt_prio(p->prio))
  1649. return p->normal_prio;
  1650. return p->prio;
  1651. }
  1652. /**
  1653. * task_curr - is this task currently executing on a CPU?
  1654. * @p: the task in question.
  1655. */
  1656. inline int task_curr(const struct task_struct *p)
  1657. {
  1658. return cpu_curr(task_cpu(p)) == p;
  1659. }
  1660. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1661. const struct sched_class *prev_class,
  1662. int oldprio, int running)
  1663. {
  1664. if (prev_class != p->sched_class) {
  1665. if (prev_class->switched_from)
  1666. prev_class->switched_from(rq, p, running);
  1667. p->sched_class->switched_to(rq, p, running);
  1668. } else
  1669. p->sched_class->prio_changed(rq, p, oldprio, running);
  1670. }
  1671. #ifdef CONFIG_SMP
  1672. /*
  1673. * Is this task likely cache-hot:
  1674. */
  1675. static int
  1676. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1677. {
  1678. s64 delta;
  1679. if (p->sched_class != &fair_sched_class)
  1680. return 0;
  1681. /*
  1682. * Buddy candidates are cache hot:
  1683. */
  1684. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1685. (&p->se == cfs_rq_of(&p->se)->next ||
  1686. &p->se == cfs_rq_of(&p->se)->last))
  1687. return 1;
  1688. if (sysctl_sched_migration_cost == -1)
  1689. return 1;
  1690. if (sysctl_sched_migration_cost == 0)
  1691. return 0;
  1692. delta = now - p->se.exec_start;
  1693. return delta < (s64)sysctl_sched_migration_cost;
  1694. }
  1695. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1696. {
  1697. #ifdef CONFIG_SCHED_DEBUG
  1698. /*
  1699. * We should never call set_task_cpu() on a blocked task,
  1700. * ttwu() will sort out the placement.
  1701. */
  1702. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1703. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1704. #endif
  1705. trace_sched_migrate_task(p, new_cpu);
  1706. if (task_cpu(p) != new_cpu) {
  1707. p->se.nr_migrations++;
  1708. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1709. }
  1710. __set_task_cpu(p, new_cpu);
  1711. }
  1712. struct migration_arg {
  1713. struct task_struct *task;
  1714. int dest_cpu;
  1715. };
  1716. static int migration_cpu_stop(void *data);
  1717. /*
  1718. * The task's runqueue lock must be held.
  1719. * Returns true if you have to wait for migration thread.
  1720. */
  1721. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1722. {
  1723. struct rq *rq = task_rq(p);
  1724. /*
  1725. * If the task is not on a runqueue (and not running), then
  1726. * the next wake-up will properly place the task.
  1727. */
  1728. return p->se.on_rq || task_running(rq, p);
  1729. }
  1730. /*
  1731. * wait_task_inactive - wait for a thread to unschedule.
  1732. *
  1733. * If @match_state is nonzero, it's the @p->state value just checked and
  1734. * not expected to change. If it changes, i.e. @p might have woken up,
  1735. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1736. * we return a positive number (its total switch count). If a second call
  1737. * a short while later returns the same number, the caller can be sure that
  1738. * @p has remained unscheduled the whole time.
  1739. *
  1740. * The caller must ensure that the task *will* unschedule sometime soon,
  1741. * else this function might spin for a *long* time. This function can't
  1742. * be called with interrupts off, or it may introduce deadlock with
  1743. * smp_call_function() if an IPI is sent by the same process we are
  1744. * waiting to become inactive.
  1745. */
  1746. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1747. {
  1748. unsigned long flags;
  1749. int running, on_rq;
  1750. unsigned long ncsw;
  1751. struct rq *rq;
  1752. for (;;) {
  1753. /*
  1754. * We do the initial early heuristics without holding
  1755. * any task-queue locks at all. We'll only try to get
  1756. * the runqueue lock when things look like they will
  1757. * work out!
  1758. */
  1759. rq = task_rq(p);
  1760. /*
  1761. * If the task is actively running on another CPU
  1762. * still, just relax and busy-wait without holding
  1763. * any locks.
  1764. *
  1765. * NOTE! Since we don't hold any locks, it's not
  1766. * even sure that "rq" stays as the right runqueue!
  1767. * But we don't care, since "task_running()" will
  1768. * return false if the runqueue has changed and p
  1769. * is actually now running somewhere else!
  1770. */
  1771. while (task_running(rq, p)) {
  1772. if (match_state && unlikely(p->state != match_state))
  1773. return 0;
  1774. cpu_relax();
  1775. }
  1776. /*
  1777. * Ok, time to look more closely! We need the rq
  1778. * lock now, to be *sure*. If we're wrong, we'll
  1779. * just go back and repeat.
  1780. */
  1781. rq = task_rq_lock(p, &flags);
  1782. trace_sched_wait_task(p);
  1783. running = task_running(rq, p);
  1784. on_rq = p->se.on_rq;
  1785. ncsw = 0;
  1786. if (!match_state || p->state == match_state)
  1787. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1788. task_rq_unlock(rq, &flags);
  1789. /*
  1790. * If it changed from the expected state, bail out now.
  1791. */
  1792. if (unlikely(!ncsw))
  1793. break;
  1794. /*
  1795. * Was it really running after all now that we
  1796. * checked with the proper locks actually held?
  1797. *
  1798. * Oops. Go back and try again..
  1799. */
  1800. if (unlikely(running)) {
  1801. cpu_relax();
  1802. continue;
  1803. }
  1804. /*
  1805. * It's not enough that it's not actively running,
  1806. * it must be off the runqueue _entirely_, and not
  1807. * preempted!
  1808. *
  1809. * So if it was still runnable (but just not actively
  1810. * running right now), it's preempted, and we should
  1811. * yield - it could be a while.
  1812. */
  1813. if (unlikely(on_rq)) {
  1814. schedule_timeout_uninterruptible(1);
  1815. continue;
  1816. }
  1817. /*
  1818. * Ahh, all good. It wasn't running, and it wasn't
  1819. * runnable, which means that it will never become
  1820. * running in the future either. We're all done!
  1821. */
  1822. break;
  1823. }
  1824. return ncsw;
  1825. }
  1826. /***
  1827. * kick_process - kick a running thread to enter/exit the kernel
  1828. * @p: the to-be-kicked thread
  1829. *
  1830. * Cause a process which is running on another CPU to enter
  1831. * kernel-mode, without any delay. (to get signals handled.)
  1832. *
  1833. * NOTE: this function doesnt have to take the runqueue lock,
  1834. * because all it wants to ensure is that the remote task enters
  1835. * the kernel. If the IPI races and the task has been migrated
  1836. * to another CPU then no harm is done and the purpose has been
  1837. * achieved as well.
  1838. */
  1839. void kick_process(struct task_struct *p)
  1840. {
  1841. int cpu;
  1842. preempt_disable();
  1843. cpu = task_cpu(p);
  1844. if ((cpu != smp_processor_id()) && task_curr(p))
  1845. smp_send_reschedule(cpu);
  1846. preempt_enable();
  1847. }
  1848. EXPORT_SYMBOL_GPL(kick_process);
  1849. #endif /* CONFIG_SMP */
  1850. /**
  1851. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1852. * @p: the task to evaluate
  1853. * @func: the function to be called
  1854. * @info: the function call argument
  1855. *
  1856. * Calls the function @func when the task is currently running. This might
  1857. * be on the current CPU, which just calls the function directly
  1858. */
  1859. void task_oncpu_function_call(struct task_struct *p,
  1860. void (*func) (void *info), void *info)
  1861. {
  1862. int cpu;
  1863. preempt_disable();
  1864. cpu = task_cpu(p);
  1865. if (task_curr(p))
  1866. smp_call_function_single(cpu, func, info, 1);
  1867. preempt_enable();
  1868. }
  1869. #ifdef CONFIG_SMP
  1870. /*
  1871. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1872. */
  1873. static int select_fallback_rq(int cpu, struct task_struct *p)
  1874. {
  1875. int dest_cpu;
  1876. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1877. /* Look for allowed, online CPU in same node. */
  1878. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1879. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1880. return dest_cpu;
  1881. /* Any allowed, online CPU? */
  1882. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1883. if (dest_cpu < nr_cpu_ids)
  1884. return dest_cpu;
  1885. /* No more Mr. Nice Guy. */
  1886. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1887. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1888. /*
  1889. * Don't tell them about moving exiting tasks or
  1890. * kernel threads (both mm NULL), since they never
  1891. * leave kernel.
  1892. */
  1893. if (p->mm && printk_ratelimit()) {
  1894. printk(KERN_INFO "process %d (%s) no "
  1895. "longer affine to cpu%d\n",
  1896. task_pid_nr(p), p->comm, cpu);
  1897. }
  1898. }
  1899. return dest_cpu;
  1900. }
  1901. /*
  1902. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1903. */
  1904. static inline
  1905. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1906. {
  1907. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1908. /*
  1909. * In order not to call set_task_cpu() on a blocking task we need
  1910. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1911. * cpu.
  1912. *
  1913. * Since this is common to all placement strategies, this lives here.
  1914. *
  1915. * [ this allows ->select_task() to simply return task_cpu(p) and
  1916. * not worry about this generic constraint ]
  1917. */
  1918. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1919. !cpu_online(cpu)))
  1920. cpu = select_fallback_rq(task_cpu(p), p);
  1921. return cpu;
  1922. }
  1923. static void update_avg(u64 *avg, u64 sample)
  1924. {
  1925. s64 diff = sample - *avg;
  1926. *avg += diff >> 3;
  1927. }
  1928. #endif
  1929. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1930. bool is_sync, bool is_migrate, bool is_local,
  1931. unsigned long en_flags)
  1932. {
  1933. schedstat_inc(p, se.statistics.nr_wakeups);
  1934. if (is_sync)
  1935. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1936. if (is_migrate)
  1937. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1938. if (is_local)
  1939. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1940. else
  1941. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1942. activate_task(rq, p, en_flags);
  1943. }
  1944. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1945. int wake_flags, bool success)
  1946. {
  1947. trace_sched_wakeup(p, success);
  1948. check_preempt_curr(rq, p, wake_flags);
  1949. p->state = TASK_RUNNING;
  1950. #ifdef CONFIG_SMP
  1951. if (p->sched_class->task_woken)
  1952. p->sched_class->task_woken(rq, p);
  1953. if (unlikely(rq->idle_stamp)) {
  1954. u64 delta = rq->clock - rq->idle_stamp;
  1955. u64 max = 2*sysctl_sched_migration_cost;
  1956. if (delta > max)
  1957. rq->avg_idle = max;
  1958. else
  1959. update_avg(&rq->avg_idle, delta);
  1960. rq->idle_stamp = 0;
  1961. }
  1962. #endif
  1963. /* if a worker is waking up, notify workqueue */
  1964. if ((p->flags & PF_WQ_WORKER) && success)
  1965. wq_worker_waking_up(p, cpu_of(rq));
  1966. }
  1967. /**
  1968. * try_to_wake_up - wake up a thread
  1969. * @p: the thread to be awakened
  1970. * @state: the mask of task states that can be woken
  1971. * @wake_flags: wake modifier flags (WF_*)
  1972. *
  1973. * Put it on the run-queue if it's not already there. The "current"
  1974. * thread is always on the run-queue (except when the actual
  1975. * re-schedule is in progress), and as such you're allowed to do
  1976. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1977. * runnable without the overhead of this.
  1978. *
  1979. * Returns %true if @p was woken up, %false if it was already running
  1980. * or @state didn't match @p's state.
  1981. */
  1982. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1983. int wake_flags)
  1984. {
  1985. int cpu, orig_cpu, this_cpu, success = 0;
  1986. unsigned long flags;
  1987. unsigned long en_flags = ENQUEUE_WAKEUP;
  1988. struct rq *rq;
  1989. this_cpu = get_cpu();
  1990. smp_wmb();
  1991. rq = task_rq_lock(p, &flags);
  1992. if (!(p->state & state))
  1993. goto out;
  1994. if (p->se.on_rq)
  1995. goto out_running;
  1996. cpu = task_cpu(p);
  1997. orig_cpu = cpu;
  1998. #ifdef CONFIG_SMP
  1999. if (unlikely(task_running(rq, p)))
  2000. goto out_activate;
  2001. /*
  2002. * In order to handle concurrent wakeups and release the rq->lock
  2003. * we put the task in TASK_WAKING state.
  2004. *
  2005. * First fix up the nr_uninterruptible count:
  2006. */
  2007. if (task_contributes_to_load(p)) {
  2008. if (likely(cpu_online(orig_cpu)))
  2009. rq->nr_uninterruptible--;
  2010. else
  2011. this_rq()->nr_uninterruptible--;
  2012. }
  2013. p->state = TASK_WAKING;
  2014. if (p->sched_class->task_waking) {
  2015. p->sched_class->task_waking(rq, p);
  2016. en_flags |= ENQUEUE_WAKING;
  2017. }
  2018. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2019. if (cpu != orig_cpu)
  2020. set_task_cpu(p, cpu);
  2021. __task_rq_unlock(rq);
  2022. rq = cpu_rq(cpu);
  2023. raw_spin_lock(&rq->lock);
  2024. /*
  2025. * We migrated the task without holding either rq->lock, however
  2026. * since the task is not on the task list itself, nobody else
  2027. * will try and migrate the task, hence the rq should match the
  2028. * cpu we just moved it to.
  2029. */
  2030. WARN_ON(task_cpu(p) != cpu);
  2031. WARN_ON(p->state != TASK_WAKING);
  2032. #ifdef CONFIG_SCHEDSTATS
  2033. schedstat_inc(rq, ttwu_count);
  2034. if (cpu == this_cpu)
  2035. schedstat_inc(rq, ttwu_local);
  2036. else {
  2037. struct sched_domain *sd;
  2038. for_each_domain(this_cpu, sd) {
  2039. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2040. schedstat_inc(sd, ttwu_wake_remote);
  2041. break;
  2042. }
  2043. }
  2044. }
  2045. #endif /* CONFIG_SCHEDSTATS */
  2046. out_activate:
  2047. #endif /* CONFIG_SMP */
  2048. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2049. cpu == this_cpu, en_flags);
  2050. success = 1;
  2051. out_running:
  2052. ttwu_post_activation(p, rq, wake_flags, success);
  2053. out:
  2054. task_rq_unlock(rq, &flags);
  2055. put_cpu();
  2056. return success;
  2057. }
  2058. /**
  2059. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2060. * @p: the thread to be awakened
  2061. *
  2062. * Put @p on the run-queue if it's not alredy there. The caller must
  2063. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2064. * the current task. this_rq() stays locked over invocation.
  2065. */
  2066. static void try_to_wake_up_local(struct task_struct *p)
  2067. {
  2068. struct rq *rq = task_rq(p);
  2069. bool success = false;
  2070. BUG_ON(rq != this_rq());
  2071. BUG_ON(p == current);
  2072. lockdep_assert_held(&rq->lock);
  2073. if (!(p->state & TASK_NORMAL))
  2074. return;
  2075. if (!p->se.on_rq) {
  2076. if (likely(!task_running(rq, p))) {
  2077. schedstat_inc(rq, ttwu_count);
  2078. schedstat_inc(rq, ttwu_local);
  2079. }
  2080. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2081. success = true;
  2082. }
  2083. ttwu_post_activation(p, rq, 0, success);
  2084. }
  2085. /**
  2086. * wake_up_process - Wake up a specific process
  2087. * @p: The process to be woken up.
  2088. *
  2089. * Attempt to wake up the nominated process and move it to the set of runnable
  2090. * processes. Returns 1 if the process was woken up, 0 if it was already
  2091. * running.
  2092. *
  2093. * It may be assumed that this function implies a write memory barrier before
  2094. * changing the task state if and only if any tasks are woken up.
  2095. */
  2096. int wake_up_process(struct task_struct *p)
  2097. {
  2098. return try_to_wake_up(p, TASK_ALL, 0);
  2099. }
  2100. EXPORT_SYMBOL(wake_up_process);
  2101. int wake_up_state(struct task_struct *p, unsigned int state)
  2102. {
  2103. return try_to_wake_up(p, state, 0);
  2104. }
  2105. /*
  2106. * Perform scheduler related setup for a newly forked process p.
  2107. * p is forked by current.
  2108. *
  2109. * __sched_fork() is basic setup used by init_idle() too:
  2110. */
  2111. static void __sched_fork(struct task_struct *p)
  2112. {
  2113. p->se.exec_start = 0;
  2114. p->se.sum_exec_runtime = 0;
  2115. p->se.prev_sum_exec_runtime = 0;
  2116. p->se.nr_migrations = 0;
  2117. #ifdef CONFIG_SCHEDSTATS
  2118. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2119. #endif
  2120. INIT_LIST_HEAD(&p->rt.run_list);
  2121. p->se.on_rq = 0;
  2122. INIT_LIST_HEAD(&p->se.group_node);
  2123. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2124. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2125. #endif
  2126. }
  2127. /*
  2128. * fork()/clone()-time setup:
  2129. */
  2130. void sched_fork(struct task_struct *p, int clone_flags)
  2131. {
  2132. int cpu = get_cpu();
  2133. __sched_fork(p);
  2134. /*
  2135. * We mark the process as running here. This guarantees that
  2136. * nobody will actually run it, and a signal or other external
  2137. * event cannot wake it up and insert it on the runqueue either.
  2138. */
  2139. p->state = TASK_RUNNING;
  2140. /*
  2141. * Revert to default priority/policy on fork if requested.
  2142. */
  2143. if (unlikely(p->sched_reset_on_fork)) {
  2144. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2145. p->policy = SCHED_NORMAL;
  2146. p->normal_prio = p->static_prio;
  2147. }
  2148. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2149. p->static_prio = NICE_TO_PRIO(0);
  2150. p->normal_prio = p->static_prio;
  2151. set_load_weight(p);
  2152. }
  2153. /*
  2154. * We don't need the reset flag anymore after the fork. It has
  2155. * fulfilled its duty:
  2156. */
  2157. p->sched_reset_on_fork = 0;
  2158. }
  2159. /*
  2160. * Make sure we do not leak PI boosting priority to the child.
  2161. */
  2162. p->prio = current->normal_prio;
  2163. if (!rt_prio(p->prio))
  2164. p->sched_class = &fair_sched_class;
  2165. if (p->sched_class->task_fork)
  2166. p->sched_class->task_fork(p);
  2167. /*
  2168. * The child is not yet in the pid-hash so no cgroup attach races,
  2169. * and the cgroup is pinned to this child due to cgroup_fork()
  2170. * is ran before sched_fork().
  2171. *
  2172. * Silence PROVE_RCU.
  2173. */
  2174. rcu_read_lock();
  2175. set_task_cpu(p, cpu);
  2176. rcu_read_unlock();
  2177. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2178. if (likely(sched_info_on()))
  2179. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2180. #endif
  2181. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2182. p->oncpu = 0;
  2183. #endif
  2184. #ifdef CONFIG_PREEMPT
  2185. /* Want to start with kernel preemption disabled. */
  2186. task_thread_info(p)->preempt_count = 1;
  2187. #endif
  2188. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2189. put_cpu();
  2190. }
  2191. /*
  2192. * wake_up_new_task - wake up a newly created task for the first time.
  2193. *
  2194. * This function will do some initial scheduler statistics housekeeping
  2195. * that must be done for every newly created context, then puts the task
  2196. * on the runqueue and wakes it.
  2197. */
  2198. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2199. {
  2200. unsigned long flags;
  2201. struct rq *rq;
  2202. int cpu __maybe_unused = get_cpu();
  2203. #ifdef CONFIG_SMP
  2204. rq = task_rq_lock(p, &flags);
  2205. p->state = TASK_WAKING;
  2206. /*
  2207. * Fork balancing, do it here and not earlier because:
  2208. * - cpus_allowed can change in the fork path
  2209. * - any previously selected cpu might disappear through hotplug
  2210. *
  2211. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2212. * without people poking at ->cpus_allowed.
  2213. */
  2214. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2215. set_task_cpu(p, cpu);
  2216. p->state = TASK_RUNNING;
  2217. task_rq_unlock(rq, &flags);
  2218. #endif
  2219. rq = task_rq_lock(p, &flags);
  2220. activate_task(rq, p, 0);
  2221. trace_sched_wakeup_new(p, 1);
  2222. check_preempt_curr(rq, p, WF_FORK);
  2223. #ifdef CONFIG_SMP
  2224. if (p->sched_class->task_woken)
  2225. p->sched_class->task_woken(rq, p);
  2226. #endif
  2227. task_rq_unlock(rq, &flags);
  2228. put_cpu();
  2229. }
  2230. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2231. /**
  2232. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2233. * @notifier: notifier struct to register
  2234. */
  2235. void preempt_notifier_register(struct preempt_notifier *notifier)
  2236. {
  2237. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2238. }
  2239. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2240. /**
  2241. * preempt_notifier_unregister - no longer interested in preemption notifications
  2242. * @notifier: notifier struct to unregister
  2243. *
  2244. * This is safe to call from within a preemption notifier.
  2245. */
  2246. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2247. {
  2248. hlist_del(&notifier->link);
  2249. }
  2250. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2251. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2252. {
  2253. struct preempt_notifier *notifier;
  2254. struct hlist_node *node;
  2255. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2256. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2257. }
  2258. static void
  2259. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2260. struct task_struct *next)
  2261. {
  2262. struct preempt_notifier *notifier;
  2263. struct hlist_node *node;
  2264. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2265. notifier->ops->sched_out(notifier, next);
  2266. }
  2267. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2268. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2269. {
  2270. }
  2271. static void
  2272. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2273. struct task_struct *next)
  2274. {
  2275. }
  2276. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2277. /**
  2278. * prepare_task_switch - prepare to switch tasks
  2279. * @rq: the runqueue preparing to switch
  2280. * @prev: the current task that is being switched out
  2281. * @next: the task we are going to switch to.
  2282. *
  2283. * This is called with the rq lock held and interrupts off. It must
  2284. * be paired with a subsequent finish_task_switch after the context
  2285. * switch.
  2286. *
  2287. * prepare_task_switch sets up locking and calls architecture specific
  2288. * hooks.
  2289. */
  2290. static inline void
  2291. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2292. struct task_struct *next)
  2293. {
  2294. fire_sched_out_preempt_notifiers(prev, next);
  2295. prepare_lock_switch(rq, next);
  2296. prepare_arch_switch(next);
  2297. }
  2298. /**
  2299. * finish_task_switch - clean up after a task-switch
  2300. * @rq: runqueue associated with task-switch
  2301. * @prev: the thread we just switched away from.
  2302. *
  2303. * finish_task_switch must be called after the context switch, paired
  2304. * with a prepare_task_switch call before the context switch.
  2305. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2306. * and do any other architecture-specific cleanup actions.
  2307. *
  2308. * Note that we may have delayed dropping an mm in context_switch(). If
  2309. * so, we finish that here outside of the runqueue lock. (Doing it
  2310. * with the lock held can cause deadlocks; see schedule() for
  2311. * details.)
  2312. */
  2313. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2314. __releases(rq->lock)
  2315. {
  2316. struct mm_struct *mm = rq->prev_mm;
  2317. long prev_state;
  2318. rq->prev_mm = NULL;
  2319. /*
  2320. * A task struct has one reference for the use as "current".
  2321. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2322. * schedule one last time. The schedule call will never return, and
  2323. * the scheduled task must drop that reference.
  2324. * The test for TASK_DEAD must occur while the runqueue locks are
  2325. * still held, otherwise prev could be scheduled on another cpu, die
  2326. * there before we look at prev->state, and then the reference would
  2327. * be dropped twice.
  2328. * Manfred Spraul <manfred@colorfullife.com>
  2329. */
  2330. prev_state = prev->state;
  2331. finish_arch_switch(prev);
  2332. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2333. local_irq_disable();
  2334. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2335. perf_event_task_sched_in(current);
  2336. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2337. local_irq_enable();
  2338. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2339. finish_lock_switch(rq, prev);
  2340. fire_sched_in_preempt_notifiers(current);
  2341. if (mm)
  2342. mmdrop(mm);
  2343. if (unlikely(prev_state == TASK_DEAD)) {
  2344. /*
  2345. * Remove function-return probe instances associated with this
  2346. * task and put them back on the free list.
  2347. */
  2348. kprobe_flush_task(prev);
  2349. put_task_struct(prev);
  2350. }
  2351. }
  2352. #ifdef CONFIG_SMP
  2353. /* assumes rq->lock is held */
  2354. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2355. {
  2356. if (prev->sched_class->pre_schedule)
  2357. prev->sched_class->pre_schedule(rq, prev);
  2358. }
  2359. /* rq->lock is NOT held, but preemption is disabled */
  2360. static inline void post_schedule(struct rq *rq)
  2361. {
  2362. if (rq->post_schedule) {
  2363. unsigned long flags;
  2364. raw_spin_lock_irqsave(&rq->lock, flags);
  2365. if (rq->curr->sched_class->post_schedule)
  2366. rq->curr->sched_class->post_schedule(rq);
  2367. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2368. rq->post_schedule = 0;
  2369. }
  2370. }
  2371. #else
  2372. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2373. {
  2374. }
  2375. static inline void post_schedule(struct rq *rq)
  2376. {
  2377. }
  2378. #endif
  2379. /**
  2380. * schedule_tail - first thing a freshly forked thread must call.
  2381. * @prev: the thread we just switched away from.
  2382. */
  2383. asmlinkage void schedule_tail(struct task_struct *prev)
  2384. __releases(rq->lock)
  2385. {
  2386. struct rq *rq = this_rq();
  2387. finish_task_switch(rq, prev);
  2388. /*
  2389. * FIXME: do we need to worry about rq being invalidated by the
  2390. * task_switch?
  2391. */
  2392. post_schedule(rq);
  2393. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2394. /* In this case, finish_task_switch does not reenable preemption */
  2395. preempt_enable();
  2396. #endif
  2397. if (current->set_child_tid)
  2398. put_user(task_pid_vnr(current), current->set_child_tid);
  2399. }
  2400. /*
  2401. * context_switch - switch to the new MM and the new
  2402. * thread's register state.
