rt2800pci.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194
  1. /*
  2. Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/delay.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/eeprom_93cx6.h>
  37. #include "rt2x00.h"
  38. #include "rt2x00pci.h"
  39. #include "rt2x00soc.h"
  40. #include "rt2800lib.h"
  41. #include "rt2800.h"
  42. #include "rt2800pci.h"
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 0;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. /*
  54. * SOC devices don't support MCU requests.
  55. */
  56. if (rt2x00_is_soc(rt2x00dev))
  57. return;
  58. for (i = 0; i < 200; i++) {
  59. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  60. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  61. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  64. break;
  65. udelay(REGISTER_BUSY_DELAY);
  66. }
  67. if (i == 200)
  68. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  69. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  71. }
  72. #ifdef CONFIG_RT2800PCI_SOC
  73. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  74. {
  75. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  76. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  77. }
  78. #else
  79. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  80. {
  81. }
  82. #endif /* CONFIG_RT2800PCI_SOC */
  83. #ifdef CONFIG_RT2800PCI_PCI
  84. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  85. {
  86. struct rt2x00_dev *rt2x00dev = eeprom->data;
  87. u32 reg;
  88. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  89. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  90. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  91. eeprom->reg_data_clock =
  92. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  93. eeprom->reg_chip_select =
  94. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  95. }
  96. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  97. {
  98. struct rt2x00_dev *rt2x00dev = eeprom->data;
  99. u32 reg = 0;
  100. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  103. !!eeprom->reg_data_clock);
  104. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  105. !!eeprom->reg_chip_select);
  106. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  107. }
  108. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  109. {
  110. struct eeprom_93cx6 eeprom;
  111. u32 reg;
  112. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  113. eeprom.data = rt2x00dev;
  114. eeprom.register_read = rt2800pci_eepromregister_read;
  115. eeprom.register_write = rt2800pci_eepromregister_write;
  116. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  117. {
  118. case 0:
  119. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  120. break;
  121. case 1:
  122. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  123. break;
  124. default:
  125. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  126. break;
  127. }
  128. eeprom.reg_data_in = 0;
  129. eeprom.reg_data_out = 0;
  130. eeprom.reg_data_clock = 0;
  131. eeprom.reg_chip_select = 0;
  132. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  133. EEPROM_SIZE / sizeof(u16));
  134. }
  135. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  136. {
  137. return rt2800_efuse_detect(rt2x00dev);
  138. }
  139. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  140. {
  141. rt2800_read_eeprom_efuse(rt2x00dev);
  142. }
  143. #else
  144. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  145. {
  146. }
  147. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  148. {
  149. return 0;
  150. }
  151. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  152. {
  153. }
  154. #endif /* CONFIG_RT2800PCI_PCI */
  155. /*
  156. * Firmware functions
  157. */
  158. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  159. {
  160. return FIRMWARE_RT2860;
  161. }
  162. static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
  163. const u8 *data, const size_t len)
  164. {
  165. u32 reg;
  166. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  167. /*
  168. * enable Host program ram write selection
  169. */
  170. reg = 0;
  171. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  172. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  173. /*
  174. * Write firmware to device.
  175. */
  176. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  177. data, len);
  178. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  179. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  180. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  181. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  182. return 0;
  183. }
  184. /*
  185. * Initialization functions.