  2403. */
  2404. static inline void
  2405. context_switch(struct rq *rq, struct task_struct *prev,
  2406. struct task_struct *next)
  2407. {
  2408. struct mm_struct *mm, *oldmm;
  2409. prepare_task_switch(rq, prev, next);
  2410. trace_sched_switch(prev, next);
  2411. mm = next->mm;
  2412. oldmm = prev->active_mm;
  2413. /*
  2414. * For paravirt, this is coupled with an exit in switch_to to
  2415. * combine the page table reload and the switch backend into
  2416. * one hypercall.
  2417. */
  2418. arch_start_context_switch(prev);
  2419. if (likely(!mm)) {
  2420. next->active_mm = oldmm;
  2421. atomic_inc(&oldmm->mm_count);
  2422. enter_lazy_tlb(oldmm, next);
  2423. } else
  2424. switch_mm(oldmm, mm, next);
  2425. if (likely(!prev->mm)) {
  2426. prev->active_mm = NULL;
  2427. rq->prev_mm = oldmm;
  2428. }
  2429. /*
  2430. * Since the runqueue lock will be released by the next
  2431. * task (which is an invalid locking op but in the case
  2432. * of the scheduler it's an obvious special-case), so we
  2433. * do an early lockdep release here:
  2434. */
  2435. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2436. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2437. #endif
  2438. /* Here we just switch the register state and the stack. */
  2439. switch_to(prev, next, prev);
  2440. barrier();
  2441. /*
  2442. * this_rq must be evaluated again because prev may have moved
  2443. * CPUs since it called schedule(), thus the 'rq' on its stack
  2444. * frame will be invalid.
  2445. */
  2446. finish_task_switch(this_rq(), prev);
  2447. }
  2448. /*
  2449. * nr_running, nr_uninterruptible and nr_context_switches:
  2450. *
  2451. * externally visible scheduler statistics: current number of runnable
  2452. * threads, current number of uninterruptible-sleeping threads, total
  2453. * number of context switches performed since bootup.
  2454. */
  2455. unsigned long nr_running(void)
  2456. {
  2457. unsigned long i, sum = 0;
  2458. for_each_online_cpu(i)
  2459. sum += cpu_rq(i)->nr_running;
  2460. return sum;
  2461. }
  2462. unsigned long nr_uninterruptible(void)
  2463. {
  2464. unsigned long i, sum = 0;
  2465. for_each_possible_cpu(i)
  2466. sum += cpu_rq(i)->nr_uninterruptible;
  2467. /*
  2468. * Since we read the counters lockless, it might be slightly
  2469. * inaccurate. Do not allow it to go below zero though:
  2470. */
  2471. if (unlikely((long)sum < 0))
  2472. sum = 0;
  2473. return sum;
  2474. }
  2475. unsigned long long nr_context_switches(void)
  2476. {
  2477. int i;
  2478. unsigned long long sum = 0;
  2479. for_each_possible_cpu(i)
  2480. sum += cpu_rq(i)->nr_switches;
  2481. return sum;
  2482. }
  2483. unsigned long nr_iowait(void)
  2484. {
  2485. unsigned long i, sum = 0;
  2486. for_each_possible_cpu(i)
  2487. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2488. return sum;
  2489. }
  2490. unsigned long nr_iowait_cpu(int cpu)
  2491. {
  2492. struct rq *this = cpu_rq(cpu);
  2493. return atomic_read(&this->nr_iowait);
  2494. }
  2495. unsigned long this_cpu_load(void)
  2496. {
  2497. struct rq *this = this_rq();
  2498. return this->cpu_load[0];
  2499. }
  2500. /* Variables and functions for calc_load */
  2501. static atomic_long_t calc_load_tasks;
  2502. static unsigned long calc_load_update;
  2503. unsigned long avenrun[3];
  2504. EXPORT_SYMBOL(avenrun);
  2505. static long calc_load_fold_active(struct rq *this_rq)
  2506. {
  2507. long nr_active, delta = 0;
  2508. nr_active = this_rq->nr_running;
  2509. nr_active += (long) this_rq->nr_uninterruptible;
  2510. if (nr_active != this_rq->calc_load_active) {
  2511. delta = nr_active - this_rq->calc_load_active;
  2512. this_rq->calc_load_active = nr_active;
  2513. }
  2514. return delta;
  2515. }
  2516. #ifdef CONFIG_NO_HZ
  2517. /*
  2518. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2519. *
  2520. * When making the ILB scale, we should try to pull this in as well.
  2521. */
  2522. static atomic_long_t calc_load_tasks_idle;
  2523. static void calc_load_account_idle(struct rq *this_rq)
  2524. {
  2525. long delta;
  2526. delta = calc_load_fold_active(this_rq);
  2527. if (delta)
  2528. atomic_long_add(delta, &calc_load_tasks_idle);
  2529. }
  2530. static long calc_load_fold_idle(void)
  2531. {
  2532. long delta = 0;
  2533. /*
  2534. * Its got a race, we don't care...
  2535. */
  2536. if (atomic_long_read(&calc_load_tasks_idle))
  2537. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2538. return delta;
  2539. }
  2540. #else
  2541. static void calc_load_account_idle(struct rq *this_rq)
  2542. {
  2543. }
  2544. static inline long calc_load_fold_idle(void)
  2545. {
  2546. return 0;
  2547. }
  2548. #endif
  2549. /**
  2550. * get_avenrun - get the load average array
  2551. * @loads: pointer to dest load array
  2552. * @offset: offset to add
  2553. * @shift: shift count to shift the result left
  2554. *
  2555. * These values are estimates at best, so no need for locking.
  2556. */
  2557. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2558. {
  2559. loads[0] = (avenrun[0] + offset) << shift;
  2560. loads[1] = (avenrun[1] + offset) << shift;
  2561. loads[2] = (avenrun[2] + offset) << shift;
  2562. }
  2563. static unsigned long
  2564. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2565. {
  2566. load *= exp;
  2567. load += active * (FIXED_1 - exp);
  2568. return load >> FSHIFT;
  2569. }
  2570. /*
  2571. * calc_load - update the avenrun load estimates 10 ticks after the
  2572. * CPUs have updated calc_load_tasks.
  2573. */
  2574. void calc_global_load(void)
  2575. {
  2576. unsigned long upd = calc_load_update + 10;
  2577. long active;
  2578. if (time_before(jiffies, upd))
  2579. return;
  2580. active = atomic_long_read(&calc_load_tasks);
  2581. active = active > 0 ? active * FIXED_1 : 0;
  2582. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2583. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2584. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2585. calc_load_update += LOAD_FREQ;
  2586. }
  2587. /*
  2588. * Called from update_cpu_load() to periodically update this CPU's
  2589. * active count.
  2590. */
  2591. static void calc_load_account_active(struct rq *this_rq)
  2592. {
  2593. long delta;
  2594. if (time_before(jiffies, this_rq->calc_load_update))
  2595. return;
  2596. delta = calc_load_fold_active(this_rq);
  2597. delta += calc_load_fold_idle();
  2598. if (delta)
  2599. atomic_long_add(delta, &calc_load_tasks);
  2600. this_rq->calc_load_update += LOAD_FREQ;
  2601. }
  2602. /*
  2603. * The exact cpuload at various idx values, calculated at every tick would be
  2604. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2605. *
  2606. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2607. * on nth tick when cpu may be busy, then we have:
  2608. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2609. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2610. *
  2611. * decay_load_missed() below does efficient calculation of
  2612. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2613. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2614. *
  2615. * The calculation is approximated on a 128 point scale.
  2616. * degrade_zero_ticks is the number of ticks after which load at any
  2617. * particular idx is approximated to be zero.
  2618. * degrade_factor is a precomputed table, a row for each load idx.
  2619. * Each column corresponds to degradation factor for a power of two ticks,
  2620. * based on 128 point scale.
  2621. * Example:
  2622. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2623. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2624. *
  2625. * With this power of 2 load factors, we can degrade the load n times
  2626. * by looking at 1 bits in n and doing as many mult/shift instead of
  2627. * n mult/shifts needed by the exact degradation.
  2628. */
  2629. #define DEGRADE_SHIFT 7
  2630. static const unsigned char
  2631. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2632. static const unsigned char
  2633. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2634. {0, 0, 0, 0, 0, 0, 0, 0},
  2635. {64, 32, 8, 0, 0, 0, 0, 0},
  2636. {96, 72, 40, 12, 1, 0, 0},
  2637. {112, 98, 75, 43, 15, 1, 0},
  2638. {120, 112, 98, 76, 45, 16, 2} };
  2639. /*
  2640. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2641. * would be when CPU is idle and so we just decay the old load without
  2642. * adding any new load.
  2643. */
  2644. static unsigned long
  2645. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2646. {
  2647. int j = 0;
  2648. if (!missed_updates)
  2649. return load;
  2650. if (missed_updates >= degrade_zero_ticks[idx])
  2651. return 0;
  2652. if (idx == 1)
  2653. return load >> missed_updates;
  2654. while (missed_updates) {
  2655. if (missed_updates % 2)
  2656. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2657. missed_updates >>= 1;
  2658. j++;
  2659. }
  2660. return load;
  2661. }
  2662. /*
  2663. * Update rq->cpu_load[] statistics. This function is usually called every
  2664. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2665. * every tick. We fix it up based on jiffies.
  2666. */
  2667. static void update_cpu_load(struct rq *this_rq)
  2668. {
  2669. unsigned long this_load = this_rq->load.weight;
  2670. unsigned long curr_jiffies = jiffies;
  2671. unsigned long pending_updates;
  2672. int i, scale;
  2673. this_rq->nr_load_updates++;
  2674. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2675. if (curr_jiffies == this_rq->last_load_update_tick)
  2676. return;
  2677. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2678. this_rq->last_load_update_tick = curr_jiffies;
  2679. /* Update our load: */
  2680. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2681. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2682. unsigned long old_load, new_load;
  2683. /* scale is effectively 1 << i now, and >> i divides by scale */
  2684. old_load = this_rq->cpu_load[i];
  2685. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2686. new_load = this_load;
  2687. /*
  2688. * Round up the averaging division if load is increasing. This
  2689. * prevents us from getting stuck on 9 if the load is 10, for
  2690. * example.
  2691. */
  2692. if (new_load > old_load)
  2693. new_load += scale - 1;
  2694. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2695. }
  2696. sched_avg_update(this_rq);
  2697. }
  2698. static void update_cpu_load_active(struct rq *this_rq)
  2699. {
  2700. update_cpu_load(this_rq);
  2701. calc_load_account_active(this_rq);
  2702. }
  2703. #ifdef CONFIG_SMP
  2704. /*
  2705. * sched_exec - execve() is a valuable balancing opportunity, because at
  2706. * this point the task has the smallest effective memory and cache footprint.
  2707. */
  2708. void sched_exec(void)
  2709. {
  2710. struct task_struct *p = current;
  2711. unsigned long flags;
  2712. struct rq *rq;
  2713. int dest_cpu;
  2714. rq = task_rq_lock(p, &flags);
  2715. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2716. if (dest_cpu == smp_processor_id())
  2717. goto unlock;
  2718. /*
  2719. * select_task_rq() can race against ->cpus_allowed
  2720. */
  2721. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2722. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2723. struct migration_arg arg = { p, dest_cpu };
  2724. task_rq_unlock(rq, &flags);
  2725. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2726. return;
  2727. }
  2728. unlock:
  2729. task_rq_unlock(rq, &flags);
  2730. }
  2731. #endif
  2732. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2733. EXPORT_PER_CPU_SYMBOL(kstat);
  2734. /*
  2735. * Return any ns on the sched_clock that have not yet been accounted in
  2736. * @p in case that task is currently running.
  2737. *
  2738. * Called with task_rq_lock() held on @rq.
  2739. */
  2740. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2741. {
  2742. u64 ns = 0;
  2743. if (task_current(rq, p)) {
  2744. update_rq_clock(rq);
  2745. ns = rq->clock - p->se.exec_start;
  2746. if ((s64)ns < 0)
  2747. ns = 0;
  2748. }
  2749. return ns;
  2750. }
  2751. unsigned long long task_delta_exec(struct task_struct *p)
  2752. {
  2753. unsigned long flags;
  2754. struct rq *rq;
  2755. u64 ns = 0;
  2756. rq = task_rq_lock(p, &flags);
  2757. ns = do_task_delta_exec(p, rq);
  2758. task_rq_unlock(rq, &flags);
  2759. return ns;
  2760. }
  2761. /*
  2762. * Return accounted runtime for the task.
  2763. * In case the task is currently running, return the runtime plus current's
  2764. * pending runtime that have not been accounted yet.
  2765. */
  2766. unsigned long long task_sched_runtime(struct task_struct *p)
  2767. {
  2768. unsigned long flags;
  2769. struct rq *rq;
  2770. u64 ns = 0;
  2771. rq = task_rq_lock(p, &flags);
  2772. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2773. task_rq_unlock(rq, &flags);
  2774. return ns;
  2775. }
  2776. /*
  2777. * Return sum_exec_runtime for the thread group.
  2778. * In case the task is currently running, return the sum plus current's
  2779. * pending runtime that have not been accounted yet.
  2780. *
  2781. * Note that the thread group might have other running tasks as well,
  2782. * so the return value not includes other pending runtime that other
  2783. * running tasks might have.
  2784. */
  2785. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2786. {
  2787. struct task_cputime totals;
  2788. unsigned long flags;
  2789. struct rq *rq;
  2790. u64 ns;
  2791. rq = task_rq_lock(p, &flags);
  2792. thread_group_cputime(p, &totals);
  2793. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2794. task_rq_unlock(rq, &flags);
  2795. return ns;
  2796. }
  2797. /*
  2798. * Account user cpu time to a process.
  2799. * @p: the process that the cpu time gets accounted to
  2800. * @cputime: the cpu time spent in user space since the last update
  2801. * @cputime_scaled: cputime scaled by cpu frequency
  2802. */
  2803. void account_user_time(struct task_struct *p, cputime_t cputime,
  2804. cputime_t cputime_scaled)
  2805. {
  2806. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2807. cputime64_t tmp;
  2808. /* Add user time to process. */
  2809. p->utime = cputime_add(p->utime, cputime);
  2810. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2811. account_group_user_time(p, cputime);
  2812. /* Add user time to cpustat. */
  2813. tmp = cputime_to_cputime64(cputime);
  2814. if (TASK_NICE(p) > 0)
  2815. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2816. else
  2817. cpustat->user = cputime64_add(cpustat->user, tmp);
  2818. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2819. /* Account for user time used */
  2820. acct_update_integrals(p);
  2821. }
  2822. /*
  2823. * Account guest cpu time to a process.
  2824. * @p: the process that the cpu time gets accounted to
  2825. * @cputime: the cpu time spent in virtual machine since the last update
  2826. * @cputime_scaled: cputime scaled by cpu frequency
  2827. */
  2828. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2829. cputime_t cputime_scaled)
  2830. {
  2831. cputime64_t tmp;
  2832. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2833. tmp = cputime_to_cputime64(cputime);
  2834. /* Add guest time to process. */
  2835. p->utime = cputime_add(p->utime, cputime);
  2836. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2837. account_group_user_time(p, cputime);
  2838. p->gtime = cputime_add(p->gtime, cputime);
  2839. /* Add guest time to cpustat. */
  2840. if (TASK_NICE(p) > 0) {
  2841. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2842. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2843. } else {
  2844. cpustat->user = cputime64_add(cpustat->user, tmp);
  2845. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2846. }
  2847. }
  2848. /*
  2849. * Account system cpu time to a process.
  2850. * @p: the process that the cpu time gets accounted to
  2851. * @hardirq_offset: the offset to subtract from hardirq_count()
  2852. * @cputime: the cpu time spent in kernel space since the last update
  2853. * @cputime_scaled: cputime scaled by cpu frequency
  2854. */
  2855. void account_system_time(struct task_struct *p, int hardirq_offset,
  2856. cputime_t cputime, cputime_t cputime_scaled)
  2857. {
  2858. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2859. cputime64_t tmp;
  2860. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2861. account_guest_time(p, cputime, cputime_scaled);
  2862. return;
  2863. }
  2864. /* Add system time to process. */
  2865. p->stime = cputime_add(p->stime, cputime);
  2866. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2867. account_group_system_time(p, cputime);
  2868. /* Add system time to cpustat. */
  2869. tmp = cputime_to_cputime64(cputime);
  2870. if (hardirq_count() - hardirq_offset)
  2871. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2872. else if (softirq_count())
  2873. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2874. else
  2875. cpustat->system = cputime64_add(cpustat->system, tmp);
  2876. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2877. /* Account for system time used */
  2878. acct_update_integrals(p);
  2879. }
  2880. /*
  2881. * Account for involuntary wait time.
  2882. * @steal: the cpu time spent in involuntary wait
  2883. */
  2884. void account_steal_time(cputime_t cputime)
  2885. {
  2886. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2887. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2888. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2889. }
  2890. /*
  2891. * Account for idle time.
  2892. * @cputime: the cpu time spent in idle wait
  2893. */
  2894. void account_idle_time(cputime_t cputime)
  2895. {
  2896. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2897. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2898. struct rq *rq = this_rq();
  2899. if (atomic_read(&rq->nr_iowait) > 0)
  2900. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2901. else
  2902. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2903. }
  2904. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2905. /*
  2906. * Account a single tick of cpu time.
  2907. * @p: the process that the cpu time gets accounted to
  2908. * @user_tick: indicates if the tick is a user or a system tick
  2909. */
  2910. void account_process_tick(struct task_struct *p, int user_tick)
  2911. {
  2912. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2913. struct rq *rq = this_rq();
  2914. if (user_tick)
  2915. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2916. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2917. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2918. one_jiffy_scaled);
  2919. else
  2920. account_idle_time(cputime_one_jiffy);
  2921. }
  2922. /*
  2923. * Account multiple ticks of steal time.
  2924. * @p: the process from which the cpu time has been stolen
  2925. * @ticks: number of stolen ticks
  2926. */
  2927. void account_steal_ticks(unsigned long ticks)
  2928. {
  2929. account_steal_time(jiffies_to_cputime(ticks));
  2930. }
  2931. /*
  2932. * Account multiple ticks of idle time.
  2933. * @ticks: number of stolen ticks
  2934. */
  2935. void account_idle_ticks(unsigned long ticks)
  2936. {
  2937. account_idle_time(jiffies_to_cputime(ticks));
  2938. }
  2939. #endif
  2940. /*
  2941. * Use precise platform statistics if available:
  2942. */
  2943. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2944. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2945. {
  2946. *ut = p->utime;
  2947. *st = p->stime;
  2948. }
  2949. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2950. {
  2951. struct task_cputime cputime;
  2952. thread_group_cputime(p, &cputime);
  2953. *ut = cputime.utime;
  2954. *st = cputime.stime;
  2955. }
  2956. #else
  2957. #ifndef nsecs_to_cputime
  2958. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2959. #endif
  2960. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2961. {
  2962. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2963. /*
  2964. * Use CFS's precise accounting:
  2965. */
  2966. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2967. if (total) {
  2968. u64 temp;
  2969. temp = (u64)(rtime * utime);
  2970. do_div(temp, total);
  2971. utime = (cputime_t)temp;
  2972. } else
  2973. utime = rtime;
  2974. /*
  2975. * Compare with previous values, to keep monotonicity:
  2976. */
  2977. p->prev_utime = max(p->prev_utime, utime);
  2978. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2979. *ut = p->prev_utime;
  2980. *st = p->prev_stime;
  2981. }
  2982. /*
  2983. * Must be called with siglock held.
  2984. */
  2985. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2986. {
  2987. struct signal_struct *sig = p->signal;
  2988. struct task_cputime cputime;
  2989. cputime_t rtime, utime, total;
  2990. thread_group_cputime(p, &cputime);
  2991. total = cputime_add(cputime.utime, cputime.stime);
  2992. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2993. if (total) {
  2994. u64 temp;
  2995. temp = (u64)(rtime * cputime.utime);
  2996. do_div(temp, total);
  2997. utime = (cputime_t)temp;
  2998. } else
  2999. utime = rtime;
  3000. sig->prev_utime = max(sig->prev_utime, utime);
  3001. sig->prev_stime = max(sig->prev_stime,
  3002. cputime_sub(rtime, sig->prev_utime));
  3003. *ut = sig->prev_utime;
  3004. *st = sig->prev_stime;
  3005. }
  3006. #endif
  3007. /*
  3008. * This function gets called by the timer code, with HZ frequency.
  3009. * We call it with interrupts disabled.
  3010. *
  3011. * It also gets called by the fork code, when changing the parent's
  3012. * timeslices.
  3013. */
  3014. void scheduler_tick(void)
  3015. {
  3016. int cpu = smp_processor_id();
  3017. struct rq *rq = cpu_rq(cpu);
  3018. struct task_struct *curr = rq->curr;
  3019. sched_clock_tick();
  3020. raw_spin_lock(&rq->lock);
  3021. update_rq_clock(rq);
  3022. update_cpu_load_active(rq);
  3023. curr->sched_class->task_tick(rq, curr, 0);
  3024. raw_spin_unlock(&rq->lock);
  3025. #ifdef CONFIG_SMP
  3026. rq->idle_at_tick = idle_cpu(cpu);
  3027. trigger_load_balance(rq, cpu);
  3028. #endif
  3029. }
  3030. notrace unsigned long get_parent_ip(unsigned long addr)
  3031. {
  3032. if (in_lock_functions(addr)) {
  3033. addr = CALLER_ADDR2;
  3034. if (in_lock_functions(addr))
  3035. addr = CALLER_ADDR3;
  3036. }
  3037. return addr;
  3038. }
  3039. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3040. defined(CONFIG_PREEMPT_TRACER))
  3041. void __kprobes add_preempt_count(int val)
  3042. {
  3043. #ifdef CONFIG_DEBUG_PREEMPT
  3044. /*
  3045. * Underflow?
  3046. */
  3047. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3048. return;
  3049. #endif
  3050. preempt_count() += val;
  3051. #ifdef CONFIG_DEBUG_PREEMPT
  3052. /*
  3053. * Spinlock count overflowing soon?
  3054. */
  3055. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3056. PREEMPT_MASK - 10);
  3057. #endif
  3058. if (preempt_count() == val)
  3059. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3060. }
  3061. EXPORT_SYMBOL(add_preempt_count);
  3062. void __kprobes sub_preempt_count(int val)
  3063. {
  3064. #ifdef CONFIG_DEBUG_PREEMPT
  3065. /*
  3066. * Underflow?
  3067. */
  3068. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3069. return;
  3070. /*
  3071. * Is the spinlock portion underflowing?
  3072. */
  3073. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3074. !(preempt_count() & PREEMPT_MASK)))
  3075. return;
  3076. #endif
  3077. if (preempt_count() == val)
  3078. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3079. preempt_count() -= val;
  3080. }
  3081. EXPORT_SYMBOL(sub_preempt_count);
  3082. #endif
  3083. /*
  3084. * Print scheduling while atomic bug:
  3085. */
  3086. static noinline void __schedule_bug(struct task_struct *prev)
  3087. {
  3088. struct pt_regs *regs = get_irq_regs();
  3089. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3090. prev->comm, prev->pid, preempt_count());
  3091. debug_show_held_locks(prev);
  3092. print_modules();
  3093. if (irqs_disabled())
  3094. print_irqtrace_events(prev);
  3095. if (regs)
  3096. show_regs(regs);
  3097. else
  3098. dump_stack();
  3099. }
  3100. /*
  3101. * Various schedule()-time debugging checks and statistics:
  3102. */
  3103. static inline void schedule_debug(struct task_struct *prev)
  3104. {
  3105. /*
  3106. * Test if we are atomic. Since do_exit() needs to call into
  3107. * schedule() atomically, we ignore that path for now.
  3108. * Otherwise, whine if we are scheduling when we should not be.
  3109. */
  3110. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3111. __schedule_bug(prev);
  3112. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3113. schedstat_inc(this_rq(), sched_count);
  3114. #ifdef CONFIG_SCHEDSTATS
  3115. if (unlikely(prev->lock_depth >= 0)) {
  3116. schedstat_inc(this_rq(), bkl_count);
  3117. schedstat_inc(prev, sched_info.bkl_count);
  3118. }
  3119. #endif
  3120. }
  3121. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3122. {
  3123. if (prev->se.on_rq)
  3124. update_rq_clock(rq);
  3125. rq->skip_clock_update = 0;
  3126. prev->sched_class->put_prev_task(rq, prev);
  3127. }
  3128. /*
  3129. * Pick up the highest-prio task:
  3130. */
  3131. static inline struct task_struct *
  3132. pick_next_task(struct rq *rq)
  3133. {
  3134. const struct sched_class *class;
  3135. struct task_struct *p;
  3136. /*
  3137. * Optimization: we know that if all tasks are in
  3138. * the fair class we can call that function directly:
  3139. */
  3140. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3141. p = fair_sched_class.pick_next_task(rq);
  3142. if (likely(p))
  3143. return p;
  3144. }
  3145. class = sched_class_highest;
  3146. for ( ; ; ) {
  3147. p = class->pick_next_task(rq);
  3148. if (p)
  3149. return p;
  3150. /*
  3151. * Will never be NULL as the idle class always
  3152. * returns a non-NULL p:
  3153. */
  3154. class = class->next;
  3155. }
  3156. }
  3157. /*
  3158. * schedule() is the main scheduler function.
  3159. */
  3160. asmlinkage void __sched schedule(void)
  3161. {
  3162. struct task_struct *prev, *next;
  3163. unsigned long *switch_count;
  3164. struct rq *rq;
  3165. int cpu;
  3166. need_resched:
  3167. preempt_disable();
  3168. cpu = smp_processor_id();
  3169. rq = cpu_rq(cpu);
  3170. rcu_note_context_switch(cpu);
  3171. prev = rq->curr;
  3172. release_kernel_lock(prev);
  3173. need_resched_nonpreemptible:
  3174. schedule_debug(prev);
  3175. if (sched_feat(HRTICK))
  3176. hrtick_clear(rq);
  3177. raw_spin_lock_irq(&rq->lock);
  3178. clear_tsk_need_resched(prev);
  3179. switch_count = &prev->nivcsw;
  3180. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3181. if (unlikely(signal_pending_state(prev->state, prev))) {
  3182. prev->state = TASK_RUNNING;
  3183. } else {
  3184. /*
  3185. * If a worker is going to sleep, notify and
  3186. * ask workqueue whether it wants to wake up a
  3187. * task to maintain concurrency. If so, wake
  3188. * up the task.