  186. */
  187. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  188. {
  189. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  190. u32 word;
  191. if (entry->queue->qid == QID_RX) {
  192. rt2x00_desc_read(entry_priv->desc, 1, &word);
  193. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  194. } else {
  195. rt2x00_desc_read(entry_priv->desc, 1, &word);
  196. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  197. }
  198. }
  199. static void rt2800pci_clear_entry(struct queue_entry *entry)
  200. {
  201. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  202. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  203. u32 word;
  204. if (entry->queue->qid == QID_RX) {
  205. rt2x00_desc_read(entry_priv->desc, 0, &word);
  206. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  207. rt2x00_desc_write(entry_priv->desc, 0, word);
  208. rt2x00_desc_read(entry_priv->desc, 1, &word);
  209. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  210. rt2x00_desc_write(entry_priv->desc, 1, word);
  211. } else {
  212. rt2x00_desc_read(entry_priv->desc, 1, &word);
  213. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  214. rt2x00_desc_write(entry_priv->desc, 1, word);
  215. }
  216. }
  217. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  218. {
  219. struct queue_entry_priv_pci *entry_priv;
  220. u32 reg;
  221. /*
  222. * Initialize registers.
  223. */
  224. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  225. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  226. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  227. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  228. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  229. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  230. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  231. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  232. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  233. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  234. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  235. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  236. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  237. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  238. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  239. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  240. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  241. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  242. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  243. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  244. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  245. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  246. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  247. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  248. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  249. /*
  250. * Enable global DMA configuration
  251. */
  252. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  253. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  254. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  255. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  256. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  257. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  258. return 0;
  259. }
  260. /*
  261. * Device state switch handlers.
  262. */
  263. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  264. enum dev_state state)
  265. {
  266. u32 reg;
  267. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  268. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  269. (state == STATE_RADIO_RX_ON) ||
  270. (state == STATE_RADIO_RX_ON_LINK));
  271. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  272. }
  273. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  274. enum dev_state state)
  275. {
  276. int mask = (state == STATE_RADIO_IRQ_ON) ||
  277. (state == STATE_RADIO_IRQ_ON_ISR);
  278. u32 reg;
  279. /*
  280. * When interrupts are being enabled, the interrupt registers
  281. * should clear the register to assure a clean state.
  282. */
  283. if (state == STATE_RADIO_IRQ_ON) {
  284. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  285. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  286. }
  287. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  288. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  289. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  290. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  291. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  292. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  293. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  294. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  295. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  296. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  297. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  298. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  299. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  300. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  301. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  302. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  303. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  304. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  305. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  306. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  307. }
  308. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  309. {
  310. u32 reg;
  311. /*
  312. * Reset DMA indexes
  313. */
  314. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  315. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  316. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  317. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  318. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  319. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  320. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  321. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  322. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  323. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  324. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  325. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  326. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  327. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  328. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  329. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  330. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  331. return 0;
  332. }
  333. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  334. {
  335. u32 reg;
  336. u16 word;
  337. /*
  338. * Initialize all registers.
  339. */
  340. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  341. rt2800pci_init_queues(rt2x00dev) ||
  342. rt2800_init_registers(rt2x00dev) ||
  343. rt2800_wait_wpdma_ready(rt2x00dev) ||
  344. rt2800_init_bbp(rt2x00dev) ||
  345. rt2800_init_rfcsr(rt2x00dev)))
  346. return -EIO;
  347. /*
  348. * Send signal to firmware during boot time.
  349. */
  350. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
  351. /*
  352. * Enable RX.
  353. */
  354. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  355. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  356. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  357. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  358. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  359. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  360. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  361. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  362. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  363. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  364. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  365. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  366. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  367. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  368. /*
  369. * Initialize LED control
  370. */
  371. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  372. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  373. word & 0xff, (word >> 8) & 0xff);
  374. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  375. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  376. word & 0xff, (word >> 8) & 0xff);
  377. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  378. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  379. word & 0xff, (word >> 8) & 0xff);
  380. return 0;
  381. }
  382. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  383. {
  384. u32 reg;
  385. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  386. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  387. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  388. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  389. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  390. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  391. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  392. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  393. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  394. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  395. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  396. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  397. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  398. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  399. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  400. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  401. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  402. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  403. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  404. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  405. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  406. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  407. /* Wait for DMA, ignore error */
  408. rt2800_wait_wpdma_ready(rt2x00dev);
  409. }
  410. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  411. enum dev_state state)
  412. {
  413. /*
  414. * Always put the device to sleep (even when we intend to wakeup!)