  3189. */
  3190. if (prev->flags & PF_WQ_WORKER) {
  3191. struct task_struct *to_wakeup;
  3192. to_wakeup = wq_worker_sleeping(prev, cpu);
  3193. if (to_wakeup)
  3194. try_to_wake_up_local(to_wakeup);
  3195. }
  3196. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3197. }
  3198. switch_count = &prev->nvcsw;
  3199. }
  3200. pre_schedule(rq, prev);
  3201. if (unlikely(!rq->nr_running))
  3202. idle_balance(cpu, rq);
  3203. put_prev_task(rq, prev);
  3204. next = pick_next_task(rq);
  3205. if (likely(prev != next)) {
  3206. sched_info_switch(prev, next);
  3207. perf_event_task_sched_out(prev, next);
  3208. rq->nr_switches++;
  3209. rq->curr = next;
  3210. ++*switch_count;
  3211. context_switch(rq, prev, next); /* unlocks the rq */
  3212. /*
  3213. * The context switch have flipped the stack from under us
  3214. * and restored the local variables which were saved when
  3215. * this task called schedule() in the past. prev == current
  3216. * is still correct, but it can be moved to another cpu/rq.
  3217. */
  3218. cpu = smp_processor_id();
  3219. rq = cpu_rq(cpu);
  3220. } else
  3221. raw_spin_unlock_irq(&rq->lock);
  3222. post_schedule(rq);
  3223. if (unlikely(reacquire_kernel_lock(prev)))
  3224. goto need_resched_nonpreemptible;
  3225. preempt_enable_no_resched();
  3226. if (need_resched())
  3227. goto need_resched;
  3228. }
  3229. EXPORT_SYMBOL(schedule);
  3230. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3231. /*
  3232. * Look out! "owner" is an entirely speculative pointer
  3233. * access and not reliable.
  3234. */
  3235. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3236. {
  3237. unsigned int cpu;
  3238. struct rq *rq;
  3239. if (!sched_feat(OWNER_SPIN))
  3240. return 0;
  3241. #ifdef CONFIG_DEBUG_PAGEALLOC
  3242. /*
  3243. * Need to access the cpu field knowing that
  3244. * DEBUG_PAGEALLOC could have unmapped it if
  3245. * the mutex owner just released it and exited.
  3246. */
  3247. if (probe_kernel_address(&owner->cpu, cpu))
  3248. return 0;
  3249. #else
  3250. cpu = owner->cpu;
  3251. #endif
  3252. /*
  3253. * Even if the access succeeded (likely case),
  3254. * the cpu field may no longer be valid.
  3255. */
  3256. if (cpu >= nr_cpumask_bits)
  3257. return 0;
  3258. /*
  3259. * We need to validate that we can do a
  3260. * get_cpu() and that we have the percpu area.
  3261. */
  3262. if (!cpu_online(cpu))
  3263. return 0;
  3264. rq = cpu_rq(cpu);
  3265. for (;;) {
  3266. /*
  3267. * Owner changed, break to re-assess state.
  3268. */
  3269. if (lock->owner != owner) {
  3270. /*
  3271. * If the lock has switched to a different owner,
  3272. * we likely have heavy contention. Return 0 to quit
  3273. * optimistic spinning and not contend further:
  3274. */
  3275. if (lock->owner)
  3276. return 0;
  3277. break;
  3278. }
  3279. /*
  3280. * Is that owner really running on that cpu?
  3281. */
  3282. if (task_thread_info(rq->curr) != owner || need_resched())
  3283. return 0;
  3284. cpu_relax();
  3285. }
  3286. return 1;
  3287. }
  3288. #endif
  3289. #ifdef CONFIG_PREEMPT
  3290. /*
  3291. * this is the entry point to schedule() from in-kernel preemption
  3292. * off of preempt_enable. Kernel preemptions off return from interrupt
  3293. * occur there and call schedule directly.
  3294. */
  3295. asmlinkage void __sched notrace preempt_schedule(void)
  3296. {
  3297. struct thread_info *ti = current_thread_info();
  3298. /*
  3299. * If there is a non-zero preempt_count or interrupts are disabled,
  3300. * we do not want to preempt the current task. Just return..
  3301. */
  3302. if (likely(ti->preempt_count || irqs_disabled()))
  3303. return;
  3304. do {
  3305. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3306. schedule();
  3307. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3308. /*
  3309. * Check again in case we missed a preemption opportunity
  3310. * between schedule and now.
  3311. */
  3312. barrier();
  3313. } while (need_resched());
  3314. }
  3315. EXPORT_SYMBOL(preempt_schedule);
  3316. /*
  3317. * this is the entry point to schedule() from kernel preemption
  3318. * off of irq context.
  3319. * Note, that this is called and return with irqs disabled. This will
  3320. * protect us against recursive calling from irq.
  3321. */
  3322. asmlinkage void __sched preempt_schedule_irq(void)
  3323. {
  3324. struct thread_info *ti = current_thread_info();
  3325. /* Catch callers which need to be fixed */
  3326. BUG_ON(ti->preempt_count || !irqs_disabled());
  3327. do {
  3328. add_preempt_count(PREEMPT_ACTIVE);
  3329. local_irq_enable();
  3330. schedule();
  3331. local_irq_disable();
  3332. sub_preempt_count(PREEMPT_ACTIVE);
  3333. /*
  3334. * Check again in case we missed a preemption opportunity
  3335. * between schedule and now.
  3336. */
  3337. barrier();
  3338. } while (need_resched());
  3339. }
  3340. #endif /* CONFIG_PREEMPT */
  3341. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3342. void *key)
  3343. {
  3344. return try_to_wake_up(curr->private, mode, wake_flags);
  3345. }
  3346. EXPORT_SYMBOL(default_wake_function);
  3347. /*
  3348. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3349. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3350. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3351. *
  3352. * There are circumstances in which we can try to wake a task which has already
  3353. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3354. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3355. */
  3356. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3357. int nr_exclusive, int wake_flags, void *key)
  3358. {
  3359. wait_queue_t *curr, *next;
  3360. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3361. unsigned flags = curr->flags;
  3362. if (curr->func(curr, mode, wake_flags, key) &&
  3363. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3364. break;
  3365. }
  3366. }
  3367. /**
  3368. * __wake_up - wake up threads blocked on a waitqueue.
  3369. * @q: the waitqueue
  3370. * @mode: which threads
  3371. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3372. * @key: is directly passed to the wakeup function
  3373. *
  3374. * It may be assumed that this function implies a write memory barrier before
  3375. * changing the task state if and only if any tasks are woken up.
  3376. */
  3377. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3378. int nr_exclusive, void *key)
  3379. {
  3380. unsigned long flags;
  3381. spin_lock_irqsave(&q->lock, flags);
  3382. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3383. spin_unlock_irqrestore(&q->lock, flags);
  3384. }
  3385. EXPORT_SYMBOL(__wake_up);
  3386. /*
  3387. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3388. */
  3389. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3390. {
  3391. __wake_up_common(q, mode, 1, 0, NULL);
  3392. }
  3393. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3394. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3395. {
  3396. __wake_up_common(q, mode, 1, 0, key);
  3397. }
  3398. /**
  3399. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3400. * @q: the waitqueue
  3401. * @mode: which threads
  3402. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3403. * @key: opaque value to be passed to wakeup targets
  3404. *
  3405. * The sync wakeup differs that the waker knows that it will schedule
  3406. * away soon, so while the target thread will be woken up, it will not
  3407. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3408. * with each other. This can prevent needless bouncing between CPUs.
  3409. *
  3410. * On UP it can prevent extra preemption.
  3411. *
  3412. * It may be assumed that this function implies a write memory barrier before
  3413. * changing the task state if and only if any tasks are woken up.
  3414. */
  3415. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3416. int nr_exclusive, void *key)
  3417. {
  3418. unsigned long flags;
  3419. int wake_flags = WF_SYNC;
  3420. if (unlikely(!q))
  3421. return;
  3422. if (unlikely(!nr_exclusive))
  3423. wake_flags = 0;
  3424. spin_lock_irqsave(&q->lock, flags);
  3425. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3426. spin_unlock_irqrestore(&q->lock, flags);
  3427. }
  3428. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3429. /*
  3430. * __wake_up_sync - see __wake_up_sync_key()
  3431. */
  3432. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3433. {
  3434. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3435. }
  3436. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3437. /**
  3438. * complete: - signals a single thread waiting on this completion
  3439. * @x: holds the state of this particular completion
  3440. *
  3441. * This will wake up a single thread waiting on this completion. Threads will be
  3442. * awakened in the same order in which they were queued.
  3443. *
  3444. * See also complete_all(), wait_for_completion() and related routines.
  3445. *
  3446. * It may be assumed that this function implies a write memory barrier before
  3447. * changing the task state if and only if any tasks are woken up.
  3448. */
  3449. void complete(struct completion *x)
  3450. {
  3451. unsigned long flags;
  3452. spin_lock_irqsave(&x->wait.lock, flags);
  3453. x->done++;
  3454. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3455. spin_unlock_irqrestore(&x->wait.lock, flags);
  3456. }
  3457. EXPORT_SYMBOL(complete);
  3458. /**
  3459. * complete_all: - signals all threads waiting on this completion
  3460. * @x: holds the state of this particular completion
  3461. *
  3462. * This will wake up all threads waiting on this particular completion event.
  3463. *
  3464. * It may be assumed that this function implies a write memory barrier before
  3465. * changing the task state if and only if any tasks are woken up.
  3466. */
  3467. void complete_all(struct completion *x)
  3468. {
  3469. unsigned long flags;
  3470. spin_lock_irqsave(&x->wait.lock, flags);
  3471. x->done += UINT_MAX/2;
  3472. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3473. spin_unlock_irqrestore(&x->wait.lock, flags);
  3474. }
  3475. EXPORT_SYMBOL(complete_all);
  3476. static inline long __sched
  3477. do_wait_for_common(struct completion *x, long timeout, int state)
  3478. {
  3479. if (!x->done) {
  3480. DECLARE_WAITQUEUE(wait, current);
  3481. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3482. do {
  3483. if (signal_pending_state(state, current)) {
  3484. timeout = -ERESTARTSYS;
  3485. break;
  3486. }
  3487. __set_current_state(state);
  3488. spin_unlock_irq(&x->wait.lock);
  3489. timeout = schedule_timeout(timeout);
  3490. spin_lock_irq(&x->wait.lock);
  3491. } while (!x->done && timeout);
  3492. __remove_wait_queue(&x->wait, &wait);
  3493. if (!x->done)
  3494. return timeout;
  3495. }
  3496. x->done--;
  3497. return timeout ?: 1;
  3498. }
  3499. static long __sched
  3500. wait_for_common(struct completion *x, long timeout, int state)
  3501. {
  3502. might_sleep();
  3503. spin_lock_irq(&x->wait.lock);
  3504. timeout = do_wait_for_common(x, timeout, state);
  3505. spin_unlock_irq(&x->wait.lock);
  3506. return timeout;
  3507. }
  3508. /**
  3509. * wait_for_completion: - waits for completion of a task
  3510. * @x: holds the state of this particular completion
  3511. *
  3512. * This waits to be signaled for completion of a specific task. It is NOT
  3513. * interruptible and there is no timeout.
  3514. *
  3515. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3516. * and interrupt capability. Also see complete().
  3517. */
  3518. void __sched wait_for_completion(struct completion *x)
  3519. {
  3520. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3521. }
  3522. EXPORT_SYMBOL(wait_for_completion);
  3523. /**
  3524. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3525. * @x: holds the state of this particular completion
  3526. * @timeout: timeout value in jiffies
  3527. *
  3528. * This waits for either a completion of a specific task to be signaled or for a
  3529. * specified timeout to expire. The timeout is in jiffies. It is not
  3530. * interruptible.
  3531. */
  3532. unsigned long __sched
  3533. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3534. {
  3535. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3536. }
  3537. EXPORT_SYMBOL(wait_for_completion_timeout);
  3538. /**
  3539. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3540. * @x: holds the state of this particular completion
  3541. *
  3542. * This waits for completion of a specific task to be signaled. It is
  3543. * interruptible.
  3544. */
  3545. int __sched wait_for_completion_interruptible(struct completion *x)
  3546. {
  3547. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3548. if (t == -ERESTARTSYS)
  3549. return t;
  3550. return 0;
  3551. }
  3552. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3553. /**
  3554. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3555. * @x: holds the state of this particular completion
  3556. * @timeout: timeout value in jiffies
  3557. *
  3558. * This waits for either a completion of a specific task to be signaled or for a
  3559. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3560. */
  3561. unsigned long __sched
  3562. wait_for_completion_interruptible_timeout(struct completion *x,
  3563. unsigned long timeout)
  3564. {
  3565. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3566. }
  3567. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3568. /**
  3569. * wait_for_completion_killable: - waits for completion of a task (killable)
  3570. * @x: holds the state of this particular completion
  3571. *
  3572. * This waits to be signaled for completion of a specific task. It can be
  3573. * interrupted by a kill signal.
  3574. */
  3575. int __sched wait_for_completion_killable(struct completion *x)
  3576. {
  3577. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3578. if (t == -ERESTARTSYS)
  3579. return t;
  3580. return 0;
  3581. }
  3582. EXPORT_SYMBOL(wait_for_completion_killable);
  3583. /**
  3584. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3585. * @x: holds the state of this particular completion
  3586. * @timeout: timeout value in jiffies
  3587. *
  3588. * This waits for either a completion of a specific task to be
  3589. * signaled or for a specified timeout to expire. It can be
  3590. * interrupted by a kill signal. The timeout is in jiffies.
  3591. */
  3592. unsigned long __sched
  3593. wait_for_completion_killable_timeout(struct completion *x,
  3594. unsigned long timeout)
  3595. {
  3596. return wait_for_common(x, timeout, TASK_KILLABLE);
  3597. }
  3598. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3599. /**
  3600. * try_wait_for_completion - try to decrement a completion without blocking
  3601. * @x: completion structure
  3602. *
  3603. * Returns: 0 if a decrement cannot be done without blocking
  3604. * 1 if a decrement succeeded.
  3605. *
  3606. * If a completion is being used as a counting completion,
  3607. * attempt to decrement the counter without blocking. This
  3608. * enables us to avoid waiting if the resource the completion
  3609. * is protecting is not available.
  3610. */
  3611. bool try_wait_for_completion(struct completion *x)
  3612. {
  3613. unsigned long flags;
  3614. int ret = 1;
  3615. spin_lock_irqsave(&x->wait.lock, flags);
  3616. if (!x->done)
  3617. ret = 0;
  3618. else
  3619. x->done--;
  3620. spin_unlock_irqrestore(&x->wait.lock, flags);
  3621. return ret;
  3622. }
  3623. EXPORT_SYMBOL(try_wait_for_completion);
  3624. /**
  3625. * completion_done - Test to see if a completion has any waiters
  3626. * @x: completion structure
  3627. *
  3628. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3629. * 1 if there are no waiters.
  3630. *
  3631. */
  3632. bool completion_done(struct completion *x)
  3633. {
  3634. unsigned long flags;
  3635. int ret = 1;
  3636. spin_lock_irqsave(&x->wait.lock, flags);
  3637. if (!x->done)
  3638. ret = 0;
  3639. spin_unlock_irqrestore(&x->wait.lock, flags);
  3640. return ret;
  3641. }
  3642. EXPORT_SYMBOL(completion_done);
  3643. static long __sched
  3644. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3645. {
  3646. unsigned long flags;
  3647. wait_queue_t wait;
  3648. init_waitqueue_entry(&wait, current);
  3649. __set_current_state(state);
  3650. spin_lock_irqsave(&q->lock, flags);
  3651. __add_wait_queue(q, &wait);
  3652. spin_unlock(&q->lock);
  3653. timeout = schedule_timeout(timeout);
  3654. spin_lock_irq(&q->lock);
  3655. __remove_wait_queue(q, &wait);
  3656. spin_unlock_irqrestore(&q->lock, flags);
  3657. return timeout;
  3658. }
  3659. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3660. {
  3661. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3662. }
  3663. EXPORT_SYMBOL(interruptible_sleep_on);
  3664. long __sched
  3665. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3666. {
  3667. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3668. }
  3669. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3670. void __sched sleep_on(wait_queue_head_t *q)
  3671. {
  3672. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3673. }
  3674. EXPORT_SYMBOL(sleep_on);
  3675. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3676. {
  3677. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3678. }
  3679. EXPORT_SYMBOL(sleep_on_timeout);
  3680. #ifdef CONFIG_RT_MUTEXES
  3681. /*
  3682. * rt_mutex_setprio - set the current priority of a task
  3683. * @p: task
  3684. * @prio: prio value (kernel-internal form)
  3685. *
  3686. * This function changes the 'effective' priority of a task. It does
  3687. * not touch ->normal_prio like __setscheduler().
  3688. *
  3689. * Used by the rt_mutex code to implement priority inheritance logic.
  3690. */
  3691. void rt_mutex_setprio(struct task_struct *p, int prio)
  3692. {
  3693. unsigned long flags;
  3694. int oldprio, on_rq, running;
  3695. struct rq *rq;
  3696. const struct sched_class *prev_class;
  3697. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3698. rq = task_rq_lock(p, &flags);
  3699. oldprio = p->prio;
  3700. prev_class = p->sched_class;
  3701. on_rq = p->se.on_rq;
  3702. running = task_current(rq, p);
  3703. if (on_rq)
  3704. dequeue_task(rq, p, 0);
  3705. if (running)
  3706. p->sched_class->put_prev_task(rq, p);
  3707. if (rt_prio(prio))
  3708. p->sched_class = &rt_sched_class;
  3709. else
  3710. p->sched_class = &fair_sched_class;
  3711. p->prio = prio;
  3712. if (running)
  3713. p->sched_class->set_curr_task(rq);
  3714. if (on_rq) {
  3715. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3716. check_class_changed(rq, p, prev_class, oldprio, running);
  3717. }
  3718. task_rq_unlock(rq, &flags);
  3719. }
  3720. #endif
  3721. void set_user_nice(struct task_struct *p, long nice)
  3722. {
  3723. int old_prio, delta, on_rq;
  3724. unsigned long flags;
  3725. struct rq *rq;
  3726. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3727. return;
  3728. /*
  3729. * We have to be careful, if called from sys_setpriority(),
  3730. * the task might be in the middle of scheduling on another CPU.
  3731. */
  3732. rq = task_rq_lock(p, &flags);
  3733. /*
  3734. * The RT priorities are set via sched_setscheduler(), but we still
  3735. * allow the 'normal' nice value to be set - but as expected
  3736. * it wont have any effect on scheduling until the task is
  3737. * SCHED_FIFO/SCHED_RR:
  3738. */
  3739. if (task_has_rt_policy(p)) {
  3740. p->static_prio = NICE_TO_PRIO(nice);
  3741. goto out_unlock;
  3742. }
  3743. on_rq = p->se.on_rq;
  3744. if (on_rq)
  3745. dequeue_task(rq, p, 0);
  3746. p->static_prio = NICE_TO_PRIO(nice);
  3747. set_load_weight(p);
  3748. old_prio = p->prio;
  3749. p->prio = effective_prio(p);
  3750. delta = p->prio - old_prio;
  3751. if (on_rq) {
  3752. enqueue_task(rq, p, 0);
  3753. /*
  3754. * If the task increased its priority or is running and
  3755. * lowered its priority, then reschedule its CPU:
  3756. */
  3757. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3758. resched_task(rq->curr);
  3759. }
  3760. out_unlock:
  3761. task_rq_unlock(rq, &flags);
  3762. }
  3763. EXPORT_SYMBOL(set_user_nice);
  3764. /*
  3765. * can_nice - check if a task can reduce its nice value
  3766. * @p: task
  3767. * @nice: nice value
  3768. */
  3769. int can_nice(const struct task_struct *p, const int nice)
  3770. {
  3771. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3772. int nice_rlim = 20 - nice;
  3773. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3774. capable(CAP_SYS_NICE));
  3775. }
  3776. #ifdef __ARCH_WANT_SYS_NICE
  3777. /*
  3778. * sys_nice - change the priority of the current process.
  3779. * @increment: priority increment
  3780. *
  3781. * sys_setpriority is a more generic, but much slower function that
  3782. * does similar things.
  3783. */
  3784. SYSCALL_DEFINE1(nice, int, increment)
  3785. {
  3786. long nice, retval;
  3787. /*
  3788. * Setpriority might change our priority at the same moment.
  3789. * We don't have to worry. Conceptually one call occurs first
  3790. * and we have a single winner.
  3791. */
  3792. if (increment < -40)
  3793. increment = -40;
  3794. if (increment > 40)
  3795. increment = 40;
  3796. nice = TASK_NICE(current) + increment;
  3797. if (nice < -20)
  3798. nice = -20;
  3799. if (nice > 19)
  3800. nice = 19;
  3801. if (increment < 0 && !can_nice(current, nice))
  3802. return -EPERM;
  3803. retval = security_task_setnice(current, nice);
  3804. if (retval)
  3805. return retval;
  3806. set_user_nice(current, nice);
  3807. return 0;
  3808. }
  3809. #endif
  3810. /**
  3811. * task_prio - return the priority value of a given task.
  3812. * @p: the task in question.
  3813. *
  3814. * This is the priority value as seen by users in /proc.
  3815. * RT tasks are offset by -200. Normal tasks are centered
  3816. * around 0, value goes from -16 to +15.
  3817. */
  3818. int task_prio(const struct task_struct *p)
  3819. {
  3820. return p->prio - MAX_RT_PRIO;
  3821. }
  3822. /**
  3823. * task_nice - return the nice value of a given task.
  3824. * @p: the task in question.
  3825. */
  3826. int task_nice(const struct task_struct *p)
  3827. {
  3828. return TASK_NICE(p);
  3829. }
  3830. EXPORT_SYMBOL(task_nice);
  3831. /**
  3832. * idle_cpu - is a given cpu idle currently?
  3833. * @cpu: the processor in question.
  3834. */
  3835. int idle_cpu(int cpu)
  3836. {
  3837. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3838. }
  3839. /**
  3840. * idle_task - return the idle task for a given cpu.
  3841. * @cpu: the processor in question.
  3842. */
  3843. struct task_struct *idle_task(int cpu)
  3844. {
  3845. return cpu_rq(cpu)->idle;
  3846. }
  3847. /**
  3848. * find_process_by_pid - find a process with a matching PID value.
  3849. * @pid: the pid in question.
  3850. */
  3851. static struct task_struct *find_process_by_pid(pid_t pid)
  3852. {
  3853. return pid ? find_task_by_vpid(pid) : current;
  3854. }
  3855. /* Actually do priority change: must hold rq lock. */
  3856. static void
  3857. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3858. {
  3859. BUG_ON(p->se.on_rq);
  3860. p->policy = policy;
  3861. p->rt_priority = prio;
  3862. p->normal_prio = normal_prio(p);
  3863. /* we are holding p->pi_lock already */
  3864. p->prio = rt_mutex_getprio(p);
  3865. if (rt_prio(p->prio))
  3866. p->sched_class = &rt_sched_class;
  3867. else
  3868. p->sched_class = &fair_sched_class;
  3869. set_load_weight(p);
  3870. }
  3871. /*
  3872. * check the target process has a UID that matches the current process's
  3873. */
  3874. static bool check_same_owner(struct task_struct *p)
  3875. {
  3876. const struct cred *cred = current_cred(), *pcred;
  3877. bool match;
  3878. rcu_read_lock();
  3879. pcred = __task_cred(p);
  3880. match = (cred->euid == pcred->euid ||
  3881. cred->euid == pcred->uid);
  3882. rcu_read_unlock();
  3883. return match;
  3884. }
  3885. static int __sched_setscheduler(struct task_struct *p, int policy,
  3886. struct sched_param *param, bool user)
  3887. {
  3888. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3889. unsigned long flags;
  3890. const struct sched_class *prev_class;
  3891. struct rq *rq;
  3892. int reset_on_fork;
  3893. /* may grab non-irq protected spin_locks */
  3894. BUG_ON(in_interrupt());
  3895. recheck:
  3896. /* double check policy once rq lock held */
  3897. if (policy < 0) {
  3898. reset_on_fork = p->sched_reset_on_fork;
  3899. policy = oldpolicy = p->policy;
  3900. } else {
  3901. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3902. policy &= ~SCHED_RESET_ON_FORK;
  3903. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3904. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3905. policy != SCHED_IDLE)
  3906. return -EINVAL;
  3907. }
  3908. /*
  3909. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3910. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3911. * SCHED_BATCH and SCHED_IDLE is 0.
  3912. */
  3913. if (param->sched_priority < 0 ||
  3914. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3915. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3916. return -EINVAL;
  3917. if (rt_policy(policy) != (param->sched_priority != 0))
  3918. return -EINVAL;
  3919. /*
  3920. * Allow unprivileged RT tasks to decrease priority:
  3921. */
  3922. if (user && !capable(CAP_SYS_NICE)) {
  3923. if (rt_policy(policy)) {
  3924. unsigned long rlim_rtprio =
  3925. task_rlimit(p, RLIMIT_RTPRIO);
  3926. /* can't set/change the rt policy */
  3927. if (policy != p->policy && !rlim_rtprio)
  3928. return -EPERM;
  3929. /* can't increase priority */
  3930. if (param->sched_priority > p->rt_priority &&
  3931. param->sched_priority > rlim_rtprio)
  3932. return -EPERM;
  3933. }
  3934. /*
  3935. * Like positive nice levels, dont allow tasks to
  3936. * move out of SCHED_IDLE either:
  3937. */
  3938. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3939. return -EPERM;
  3940. /* can't change other user's priorities */
  3941. if (!check_same_owner(p))
  3942. return -EPERM;
  3943. /* Normal users shall not reset the sched_reset_on_fork flag */
  3944. if (p->sched_reset_on_fork && !reset_on_fork)
  3945. return -EPERM;
  3946. }
  3947. if (user) {
  3948. retval = security_task_setscheduler(p, policy, param);
  3949. if (retval)
  3950. return retval;
  3951. }
  3952. /*
  3953. * make sure no PI-waiters arrive (or leave) while we are
  3954. * changing the priority of the task:
  3955. */
  3956. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3957. /*
  3958. * To be able to change p->policy safely, the apropriate
  3959. * runqueue lock must be held.
  3960. */
  3961. rq = __task_rq_lock(p);
  3962. #ifdef CONFIG_RT_GROUP_SCHED
  3963. if (user) {
  3964. /*
  3965. * Do not allow realtime tasks into groups that have no runtime
  3966. * assigned.
  3967. */
  3968. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3969. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  3970. __task_rq_unlock(rq);
  3971. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3972. return -EPERM;
  3973. }
  3974. }
  3975. #endif
  3976. /* recheck policy now with rq lock held */
  3977. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3978. policy = oldpolicy = -1;
  3979. __task_rq_unlock(rq);
  3980. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3981. goto recheck;
  3982. }
  3983. on_rq = p->se.on_rq;
  3984. running = task_current(rq, p);
  3985. if (on_rq)
  3986. deactivate_task(rq, p, 0);
  3987. if (running)
  3988. p->sched_class->put_prev_task(rq, p);
  3989. p->sched_reset_on_fork = reset_on_fork;
  3990. oldprio = p->prio;
  3991. prev_class = p->sched_class;
  3992. __setscheduler(rq, p, policy, param->sched_priority);
  3993. if (running)
  3994. p->sched_class->set_curr_task(rq);
  3995. if (on_rq) {
  3996. activate_task(rq, p, 0);
  3997. check_class_changed(rq, p, prev_class, oldprio, running);
  3998. }
  3999. __task_rq_unlock(rq);
  4000. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4001. rt_mutex_adjust_pi(p);
  4002. return 0;
  4003. }
  4004. /**
  4005. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4006. * @p: the task in question.
  4007. * @policy: new policy.
  4008. * @param: structure containing the new RT priority.
  4009. *
  4010. * NOTE that the task may be already dead.
  4011. */
  4012. int sched_setscheduler(struct task_struct *p, int policy,
  4013. struct sched_param *param)
  4014. {
  4015. return __sched_setscheduler(p, policy, param, true);
  4016. }
  4017. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4018. /**
  4019. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4020. * @p: the task in question.
  4021. * @policy: new policy.
  4022. * @param: structure containing the new RT priority.
  4023. *
  4024. * Just like sched_setscheduler, only don't bother checking if the
  4025. * current context has permission. For example, this is needed in
  4026. * stop_machine(): we create temporary high priority worker threads,
  4027. * but our caller might not have that capability.
  4028. */
  4029. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4030. struct sched_param *param)
  4031. {
  4032. return __sched_setscheduler(p, policy, param, false);
  4033. }
  4034. static int
  4035. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4036. {
  4037. struct sched_param lparam;
  4038. struct task_struct *p;
  4039. int retval;
  4040. if (!param || pid < 0)
  4041. return -EINVAL;
  4042. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4043. return -EFAULT;
  4044. rcu_read_lock();
  4045. retval = -ESRCH;
  4046. p = find_process_by_pid(pid);
  4047. if (p != NULL)
  4048. retval = sched_setscheduler(p, policy, &lparam);
  4049. rcu_read_unlock();
  4050. return retval;
  4051. }
  4052. /**
  4053. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4054. * @pid: the pid in question.
  4055. * @policy: new policy.
  4056. * @param: structure containing the new RT priority.
  4057. */
  4058. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4059. struct sched_param __user *, param)
  4060. {
  4061. /* negative values for policy are not valid */
  4062. if (policy < 0)
  4063. return -EINVAL;
  4064. return do_sched_setscheduler(pid, policy, param);
  4065. }
  4066. /**
  4067. * sys_sched_setparam - set/change the RT priority of a thread
  4068. * @pid: the pid in question.
  4069. * @param: structure containing the new RT priority.
  4070. */
  4071. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4072. {
  4073. return do_sched_setscheduler(pid, -1, param);
  4074. }
  4075. /**
  4076. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4077. * @pid: the pid in question.
  4078. */
  4079. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4080. {
  4081. struct task_struct *p;
  4082. int retval;
  4083. if (pid < 0)
  4084. return -EINVAL;
  4085. retval = -ESRCH;
  4086. rcu_read_lock();
  4087. p = find_process_by_pid(pid);
  4088. if (p) {
  4089. retval = security_task_getscheduler(p);
  4090. if (!retval)
  4091. retval = p->policy
  4092. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4093. }
  4094. rcu_read_unlock();
  4095. return retval;
  4096. }
  4097. /**
  4098. * sys_sched_getparam - get the RT priority of a thread
  4099. * @pid: the pid in question.
  4100. * @param: structure containing the RT priority.
  4101. */
  4102. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4103. {
  4104. struct sched_param lp;
  4105. struct task_struct *p;
  4106. int retval;
  4107. if (!param || pid < 0)
  4108. return -EINVAL;
  4109. rcu_read_lock();
  4110. p = find_process_by_pid(pid);
  4111. retval = -ESRCH;
  4112. if (!p)
  4113. goto out_unlock;
  4114. retval = security_task_getscheduler(p);
  4115. if (retval)
  4116. goto out_unlock;
  4117. lp.sched_priority = p->rt_priority;
  4118. rcu_read_unlock();
  4119. /*
  4120. * This one might sleep, we cannot do it with a spinlock held ...
  4121. */
  4122. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4123. return retval;
  4124. out_unlock:
  4125. rcu_read_unlock();
  4126. return retval;
  4127. }
  4128. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4129. {
  4130. cpumask_var_t cpus_allowed, new_mask;
  4131. struct task_struct *p;
  4132. int retval;
  4133. get_online_cpus();
  4134. rcu_read_lock();
  4135. p = find_process_by_pid(pid);
  4136. if (!p) {
  4137. rcu_read_unlock();
  4138. put_online_cpus();
  4139. return -ESRCH;
  4140. }
  4141. /* Prevent p going away */
  4142. get_task_struct(p);
  4143. rcu_read_unlock();
  4144. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4145. retval = -ENOMEM;
  4146. goto out_put_task;
  4147. }
  4148. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4149. retval = -ENOMEM;
  4150. goto out_free_cpus_allowed;
  4151. }
  4152. retval = -EPERM;
  4153. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4154. goto out_unlock;
  4155. retval = security_task_setscheduler(p, 0, NULL);
  4156. if (retval)
  4157. goto out_unlock;
  4158. cpuset_cpus_allowed(p, cpus_allowed);
  4159. cpumask_and(new_mask, in_mask, cpus_allowed);
  4160. again:
  4161. retval = set_cpus_allowed_ptr(p, new_mask);
  4162. if (!retval) {
  4163. cpuset_cpus_allowed(p, cpus_allowed);
  4164. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4165. /*
  4166. * We must have raced with a concurrent cpuset
  4167. * update. Just reset the cpus_allowed to the
  4168. * cpuset's cpus_allowed
  4169. */
  4170. cpumask_copy(new_mask, cpus_allowed);
  4171. goto again;
  4172. }
  4173. }
  4174. out_unlock:
  4175. free_cpumask_var(new_mask);
  4176. out_free_cpus_allowed:
  4177. free_cpumask_var(cpus_allowed);
  4178. out_put_task:
  4179. put_task_struct(p);
  4180. put_online_cpus();
  4181. return retval;
  4182. }
  4183. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4184. struct cpumask *new_mask)
  4185. {
  4186. if (len < cpumask_size())
  4187. cpumask_clear(new_mask);
  4188. else if (len > cpumask_size())
  4189. len = cpumask_size();
  4190. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4191. }
  4192. /**
  4193. * sys_sched_setaffinity - set the cpu affinity of a process
  4194. * @pid: pid of the process
  4195. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4196. * @user_mask_ptr: user-space pointer to the new cpu mask
  4197. */
  4198. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4199. unsigned long __user *, user_mask_ptr)
  4200. {
  4201. cpumask_var_t new_mask;
  4202. int retval;
  4203. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4204. return -ENOMEM;
  4205. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4206. if (retval == 0)
  4207. retval = sched_setaffinity(pid, new_mask);
  4208. free_cpumask_var(new_mask);
  4209. return retval;
  4210. }
  4211. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4212. {
  4213. struct task_struct *p;
  4214. unsigned long flags;
  4215. struct rq *rq;
  4216. int retval;
  4217. get_online_cpus();
  4218. rcu_read_lock();
  4219. retval = -ESRCH;
  4220. p = find_process_by_pid(pid);
  4221. if (!p)
  4222. goto out_unlock;
  4223. retval = security_task_getscheduler(p);
  4224. if (retval)
  4225. goto out_unlock;
  4226. rq = task_rq_lock(p, &flags);
  4227. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4228. task_rq_unlock(rq, &flags);
  4229. out_unlock:
  4230. rcu_read_unlock();
  4231. put_online_cpus();
  4232. return retval;
  4233. }
  4234. /**
  4235. * sys_sched_getaffinity - get the cpu affinity of a process
  4236. * @pid: pid of the process
  4237. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4238. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4239. */
  4240. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4241. unsigned long __user *, user_mask_ptr)
  4242. {
  4243. int ret;
  4244. cpumask_var_t mask;
  4245. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4246. return -EINVAL;
  4247. if (len & (sizeof(unsigned long)-1))
  4248. return -EINVAL;
  4249. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4250. return -ENOMEM;
  4251. ret = sched_getaffinity(pid, mask);
  4252. if (ret == 0) {
  4253. size_t retlen = min_t(size_t, len, cpumask_size());
  4254. if (copy_to_user(user_mask_ptr, mask, retlen))
  4255. ret = -EFAULT;
  4256. else
  4257. ret = retlen;
  4258. }
  4259. free_cpumask_var(mask);
  4260. return ret;
  4261. }
  4262. /**
  4263. * sys_sched_yield - yield the current processor to other threads.
  4264. *
  4265. * This function yields the current CPU to other tasks. If there are no
  4266. * other threads running on this CPU then this function will return.
  4267. */
  4268. SYSCALL_DEFINE0(sched_yield)
  4269. {
  4270. struct rq *rq = this_rq_lock();
  4271. schedstat_inc(rq, yld_count);
  4272. current->sched_class->yield_task(rq);
  4273. /*
  4274. * Since we are going to call schedule() anyway, there's
  4275. * no need to preempt or enable interrupts:
  4276. */
  4277. __release(rq->lock);
  4278. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4279. do_raw_spin_unlock(&rq->lock);
  4280. preempt_enable_no_resched();
  4281. schedule();
  4282. return 0;
  4283. }
  4284. static inline int should_resched(void)
  4285. {
  4286. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4287. }
  4288. static void __cond_resched(void)
  4289. {
  4290. add_preempt_count(PREEMPT_ACTIVE);
  4291. schedule();
  4292. sub_preempt_count(PREEMPT_ACTIVE);
  4293. }
  4294. int __sched _cond_resched(void)
  4295. {
  4296. if (should_resched()) {
  4297. __cond_resched();
  4298. return 1;
  4299. }
  4300. return 0;
  4301. }
  4302. EXPORT_SYMBOL(_cond_resched);
  4303. /*
  4304. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4305. * call schedule, and on return reacquire the lock.
  4306. *
  4307. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4308. * operations here to prevent schedule() from being called twice (once via
  4309. * spin_unlock(), once by hand).
  4310. */
  4311. int __cond_resched_lock(spinlock_t *lock)
  4312. {
  4313. int resched = should_resched();
  4314. int ret = 0;
  4315. lockdep_assert_held(lock);
  4316. if (spin_needbreak(lock) || resched) {
  4317. spin_unlock(lock);
  4318. if (resched)
  4319. __cond_resched();
  4320. else
  4321. cpu_relax();
  4322. ret = 1;
  4323. spin_lock(lock);
  4324. }
  4325. return ret;
  4326. }
  4327. EXPORT_SYMBOL(__cond_resched_lock);
  4328. int __sched __cond_resched_softirq(void)
  4329. {
  4330. BUG_ON(!in_softirq());
  4331. if (should_resched()) {
  4332. local_bh_enable();
  4333. __cond_resched();
  4334. local_bh_disable();
  4335. return 1;
  4336. }
  4337. return 0;
  4338. }
  4339. EXPORT_SYMBOL(__cond_resched_softirq);
  4340. /**
  4341. * yield - yield the current processor to other threads.
  4342. *
  4343. * This is a shortcut for kernel-space yielding - it marks the
  4344. * thread runnable and calls sys_sched_yield().
  4345. */
  4346. void __sched yield(void)
  4347. {
  4348. set_current_state(TASK_RUNNING);
  4349. sys_sched_yield();
  4350. }
  4351. EXPORT_SYMBOL(yield);
  4352. /*
  4353. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4354. * that process accounting knows that this is a task in IO wait state.
  4355. */
  4356. void __sched io_schedule(void)
  4357. {
  4358. struct rq *rq = raw_rq();
  4359. delayacct_blkio_start();
  4360. atomic_inc(&rq->nr_iowait);
  4361. current->in_iowait = 1;
  4362. schedule();
  4363. current->in_iowait = 0;
  4364. atomic_dec(&rq->nr_iowait);
  4365. delayacct_blkio_end();
  4366. }
  4367. EXPORT_SYMBOL(io_schedule);
  4368. long __sched io_schedule_timeout(long timeout)
  4369. {
  4370. struct rq *rq = raw_rq();
  4371. long ret;
  4372. delayacct_blkio_start();
  4373. atomic_inc(&rq->nr_iowait);
  4374. current->in_iowait = 1;
  4375. ret = schedule_timeout(timeout);
  4376. current->in_iowait = 0;
  4377. atomic_dec(&rq->nr_iowait);
  4378. delayacct_blkio_end();
  4379. return ret;
  4380. }
  4381. /**
  4382. * sys_sched_get_priority_max - return maximum RT priority.
  4383. * @policy: scheduling class.
  4384. *
  4385. * this syscall returns the maximum rt_priority that can be used
  4386. * by a given scheduling class.
  4387. */
  4388. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4389. {
  4390. int ret = -EINVAL;
  4391. switch (policy) {
  4392. case SCHED_FIFO:
  4393. case SCHED_RR:
  4394. ret = MAX_USER_RT_PRIO-1;
  4395. break;
  4396. case SCHED_NORMAL:
  4397. case SCHED_BATCH:
  4398. case SCHED_IDLE:
  4399. ret = 0;
  4400. break;
  4401. }
  4402. return ret;
  4403. }
  4404. /**
  4405. * sys_sched_get_priority_min - return minimum RT priority.
  4406. * @policy: scheduling class.
  4407. *
  4408. * this syscall returns the minimum rt_priority that can be used
  4409. * by a given scheduling class.
  4410. */
  4411. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4412. {
  4413. int ret = -EINVAL;
  4414. switch (policy) {
  4415. case SCHED_FIFO:
  4416. case SCHED_RR:
  4417. ret = 1;
  4418. break;
  4419. case SCHED_NORMAL:
  4420. case SCHED_BATCH:
  4421. case SCHED_IDLE:
  4422. ret = 0;
  4423. }
  4424. return ret;
  4425. }
  4426. /**
  4427. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4428. * @pid: pid of the process.
  4429. * @interval: userspace pointer to the timeslice value.
  4430. *
  4431. * this syscall writes the default timeslice value of a given process
  4432. * into the user-space timespec buffer. A value of '0' means infinity.
  4433. */
  4434. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4435. struct timespec __user *, interval)
  4436. {
  4437. struct task_struct *p;
  4438. unsigned int time_slice;
  4439. unsigned long flags;
  4440. struct rq *rq;
  4441. int retval;
  4442. struct timespec t;
  4443. if (pid < 0)
  4444. return -EINVAL;
  4445. retval = -ESRCH;
  4446. rcu_read_lock();
  4447. p = find_process_by_pid(pid);
  4448. if (!p)
  4449. goto out_unlock;
  4450. retval = security_task_getscheduler(p);
  4451. if (retval)
  4452. goto out_unlock;
  4453. rq = task_rq_lock(p, &flags);
  4454. time_slice = p->sched_class->get_rr_interval(rq, p);
  4455. task_rq_unlock(rq, &flags);
  4456. rcu_read_unlock();
  4457. jiffies_to_timespec(time_slice, &t);
  4458. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4459. return retval;
  4460. out_unlock:
  4461. rcu_read_unlock();
  4462. return retval;
  4463. }
  4464. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4465. void sched_show_task(struct task_struct *p)
  4466. {
  4467. unsigned long free = 0;
  4468. unsigned state;
  4469. state = p->state ? __ffs(p->state) + 1 : 0;
  4470. printk(KERN_INFO "%-13.13s %c", p->comm,
  4471. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4472. #if BITS_PER_LONG == 32
  4473. if (state == TASK_RUNNING)
  4474. printk(KERN_CONT " running ");
  4475. else
  4476. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4477. #else
  4478. if (state == TASK_RUNNING)
  4479. printk(KERN_CONT " running task ");
  4480. else
  4481. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4482. #endif
  4483. #ifdef CONFIG_DEBUG_STACK_USAGE
  4484. free = stack_not_used(p);
  4485. #endif
  4486. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4487. task_pid_nr(p), task_pid_nr(p->real_parent),
  4488. (unsigned long)task_thread_info(p)->flags);
  4489. show_stack(p, NULL);
  4490. }
  4491. void show_state_filter(unsigned long state_filter)
  4492. {
  4493. struct task_struct *g, *p;
  4494. #if BITS_PER_LONG == 32
  4495. printk(KERN_INFO
  4496. " task PC stack pid father\n");
  4497. #else
  4498. printk(KERN_INFO
  4499. " task PC stack pid father\n");
  4500. #endif
  4501. read_lock(&tasklist_lock);
  4502. do_each_thread(g, p) {
  4503. /*
  4504. * reset the NMI-timeout, listing all files on a slow
  4505. * console might take alot of time:
  4506. */
  4507. touch_nmi_watchdog();
  4508. if (!state_filter || (p->state & state_filter))
  4509. sched_show_task(p);
  4510. } while_each_thread(g, p);
  4511. touch_all_softlockup_watchdogs();
  4512. #ifdef CONFIG_SCHED_DEBUG
  4513. sysrq_sched_debug_show();
  4514. #endif
  4515. read_unlock(&tasklist_lock);
  4516. /*
  4517. * Only show locks if all tasks are dumped:
  4518. */
  4519. if (!state_filter)
  4520. debug_show_all_locks();
  4521. }
  4522. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4523. {
  4524. idle->sched_class = &idle_sched_class;
  4525. }
  4526. /**
  4527. * init_idle - set up an idle thread for a given CPU
  4528. * @idle: task in question
  4529. * @cpu: cpu the idle task belongs to
  4530. *
  4531. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4532. * flag, to make booting more robust.
  4533. */
  4534. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4535. {
  4536. struct rq *rq = cpu_rq(cpu);
  4537. unsigned long flags;
  4538. raw_spin_lock_irqsave(&rq->lock, flags);
  4539. __sched_fork(idle);
  4540. idle->state = TASK_RUNNING;
  4541. idle->se.exec_start = sched_clock();
  4542. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4543. __set_task_cpu(idle, cpu);
  4544. rq->curr = rq->idle = idle;
  4545. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4546. idle->oncpu = 1;
  4547. #endif
  4548. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4549. /* Set the preempt count _outside_ the spinlocks! */
  4550. #if defined(CONFIG_PREEMPT)
  4551. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4552. #else
  4553. task_thread_info(idle)->preempt_count = 0;
  4554. #endif
  4555. /*
  4556. * The idle tasks have their own, simple scheduling class:
  4557. */
  4558. idle->sched_class = &idle_sched_class;
  4559. ftrace_graph_init_task(idle);
  4560. }
  4561. /*
  4562. * In a system that switches off the HZ timer nohz_cpu_mask
  4563. * indicates which cpus entered this state. This is used
  4564. * in the rcu update to wait only for active cpus. For system
  4565. * which do not switch off the HZ timer nohz_cpu_mask should
  4566. * always be CPU_BITS_NONE.
  4567. */
  4568. cpumask_var_t nohz_cpu_mask;
  4569. /*
  4570. * Increase the granularity value when there are more CPUs,
  4571. * because with more CPUs the 'effective latency' as visible
  4572. * to users decreases. But the relationship is not linear,
  4573. * so pick a second-best guess by going with the log2 of the
  4574. * number of CPUs.
  4575. *
  4576. * This idea comes from the SD scheduler of Con Kolivas:
  4577. */
  4578. static int get_update_sysctl_factor(void)
  4579. {
  4580. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4581. unsigned int factor;
  4582. switch (sysctl_sched_tunable_scaling) {
  4583. case SCHED_TUNABLESCALING_NONE:
  4584. factor = 1;
  4585. break;
  4586. case SCHED_TUNABLESCALING_LINEAR:
  4587. factor = cpus;
  4588. break;
  4589. case SCHED_TUNABLESCALING_LOG:
  4590. default:
  4591. factor = 1 + ilog2(cpus);
  4592. break;
  4593. }
  4594. return factor;
  4595. }
  4596. static void update_sysctl(void)
  4597. {
  4598. unsigned int factor = get_update_sysctl_factor();
  4599. #define SET_SYSCTL(name) \
  4600. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4601. SET_SYSCTL(sched_min_granularity);
  4602. SET_SYSCTL(sched_latency);
  4603. SET_SYSCTL(sched_wakeup_granularity);
  4604. SET_SYSCTL(sched_shares_ratelimit);
  4605. #undef SET_SYSCTL
  4606. }
  4607. static inline void sched_init_granularity(void)
  4608. {
  4609. update_sysctl();
  4610. }
  4611. #ifdef CONFIG_SMP
  4612. /*
  4613. * This is how migration works:
  4614. *
  4615. * 1) we invoke migration_cpu_stop() on the target CPU using
  4616. * stop_one_cpu().
  4617. * 2) stopper starts to run (implicitly forcing the migrated thread
  4618. * off the CPU)
  4619. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4620. * 4) if it's in the wrong runqueue then the migration thread removes
  4621. * it and puts it into the right queue.
  4622. * 5) stopper completes and stop_one_cpu() returns and the migration
  4623. * is done.
  4624. */
  4625. /*
  4626. * Change a given task's CPU affinity. Migrate the thread to a
  4627. * proper CPU and schedule it away if the CPU it's executing on
  4628. * is removed from the allowed bitmask.
  4629. *
  4630. * NOTE: the caller must have a valid reference to the task, the
  4631. * task must not exit() & deallocate itself prematurely. The
  4632. * call is not atomic; no spinlocks may be held.
  4633. */
  4634. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4635. {
  4636. unsigned long flags;
  4637. struct rq *rq;
  4638. unsigned int dest_cpu;
  4639. int ret = 0;
  4640. /*
  4641. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4642. * drop the rq->lock and still rely on ->cpus_allowed.
  4643. */
  4644. again:
  4645. while (task_is_waking(p))
  4646. cpu_relax();
  4647. rq = task_rq_lock(p, &flags);
  4648. if (task_is_waking(p)) {
  4649. task_rq_unlock(rq, &flags);
  4650. goto again;
  4651. }
  4652. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4653. ret = -EINVAL;
  4654. goto out;
  4655. }
  4656. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4657. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4658. ret = -EINVAL;
  4659. goto out;
  4660. }
  4661. if (p->sched_class->set_cpus_allowed)
  4662. p->sched_class->set_cpus_allowed(p, new_mask);
  4663. else {
  4664. cpumask_copy(&p->cpus_allowed, new_mask);
  4665. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4666. }
  4667. /* Can the task run on the task's current CPU? If so, we're done */
  4668. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4669. goto out;
  4670. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4671. if (migrate_task(p, dest_cpu)) {
  4672. struct migration_arg arg = { p, dest_cpu };
  4673. /* Need help from migration thread: drop lock and wait. */
  4674. task_rq_unlock(rq, &flags);
  4675. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4676. tlb_migrate_finish(p->mm);
  4677. return 0;
  4678. }
  4679. out:
  4680. task_rq_unlock(rq, &flags);
  4681. return ret;
  4682. }
  4683. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4684. /*
  4685. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4686. * this because either it can't run here any more (set_cpus_allowed()
  4687. * away from this CPU, or CPU going down), or because we're
  4688. * attempting to rebalance this task on exec (sched_exec).
  4689. *
  4690. * So we race with normal scheduler movements, but that's OK, as long
  4691. * as the task is no longer on this CPU.
  4692. *
  4693. * Returns non-zero if task was successfully migrated.
  4694. */
  4695. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4696. {
  4697. struct rq *rq_dest, *rq_src;
  4698. int ret = 0;
  4699. if (unlikely(!cpu_active(dest_cpu)))
  4700. return ret;
  4701. rq_src = cpu_rq(src_cpu);
  4702. rq_dest = cpu_rq(dest_cpu);
  4703. double_rq_lock(rq_src, rq_dest);
  4704. /* Already moved. */
  4705. if (task_cpu(p) != src_cpu)
  4706. goto done;
  4707. /* Affinity changed (again). */
  4708. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4709. goto fail;
  4710. /*
  4711. * If we're not on a rq, the next wake-up will ensure we're
  4712. * placed properly.
  4713. */
  4714. if (p->se.on_rq) {
  4715. deactivate_task(rq_src, p, 0);
  4716. set_task_cpu(p, dest_cpu);
  4717. activate_task(rq_dest, p, 0);
  4718. check_preempt_curr(rq_dest, p, 0);
  4719. }
  4720. done:
  4721. ret = 1;
  4722. fail:
  4723. double_rq_unlock(rq_src, rq_dest);
  4724. return ret;
  4725. }
  4726. /*
  4727. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4728. * and performs thread migration by bumping thread off CPU then
  4729. * 'pushing' onto another runqueue.