  415. * if the device is booting and wasn't asleep it will return
  416. * failure when attempting to wakeup.
  417. */
  418. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  419. if (state == STATE_AWAKE) {
  420. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  421. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  422. }
  423. return 0;
  424. }
  425. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  426. enum dev_state state)
  427. {
  428. int retval = 0;
  429. switch (state) {
  430. case STATE_RADIO_ON:
  431. /*
  432. * Before the radio can be enabled, the device first has
  433. * to be woken up. After that it needs a bit of time
  434. * to be fully awake and then the radio can be enabled.
  435. */
  436. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  437. msleep(1);
  438. retval = rt2800pci_enable_radio(rt2x00dev);
  439. break;
  440. case STATE_RADIO_OFF:
  441. /*
  442. * After the radio has been disabled, the device should
  443. * be put to sleep for powersaving.
  444. */
  445. rt2800pci_disable_radio(rt2x00dev);
  446. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  447. break;
  448. case STATE_RADIO_RX_ON:
  449. case STATE_RADIO_RX_ON_LINK:
  450. case STATE_RADIO_RX_OFF:
  451. case STATE_RADIO_RX_OFF_LINK:
  452. rt2800pci_toggle_rx(rt2x00dev, state);
  453. break;
  454. case STATE_RADIO_IRQ_ON:
  455. case STATE_RADIO_IRQ_ON_ISR:
  456. case STATE_RADIO_IRQ_OFF:
  457. case STATE_RADIO_IRQ_OFF_ISR:
  458. rt2800pci_toggle_irq(rt2x00dev, state);
  459. break;
  460. case STATE_DEEP_SLEEP:
  461. case STATE_SLEEP:
  462. case STATE_STANDBY:
  463. case STATE_AWAKE:
  464. retval = rt2800pci_set_state(rt2x00dev, state);
  465. break;
  466. default:
  467. retval = -ENOTSUPP;
  468. break;
  469. }
  470. if (unlikely(retval))
  471. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  472. state, retval);
  473. return retval;
  474. }
  475. /*
  476. * TX descriptor initialization
  477. */
  478. static void rt2800pci_write_tx_data(struct queue_entry* entry,
  479. struct txentry_desc *txdesc)
  480. {
  481. __le32 *txwi = (__le32 *) entry->skb->data;
  482. rt2800_write_txwi(txwi, txdesc);
  483. }
  484. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  485. struct sk_buff *skb,
  486. struct txentry_desc *txdesc)
  487. {
  488. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  489. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  490. __le32 *txd = entry_priv->desc;
  491. u32 word;
  492. /*
  493. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  494. * must contains a TXWI structure + 802.11 header + padding + 802.11
  495. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  496. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  497. * data. It means that LAST_SEC0 is always 0.
  498. */
  499. /*
  500. * Initialize TX descriptor
  501. */
  502. rt2x00_desc_read(txd, 0, &word);
  503. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  504. rt2x00_desc_write(txd, 0, word);
  505. rt2x00_desc_read(txd, 1, &word);
  506. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  507. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  508. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  509. rt2x00_set_field32(&word, TXD_W1_BURST,
  510. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  511. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  512. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  513. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  514. rt2x00_desc_write(txd, 1, word);
  515. rt2x00_desc_read(txd, 2, &word);
  516. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  517. skbdesc->skb_dma + TXWI_DESC_SIZE);
  518. rt2x00_desc_write(txd, 2, word);
  519. rt2x00_desc_read(txd, 3, &word);
  520. rt2x00_set_field32(&word, TXD_W3_WIV,
  521. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  522. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  523. rt2x00_desc_write(txd, 3, word);
  524. /*
  525. * Register descriptor details in skb frame descriptor.