  4730. */
  4731. static int migration_cpu_stop(void *data)
  4732. {
  4733. struct migration_arg *arg = data;
  4734. /*
  4735. * The original target cpu might have gone down and we might
  4736. * be on another cpu but it doesn't matter.
  4737. */
  4738. local_irq_disable();
  4739. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4740. local_irq_enable();
  4741. return 0;
  4742. }
  4743. #ifdef CONFIG_HOTPLUG_CPU
  4744. /*
  4745. * Figure out where task on dead CPU should go, use force if necessary.
  4746. */
  4747. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4748. {
  4749. struct rq *rq = cpu_rq(dead_cpu);
  4750. int needs_cpu, uninitialized_var(dest_cpu);
  4751. unsigned long flags;
  4752. local_irq_save(flags);
  4753. raw_spin_lock(&rq->lock);
  4754. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4755. if (needs_cpu)
  4756. dest_cpu = select_fallback_rq(dead_cpu, p);
  4757. raw_spin_unlock(&rq->lock);
  4758. /*
  4759. * It can only fail if we race with set_cpus_allowed(),
  4760. * in the racer should migrate the task anyway.
  4761. */
  4762. if (needs_cpu)
  4763. __migrate_task(p, dead_cpu, dest_cpu);
  4764. local_irq_restore(flags);
  4765. }
  4766. /*
  4767. * While a dead CPU has no uninterruptible tasks queued at this point,
  4768. * it might still have a nonzero ->nr_uninterruptible counter, because
  4769. * for performance reasons the counter is not stricly tracking tasks to
  4770. * their home CPUs. So we just add the counter to another CPU's counter,
  4771. * to keep the global sum constant after CPU-down:
  4772. */
  4773. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4774. {
  4775. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4776. unsigned long flags;
  4777. local_irq_save(flags);
  4778. double_rq_lock(rq_src, rq_dest);
  4779. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4780. rq_src->nr_uninterruptible = 0;
  4781. double_rq_unlock(rq_src, rq_dest);
  4782. local_irq_restore(flags);
  4783. }
  4784. /* Run through task list and migrate tasks from the dead cpu. */
  4785. static void migrate_live_tasks(int src_cpu)
  4786. {
  4787. struct task_struct *p, *t;
  4788. read_lock(&tasklist_lock);
  4789. do_each_thread(t, p) {
  4790. if (p == current)
  4791. continue;
  4792. if (task_cpu(p) == src_cpu)
  4793. move_task_off_dead_cpu(src_cpu, p);
  4794. } while_each_thread(t, p);
  4795. read_unlock(&tasklist_lock);
  4796. }
  4797. /*
  4798. * Schedules idle task to be the next runnable task on current CPU.
  4799. * It does so by boosting its priority to highest possible.
  4800. * Used by CPU offline code.
  4801. */
  4802. void sched_idle_next(void)
  4803. {
  4804. int this_cpu = smp_processor_id();
  4805. struct rq *rq = cpu_rq(this_cpu);
  4806. struct task_struct *p = rq->idle;
  4807. unsigned long flags;
  4808. /* cpu has to be offline */
  4809. BUG_ON(cpu_online(this_cpu));
  4810. /*
  4811. * Strictly not necessary since rest of the CPUs are stopped by now
  4812. * and interrupts disabled on the current cpu.
  4813. */
  4814. raw_spin_lock_irqsave(&rq->lock, flags);
  4815. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4816. activate_task(rq, p, 0);
  4817. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4818. }
  4819. /*
  4820. * Ensures that the idle task is using init_mm right before its cpu goes
  4821. * offline.
  4822. */
  4823. void idle_task_exit(void)
  4824. {
  4825. struct mm_struct *mm = current->active_mm;
  4826. BUG_ON(cpu_online(smp_processor_id()));
  4827. if (mm != &init_mm)
  4828. switch_mm(mm, &init_mm, current);
  4829. mmdrop(mm);
  4830. }
  4831. /* called under rq->lock with disabled interrupts */
  4832. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4833. {
  4834. struct rq *rq = cpu_rq(dead_cpu);
  4835. /* Must be exiting, otherwise would be on tasklist. */
  4836. BUG_ON(!p->exit_state);
  4837. /* Cannot have done final schedule yet: would have vanished. */
  4838. BUG_ON(p->state == TASK_DEAD);
  4839. get_task_struct(p);
  4840. /*
  4841. * Drop lock around migration; if someone else moves it,
  4842. * that's OK. No task can be added to this CPU, so iteration is
  4843. * fine.
  4844. */
  4845. raw_spin_unlock_irq(&rq->lock);
  4846. move_task_off_dead_cpu(dead_cpu, p);
  4847. raw_spin_lock_irq(&rq->lock);
  4848. put_task_struct(p);
  4849. }
  4850. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4851. static void migrate_dead_tasks(unsigned int dead_cpu)
  4852. {
  4853. struct rq *rq = cpu_rq(dead_cpu);
  4854. struct task_struct *next;
  4855. for ( ; ; ) {
  4856. if (!rq->nr_running)
  4857. break;
  4858. next = pick_next_task(rq);
  4859. if (!next)
  4860. break;
  4861. next->sched_class->put_prev_task(rq, next);
  4862. migrate_dead(dead_cpu, next);
  4863. }
  4864. }
  4865. /*
  4866. * remove the tasks which were accounted by rq from calc_load_tasks.
  4867. */
  4868. static void calc_global_load_remove(struct rq *rq)
  4869. {
  4870. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4871. rq->calc_load_active = 0;
  4872. }
  4873. #endif /* CONFIG_HOTPLUG_CPU */
  4874. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4875. static struct ctl_table sd_ctl_dir[] = {
  4876. {
  4877. .procname = "sched_domain",
  4878. .mode = 0555,
  4879. },
  4880. {}
  4881. };
  4882. static struct ctl_table sd_ctl_root[] = {
  4883. {
  4884. .procname = "kernel",
  4885. .mode = 0555,
  4886. .child = sd_ctl_dir,
  4887. },
  4888. {}
  4889. };
  4890. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4891. {
  4892. struct ctl_table *entry =
  4893. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4894. return entry;
  4895. }
  4896. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4897. {
  4898. struct ctl_table *entry;
  4899. /*
  4900. * In the intermediate directories, both the child directory and
  4901. * procname are dynamically allocated and could fail but the mode
  4902. * will always be set. In the lowest directory the names are
  4903. * static strings and all have proc handlers.
  4904. */
  4905. for (entry = *tablep; entry->mode; entry++) {
  4906. if (entry->child)
  4907. sd_free_ctl_entry(&entry->child);
  4908. if (entry->proc_handler == NULL)
  4909. kfree(entry->procname);
  4910. }
  4911. kfree(*tablep);
  4912. *tablep = NULL;
  4913. }
  4914. static void
  4915. set_table_entry(struct ctl_table *entry,
  4916. const char *procname, void *data, int maxlen,
  4917. mode_t mode, proc_handler *proc_handler)
  4918. {
  4919. entry->procname = procname;
  4920. entry->data = data;
  4921. entry->maxlen = maxlen;
  4922. entry->mode = mode;
  4923. entry->proc_handler = proc_handler;
  4924. }
  4925. static struct ctl_table *
  4926. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4927. {
  4928. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4929. if (table == NULL)
  4930. return NULL;
  4931. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4932. sizeof(long), 0644, proc_doulongvec_minmax);
  4933. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4934. sizeof(long), 0644, proc_doulongvec_minmax);
  4935. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4936. sizeof(int), 0644, proc_dointvec_minmax);
  4937. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4938. sizeof(int), 0644, proc_dointvec_minmax);
  4939. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4940. sizeof(int), 0644, proc_dointvec_minmax);
  4941. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4942. sizeof(int), 0644, proc_dointvec_minmax);
  4943. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4944. sizeof(int), 0644, proc_dointvec_minmax);
  4945. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4946. sizeof(int), 0644, proc_dointvec_minmax);
  4947. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4948. sizeof(int), 0644, proc_dointvec_minmax);
  4949. set_table_entry(&table[9], "cache_nice_tries",
  4950. &sd->cache_nice_tries,
  4951. sizeof(int), 0644, proc_dointvec_minmax);
  4952. set_table_entry(&table[10], "flags", &sd->flags,
  4953. sizeof(int), 0644, proc_dointvec_minmax);
  4954. set_table_entry(&table[11], "name", sd->name,
  4955. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4956. /* &table[12] is terminator */
  4957. return table;
  4958. }
  4959. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4960. {
  4961. struct ctl_table *entry, *table;
  4962. struct sched_domain *sd;
  4963. int domain_num = 0, i;
  4964. char buf[32];
  4965. for_each_domain(cpu, sd)
  4966. domain_num++;
  4967. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4968. if (table == NULL)
  4969. return NULL;
  4970. i = 0;
  4971. for_each_domain(cpu, sd) {
  4972. snprintf(buf, 32, "domain%d", i);
  4973. entry->procname = kstrdup(buf, GFP_KERNEL);
  4974. entry->mode = 0555;
  4975. entry->child = sd_alloc_ctl_domain_table(sd);
  4976. entry++;
  4977. i++;
  4978. }
  4979. return table;
  4980. }
  4981. static struct ctl_table_header *sd_sysctl_header;
  4982. static void register_sched_domain_sysctl(void)
  4983. {
  4984. int i, cpu_num = num_possible_cpus();
  4985. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4986. char buf[32];
  4987. WARN_ON(sd_ctl_dir[0].child);
  4988. sd_ctl_dir[0].child = entry;
  4989. if (entry == NULL)
  4990. return;
  4991. for_each_possible_cpu(i) {
  4992. snprintf(buf, 32, "cpu%d", i);
  4993. entry->procname = kstrdup(buf, GFP_KERNEL);
  4994. entry->mode = 0555;
  4995. entry->child = sd_alloc_ctl_cpu_table(i);
  4996. entry++;
  4997. }
  4998. WARN_ON(sd_sysctl_header);
  4999. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5000. }
  5001. /* may be called multiple times per register */
  5002. static void unregister_sched_domain_sysctl(void)
  5003. {
  5004. if (sd_sysctl_header)
  5005. unregister_sysctl_table(sd_sysctl_header);
  5006. sd_sysctl_header = NULL;
  5007. if (sd_ctl_dir[0].child)
  5008. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5009. }
  5010. #else
  5011. static void register_sched_domain_sysctl(void)
  5012. {
  5013. }
  5014. static void unregister_sched_domain_sysctl(void)
  5015. {
  5016. }
  5017. #endif
  5018. static void set_rq_online(struct rq *rq)
  5019. {
  5020. if (!rq->online) {
  5021. const struct sched_class *class;
  5022. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5023. rq->online = 1;
  5024. for_each_class(class) {
  5025. if (class->rq_online)
  5026. class->rq_online(rq);
  5027. }
  5028. }
  5029. }
  5030. static void set_rq_offline(struct rq *rq)
  5031. {
  5032. if (rq->online) {
  5033. const struct sched_class *class;
  5034. for_each_class(class) {
  5035. if (class->rq_offline)
  5036. class->rq_offline(rq);
  5037. }
  5038. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5039. rq->online = 0;
  5040. }
  5041. }
  5042. /*
  5043. * migration_call - callback that gets triggered when a CPU is added.
  5044. * Here we can start up the necessary migration thread for the new CPU.
  5045. */
  5046. static int __cpuinit
  5047. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5048. {
  5049. int cpu = (long)hcpu;
  5050. unsigned long flags;
  5051. struct rq *rq = cpu_rq(cpu);
  5052. switch (action) {
  5053. case CPU_UP_PREPARE:
  5054. case CPU_UP_PREPARE_FROZEN:
  5055. rq->calc_load_update = calc_load_update;
  5056. break;
  5057. case CPU_ONLINE:
  5058. case CPU_ONLINE_FROZEN:
  5059. /* Update our root-domain */
  5060. raw_spin_lock_irqsave(&rq->lock, flags);
  5061. if (rq->rd) {
  5062. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5063. set_rq_online(rq);
  5064. }
  5065. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5066. break;
  5067. #ifdef CONFIG_HOTPLUG_CPU
  5068. case CPU_DEAD:
  5069. case CPU_DEAD_FROZEN:
  5070. migrate_live_tasks(cpu);
  5071. /* Idle task back to normal (off runqueue, low prio) */
  5072. raw_spin_lock_irq(&rq->lock);
  5073. deactivate_task(rq, rq->idle, 0);
  5074. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5075. rq->idle->sched_class = &idle_sched_class;
  5076. migrate_dead_tasks(cpu);
  5077. raw_spin_unlock_irq(&rq->lock);
  5078. migrate_nr_uninterruptible(rq);
  5079. BUG_ON(rq->nr_running != 0);
  5080. calc_global_load_remove(rq);
  5081. break;
  5082. case CPU_DYING:
  5083. case CPU_DYING_FROZEN:
  5084. /* Update our root-domain */
  5085. raw_spin_lock_irqsave(&rq->lock, flags);
  5086. if (rq->rd) {
  5087. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5088. set_rq_offline(rq);
  5089. }
  5090. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5091. break;
  5092. #endif
  5093. }
  5094. return NOTIFY_OK;
  5095. }
  5096. /*
  5097. * Register at high priority so that task migration (migrate_all_tasks)
  5098. * happens before everything else. This has to be lower priority than
  5099. * the notifier in the perf_event subsystem, though.
  5100. */
  5101. static struct notifier_block __cpuinitdata migration_notifier = {
  5102. .notifier_call = migration_call,
  5103. .priority = CPU_PRI_MIGRATION,
  5104. };
  5105. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5106. unsigned long action, void *hcpu)
  5107. {
  5108. switch (action & ~CPU_TASKS_FROZEN) {
  5109. case CPU_ONLINE:
  5110. case CPU_DOWN_FAILED:
  5111. set_cpu_active((long)hcpu, true);
  5112. return NOTIFY_OK;
  5113. default:
  5114. return NOTIFY_DONE;
  5115. }
  5116. }
  5117. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5118. unsigned long action, void *hcpu)
  5119. {
  5120. switch (action & ~CPU_TASKS_FROZEN) {
  5121. case CPU_DOWN_PREPARE:
  5122. set_cpu_active((long)hcpu, false);
  5123. return NOTIFY_OK;
  5124. default:
  5125. return NOTIFY_DONE;
  5126. }
  5127. }
  5128. static int __init migration_init(void)
  5129. {
  5130. void *cpu = (void *)(long)smp_processor_id();
  5131. int err;
  5132. /* Initialize migration for the boot CPU */
  5133. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5134. BUG_ON(err == NOTIFY_BAD);
  5135. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5136. register_cpu_notifier(&migration_notifier);
  5137. /* Register cpu active notifiers */
  5138. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5139. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5140. return 0;
  5141. }
  5142. early_initcall(migration_init);
  5143. #endif
  5144. #ifdef CONFIG_SMP
  5145. #ifdef CONFIG_SCHED_DEBUG
  5146. static __read_mostly int sched_domain_debug_enabled;
  5147. static int __init sched_domain_debug_setup(char *str)
  5148. {
  5149. sched_domain_debug_enabled = 1;
  5150. return 0;
  5151. }
  5152. early_param("sched_debug", sched_domain_debug_setup);
  5153. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5154. struct cpumask *groupmask)
  5155. {
  5156. struct sched_group *group = sd->groups;
  5157. char str[256];
  5158. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5159. cpumask_clear(groupmask);
  5160. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5161. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5162. printk("does not load-balance\n");
  5163. if (sd->parent)
  5164. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5165. " has parent");
  5166. return -1;
  5167. }
  5168. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5169. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5170. printk(KERN_ERR "ERROR: domain->span does not contain "
  5171. "CPU%d\n", cpu);
  5172. }
  5173. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5174. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5175. " CPU%d\n", cpu);
  5176. }
  5177. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5178. do {
  5179. if (!group) {
  5180. printk("\n");
  5181. printk(KERN_ERR "ERROR: group is NULL\n");
  5182. break;
  5183. }
  5184. if (!group->cpu_power) {
  5185. printk(KERN_CONT "\n");
  5186. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5187. "set\n");
  5188. break;
  5189. }
  5190. if (!cpumask_weight(sched_group_cpus(group))) {
  5191. printk(KERN_CONT "\n");
  5192. printk(KERN_ERR "ERROR: empty group\n");
  5193. break;
  5194. }
  5195. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5196. printk(KERN_CONT "\n");
  5197. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5198. break;
  5199. }
  5200. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5201. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5202. printk(KERN_CONT " %s", str);
  5203. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5204. printk(KERN_CONT " (cpu_power = %d)",
  5205. group->cpu_power);
  5206. }
  5207. group = group->next;
  5208. } while (group != sd->groups);
  5209. printk(KERN_CONT "\n");
  5210. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5211. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5212. if (sd->parent &&
  5213. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5214. printk(KERN_ERR "ERROR: parent span is not a superset "
  5215. "of domain->span\n");
  5216. return 0;
  5217. }
  5218. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5219. {
  5220. cpumask_var_t groupmask;
  5221. int level = 0;
  5222. if (!sched_domain_debug_enabled)
  5223. return;
  5224. if (!sd) {
  5225. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5226. return;
  5227. }
  5228. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5229. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5230. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5231. return;
  5232. }
  5233. for (;;) {
  5234. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5235. break;
  5236. level++;
  5237. sd = sd->parent;
  5238. if (!sd)
  5239. break;
  5240. }
  5241. free_cpumask_var(groupmask);
  5242. }
  5243. #else /* !CONFIG_SCHED_DEBUG */
  5244. # define sched_domain_debug(sd, cpu) do { } while (0)
  5245. #endif /* CONFIG_SCHED_DEBUG */
  5246. static int sd_degenerate(struct sched_domain *sd)
  5247. {
  5248. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5249. return 1;
  5250. /* Following flags need at least 2 groups */
  5251. if (sd->flags & (SD_LOAD_BALANCE |
  5252. SD_BALANCE_NEWIDLE |
  5253. SD_BALANCE_FORK |
  5254. SD_BALANCE_EXEC |
  5255. SD_SHARE_CPUPOWER |
  5256. SD_SHARE_PKG_RESOURCES)) {
  5257. if (sd->groups != sd->groups->next)
  5258. return 0;
  5259. }
  5260. /* Following flags don't use groups */
  5261. if (sd->flags & (SD_WAKE_AFFINE))
  5262. return 0;
  5263. return 1;
  5264. }
  5265. static int
  5266. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5267. {
  5268. unsigned long cflags = sd->flags, pflags = parent->flags;
  5269. if (sd_degenerate(parent))
  5270. return 1;
  5271. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5272. return 0;
  5273. /* Flags needing groups don't count if only 1 group in parent */
  5274. if (parent->groups == parent->groups->next) {
  5275. pflags &= ~(SD_LOAD_BALANCE |
  5276. SD_BALANCE_NEWIDLE |
  5277. SD_BALANCE_FORK |
  5278. SD_BALANCE_EXEC |
  5279. SD_SHARE_CPUPOWER |
  5280. SD_SHARE_PKG_RESOURCES);
  5281. if (nr_node_ids == 1)
  5282. pflags &= ~SD_SERIALIZE;
  5283. }
  5284. if (~cflags & pflags)
  5285. return 0;
  5286. return 1;
  5287. }
  5288. static void free_rootdomain(struct root_domain *rd)
  5289. {
  5290. synchronize_sched();
  5291. cpupri_cleanup(&rd->cpupri);
  5292. free_cpumask_var(rd->rto_mask);
  5293. free_cpumask_var(rd->online);
  5294. free_cpumask_var(rd->span);
  5295. kfree(rd);
  5296. }
  5297. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5298. {
  5299. struct root_domain *old_rd = NULL;
  5300. unsigned long flags;
  5301. raw_spin_lock_irqsave(&rq->lock, flags);
  5302. if (rq->rd) {
  5303. old_rd = rq->rd;
  5304. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5305. set_rq_offline(rq);
  5306. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5307. /*
  5308. * If we dont want to free the old_rt yet then
  5309. * set old_rd to NULL to skip the freeing later
  5310. * in this function:
  5311. */
  5312. if (!atomic_dec_and_test(&old_rd->refcount))
  5313. old_rd = NULL;
  5314. }
  5315. atomic_inc(&rd->refcount);
  5316. rq->rd = rd;
  5317. cpumask_set_cpu(rq->cpu, rd->span);
  5318. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5319. set_rq_online(rq);
  5320. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5321. if (old_rd)
  5322. free_rootdomain(old_rd);
  5323. }
  5324. static int init_rootdomain(struct root_domain *rd)
  5325. {
  5326. memset(rd, 0, sizeof(*rd));
  5327. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5328. goto out;
  5329. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5330. goto free_span;
  5331. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5332. goto free_online;
  5333. if (cpupri_init(&rd->cpupri) != 0)
  5334. goto free_rto_mask;
  5335. return 0;
  5336. free_rto_mask:
  5337. free_cpumask_var(rd->rto_mask);
  5338. free_online:
  5339. free_cpumask_var(rd->online);
  5340. free_span:
  5341. free_cpumask_var(rd->span);
  5342. out:
  5343. return -ENOMEM;
  5344. }
  5345. static void init_defrootdomain(void)
  5346. {
  5347. init_rootdomain(&def_root_domain);
  5348. atomic_set(&def_root_domain.refcount, 1);
  5349. }
  5350. static struct root_domain *alloc_rootdomain(void)
  5351. {
  5352. struct root_domain *rd;
  5353. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5354. if (!rd)
  5355. return NULL;
  5356. if (init_rootdomain(rd) != 0) {
  5357. kfree(rd);
  5358. return NULL;
  5359. }
  5360. return rd;
  5361. }
  5362. /*
  5363. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5364. * hold the hotplug lock.
  5365. */
  5366. static void
  5367. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5368. {
  5369. struct rq *rq = cpu_rq(cpu);
  5370. struct sched_domain *tmp;
  5371. for (tmp = sd; tmp; tmp = tmp->parent)
  5372. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5373. /* Remove the sched domains which do not contribute to scheduling. */
  5374. for (tmp = sd; tmp; ) {
  5375. struct sched_domain *parent = tmp->parent;
  5376. if (!parent)
  5377. break;
  5378. if (sd_parent_degenerate(tmp, parent)) {
  5379. tmp->parent = parent->parent;
  5380. if (parent->parent)
  5381. parent->parent->child = tmp;
  5382. } else
  5383. tmp = tmp->parent;
  5384. }
  5385. if (sd && sd_degenerate(sd)) {
  5386. sd = sd->parent;
  5387. if (sd)
  5388. sd->child = NULL;
  5389. }
  5390. sched_domain_debug(sd, cpu);
  5391. rq_attach_root(rq, rd);
  5392. rcu_assign_pointer(rq->sd, sd);
  5393. }
  5394. /* cpus with isolated domains */
  5395. static cpumask_var_t cpu_isolated_map;
  5396. /* Setup the mask of cpus configured for isolated domains */
  5397. static int __init isolated_cpu_setup(char *str)
  5398. {
  5399. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5400. cpulist_parse(str, cpu_isolated_map);
  5401. return 1;
  5402. }
  5403. __setup("isolcpus=", isolated_cpu_setup);
  5404. /*
  5405. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5406. * to a function which identifies what group(along with sched group) a CPU
  5407. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5408. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5409. *
  5410. * init_sched_build_groups will build a circular linked list of the groups
  5411. * covered by the given span, and will set each group's ->cpumask correctly,
  5412. * and ->cpu_power to 0.
  5413. */
  5414. static void
  5415. init_sched_build_groups(const struct cpumask *span,
  5416. const struct cpumask *cpu_map,
  5417. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5418. struct sched_group **sg,
  5419. struct cpumask *tmpmask),
  5420. struct cpumask *covered, struct cpumask *tmpmask)
  5421. {
  5422. struct sched_group *first = NULL, *last = NULL;
  5423. int i;
  5424. cpumask_clear(covered);
  5425. for_each_cpu(i, span) {
  5426. struct sched_group *sg;
  5427. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5428. int j;
  5429. if (cpumask_test_cpu(i, covered))
  5430. continue;
  5431. cpumask_clear(sched_group_cpus(sg));
  5432. sg->cpu_power = 0;
  5433. for_each_cpu(j, span) {
  5434. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5435. continue;
  5436. cpumask_set_cpu(j, covered);
  5437. cpumask_set_cpu(j, sched_group_cpus(sg));
  5438. }
  5439. if (!first)
  5440. first = sg;
  5441. if (last)
  5442. last->next = sg;
  5443. last = sg;
  5444. }
  5445. last->next = first;
  5446. }
  5447. #define SD_NODES_PER_DOMAIN 16
  5448. #ifdef CONFIG_NUMA
  5449. /**
  5450. * find_next_best_node - find the next node to include in a sched_domain
  5451. * @node: node whose sched_domain we're building
  5452. * @used_nodes: nodes already in the sched_domain
  5453. *
  5454. * Find the next node to include in a given scheduling domain. Simply
  5455. * finds the closest node not already in the @used_nodes map.
  5456. *
  5457. * Should use nodemask_t.
  5458. */
  5459. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5460. {
  5461. int i, n, val, min_val, best_node = 0;
  5462. min_val = INT_MAX;
  5463. for (i = 0; i < nr_node_ids; i++) {
  5464. /* Start at @node */
  5465. n = (node + i) % nr_node_ids;
  5466. if (!nr_cpus_node(n))
  5467. continue;
  5468. /* Skip already used nodes */
  5469. if (node_isset(n, *used_nodes))
  5470. continue;
  5471. /* Simple min distance search */
  5472. val = node_distance(node, n);
  5473. if (val < min_val) {
  5474. min_val = val;
  5475. best_node = n;
  5476. }
  5477. }
  5478. node_set(best_node, *used_nodes);
  5479. return best_node;
  5480. }
  5481. /**
  5482. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5483. * @node: node whose cpumask we're constructing
  5484. * @span: resulting cpumask
  5485. *
  5486. * Given a node, construct a good cpumask for its sched_domain to span. It
  5487. * should be one that prevents unnecessary balancing, but also spreads tasks
  5488. * out optimally.
  5489. */
  5490. static void sched_domain_node_span(int node, struct cpumask *span)
  5491. {
  5492. nodemask_t used_nodes;
  5493. int i;
  5494. cpumask_clear(span);
  5495. nodes_clear(used_nodes);
  5496. cpumask_or(span, span, cpumask_of_node(node));
  5497. node_set(node, used_nodes);
  5498. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5499. int next_node = find_next_best_node(node, &used_nodes);
  5500. cpumask_or(span, span, cpumask_of_node(next_node));
  5501. }
  5502. }
  5503. #endif /* CONFIG_NUMA */
  5504. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5505. /*
  5506. * The cpus mask in sched_group and sched_domain hangs off the end.
  5507. *
  5508. * ( See the the comments in include/linux/sched.h:struct sched_group
  5509. * and struct sched_domain. )
  5510. */
  5511. struct static_sched_group {
  5512. struct sched_group sg;
  5513. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5514. };
  5515. struct static_sched_domain {
  5516. struct sched_domain sd;
  5517. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5518. };
  5519. struct s_data {
  5520. #ifdef CONFIG_NUMA
  5521. int sd_allnodes;
  5522. cpumask_var_t domainspan;
  5523. cpumask_var_t covered;
  5524. cpumask_var_t notcovered;
  5525. #endif
  5526. cpumask_var_t nodemask;
  5527. cpumask_var_t this_sibling_map;
  5528. cpumask_var_t this_core_map;
  5529. cpumask_var_t send_covered;
  5530. cpumask_var_t tmpmask;
  5531. struct sched_group **sched_group_nodes;
  5532. struct root_domain *rd;
  5533. };
  5534. enum s_alloc {
  5535. sa_sched_groups = 0,
  5536. sa_rootdomain,
  5537. sa_tmpmask,
  5538. sa_send_covered,
  5539. sa_this_core_map,
  5540. sa_this_sibling_map,
  5541. sa_nodemask,
  5542. sa_sched_group_nodes,
  5543. #ifdef CONFIG_NUMA
  5544. sa_notcovered,
  5545. sa_covered,
  5546. sa_domainspan,
  5547. #endif
  5548. sa_none,
  5549. };
  5550. /*
  5551. * SMT sched-domains:
  5552. */
  5553. #ifdef CONFIG_SCHED_SMT
  5554. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5555. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5556. static int
  5557. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5558. struct sched_group **sg, struct cpumask *unused)
  5559. {
  5560. if (sg)
  5561. *sg = &per_cpu(sched_groups, cpu).sg;
  5562. return cpu;
  5563. }
  5564. #endif /* CONFIG_SCHED_SMT */
  5565. /*
  5566. * multi-core sched-domains:
  5567. */
  5568. #ifdef CONFIG_SCHED_MC
  5569. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5570. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5571. #endif /* CONFIG_SCHED_MC */
  5572. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5573. static int
  5574. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5575. struct sched_group **sg, struct cpumask *mask)
  5576. {
  5577. int group;
  5578. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5579. group = cpumask_first(mask);
  5580. if (sg)
  5581. *sg = &per_cpu(sched_group_core, group).sg;
  5582. return group;
  5583. }
  5584. #elif defined(CONFIG_SCHED_MC)
  5585. static int
  5586. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5587. struct sched_group **sg, struct cpumask *unused)
  5588. {
  5589. if (sg)
  5590. *sg = &per_cpu(sched_group_core, cpu).sg;
  5591. return cpu;
  5592. }
  5593. #endif
  5594. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5595. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5596. static int
  5597. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5598. struct sched_group **sg, struct cpumask *mask)
  5599. {
  5600. int group;
  5601. #ifdef CONFIG_SCHED_MC
  5602. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5603. group = cpumask_first(mask);
  5604. #elif defined(CONFIG_SCHED_SMT)
  5605. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5606. group = cpumask_first(mask);
  5607. #else
  5608. group = cpu;
  5609. #endif
  5610. if (sg)
  5611. *sg = &per_cpu(sched_group_phys, group).sg;
  5612. return group;
  5613. }
  5614. #ifdef CONFIG_NUMA
  5615. /*
  5616. * The init_sched_build_groups can't handle what we want to do with node
  5617. * groups, so roll our own. Now each node has its own list of groups which
  5618. * gets dynamically allocated.
  5619. */
  5620. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5621. static struct sched_group ***sched_group_nodes_bycpu;
  5622. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5623. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5624. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5625. struct sched_group **sg,
  5626. struct cpumask *nodemask)
  5627. {
  5628. int group;
  5629. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5630. group = cpumask_first(nodemask);
  5631. if (sg)
  5632. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5633. return group;
  5634. }
  5635. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5636. {
  5637. struct sched_group *sg = group_head;
  5638. int j;
  5639. if (!sg)
  5640. return;
  5641. do {
  5642. for_each_cpu(j, sched_group_cpus(sg)) {
  5643. struct sched_domain *sd;
  5644. sd = &per_cpu(phys_domains, j).sd;
  5645. if (j != group_first_cpu(sd->groups)) {
  5646. /*
  5647. * Only add "power" once for each
  5648. * physical package.
  5649. */
  5650. continue;
  5651. }
  5652. sg->cpu_power += sd->groups->cpu_power;
  5653. }
  5654. sg = sg->next;
  5655. } while (sg != group_head);
  5656. }
  5657. static int build_numa_sched_groups(struct s_data *d,
  5658. const struct cpumask *cpu_map, int num)
  5659. {
  5660. struct sched_domain *sd;
  5661. struct sched_group *sg, *prev;
  5662. int n, j;
  5663. cpumask_clear(d->covered);
  5664. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5665. if (cpumask_empty(d->nodemask)) {
  5666. d->sched_group_nodes[num] = NULL;
  5667. goto out;
  5668. }
  5669. sched_domain_node_span(num, d->domainspan);
  5670. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5671. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5672. GFP_KERNEL, num);
  5673. if (!sg) {
  5674. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5675. num);
  5676. return -ENOMEM;
  5677. }
  5678. d->sched_group_nodes[num] = sg;
  5679. for_each_cpu(j, d->nodemask) {
  5680. sd = &per_cpu(node_domains, j).sd;
  5681. sd->groups = sg;
  5682. }
  5683. sg->cpu_power = 0;
  5684. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5685. sg->next = sg;
  5686. cpumask_or(d->covered, d->covered, d->nodemask);
  5687. prev = sg;
  5688. for (j = 0; j < nr_node_ids; j++) {
  5689. n = (num + j) % nr_node_ids;
  5690. cpumask_complement(d->notcovered, d->covered);
  5691. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5692. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5693. if (cpumask_empty(d->tmpmask))
  5694. break;
  5695. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5696. if (cpumask_empty(d->tmpmask))
  5697. continue;
  5698. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5699. GFP_KERNEL, num);
  5700. if (!sg) {
  5701. printk(KERN_WARNING
  5702. "Can not alloc domain group for node %d\n", j);
  5703. return -ENOMEM;
  5704. }
  5705. sg->cpu_power = 0;
  5706. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5707. sg->next = prev->next;
  5708. cpumask_or(d->covered, d->covered, d->tmpmask);
  5709. prev->next = sg;
  5710. prev = sg;
  5711. }
  5712. out:
  5713. return 0;
  5714. }
  5715. #endif /* CONFIG_NUMA */
  5716. #ifdef CONFIG_NUMA
  5717. /* Free memory allocated for various sched_group structures */
  5718. static void free_sched_groups(const struct cpumask *cpu_map,
  5719. struct cpumask *nodemask)
  5720. {
  5721. int cpu, i;
  5722. for_each_cpu(cpu, cpu_map) {
  5723. struct sched_group **sched_group_nodes
  5724. = sched_group_nodes_bycpu[cpu];
  5725. if (!sched_group_nodes)
  5726. continue;
  5727. for (i = 0; i < nr_node_ids; i++) {
  5728. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5729. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5730. if (cpumask_empty(nodemask))
  5731. continue;
  5732. if (sg == NULL)
  5733. continue;
  5734. sg = sg->next;
  5735. next_sg:
  5736. oldsg = sg;
  5737. sg = sg->next;
  5738. kfree(oldsg);
  5739. if (oldsg != sched_group_nodes[i])
  5740. goto next_sg;
  5741. }
  5742. kfree(sched_group_nodes);
  5743. sched_group_nodes_bycpu[cpu] = NULL;
  5744. }
  5745. }
  5746. #else /* !CONFIG_NUMA */
  5747. static void free_sched_groups(const struct cpumask *cpu_map,
  5748. struct cpumask *nodemask)
  5749. {
  5750. }
  5751. #endif /* CONFIG_NUMA */
  5752. /*
  5753. * Initialize sched groups cpu_power.
  5754. *
  5755. * cpu_power indicates the capacity of sched group, which is used while
  5756. * distributing the load between different sched groups in a sched domain.
  5757. * Typically cpu_power for all the groups in a sched domain will be same unless
  5758. * there are asymmetries in the topology. If there are asymmetries, group
  5759. * having more cpu_power will pickup more load compared to the group having
  5760. * less cpu_power.
  5761. */
  5762. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5763. {
  5764. struct sched_domain *child;
  5765. struct sched_group *group;
  5766. long power;
  5767. int weight;
  5768. WARN_ON(!sd || !sd->groups);
  5769. if (cpu != group_first_cpu(sd->groups))
  5770. return;
  5771. child = sd->child;
  5772. sd->groups->cpu_power = 0;
  5773. if (!child) {
  5774. power = SCHED_LOAD_SCALE;
  5775. weight = cpumask_weight(sched_domain_span(sd));
  5776. /*
  5777. * SMT siblings share the power of a single core.
  5778. * Usually multiple threads get a better yield out of
  5779. * that one core than a single thread would have,
  5780. * reflect that in sd->smt_gain.
  5781. */
  5782. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5783. power *= sd->smt_gain;
  5784. power /= weight;
  5785. power >>= SCHED_LOAD_SHIFT;
  5786. }
  5787. sd->groups->cpu_power += power;
  5788. return;
  5789. }
  5790. /*
  5791. * Add cpu_power of each child group to this groups cpu_power.
  5792. */
  5793. group = child->groups;
  5794. do {
  5795. sd->groups->cpu_power += group->cpu_power;
  5796. group = group->next;
  5797. } while (group != child->groups);
  5798. }
  5799. /*
  5800. * Initializers for schedule domains
  5801. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5802. */
  5803. #ifdef CONFIG_SCHED_DEBUG
  5804. # define SD_INIT_NAME(sd, type) sd->name = #type
  5805. #else
  5806. # define SD_INIT_NAME(sd, type) do { } while (0)
  5807. #endif
  5808. #define SD_INIT(sd, type) sd_init_##type(sd)
  5809. #define SD_INIT_FUNC(type) \
  5810. static noinline void sd_init_##type(struct sched_domain *sd) \
  5811. { \
  5812. memset(sd, 0, sizeof(*sd)); \
  5813. *sd = SD_##type##_INIT; \
  5814. sd->level = SD_LV_##type; \
  5815. SD_INIT_NAME(sd, type); \
  5816. }
  5817. SD_INIT_FUNC(CPU)
  5818. #ifdef CONFIG_NUMA
  5819. SD_INIT_FUNC(ALLNODES)
  5820. SD_INIT_FUNC(NODE)
  5821. #endif
  5822. #ifdef CONFIG_SCHED_SMT
  5823. SD_INIT_FUNC(SIBLING)
  5824. #endif
  5825. #ifdef CONFIG_SCHED_MC
  5826. SD_INIT_FUNC(MC)
  5827. #endif
  5828. static int default_relax_domain_level = -1;
  5829. static int __init setup_relax_domain_level(char *str)
  5830. {
  5831. unsigned long val;
  5832. val = simple_strtoul(str, NULL, 0);
  5833. if (val < SD_LV_MAX)
  5834. default_relax_domain_level = val;
  5835. return 1;
  5836. }
  5837. __setup("relax_domain_level=", setup_relax_domain_level);
  5838. static void set_domain_attribute(struct sched_domain *sd,
  5839. struct sched_domain_attr *attr)
  5840. {
  5841. int request;
  5842. if (!attr || attr->relax_domain_level < 0) {
  5843. if (default_relax_domain_level < 0)
  5844. return;
  5845. else
  5846. request = default_relax_domain_level;
  5847. } else
  5848. request = attr->relax_domain_level;
  5849. if (request < sd->level) {
  5850. /* turn off idle balance on this domain */
  5851. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5852. } else {
  5853. /* turn on idle balance on this domain */
  5854. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5855. }
  5856. }
  5857. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5858. const struct cpumask *cpu_map)
  5859. {
  5860. switch (what) {
  5861. case sa_sched_groups:
  5862. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5863. d->sched_group_nodes = NULL;
  5864. case sa_rootdomain:
  5865. free_rootdomain(d->rd); /* fall through */
  5866. case sa_tmpmask:
  5867. free_cpumask_var(d->tmpmask); /* fall through */
  5868. case sa_send_covered:
  5869. free_cpumask_var(d->send_covered); /* fall through */
  5870. case sa_this_core_map:
  5871. free_cpumask_var(d->this_core_map); /* fall through */
  5872. case sa_this_sibling_map:
  5873. free_cpumask_var(d->this_sibling_map); /* fall through */
  5874. case sa_nodemask:
  5875. free_cpumask_var(d->nodemask); /* fall through */
  5876. case sa_sched_group_nodes:
  5877. #ifdef CONFIG_NUMA
  5878. kfree(d->sched_group_nodes); /* fall through */
  5879. case sa_notcovered:
  5880. free_cpumask_var(d->notcovered); /* fall through */
  5881. case sa_covered:
  5882. free_cpumask_var(d->covered); /* fall through */
  5883. case sa_domainspan:
  5884. free_cpumask_var(d->domainspan); /* fall through */
  5885. #endif
  5886. case sa_none:
  5887. break;
  5888. }
  5889. }
  5890. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5891. const struct cpumask *cpu_map)
  5892. {
  5893. #ifdef CONFIG_NUMA
  5894. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5895. return sa_none;
  5896. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5897. return sa_domainspan;
  5898. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5899. return sa_covered;
  5900. /* Allocate the per-node list of sched groups */
  5901. d->sched_group_nodes = kcalloc(nr_node_ids,
  5902. sizeof(struct sched_group *), GFP_KERNEL);
  5903. if (!d->sched_group_nodes) {
  5904. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5905. return sa_notcovered;
  5906. }
  5907. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5908. #endif
  5909. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5910. return sa_sched_group_nodes;
  5911. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5912. return sa_nodemask;
  5913. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5914. return sa_this_sibling_map;
  5915. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5916. return sa_this_core_map;
  5917. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5918. return sa_send_covered;
  5919. d->rd = alloc_rootdomain();
  5920. if (!d->rd) {
  5921. printk(KERN_WARNING "Cannot alloc root domain\n");
  5922. return sa_tmpmask;
  5923. }
  5924. return sa_rootdomain;
  5925. }
  5926. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5927. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5928. {
  5929. struct sched_domain *sd = NULL;
  5930. #ifdef CONFIG_NUMA
  5931. struct sched_domain *parent;
  5932. d->sd_allnodes = 0;
  5933. if (cpumask_weight(cpu_map) >
  5934. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5935. sd = &per_cpu(allnodes_domains, i).sd;
  5936. SD_INIT(sd, ALLNODES);
  5937. set_domain_attribute(sd, attr);
  5938. cpumask_copy(sched_domain_span(sd), cpu_map);
  5939. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5940. d->sd_allnodes = 1;
  5941. }
  5942. parent = sd;
  5943. sd = &per_cpu(node_domains, i).sd;
  5944. SD_INIT(sd, NODE);
  5945. set_domain_attribute(sd, attr);
  5946. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5947. sd->parent = parent;
  5948. if (parent)
  5949. parent->child = sd;
  5950. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5951. #endif
  5952. return sd;
  5953. }
  5954. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5955. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5956. struct sched_domain *parent, int i)
  5957. {
  5958. struct sched_domain *sd;
  5959. sd = &per_cpu(phys_domains, i).sd;
  5960. SD_INIT(sd, CPU);
  5961. set_domain_attribute(sd, attr);
  5962. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5963. sd->parent = parent;
  5964. if (parent)
  5965. parent->child = sd;
  5966. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5967. return sd;
  5968. }
  5969. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5970. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5971. struct sched_domain *parent, int i)
  5972. {
  5973. struct sched_domain *sd = parent;
  5974. #ifdef CONFIG_SCHED_MC
  5975. sd = &per_cpu(core_domains, i).sd;
  5976. SD_INIT(sd, MC);
  5977. set_domain_attribute(sd, attr);
  5978. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5979. sd->parent = parent;
  5980. parent->child = sd;
  5981. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5982. #endif
  5983. return sd;
  5984. }
  5985. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5986. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5987. struct sched_domain *parent, int i)
  5988. {
  5989. struct sched_domain *sd = parent;
  5990. #ifdef CONFIG_SCHED_SMT
  5991. sd = &per_cpu(cpu_domains, i).sd;
  5992. SD_INIT(sd, SIBLING);
  5993. set_domain_attribute(sd, attr);
  5994. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5995. sd->parent = parent;
  5996. parent->child = sd;
  5997. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5998. #endif
  5999. return sd;
  6000. }
  6001. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6002. const struct cpumask *cpu_map, int cpu)
  6003. {
  6004. switch (l) {
  6005. #ifdef CONFIG_SCHED_SMT
  6006. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6007. cpumask_and(d->this_sibling_map, cpu_map,
  6008. topology_thread_cpumask(cpu));
  6009. if (cpu == cpumask_first(d->this_sibling_map))
  6010. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6011. &cpu_to_cpu_group,
  6012. d->send_covered, d->tmpmask);
  6013. break;
  6014. #endif
  6015. #ifdef CONFIG_SCHED_MC
  6016. case SD_LV_MC: /* set up multi-core groups */
  6017. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6018. if (cpu == cpumask_first(d->this_core_map))
  6019. init_sched_build_groups(d->this_core_map, cpu_map,
  6020. &cpu_to_core_group,
  6021. d->send_covered, d->tmpmask);
  6022. break;
  6023. #endif
  6024. case SD_LV_CPU: /* set up physical groups */
  6025. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6026. if (!cpumask_empty(d->nodemask))
  6027. init_sched_build_groups(d->nodemask, cpu_map,
  6028. &cpu_to_phys_group,
  6029. d->send_covered, d->tmpmask);
  6030. break;
  6031. #ifdef CONFIG_NUMA
  6032. case SD_LV_ALLNODES:
  6033. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6034. d->send_covered, d->tmpmask);
  6035. break;
  6036. #endif
  6037. default:
  6038. break;
  6039. }
  6040. }
  6041. /*
  6042. * Build sched domains for a given set of cpus and attach the sched domains
  6043. * to the individual cpus
  6044. */
  6045. static int __build_sched_domains(const struct cpumask *cpu_map,
  6046. struct sched_domain_attr *attr)
  6047. {
  6048. enum s_alloc alloc_state = sa_none;
  6049. struct s_data d;
  6050. struct sched_domain *sd;
  6051. int i;
  6052. #ifdef CONFIG_NUMA
  6053. d.sd_allnodes = 0;
  6054. #endif
  6055. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6056. if (alloc_state != sa_rootdomain)
  6057. goto error;
  6058. alloc_state = sa_sched_groups;
  6059. /*
  6060. * Set up domains for cpus specified by the cpu_map.
  6061. */
  6062. for_each_cpu(i, cpu_map) {
  6063. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6064. cpu_map);
  6065. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6066. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6067. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6068. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6069. }
  6070. for_each_cpu(i, cpu_map) {
  6071. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6072. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6073. }
  6074. /* Set up physical groups */
  6075. for (i = 0; i < nr_node_ids; i++)
  6076. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6077. #ifdef CONFIG_NUMA
  6078. /* Set up node groups */
  6079. if (d.sd_allnodes)
  6080. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6081. for (i = 0; i < nr_node_ids; i++)
  6082. if (build_numa_sched_groups(&d, cpu_map, i))
  6083. goto error;
  6084. #endif
  6085. /* Calculate CPU power for physical packages and nodes */
  6086. #ifdef CONFIG_SCHED_SMT
  6087. for_each_cpu(i, cpu_map) {
  6088. sd = &per_cpu(cpu_domains, i).sd;
  6089. init_sched_groups_power(i, sd);
  6090. }
  6091. #endif
  6092. #ifdef CONFIG_SCHED_MC
  6093. for_each_cpu(i, cpu_map) {
  6094. sd = &per_cpu(core_domains, i).sd;
  6095. init_sched_groups_power(i, sd);
  6096. }
  6097. #endif
  6098. for_each_cpu(i, cpu_map) {
  6099. sd = &per_cpu(phys_domains, i).sd;
  6100. init_sched_groups_power(i, sd);
  6101. }
  6102. #ifdef CONFIG_NUMA
  6103. for (i = 0; i < nr_node_ids; i++)
  6104. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6105. if (d.sd_allnodes) {
  6106. struct sched_group *sg;
  6107. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6108. d.tmpmask);
  6109. init_numa_sched_groups_power(sg);
  6110. }
  6111. #endif
  6112. /* Attach the domains */
  6113. for_each_cpu(i, cpu_map) {
  6114. #ifdef CONFIG_SCHED_SMT
  6115. sd = &per_cpu(cpu_domains, i).sd;
  6116. #elif defined(CONFIG_SCHED_MC)
  6117. sd = &per_cpu(core_domains, i).sd;
  6118. #else
  6119. sd = &per_cpu(phys_domains, i).sd;
  6120. #endif
  6121. cpu_attach_domain(sd, d.rd, i);
  6122. }
  6123. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6124. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6125. return 0;
  6126. error:
  6127. __free_domain_allocs(&d, alloc_state, cpu_map);
  6128. return -ENOMEM;
  6129. }
  6130. static int build_sched_domains(const struct cpumask *cpu_map)
  6131. {
  6132. return __build_sched_domains(cpu_map, NULL);
  6133. }
  6134. static cpumask_var_t *doms_cur; /* current sched domains */
  6135. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6136. static struct sched_domain_attr *dattr_cur;
  6137. /* attribues of custom domains in 'doms_cur' */
  6138. /*
  6139. * Special case: If a kmalloc of a doms_cur partition (array of
  6140. * cpumask) fails, then fallback to a single sched domain,
  6141. * as determined by the single cpumask fallback_doms.
  6142. */
  6143. static cpumask_var_t fallback_doms;
  6144. /*
  6145. * arch_update_cpu_topology lets virtualized architectures update the
  6146. * cpu core maps. It is supposed to return 1 if the topology changed
  6147. * or 0 if it stayed the same.
  6148. */
  6149. int __attribute__((weak)) arch_update_cpu_topology(void)
  6150. {
  6151. return 0;
  6152. }
  6153. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6154. {
  6155. int i;
  6156. cpumask_var_t *doms;
  6157. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6158. if (!doms)
  6159. return NULL;
  6160. for (i = 0; i < ndoms; i++) {
  6161. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6162. free_sched_domains(doms, i);
  6163. return NULL;
  6164. }
  6165. }
  6166. return doms;
  6167. }
  6168. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6169. {
  6170. unsigned int i;
  6171. for (i = 0; i < ndoms; i++)
  6172. free_cpumask_var(doms[i]);
  6173. kfree(doms);
  6174. }
  6175. /*
  6176. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6177. * For now this just excludes isolated cpus, but could be used to
  6178. * exclude other special cases in the future.
  6179. */
  6180. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6181. {
  6182. int err;
  6183. arch_update_cpu_topology();
  6184. ndoms_cur = 1;
  6185. doms_cur = alloc_sched_domains(ndoms_cur);
  6186. if (!doms_cur)
  6187. doms_cur = &fallback_doms;
  6188. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6189. dattr_cur = NULL;
  6190. err = build_sched_domains(doms_cur[0]);
  6191. register_sched_domain_sysctl();
  6192. return err;
  6193. }
  6194. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6195. struct cpumask *tmpmask)
  6196. {
  6197. free_sched_groups(cpu_map, tmpmask);
  6198. }
  6199. /*
  6200. * Detach sched domains from a group of cpus specified in cpu_map
  6201. * These cpus will now be attached to the NULL domain
  6202. */
  6203. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6204. {
  6205. /* Save because hotplug lock held. */
  6206. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6207. int i;
  6208. for_each_cpu(i, cpu_map)
  6209. cpu_attach_domain(NULL, &def_root_domain, i);
  6210. synchronize_sched();
  6211. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6212. }
  6213. /* handle null as "default" */
  6214. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6215. struct sched_domain_attr *new, int idx_new)
  6216. {
  6217. struct sched_domain_attr tmp;
  6218. /* fast path */
  6219. if (!new && !cur)
  6220. return 1;
  6221. tmp = SD_ATTR_INIT;
  6222. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6223. new ? (new + idx_new) : &tmp,
  6224. sizeof(struct sched_domain_attr));
  6225. }
  6226. /*
  6227. * Partition sched domains as specified by the 'ndoms_new'
  6228. * cpumasks in the array doms_new[] of cpumasks. This compares
  6229. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6230. * It destroys each deleted domain and builds each new domain.
  6231. *
  6232. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6233. * The masks don't intersect (don't overlap.) We should setup one
  6234. * sched domain for each mask. CPUs not in any of the cpumasks will
  6235. * not be load balanced. If the same cpumask appears both in the
  6236. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6237. * it as it is.
  6238. *
  6239. * The passed in 'doms_new' should be allocated using
  6240. * alloc_sched_domains. This routine takes ownership of it and will
  6241. * free_sched_domains it when done with it. If the caller failed the
  6242. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6243. * and partition_sched_domains() will fallback to the single partition
  6244. * 'fallback_doms', it also forces the domains to be rebuilt.
  6245. *
  6246. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6247. * ndoms_new == 0 is a special case for destroying existing domains,
  6248. * and it will not create the default domain.