  526. */
  527. skbdesc->desc = txd;
  528. skbdesc->desc_len = TXD_DESC_SIZE;
  529. }
  530. /*
  531. * TX data initialization
  532. */
  533. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  534. const enum data_queue_qid queue_idx)
  535. {
  536. struct data_queue *queue;
  537. unsigned int idx, qidx = 0;
  538. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  539. return;
  540. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  541. idx = queue->index[Q_INDEX];
  542. if (queue_idx == QID_MGMT)
  543. qidx = 5;
  544. else
  545. qidx = queue_idx;
  546. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  547. }
  548. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  549. const enum data_queue_qid qid)
  550. {
  551. u32 reg;
  552. if (qid == QID_BEACON) {
  553. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  554. return;
  555. }
  556. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  557. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  558. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  559. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  560. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  561. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  562. }
  563. /*
  564. * RX control handlers
  565. */
  566. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  567. struct rxdone_entry_desc *rxdesc)
  568. {
  569. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  570. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  571. __le32 *rxd = entry_priv->desc;
  572. u32 word;
  573. rt2x00_desc_read(rxd, 3, &word);
  574. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  575. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  576. /*
  577. * Unfortunately we don't know the cipher type used during
  578. * decryption. This prevents us from correct providing
  579. * correct statistics through debugfs.
  580. */
  581. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  582. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  583. /*
  584. * Hardware has stripped IV/EIV data from 802.11 frame during
  585. * decryption. Unfortunately the descriptor doesn't contain
  586. * any fields with the EIV/IV data either, so they can't
  587. * be restored by rt2x00lib.
  588. */
  589. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  590. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  591. rxdesc->flags |= RX_FLAG_DECRYPTED;
  592. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  593. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  594. }
  595. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  596. rxdesc->dev_flags |= RXDONE_MY_BSS;
  597. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  598. rxdesc->dev_flags |= RXDONE_L2PAD;
  599. /*
  600. * Process the RXWI structure that is at the start of the buffer.
  601. */
  602. rt2800_process_rxwi(entry, rxdesc);
  603. /*
  604. * Set RX IDX in register to inform hardware that we have handled
  605. * this entry and it is available for reuse again.
  606. */
  607. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  608. }
  609. /*
  610. * Interrupt functions.
  611. */
  612. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  613. {
  614. struct data_queue *queue;
  615. struct queue_entry *entry;
  616. __le32 *txwi;
  617. struct txdone_entry_desc txdesc;
  618. u32 word;
  619. u32 reg;
  620. int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
  621. u16 mcs, real_mcs;
  622. int i;
  623. /*
  624. * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
  625. * at most X times and also stop processing once the TX_STA_FIFO_VALID
  626. * flag is not set anymore.
  627. *
  628. * The legacy drivers use X=TX_RING_SIZE but state in a comment
  629. * that the TX_STA_FIFO stack has a size of 16. We stick to our
  630. * tx ring size for now.
  631. */
  632. for (i = 0; i < TX_ENTRIES; i++) {
  633. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  634. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  635. break;
  636. wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
  637. ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
  638. pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
  639. /*
  640. * Skip this entry when it contains an invalid
  641. * queue identication number.
  642. */
  643. if (pid <= 0 || pid > QID_RX)
  644. continue;
  645. queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
  646. if (unlikely(!queue))
  647. continue;
  648. /*
  649. * Inside each queue, we process each entry in a chronological
  650. * order. We first check that the queue is not empty.
  651. */
  652. if (rt2x00queue_empty(queue))
  653. continue;
  654. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  655. /* Check if we got a match by looking at WCID/ACK/PID
  656. * fields */
  657. txwi = (__le32 *) entry->skb->data;
  658. rt2x00_desc_read(txwi, 1, &word);
  659. tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
  660. tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
  661. tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
  662. if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
  663. WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
  664. /*
  665. * Obtain the status about this packet.