  6249. *
  6250. * Call with hotplug lock held
  6251. */
  6252. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6253. struct sched_domain_attr *dattr_new)
  6254. {
  6255. int i, j, n;
  6256. int new_topology;
  6257. mutex_lock(&sched_domains_mutex);
  6258. /* always unregister in case we don't destroy any domains */
  6259. unregister_sched_domain_sysctl();
  6260. /* Let architecture update cpu core mappings. */
  6261. new_topology = arch_update_cpu_topology();
  6262. n = doms_new ? ndoms_new : 0;
  6263. /* Destroy deleted domains */
  6264. for (i = 0; i < ndoms_cur; i++) {
  6265. for (j = 0; j < n && !new_topology; j++) {
  6266. if (cpumask_equal(doms_cur[i], doms_new[j])
  6267. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6268. goto match1;
  6269. }
  6270. /* no match - a current sched domain not in new doms_new[] */
  6271. detach_destroy_domains(doms_cur[i]);
  6272. match1:
  6273. ;
  6274. }
  6275. if (doms_new == NULL) {
  6276. ndoms_cur = 0;
  6277. doms_new = &fallback_doms;
  6278. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6279. WARN_ON_ONCE(dattr_new);
  6280. }
  6281. /* Build new domains */
  6282. for (i = 0; i < ndoms_new; i++) {
  6283. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6284. if (cpumask_equal(doms_new[i], doms_cur[j])
  6285. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6286. goto match2;
  6287. }
  6288. /* no match - add a new doms_new */
  6289. __build_sched_domains(doms_new[i],
  6290. dattr_new ? dattr_new + i : NULL);
  6291. match2:
  6292. ;
  6293. }
  6294. /* Remember the new sched domains */
  6295. if (doms_cur != &fallback_doms)
  6296. free_sched_domains(doms_cur, ndoms_cur);
  6297. kfree(dattr_cur); /* kfree(NULL) is safe */
  6298. doms_cur = doms_new;
  6299. dattr_cur = dattr_new;
  6300. ndoms_cur = ndoms_new;
  6301. register_sched_domain_sysctl();
  6302. mutex_unlock(&sched_domains_mutex);
  6303. }
  6304. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6305. static void arch_reinit_sched_domains(void)
  6306. {
  6307. get_online_cpus();
  6308. /* Destroy domains first to force the rebuild */
  6309. partition_sched_domains(0, NULL, NULL);
  6310. rebuild_sched_domains();
  6311. put_online_cpus();
  6312. }
  6313. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6314. {
  6315. unsigned int level = 0;
  6316. if (sscanf(buf, "%u", &level) != 1)
  6317. return -EINVAL;
  6318. /*
  6319. * level is always be positive so don't check for
  6320. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6321. * What happens on 0 or 1 byte write,
  6322. * need to check for count as well?
  6323. */
  6324. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6325. return -EINVAL;
  6326. if (smt)
  6327. sched_smt_power_savings = level;
  6328. else
  6329. sched_mc_power_savings = level;
  6330. arch_reinit_sched_domains();
  6331. return count;
  6332. }
  6333. #ifdef CONFIG_SCHED_MC
  6334. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6335. struct sysdev_class_attribute *attr,
  6336. char *page)
  6337. {
  6338. return sprintf(page, "%u\n", sched_mc_power_savings);
  6339. }
  6340. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6341. struct sysdev_class_attribute *attr,
  6342. const char *buf, size_t count)
  6343. {
  6344. return sched_power_savings_store(buf, count, 0);
  6345. }
  6346. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6347. sched_mc_power_savings_show,
  6348. sched_mc_power_savings_store);
  6349. #endif
  6350. #ifdef CONFIG_SCHED_SMT
  6351. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6352. struct sysdev_class_attribute *attr,
  6353. char *page)
  6354. {
  6355. return sprintf(page, "%u\n", sched_smt_power_savings);
  6356. }
  6357. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6358. struct sysdev_class_attribute *attr,
  6359. const char *buf, size_t count)
  6360. {
  6361. return sched_power_savings_store(buf, count, 1);
  6362. }
  6363. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6364. sched_smt_power_savings_show,
  6365. sched_smt_power_savings_store);
  6366. #endif
  6367. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6368. {
  6369. int err = 0;
  6370. #ifdef CONFIG_SCHED_SMT
  6371. if (smt_capable())
  6372. err = sysfs_create_file(&cls->kset.kobj,
  6373. &attr_sched_smt_power_savings.attr);
  6374. #endif
  6375. #ifdef CONFIG_SCHED_MC
  6376. if (!err && mc_capable())
  6377. err = sysfs_create_file(&cls->kset.kobj,
  6378. &attr_sched_mc_power_savings.attr);
  6379. #endif
  6380. return err;
  6381. }
  6382. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6383. /*
  6384. * Update cpusets according to cpu_active mask. If cpusets are
  6385. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6386. * around partition_sched_domains().
  6387. */
  6388. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6389. void *hcpu)
  6390. {
  6391. switch (action & ~CPU_TASKS_FROZEN) {
  6392. case CPU_ONLINE:
  6393. case CPU_DOWN_FAILED:
  6394. cpuset_update_active_cpus();
  6395. return NOTIFY_OK;
  6396. default:
  6397. return NOTIFY_DONE;
  6398. }
  6399. }
  6400. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6401. void *hcpu)
  6402. {
  6403. switch (action & ~CPU_TASKS_FROZEN) {
  6404. case CPU_DOWN_PREPARE:
  6405. cpuset_update_active_cpus();
  6406. return NOTIFY_OK;
  6407. default:
  6408. return NOTIFY_DONE;
  6409. }
  6410. }
  6411. static int update_runtime(struct notifier_block *nfb,
  6412. unsigned long action, void *hcpu)
  6413. {
  6414. int cpu = (int)(long)hcpu;
  6415. switch (action) {
  6416. case CPU_DOWN_PREPARE:
  6417. case CPU_DOWN_PREPARE_FROZEN:
  6418. disable_runtime(cpu_rq(cpu));
  6419. return NOTIFY_OK;
  6420. case CPU_DOWN_FAILED:
  6421. case CPU_DOWN_FAILED_FROZEN:
  6422. case CPU_ONLINE:
  6423. case CPU_ONLINE_FROZEN:
  6424. enable_runtime(cpu_rq(cpu));
  6425. return NOTIFY_OK;
  6426. default:
  6427. return NOTIFY_DONE;
  6428. }
  6429. }
  6430. void __init sched_init_smp(void)
  6431. {
  6432. cpumask_var_t non_isolated_cpus;
  6433. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6434. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6435. #if defined(CONFIG_NUMA)
  6436. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6437. GFP_KERNEL);
  6438. BUG_ON(sched_group_nodes_bycpu == NULL);
  6439. #endif
  6440. get_online_cpus();
  6441. mutex_lock(&sched_domains_mutex);
  6442. arch_init_sched_domains(cpu_active_mask);
  6443. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6444. if (cpumask_empty(non_isolated_cpus))
  6445. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6446. mutex_unlock(&sched_domains_mutex);
  6447. put_online_cpus();
  6448. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6449. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6450. /* RT runtime code needs to handle some hotplug events */
  6451. hotcpu_notifier(update_runtime, 0);
  6452. init_hrtick();
  6453. /* Move init over to a non-isolated CPU */
  6454. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6455. BUG();
  6456. sched_init_granularity();
  6457. free_cpumask_var(non_isolated_cpus);
  6458. init_sched_rt_class();
  6459. }
  6460. #else
  6461. void __init sched_init_smp(void)
  6462. {
  6463. sched_init_granularity();
  6464. }
  6465. #endif /* CONFIG_SMP */
  6466. const_debug unsigned int sysctl_timer_migration = 1;
  6467. int in_sched_functions(unsigned long addr)
  6468. {
  6469. return in_lock_functions(addr) ||
  6470. (addr >= (unsigned long)__sched_text_start
  6471. && addr < (unsigned long)__sched_text_end);
  6472. }
  6473. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6474. {
  6475. cfs_rq->tasks_timeline = RB_ROOT;
  6476. INIT_LIST_HEAD(&cfs_rq->tasks);
  6477. #ifdef CONFIG_FAIR_GROUP_SCHED
  6478. cfs_rq->rq = rq;
  6479. #endif
  6480. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6481. }
  6482. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6483. {
  6484. struct rt_prio_array *array;
  6485. int i;
  6486. array = &rt_rq->active;
  6487. for (i = 0; i < MAX_RT_PRIO; i++) {
  6488. INIT_LIST_HEAD(array->queue + i);
  6489. __clear_bit(i, array->bitmap);
  6490. }
  6491. /* delimiter for bitsearch: */
  6492. __set_bit(MAX_RT_PRIO, array->bitmap);
  6493. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6494. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6495. #ifdef CONFIG_SMP
  6496. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6497. #endif
  6498. #endif
  6499. #ifdef CONFIG_SMP
  6500. rt_rq->rt_nr_migratory = 0;
  6501. rt_rq->overloaded = 0;
  6502. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6503. #endif
  6504. rt_rq->rt_time = 0;
  6505. rt_rq->rt_throttled = 0;
  6506. rt_rq->rt_runtime = 0;
  6507. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6508. #ifdef CONFIG_RT_GROUP_SCHED
  6509. rt_rq->rt_nr_boosted = 0;
  6510. rt_rq->rq = rq;
  6511. #endif
  6512. }
  6513. #ifdef CONFIG_FAIR_GROUP_SCHED
  6514. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6515. struct sched_entity *se, int cpu, int add,
  6516. struct sched_entity *parent)
  6517. {
  6518. struct rq *rq = cpu_rq(cpu);
  6519. tg->cfs_rq[cpu] = cfs_rq;
  6520. init_cfs_rq(cfs_rq, rq);
  6521. cfs_rq->tg = tg;
  6522. if (add)
  6523. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6524. tg->se[cpu] = se;
  6525. /* se could be NULL for init_task_group */
  6526. if (!se)
  6527. return;
  6528. if (!parent)
  6529. se->cfs_rq = &rq->cfs;
  6530. else
  6531. se->cfs_rq = parent->my_q;
  6532. se->my_q = cfs_rq;
  6533. se->load.weight = tg->shares;
  6534. se->load.inv_weight = 0;
  6535. se->parent = parent;
  6536. }
  6537. #endif
  6538. #ifdef CONFIG_RT_GROUP_SCHED
  6539. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6540. struct sched_rt_entity *rt_se, int cpu, int add,
  6541. struct sched_rt_entity *parent)
  6542. {
  6543. struct rq *rq = cpu_rq(cpu);
  6544. tg->rt_rq[cpu] = rt_rq;
  6545. init_rt_rq(rt_rq, rq);
  6546. rt_rq->tg = tg;
  6547. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6548. if (add)
  6549. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6550. tg->rt_se[cpu] = rt_se;
  6551. if (!rt_se)
  6552. return;
  6553. if (!parent)
  6554. rt_se->rt_rq = &rq->rt;
  6555. else
  6556. rt_se->rt_rq = parent->my_q;
  6557. rt_se->my_q = rt_rq;
  6558. rt_se->parent = parent;
  6559. INIT_LIST_HEAD(&rt_se->run_list);
  6560. }
  6561. #endif
  6562. void __init sched_init(void)
  6563. {
  6564. int i, j;
  6565. unsigned long alloc_size = 0, ptr;
  6566. #ifdef CONFIG_FAIR_GROUP_SCHED
  6567. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6568. #endif
  6569. #ifdef CONFIG_RT_GROUP_SCHED
  6570. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6571. #endif
  6572. #ifdef CONFIG_CPUMASK_OFFSTACK
  6573. alloc_size += num_possible_cpus() * cpumask_size();
  6574. #endif
  6575. if (alloc_size) {
  6576. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6577. #ifdef CONFIG_FAIR_GROUP_SCHED
  6578. init_task_group.se = (struct sched_entity **)ptr;
  6579. ptr += nr_cpu_ids * sizeof(void **);
  6580. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6581. ptr += nr_cpu_ids * sizeof(void **);
  6582. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6583. #ifdef CONFIG_RT_GROUP_SCHED
  6584. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6585. ptr += nr_cpu_ids * sizeof(void **);
  6586. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6587. ptr += nr_cpu_ids * sizeof(void **);
  6588. #endif /* CONFIG_RT_GROUP_SCHED */
  6589. #ifdef CONFIG_CPUMASK_OFFSTACK
  6590. for_each_possible_cpu(i) {
  6591. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6592. ptr += cpumask_size();
  6593. }
  6594. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6595. }
  6596. #ifdef CONFIG_SMP
  6597. init_defrootdomain();
  6598. #endif
  6599. init_rt_bandwidth(&def_rt_bandwidth,
  6600. global_rt_period(), global_rt_runtime());
  6601. #ifdef CONFIG_RT_GROUP_SCHED
  6602. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6603. global_rt_period(), global_rt_runtime());
  6604. #endif /* CONFIG_RT_GROUP_SCHED */
  6605. #ifdef CONFIG_CGROUP_SCHED
  6606. list_add(&init_task_group.list, &task_groups);
  6607. INIT_LIST_HEAD(&init_task_group.children);
  6608. #endif /* CONFIG_CGROUP_SCHED */
  6609. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6610. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6611. __alignof__(unsigned long));
  6612. #endif
  6613. for_each_possible_cpu(i) {
  6614. struct rq *rq;
  6615. rq = cpu_rq(i);
  6616. raw_spin_lock_init(&rq->lock);
  6617. rq->nr_running = 0;
  6618. rq->calc_load_active = 0;
  6619. rq->calc_load_update = jiffies + LOAD_FREQ;
  6620. init_cfs_rq(&rq->cfs, rq);
  6621. init_rt_rq(&rq->rt, rq);
  6622. #ifdef CONFIG_FAIR_GROUP_SCHED
  6623. init_task_group.shares = init_task_group_load;
  6624. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6625. #ifdef CONFIG_CGROUP_SCHED
  6626. /*
  6627. * How much cpu bandwidth does init_task_group get?
  6628. *
  6629. * In case of task-groups formed thr' the cgroup filesystem, it
  6630. * gets 100% of the cpu resources in the system. This overall
  6631. * system cpu resource is divided among the tasks of
  6632. * init_task_group and its child task-groups in a fair manner,
  6633. * based on each entity's (task or task-group's) weight
  6634. * (se->load.weight).
  6635. *
  6636. * In other words, if init_task_group has 10 tasks of weight
  6637. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6638. * then A0's share of the cpu resource is:
  6639. *
  6640. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6641. *
  6642. * We achieve this by letting init_task_group's tasks sit
  6643. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6644. */
  6645. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6646. #endif
  6647. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6648. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6649. #ifdef CONFIG_RT_GROUP_SCHED
  6650. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6651. #ifdef CONFIG_CGROUP_SCHED
  6652. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6653. #endif
  6654. #endif
  6655. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6656. rq->cpu_load[j] = 0;
  6657. rq->last_load_update_tick = jiffies;
  6658. #ifdef CONFIG_SMP
  6659. rq->sd = NULL;
  6660. rq->rd = NULL;
  6661. rq->cpu_power = SCHED_LOAD_SCALE;
  6662. rq->post_schedule = 0;
  6663. rq->active_balance = 0;
  6664. rq->next_balance = jiffies;
  6665. rq->push_cpu = 0;
  6666. rq->cpu = i;
  6667. rq->online = 0;
  6668. rq->idle_stamp = 0;
  6669. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6670. rq_attach_root(rq, &def_root_domain);
  6671. #ifdef CONFIG_NO_HZ
  6672. rq->nohz_balance_kick = 0;
  6673. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6674. #endif
  6675. #endif
  6676. init_rq_hrtick(rq);
  6677. atomic_set(&rq->nr_iowait, 0);
  6678. }
  6679. set_load_weight(&init_task);
  6680. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6681. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6682. #endif
  6683. #ifdef CONFIG_SMP
  6684. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6685. #endif
  6686. #ifdef CONFIG_RT_MUTEXES
  6687. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6688. #endif
  6689. /*
  6690. * The boot idle thread does lazy MMU switching as well:
  6691. */
  6692. atomic_inc(&init_mm.mm_count);
  6693. enter_lazy_tlb(&init_mm, current);
  6694. /*
  6695. * Make us the idle thread. Technically, schedule() should not be
  6696. * called from this thread, however somewhere below it might be,
  6697. * but because we are the idle thread, we just pick up running again
  6698. * when this runqueue becomes "idle".
  6699. */
  6700. init_idle(current, smp_processor_id());
  6701. calc_load_update = jiffies + LOAD_FREQ;
  6702. /*
  6703. * During early bootup we pretend to be a normal task:
  6704. */
  6705. current->sched_class = &fair_sched_class;
  6706. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6707. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6708. #ifdef CONFIG_SMP
  6709. #ifdef CONFIG_NO_HZ
  6710. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6711. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6712. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6713. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6714. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6715. #endif
  6716. /* May be allocated at isolcpus cmdline parse time */
  6717. if (cpu_isolated_map == NULL)
  6718. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6719. #endif /* SMP */
  6720. perf_event_init();
  6721. scheduler_running = 1;
  6722. }
  6723. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6724. static inline int preempt_count_equals(int preempt_offset)
  6725. {
  6726. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6727. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6728. }
  6729. void __might_sleep(const char *file, int line, int preempt_offset)
  6730. {
  6731. #ifdef in_atomic
  6732. static unsigned long prev_jiffy; /* ratelimiting */
  6733. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6734. system_state != SYSTEM_RUNNING || oops_in_progress)
  6735. return;
  6736. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6737. return;
  6738. prev_jiffy = jiffies;
  6739. printk(KERN_ERR
  6740. "BUG: sleeping function called from invalid context at %s:%d\n",
  6741. file, line);
  6742. printk(KERN_ERR
  6743. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6744. in_atomic(), irqs_disabled(),
  6745. current->pid, current->comm);
  6746. debug_show_held_locks(current);
  6747. if (irqs_disabled())
  6748. print_irqtrace_events(current);
  6749. dump_stack();
  6750. #endif
  6751. }
  6752. EXPORT_SYMBOL(__might_sleep);
  6753. #endif
  6754. #ifdef CONFIG_MAGIC_SYSRQ
  6755. static void normalize_task(struct rq *rq, struct task_struct *p)
  6756. {
  6757. int on_rq;
  6758. on_rq = p->se.on_rq;
  6759. if (on_rq)
  6760. deactivate_task(rq, p, 0);
  6761. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6762. if (on_rq) {
  6763. activate_task(rq, p, 0);
  6764. resched_task(rq->curr);
  6765. }
  6766. }
  6767. void normalize_rt_tasks(void)
  6768. {
  6769. struct task_struct *g, *p;
  6770. unsigned long flags;
  6771. struct rq *rq;
  6772. read_lock_irqsave(&tasklist_lock, flags);
  6773. do_each_thread(g, p) {
  6774. /*
  6775. * Only normalize user tasks:
  6776. */
  6777. if (!p->mm)
  6778. continue;
  6779. p->se.exec_start = 0;
  6780. #ifdef CONFIG_SCHEDSTATS
  6781. p->se.statistics.wait_start = 0;
  6782. p->se.statistics.sleep_start = 0;
  6783. p->se.statistics.block_start = 0;
  6784. #endif
  6785. if (!rt_task(p)) {
  6786. /*
  6787. * Renice negative nice level userspace
  6788. * tasks back to 0:
  6789. */
  6790. if (TASK_NICE(p) < 0 && p->mm)
  6791. set_user_nice(p, 0);
  6792. continue;
  6793. }
  6794. raw_spin_lock(&p->pi_lock);
  6795. rq = __task_rq_lock(p);
  6796. normalize_task(rq, p);
  6797. __task_rq_unlock(rq);
  6798. raw_spin_unlock(&p->pi_lock);
  6799. } while_each_thread(g, p);
  6800. read_unlock_irqrestore(&tasklist_lock, flags);
  6801. }
  6802. #endif /* CONFIG_MAGIC_SYSRQ */
  6803. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6804. /*
  6805. * These functions are only useful for the IA64 MCA handling, or kdb.
  6806. *
  6807. * They can only be called when the whole system has been
  6808. * stopped - every CPU needs to be quiescent, and no scheduling
  6809. * activity can take place. Using them for anything else would
  6810. * be a serious bug, and as a result, they aren't even visible
  6811. * under any other configuration.
  6812. */
  6813. /**
  6814. * curr_task - return the current task for a given cpu.
  6815. * @cpu: the processor in question.
  6816. *
  6817. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6818. */
  6819. struct task_struct *curr_task(int cpu)
  6820. {
  6821. return cpu_curr(cpu);
  6822. }
  6823. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6824. #ifdef CONFIG_IA64
  6825. /**
  6826. * set_curr_task - set the current task for a given cpu.
  6827. * @cpu: the processor in question.
  6828. * @p: the task pointer to set.
  6829. *
  6830. * Description: This function must only be used when non-maskable interrupts
  6831. * are serviced on a separate stack. It allows the architecture to switch the
  6832. * notion of the current task on a cpu in a non-blocking manner. This function
  6833. * must be called with all CPU's synchronized, and interrupts disabled, the
  6834. * and caller must save the original value of the current task (see
  6835. * curr_task() above) and restore that value before reenabling interrupts and
  6836. * re-starting the system.
  6837. *
  6838. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6839. */
  6840. void set_curr_task(int cpu, struct task_struct *p)
  6841. {
  6842. cpu_curr(cpu) = p;
  6843. }
  6844. #endif
  6845. #ifdef CONFIG_FAIR_GROUP_SCHED
  6846. static void free_fair_sched_group(struct task_group *tg)
  6847. {
  6848. int i;
  6849. for_each_possible_cpu(i) {
  6850. if (tg->cfs_rq)
  6851. kfree(tg->cfs_rq[i]);
  6852. if (tg->se)
  6853. kfree(tg->se[i]);
  6854. }
  6855. kfree(tg->cfs_rq);
  6856. kfree(tg->se);
  6857. }
  6858. static
  6859. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6860. {
  6861. struct cfs_rq *cfs_rq;
  6862. struct sched_entity *se;
  6863. struct rq *rq;
  6864. int i;
  6865. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6866. if (!tg->cfs_rq)
  6867. goto err;
  6868. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6869. if (!tg->se)
  6870. goto err;
  6871. tg->shares = NICE_0_LOAD;
  6872. for_each_possible_cpu(i) {
  6873. rq = cpu_rq(i);
  6874. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6875. GFP_KERNEL, cpu_to_node(i));
  6876. if (!cfs_rq)
  6877. goto err;
  6878. se = kzalloc_node(sizeof(struct sched_entity),
  6879. GFP_KERNEL, cpu_to_node(i));
  6880. if (!se)
  6881. goto err_free_rq;
  6882. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6883. }
  6884. return 1;
  6885. err_free_rq:
  6886. kfree(cfs_rq);
  6887. err:
  6888. return 0;
  6889. }
  6890. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6891. {
  6892. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6893. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6894. }
  6895. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6896. {
  6897. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6898. }
  6899. #else /* !CONFG_FAIR_GROUP_SCHED */
  6900. static inline void free_fair_sched_group(struct task_group *tg)
  6901. {
  6902. }
  6903. static inline
  6904. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6905. {
  6906. return 1;
  6907. }
  6908. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6909. {
  6910. }
  6911. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6912. {
  6913. }
  6914. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6915. #ifdef CONFIG_RT_GROUP_SCHED
  6916. static void free_rt_sched_group(struct task_group *tg)
  6917. {
  6918. int i;
  6919. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6920. for_each_possible_cpu(i) {
  6921. if (tg->rt_rq)
  6922. kfree(tg->rt_rq[i]);
  6923. if (tg->rt_se)
  6924. kfree(tg->rt_se[i]);
  6925. }
  6926. kfree(tg->rt_rq);
  6927. kfree(tg->rt_se);
  6928. }
  6929. static
  6930. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6931. {
  6932. struct rt_rq *rt_rq;
  6933. struct sched_rt_entity *rt_se;
  6934. struct rq *rq;
  6935. int i;
  6936. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6937. if (!tg->rt_rq)
  6938. goto err;
  6939. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6940. if (!tg->rt_se)
  6941. goto err;
  6942. init_rt_bandwidth(&tg->rt_bandwidth,
  6943. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6944. for_each_possible_cpu(i) {
  6945. rq = cpu_rq(i);
  6946. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6947. GFP_KERNEL, cpu_to_node(i));
  6948. if (!rt_rq)
  6949. goto err;
  6950. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6951. GFP_KERNEL, cpu_to_node(i));
  6952. if (!rt_se)
  6953. goto err_free_rq;
  6954. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6955. }
  6956. return 1;
  6957. err_free_rq:
  6958. kfree(rt_rq);
  6959. err:
  6960. return 0;
  6961. }
  6962. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6963. {
  6964. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6965. &cpu_rq(cpu)->leaf_rt_rq_list);
  6966. }
  6967. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6968. {
  6969. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6970. }
  6971. #else /* !CONFIG_RT_GROUP_SCHED */
  6972. static inline void free_rt_sched_group(struct task_group *tg)
  6973. {
  6974. }
  6975. static inline
  6976. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6977. {
  6978. return 1;
  6979. }
  6980. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6981. {
  6982. }
  6983. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6984. {
  6985. }
  6986. #endif /* CONFIG_RT_GROUP_SCHED */
  6987. #ifdef CONFIG_CGROUP_SCHED
  6988. static void free_sched_group(struct task_group *tg)
  6989. {
  6990. free_fair_sched_group(tg);
  6991. free_rt_sched_group(tg);
  6992. kfree(tg);
  6993. }
  6994. /* allocate runqueue etc for a new task group */
  6995. struct task_group *sched_create_group(struct task_group *parent)
  6996. {
  6997. struct task_group *tg;
  6998. unsigned long flags;
  6999. int i;
  7000. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7001. if (!tg)
  7002. return ERR_PTR(-ENOMEM);
  7003. if (!alloc_fair_sched_group(tg, parent))
  7004. goto err;
  7005. if (!alloc_rt_sched_group(tg, parent))
  7006. goto err;
  7007. spin_lock_irqsave(&task_group_lock, flags);
  7008. for_each_possible_cpu(i) {
  7009. register_fair_sched_group(tg, i);
  7010. register_rt_sched_group(tg, i);
  7011. }
  7012. list_add_rcu(&tg->list, &task_groups);
  7013. WARN_ON(!parent); /* root should already exist */
  7014. tg->parent = parent;
  7015. INIT_LIST_HEAD(&tg->children);
  7016. list_add_rcu(&tg->siblings, &parent->children);
  7017. spin_unlock_irqrestore(&task_group_lock, flags);
  7018. return tg;
  7019. err:
  7020. free_sched_group(tg);
  7021. return ERR_PTR(-ENOMEM);
  7022. }
  7023. /* rcu callback to free various structures associated with a task group */
  7024. static void free_sched_group_rcu(struct rcu_head *rhp)
  7025. {
  7026. /* now it should be safe to free those cfs_rqs */
  7027. free_sched_group(container_of(rhp, struct task_group, rcu));
  7028. }
  7029. /* Destroy runqueue etc associated with a task group */
  7030. void sched_destroy_group(struct task_group *tg)
  7031. {
  7032. unsigned long flags;
  7033. int i;
  7034. spin_lock_irqsave(&task_group_lock, flags);
  7035. for_each_possible_cpu(i) {
  7036. unregister_fair_sched_group(tg, i);
  7037. unregister_rt_sched_group(tg, i);
  7038. }
  7039. list_del_rcu(&tg->list);
  7040. list_del_rcu(&tg->siblings);
  7041. spin_unlock_irqrestore(&task_group_lock, flags);
  7042. /* wait for possible concurrent references to cfs_rqs complete */
  7043. call_rcu(&tg->rcu, free_sched_group_rcu);
  7044. }
  7045. /* change task's runqueue when it moves between groups.
  7046. * The caller of this function should have put the task in its new group
  7047. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7048. * reflect its new group.
  7049. */
  7050. void sched_move_task(struct task_struct *tsk)
  7051. {
  7052. int on_rq, running;
  7053. unsigned long flags;
  7054. struct rq *rq;
  7055. rq = task_rq_lock(tsk, &flags);
  7056. running = task_current(rq, tsk);
  7057. on_rq = tsk->se.on_rq;
  7058. if (on_rq)
  7059. dequeue_task(rq, tsk, 0);
  7060. if (unlikely(running))
  7061. tsk->sched_class->put_prev_task(rq, tsk);
  7062. set_task_rq(tsk, task_cpu(tsk));
  7063. #ifdef CONFIG_FAIR_GROUP_SCHED
  7064. if (tsk->sched_class->moved_group)
  7065. tsk->sched_class->moved_group(tsk, on_rq);
  7066. #endif
  7067. if (unlikely(running))
  7068. tsk->sched_class->set_curr_task(rq);
  7069. if (on_rq)
  7070. enqueue_task(rq, tsk, 0);
  7071. task_rq_unlock(rq, &flags);
  7072. }
  7073. #endif /* CONFIG_CGROUP_SCHED */
  7074. #ifdef CONFIG_FAIR_GROUP_SCHED
  7075. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7076. {
  7077. struct cfs_rq *cfs_rq = se->cfs_rq;
  7078. int on_rq;
  7079. on_rq = se->on_rq;
  7080. if (on_rq)
  7081. dequeue_entity(cfs_rq, se, 0);
  7082. se->load.weight = shares;
  7083. se->load.inv_weight = 0;
  7084. if (on_rq)
  7085. enqueue_entity(cfs_rq, se, 0);
  7086. }
  7087. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7088. {
  7089. struct cfs_rq *cfs_rq = se->cfs_rq;
  7090. struct rq *rq = cfs_rq->rq;
  7091. unsigned long flags;
  7092. raw_spin_lock_irqsave(&rq->lock, flags);
  7093. __set_se_shares(se, shares);
  7094. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7095. }
  7096. static DEFINE_MUTEX(shares_mutex);
  7097. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7098. {
  7099. int i;
  7100. unsigned long flags;
  7101. /*
  7102. * We can't change the weight of the root cgroup.
  7103. */
  7104. if (!tg->se[0])
  7105. return -EINVAL;
  7106. if (shares < MIN_SHARES)
  7107. shares = MIN_SHARES;
  7108. else if (shares > MAX_SHARES)
  7109. shares = MAX_SHARES;
  7110. mutex_lock(&shares_mutex);
  7111. if (tg->shares == shares)
  7112. goto done;
  7113. spin_lock_irqsave(&task_group_lock, flags);
  7114. for_each_possible_cpu(i)
  7115. unregister_fair_sched_group(tg, i);
  7116. list_del_rcu(&tg->siblings);
  7117. spin_unlock_irqrestore(&task_group_lock, flags);
  7118. /* wait for any ongoing reference to this group to finish */
  7119. synchronize_sched();
  7120. /*
  7121. * Now we are free to modify the group's share on each cpu
  7122. * w/o tripping rebalance_share or load_balance_fair.
  7123. */
  7124. tg->shares = shares;
  7125. for_each_possible_cpu(i) {
  7126. /*
  7127. * force a rebalance
  7128. */
  7129. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7130. set_se_shares(tg->se[i], shares);
  7131. }
  7132. /*
  7133. * Enable load balance activity on this group, by inserting it back on
  7134. * each cpu's rq->leaf_cfs_rq_list.
  7135. */
  7136. spin_lock_irqsave(&task_group_lock, flags);
  7137. for_each_possible_cpu(i)
  7138. register_fair_sched_group(tg, i);
  7139. list_add_rcu(&tg->siblings, &tg->parent->children);
  7140. spin_unlock_irqrestore(&task_group_lock, flags);
  7141. done:
  7142. mutex_unlock(&shares_mutex);
  7143. return 0;
  7144. }
  7145. unsigned long sched_group_shares(struct task_group *tg)
  7146. {
  7147. return tg->shares;
  7148. }
  7149. #endif
  7150. #ifdef CONFIG_RT_GROUP_SCHED
  7151. /*
  7152. * Ensure that the real time constraints are schedulable.
  7153. */
  7154. static DEFINE_MUTEX(rt_constraints_mutex);
  7155. static unsigned long to_ratio(u64 period, u64 runtime)
  7156. {
  7157. if (runtime == RUNTIME_INF)
  7158. return 1ULL << 20;
  7159. return div64_u64(runtime << 20, period);
  7160. }
  7161. /* Must be called with tasklist_lock held */
  7162. static inline int tg_has_rt_tasks(struct task_group *tg)
  7163. {
  7164. struct task_struct *g, *p;
  7165. do_each_thread(g, p) {
  7166. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7167. return 1;
  7168. } while_each_thread(g, p);
  7169. return 0;
  7170. }
  7171. struct rt_schedulable_data {
  7172. struct task_group *tg;
  7173. u64 rt_period;
  7174. u64 rt_runtime;
  7175. };
  7176. static int tg_schedulable(struct task_group *tg, void *data)
  7177. {
  7178. struct rt_schedulable_data *d = data;
  7179. struct task_group *child;
  7180. unsigned long total, sum = 0;
  7181. u64 period, runtime;
  7182. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7183. runtime = tg->rt_bandwidth.rt_runtime;
  7184. if (tg == d->tg) {
  7185. period = d->rt_period;
  7186. runtime = d->rt_runtime;
  7187. }
  7188. /*
  7189. * Cannot have more runtime than the period.
  7190. */
  7191. if (runtime > period && runtime != RUNTIME_INF)
  7192. return -EINVAL;
  7193. /*
  7194. * Ensure we don't starve existing RT tasks.
  7195. */
  7196. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7197. return -EBUSY;
  7198. total = to_ratio(period, runtime);
  7199. /*
  7200. * Nobody can have more than the global setting allows.
  7201. */
  7202. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7203. return -EINVAL;
  7204. /*
  7205. * The sum of our children's runtime should not exceed our own.
  7206. */
  7207. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7208. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7209. runtime = child->rt_bandwidth.rt_runtime;
  7210. if (child == d->tg) {
  7211. period = d->rt_period;
  7212. runtime = d->rt_runtime;
  7213. }
  7214. sum += to_ratio(period, runtime);
  7215. }
  7216. if (sum > total)
  7217. return -EINVAL;
  7218. return 0;
  7219. }
  7220. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7221. {
  7222. struct rt_schedulable_data data = {
  7223. .tg = tg,
  7224. .rt_period = period,
  7225. .rt_runtime = runtime,
  7226. };
  7227. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7228. }
  7229. static int tg_set_bandwidth(struct task_group *tg,
  7230. u64 rt_period, u64 rt_runtime)
  7231. {
  7232. int i, err = 0;
  7233. mutex_lock(&rt_constraints_mutex);
  7234. read_lock(&tasklist_lock);
  7235. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7236. if (err)
  7237. goto unlock;
  7238. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7239. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7240. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7241. for_each_possible_cpu(i) {
  7242. struct rt_rq *rt_rq = tg->rt_rq[i];
  7243. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7244. rt_rq->rt_runtime = rt_runtime;
  7245. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7246. }
  7247. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7248. unlock:
  7249. read_unlock(&tasklist_lock);
  7250. mutex_unlock(&rt_constraints_mutex);
  7251. return err;
  7252. }
  7253. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7254. {
  7255. u64 rt_runtime, rt_period;
  7256. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7257. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7258. if (rt_runtime_us < 0)
  7259. rt_runtime = RUNTIME_INF;
  7260. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7261. }
  7262. long sched_group_rt_runtime(struct task_group *tg)
  7263. {
  7264. u64 rt_runtime_us;
  7265. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7266. return -1;
  7267. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7268. do_div(rt_runtime_us, NSEC_PER_USEC);
  7269. return rt_runtime_us;
  7270. }
  7271. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7272. {
  7273. u64 rt_runtime, rt_period;
  7274. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7275. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7276. if (rt_period == 0)
  7277. return -EINVAL;
  7278. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7279. }
  7280. long sched_group_rt_period(struct task_group *tg)
  7281. {
  7282. u64 rt_period_us;
  7283. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7284. do_div(rt_period_us, NSEC_PER_USEC);
  7285. return rt_period_us;
  7286. }
  7287. static int sched_rt_global_constraints(void)
  7288. {
  7289. u64 runtime, period;
  7290. int ret = 0;
  7291. if (sysctl_sched_rt_period <= 0)
  7292. return -EINVAL;
  7293. runtime = global_rt_runtime();
  7294. period = global_rt_period();
  7295. /*
  7296. * Sanity check on the sysctl variables.
  7297. */
  7298. if (runtime > period && runtime != RUNTIME_INF)
  7299. return -EINVAL;
  7300. mutex_lock(&rt_constraints_mutex);
  7301. read_lock(&tasklist_lock);
  7302. ret = __rt_schedulable(NULL, 0, 0);
  7303. read_unlock(&tasklist_lock);
  7304. mutex_unlock(&rt_constraints_mutex);
  7305. return ret;
  7306. }
  7307. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7308. {
  7309. /* Don't accept realtime tasks when there is no way for them to run */
  7310. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7311. return 0;
  7312. return 1;
  7313. }
  7314. #else /* !CONFIG_RT_GROUP_SCHED */
  7315. static int sched_rt_global_constraints(void)
  7316. {
  7317. unsigned long flags;
  7318. int i;
  7319. if (sysctl_sched_rt_period <= 0)
  7320. return -EINVAL;
  7321. /*
  7322. * There's always some RT tasks in the root group
  7323. * -- migration, kstopmachine etc..
  7324. */
  7325. if (sysctl_sched_rt_runtime == 0)
  7326. return -EBUSY;
  7327. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7328. for_each_possible_cpu(i) {
  7329. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7330. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7331. rt_rq->rt_runtime = global_rt_runtime();
  7332. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7333. }
  7334. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7335. return 0;
  7336. }
  7337. #endif /* CONFIG_RT_GROUP_SCHED */
  7338. int sched_rt_handler(struct ctl_table *table, int write,
  7339. void __user *buffer, size_t *lenp,
  7340. loff_t *ppos)
  7341. {
  7342. int ret;
  7343. int old_period, old_runtime;
  7344. static DEFINE_MUTEX(mutex);
  7345. mutex_lock(&mutex);
  7346. old_period = sysctl_sched_rt_period;
  7347. old_runtime = sysctl_sched_rt_runtime;
  7348. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7349. if (!ret && write) {
  7350. ret = sched_rt_global_constraints();
  7351. if (ret) {
  7352. sysctl_sched_rt_period = old_period;
  7353. sysctl_sched_rt_runtime = old_runtime;
  7354. } else {
  7355. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7356. def_rt_bandwidth.rt_period =
  7357. ns_to_ktime(global_rt_period());
  7358. }
  7359. }
  7360. mutex_unlock(&mutex);
  7361. return ret;
  7362. }
  7363. #ifdef CONFIG_CGROUP_SCHED
  7364. /* return corresponding task_group object of a cgroup */
  7365. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7366. {
  7367. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7368. struct task_group, css);
  7369. }
  7370. static struct cgroup_subsys_state *
  7371. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7372. {
  7373. struct task_group *tg, *parent;
  7374. if (!cgrp->parent) {
  7375. /* This is early initialization for the top cgroup */
  7376. return &init_task_group.css;
  7377. }
  7378. parent = cgroup_tg(cgrp->parent);
  7379. tg = sched_create_group(parent);
  7380. if (IS_ERR(tg))
  7381. return ERR_PTR(-ENOMEM);
  7382. return &tg->css;
  7383. }
  7384. static void
  7385. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7386. {
  7387. struct task_group *tg = cgroup_tg(cgrp);
  7388. sched_destroy_group(tg);
  7389. }
  7390. static int
  7391. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7392. {
  7393. #ifdef CONFIG_RT_GROUP_SCHED
  7394. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7395. return -EINVAL;
  7396. #else
  7397. /* We don't support RT-tasks being in separate groups */
  7398. if (tsk->sched_class != &fair_sched_class)
  7399. return -EINVAL;
  7400. #endif
  7401. return 0;
  7402. }
  7403. static int
  7404. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7405. struct task_struct *tsk, bool threadgroup)
  7406. {
  7407. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7408. if (retval)
  7409. return retval;
  7410. if (threadgroup) {
  7411. struct task_struct *c;
  7412. rcu_read_lock();
  7413. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7414. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7415. if (retval) {
  7416. rcu_read_unlock();
  7417. return retval;
  7418. }
  7419. }
  7420. rcu_read_unlock();
  7421. }
  7422. return 0;
  7423. }
  7424. static void
  7425. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7426. struct cgroup *old_cont, struct task_struct *tsk,
  7427. bool threadgroup)
  7428. {
  7429. sched_move_task(tsk);
  7430. if (threadgroup) {
  7431. struct task_struct *c;
  7432. rcu_read_lock();
  7433. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7434. sched_move_task(c);
  7435. }
  7436. rcu_read_unlock();
  7437. }
  7438. }
  7439. #ifdef CONFIG_FAIR_GROUP_SCHED
  7440. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7441. u64 shareval)
  7442. {
  7443. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7444. }
  7445. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7446. {
  7447. struct task_group *tg = cgroup_tg(cgrp);
  7448. return (u64) tg->shares;
  7449. }
  7450. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7451. #ifdef CONFIG_RT_GROUP_SCHED
  7452. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7453. s64 val)
  7454. {
  7455. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7456. }
  7457. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7458. {
  7459. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7460. }
  7461. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7462. u64 rt_period_us)
  7463. {
  7464. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7465. }
  7466. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7467. {
  7468. return sched_group_rt_period(cgroup_tg(cgrp));
  7469. }
  7470. #endif /* CONFIG_RT_GROUP_SCHED */
  7471. static struct cftype cpu_files[] = {
  7472. #ifdef CONFIG_FAIR_GROUP_SCHED
  7473. {
  7474. .name = "shares",
  7475. .read_u64 = cpu_shares_read_u64,
  7476. .write_u64 = cpu_shares_write_u64,
  7477. },
  7478. #endif
  7479. #ifdef CONFIG_RT_GROUP_SCHED
  7480. {
  7481. .name = "rt_runtime_us",
  7482. .read_s64 = cpu_rt_runtime_read,
  7483. .write_s64 = cpu_rt_runtime_write,
  7484. },
  7485. {
  7486. .name = "rt_period_us",
  7487. .read_u64 = cpu_rt_period_read_uint,
  7488. .write_u64 = cpu_rt_period_write_uint,
  7489. },
  7490. #endif
  7491. };
  7492. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7493. {
  7494. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7495. }
  7496. struct cgroup_subsys cpu_cgroup_subsys = {
  7497. .name = "cpu",
  7498. .create = cpu_cgroup_create,
  7499. .destroy = cpu_cgroup_destroy,
  7500. .can_attach = cpu_cgroup_can_attach,
  7501. .attach = cpu_cgroup_attach,
  7502. .populate = cpu_cgroup_populate,
  7503. .subsys_id = cpu_cgroup_subsys_id,
  7504. .early_init = 1,
  7505. };
  7506. #endif /* CONFIG_CGROUP_SCHED */
  7507. #ifdef CONFIG_CGROUP_CPUACCT
  7508. /*
  7509. * CPU accounting code for task groups.
  7510. *
  7511. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7512. * (balbir@in.ibm.com).
  7513. */
  7514. /* track cpu usage of a group of tasks and its child groups */
  7515. struct cpuacct {
  7516. struct cgroup_subsys_state css;
  7517. /* cpuusage holds pointer to a u64-type object on every cpu */
  7518. u64 __percpu *cpuusage;
  7519. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7520. struct cpuacct *parent;
  7521. };
  7522. struct cgroup_subsys cpuacct_subsys;
  7523. /* return cpu accounting group corresponding to this container */
  7524. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7525. {
  7526. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7527. struct cpuacct, css);
  7528. }
  7529. /* return cpu accounting group to which this task belongs */
  7530. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7531. {
  7532. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7533. struct cpuacct, css);
  7534. }
  7535. /* create a new cpu accounting group */
  7536. static struct cgroup_subsys_state *cpuacct_create(
  7537. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7538. {
  7539. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7540. int i;
  7541. if (!ca)
  7542. goto out;
  7543. ca->cpuusage = alloc_percpu(u64);
  7544. if (!ca->cpuusage)
  7545. goto out_free_ca;
  7546. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7547. if (percpu_counter_init(&ca->cpustat[i], 0))
  7548. goto out_free_counters;
  7549. if (cgrp->parent)
  7550. ca->parent = cgroup_ca(cgrp->parent);
  7551. return &ca->css;
  7552. out_free_counters:
  7553. while (--i >= 0)
  7554. percpu_counter_destroy(&ca->cpustat[i]);
  7555. free_percpu(ca->cpuusage);
  7556. out_free_ca:
  7557. kfree(ca);
  7558. out:
  7559. return ERR_PTR(-ENOMEM);
  7560. }
  7561. /* destroy an existing cpu accounting group */
  7562. static void
  7563. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7564. {
  7565. struct cpuacct *ca = cgroup_ca(cgrp);
  7566. int i;
  7567. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7568. percpu_counter_destroy(&ca->cpustat[i]);
  7569. free_percpu(ca->cpuusage);
  7570. kfree(ca);
  7571. }
  7572. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7573. {
  7574. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7575. u64 data;
  7576. #ifndef CONFIG_64BIT
  7577. /*
  7578. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7579. */
  7580. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7581. data = *cpuusage;
  7582. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7583. #else
  7584. data = *cpuusage;
  7585. #endif
  7586. return data;
  7587. }
  7588. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7589. {
  7590. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7591. #ifndef CONFIG_64BIT
  7592. /*
  7593. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7594. */
  7595. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7596. *cpuusage = val;
  7597. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7598. #else
  7599. *cpuusage = val;
  7600. #endif
  7601. }
  7602. /* return total cpu usage (in nanoseconds) of a group */
  7603. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7604. {
  7605. struct cpuacct *ca = cgroup_ca(cgrp);
  7606. u64 totalcpuusage = 0;
  7607. int i;
  7608. for_each_present_cpu(i)
  7609. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7610. return totalcpuusage;
  7611. }
  7612. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7613. u64 reset)
  7614. {
  7615. struct cpuacct *ca = cgroup_ca(cgrp);
  7616. int err = 0;
  7617. int i;
  7618. if (reset) {
  7619. err = -EINVAL;
  7620. goto out;
  7621. }
  7622. for_each_present_cpu(i)
  7623. cpuacct_cpuusage_write(ca, i, 0);
  7624. out:
  7625. return err;
  7626. }
  7627. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7628. struct seq_file *m)
  7629. {
  7630. struct cpuacct *ca = cgroup_ca(cgroup);
  7631. u64 percpu;
  7632. int i;
  7633. for_each_present_cpu(i) {
  7634. percpu = cpuacct_cpuusage_read(ca, i);
  7635. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7636. }
  7637. seq_printf(m, "\n");
  7638. return 0;
  7639. }
  7640. static const char *cpuacct_stat_desc[] = {
  7641. [CPUACCT_STAT_USER] = "user",
  7642. [CPUACCT_STAT_SYSTEM] = "system",
  7643. };
  7644. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7645. struct cgroup_map_cb *cb)
  7646. {
  7647. struct cpuacct *ca = cgroup_ca(cgrp);
  7648. int i;
  7649. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7650. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7651. val = cputime64_to_clock_t(val);
  7652. cb->fill(cb, cpuacct_stat_desc[i], val);
  7653. }
  7654. return 0;
  7655. }
  7656. static struct cftype files[] = {
  7657. {
  7658. .name = "usage",
  7659. .read_u64 = cpuusage_read,
  7660. .write_u64 = cpuusage_write,
  7661. },
  7662. {
  7663. .name = "usage_percpu",
  7664. .read_seq_string = cpuacct_percpu_seq_read,
  7665. },
  7666. {
  7667. .name = "stat",
  7668. .read_map = cpuacct_stats_show,
  7669. },
  7670. };
  7671. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7672. {
  7673. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7674. }
  7675. /*
  7676. * charge this task's execution time to its accounting group.
  7677. *
  7678. * called with rq->lock held.
  7679. */
  7680. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7681. {
  7682. struct cpuacct *ca;
  7683. int cpu;
  7684. if (unlikely(!cpuacct_subsys.active))
  7685. return;
  7686. cpu = task_cpu(tsk);
  7687. rcu_read_lock();
  7688. ca = task_ca(tsk);
  7689. for (; ca; ca = ca->parent) {
  7690. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7691. *cpuusage += cputime;
  7692. }
  7693. rcu_read_unlock();
  7694. }
  7695. /*
  7696. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7697. * in cputime_t units. As a result, cpuacct_update_stats calls
  7698. * percpu_counter_add with values large enough to always overflow the
  7699. * per cpu batch limit causing bad SMP scalability.
  7700. *
  7701. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7702. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7703. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7704. */
  7705. #ifdef CONFIG_SMP
  7706. #define CPUACCT_BATCH \
  7707. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7708. #else
  7709. #define CPUACCT_BATCH 0
  7710. #endif
  7711. /*
  7712. * Charge the system/user time to the task's accounting group.
  7713. */
  7714. static void cpuacct_update_stats(struct task_struct *tsk,
  7715. enum cpuacct_stat_index idx, cputime_t val)
  7716. {
  7717. struct cpuacct *ca;
  7718. int batch = CPUACCT_BATCH;
  7719. if (unlikely(!cpuacct_subsys.active))
  7720. return;
  7721. rcu_read_lock();
  7722. ca = task_ca(tsk);
  7723. do {
  7724. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7725. ca = ca->parent;
  7726. } while (ca);
  7727. rcu_read_unlock();
  7728. }
  7729. struct cgroup_subsys cpuacct_subsys = {
  7730. .name = "cpuacct",
  7731. .create = cpuacct_create,
  7732. .destroy = cpuacct_destroy,
  7733. .populate = cpuacct_populate,
  7734. .subsys_id = cpuacct_subsys_id,
  7735. };
  7736. #endif /* CONFIG_CGROUP_CPUACCT */
  7737. #ifndef CONFIG_SMP
  7738. void synchronize_sched_expedited(void)
  7739. {
  7740. barrier();
  7741. }
  7742. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7743. #else /* #ifndef CONFIG_SMP */
  7744. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7745. static int synchronize_sched_expedited_cpu_stop(void *data)
  7746. {
  7747. /*
  7748. * There must be a full memory barrier on each affected CPU
  7749. * between the time that try_stop_cpus() is called and the
  7750. * time that it returns.
  7751. *
  7752. * In the current initial implementation of cpu_stop, the
  7753. * above condition is already met when the control reaches
  7754. * this point and the following smp_mb() is not strictly
  7755. * necessary. Do smp_mb() anyway for documentation and
  7756. * robustness against future implementation changes.
  7757. */
  7758. smp_mb(); /* See above comment block. */
  7759. return 0;
  7760. }
  7761. /*
  7762. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7763. * approach to force grace period to end quickly. This consumes
  7764. * significant time on all CPUs, and is thus not recommended for
  7765. * any sort of common-case code.
  7766. *
  7767. * Note that it is illegal to call this function while holding any
  7768. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7769. * observe this restriction will result in deadlock.
  7770. */
  7771. void synchronize_sched_expedited(void)
  7772. {
  7773. int snap, trycount = 0;
  7774. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7775. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7776. get_online_cpus();
  7777. while (try_stop_cpus(cpu_online_mask,
  7778. synchronize_sched_expedited_cpu_stop,
  7779. NULL) == -EAGAIN) {
  7780. put_online_cpus();
  7781. if (trycount++ < 10)
  7782. udelay(trycount * num_online_cpus());
  7783. else {
  7784. synchronize_sched();
  7785. return;
  7786. }
  7787. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7788. smp_mb(); /* ensure test happens before caller kfree */
  7789. return;
  7790. }
  7791. get_online_cpus();
  7792. }
  7793. atomic_inc(&synchronize_sched_expedited_count);
  7794. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7795. put_online_cpus();
  7796. }
  7797. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7798. #endif /* #else #ifndef CONFIG_SMP */