  666. */
  667. txdesc.flags = 0;
  668. rt2x00_desc_read(txwi, 0, &word);
  669. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  670. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  671. /*
  672. * Ralink has a retry mechanism using a global fallback
  673. * table. We setup this fallback table to try the immediate
  674. * lower rate for all rates. In the TX_STA_FIFO, the MCS field
  675. * always contains the MCS used for the last transmission, be
  676. * it successful or not.
  677. */
  678. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
  679. /*
  680. * Transmission succeeded. The number of retries is
  681. * mcs - real_mcs
  682. */
  683. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  684. txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
  685. } else {
  686. /*
  687. * Transmission failed. The number of retries is
  688. * always 7 in this case (for a total number of 8
  689. * frames sent).
  690. */
  691. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  692. txdesc.retry = 7;
  693. }
  694. /*
  695. * the frame was retried at least once
  696. * -> hw used fallback rates
  697. */
  698. if (txdesc.retry)
  699. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  700. rt2x00lib_txdone(entry, &txdesc);
  701. }
  702. }
  703. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  704. {
  705. struct ieee80211_conf conf = { .flags = 0 };
  706. struct rt2x00lib_conf libconf = { .conf = &conf };
  707. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  708. }
  709. static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
  710. {
  711. struct rt2x00_dev *rt2x00dev = dev_instance;
  712. u32 reg = rt2x00dev->irqvalue[0];
  713. /*
  714. * 1 - Pre TBTT interrupt.
  715. */
  716. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  717. rt2x00lib_pretbtt(rt2x00dev);
  718. /*
  719. * 2 - Beacondone interrupt.
  720. */
  721. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  722. rt2x00lib_beacondone(rt2x00dev);
  723. /*
  724. * 3 - Rx ring done interrupt.
  725. */
  726. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  727. rt2x00pci_rxdone(rt2x00dev);
  728. /*
  729. * 4 - Tx done interrupt.
  730. */
  731. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  732. rt2800pci_txdone(rt2x00dev);
  733. /*
  734. * 5 - Auto wakeup interrupt.
  735. */
  736. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  737. rt2800pci_wakeup(rt2x00dev);
  738. /* Enable interrupts again. */
  739. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  740. STATE_RADIO_IRQ_ON_ISR);
  741. return IRQ_HANDLED;
  742. }
  743. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  744. {
  745. struct rt2x00_dev *rt2x00dev = dev_instance;
  746. u32 reg;
  747. /* Read status and ACK all interrupts */
  748. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  749. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  750. if (!reg)
  751. return IRQ_NONE;
  752. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  753. return IRQ_HANDLED;
  754. /* Store irqvalue for use in the interrupt thread. */
  755. rt2x00dev->irqvalue[0] = reg;
  756. /* Disable interrupts, will be enabled again in the interrupt thread. */
  757. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  758. STATE_RADIO_IRQ_OFF_ISR);
  759. return IRQ_WAKE_THREAD;
  760. }
  761. /*
  762. * Device probe functions.
  763. */
  764. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  765. {
  766. /*
  767. * Read EEPROM into buffer
  768. */
  769. if (rt2x00_is_soc(rt2x00dev))
  770. rt2800pci_read_eeprom_soc(rt2x00dev);
  771. else if (rt2800pci_efuse_detect(rt2x00dev))
  772. rt2800pci_read_eeprom_efuse(rt2x00dev);
  773. else
  774. rt2800pci_read_eeprom_pci(rt2x00dev);
  775. return rt2800_validate_eeprom(rt2x00dev);
  776. }
  777. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  778. {
  779. int retval;
  780. /*
  781. * Allocate eeprom data.
  782. */
  783. retval = rt2800pci_validate_eeprom(rt2x00dev);
  784. if (retval)
  785. return retval;
  786. retval = rt2800_init_eeprom(rt2x00dev);
  787. if (retval)
  788. return retval;
  789. /*
  790. * Initialize hw specifications.
  791. */
  792. retval = rt2800_probe_hw_mode(rt2x00dev);
  793. if (retval)
  794. return retval;
  795. /*
  796. * This device has multiple filters for control frames
  797. * and has a separate filter for PS Poll frames.
  798. */
  799. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  800. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  801. /*
  802. * This device has a pre tbtt interrupt and thus fetches
  803. * a new beacon directly prior to transmission.
  804. */
  805. __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
  806. /*
  807. * This device requires firmware.
  808. */
  809. if (!rt2x00_is_soc(rt2x00dev))
  810. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  811. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  812. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  813. if (!modparam_nohwcrypt)
  814. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  815. __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
  816. /*
  817. * Set the rssi offset.
  818. */
  819. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  820. return 0;
  821. }
  822. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  823. .tx = rt2x00mac_tx,
  824. .start = rt2x00mac_start,
  825. .stop = rt2x00mac_stop,
  826. .add_interface = rt2x00mac_add_interface,
  827. .remove_interface = rt2x00mac_remove_interface,
  828. .config = rt2x00mac_config,
  829. .configure_filter = rt2x00mac_configure_filter,
  830. .set_key = rt2x00mac_set_key,
  831. .sw_scan_start = rt2x00mac_sw_scan_start,
  832. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  833. .get_stats = rt2x00mac_get_stats,
  834. .get_tkip_seq = rt2800_get_tkip_seq,
  835. .set_rts_threshold = rt2800_set_rts_threshold,
  836. .bss_info_changed = rt2x00mac_bss_info_changed,
  837. .conf_tx = rt2800_conf_tx,
  838. .get_tsf = rt2800_get_tsf,
  839. .rfkill_poll = rt2x00mac_rfkill_poll,
  840. .ampdu_action = rt2800_ampdu_action,
  841. };
  842. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  843. .register_read = rt2x00pci_register_read,
  844. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  845. .register_write = rt2x00pci_register_write,
  846. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  847. .register_multiread = rt2x00pci_register_multiread,
  848. .register_multiwrite = rt2x00pci_register_multiwrite,
  849. .regbusy_read = rt2x00pci_regbusy_read,
  850. .drv_write_firmware = rt2800pci_write_firmware,
  851. .drv_init_registers = rt2800pci_init_registers,
  852. };
  853. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  854. .irq_handler = rt2800pci_interrupt,
  855. .irq_handler_thread = rt2800pci_interrupt_thread,
  856. .probe_hw = rt2800pci_probe_hw,
  857. .get_firmware_name = rt2800pci_get_firmware_name,
  858. .check_firmware = rt2800_check_firmware,
  859. .load_firmware = rt2800_load_firmware,
  860. .initialize = rt2x00pci_initialize,
  861. .uninitialize = rt2x00pci_uninitialize,
  862. .get_entry_state = rt2800pci_get_entry_state,
  863. .clear_entry = rt2800pci_clear_entry,
  864. .set_device_state = rt2800pci_set_device_state,
  865. .rfkill_poll = rt2800_rfkill_poll,
  866. .link_stats = rt2800_link_stats,
  867. .reset_tuner = rt2800_reset_tuner,
  868. .link_tuner = rt2800_link_tuner,
  869. .write_tx_desc = rt2800pci_write_tx_desc,
  870. .write_tx_data = rt2800pci_write_tx_data,
  871. .write_beacon = rt2800_write_beacon,
  872. .kick_tx_queue = rt2800pci_kick_tx_queue,
  873. .kill_tx_queue = rt2800pci_kill_tx_queue,
  874. .fill_rxdone = rt2800pci_fill_rxdone,
  875. .config_shared_key = rt2800_config_shared_key,
  876. .config_pairwise_key = rt2800_config_pairwise_key,
  877. .config_filter = rt2800_config_filter,
  878. .config_intf = rt2800_config_intf,
  879. .config_erp = rt2800_config_erp,
  880. .config_ant = rt2800_config_ant,
  881. .config = rt2800_config,
  882. };
  883. static const struct data_queue_desc rt2800pci_queue_rx = {
  884. .entry_num = RX_ENTRIES,
  885. .data_size = AGGREGATION_SIZE,
  886. .desc_size = RXD_DESC_SIZE,
  887. .priv_size = sizeof(struct queue_entry_priv_pci),
  888. };
  889. static const struct data_queue_desc rt2800pci_queue_tx = {
  890. .entry_num = TX_ENTRIES,
  891. .data_size = AGGREGATION_SIZE,
  892. .desc_size = TXD_DESC_SIZE,
  893. .priv_size = sizeof(struct queue_entry_priv_pci),
  894. };
  895. static const struct data_queue_desc rt2800pci_queue_bcn = {
  896. .entry_num = 8 * BEACON_ENTRIES,
  897. .data_size = 0, /* No DMA required for beacons */
  898. .desc_size = TXWI_DESC_SIZE,
  899. .priv_size = sizeof(struct queue_entry_priv_pci),
  900. };
  901. static const struct rt2x00_ops rt2800pci_ops = {
  902. .name = KBUILD_MODNAME,
  903. .max_sta_intf = 1,
  904. .max_ap_intf = 8,
  905. .eeprom_size = EEPROM_SIZE,
  906. .rf_size = RF_SIZE,
  907. .tx_queues = NUM_TX_QUEUES,
  908. .extra_tx_headroom = TXWI_DESC_SIZE,
  909. .rx = &rt2800pci_queue_rx,
  910. .tx = &rt2800pci_queue_tx,
  911. .bcn = &rt2800pci_queue_bcn,
  912. .lib = &rt2800pci_rt2x00_ops,
  913. .drv = &rt2800pci_rt2800_ops,
  914. .hw = &rt2800pci_mac80211_ops,
  915. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  916. .debugfs = &rt2800_rt2x00debug,
  917. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  918. };
  919. /*
  920. * RT2800pci module information.
  921. */
  922. #ifdef CONFIG_RT2800PCI_PCI
  923. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  924. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  925. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  926. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  927. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  928. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  929. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  930. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  931. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  932. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  933. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  934. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  935. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  936. #ifdef CONFIG_RT2800PCI_RT30XX
  937. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  938. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  939. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  940. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  941. #endif
  942. #ifdef CONFIG_RT2800PCI_RT35XX
  943. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  944. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  945. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  946. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  947. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  948. #endif
  949. { 0, }
  950. };
  951. #endif /* CONFIG_RT2800PCI_PCI */
  952. MODULE_AUTHOR(DRV_PROJECT);
  953. MODULE_VERSION(DRV_VERSION);
  954. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  955. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  956. #ifdef CONFIG_RT2800PCI_PCI
  957. MODULE_FIRMWARE(FIRMWARE_RT2860);
  958. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  959. #endif /* CONFIG_RT2800PCI_PCI */
  960. MODULE_LICENSE("GPL");
  961. #ifdef CONFIG_RT2800PCI_SOC
  962. static int rt2800soc_probe(struct platform_device *pdev)
  963. {
  964. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  965. }
  966. static struct platform_driver rt2800soc_driver = {
  967. .driver = {
  968. .name = "rt2800_wmac",
  969. .owner = THIS_MODULE,
  970. .mod_name = KBUILD_MODNAME,
  971. },
  972. .probe = rt2800soc_probe,
  973. .remove = __devexit_p(rt2x00soc_remove),
  974. .suspend = rt2x00soc_suspend,
  975. .resume = rt2x00soc_resume,
  976. };
  977. #endif /* CONFIG_RT2800PCI_SOC */
  978. #ifdef CONFIG_RT2800PCI_PCI
  979. static struct pci_driver rt2800pci_driver = {
  980. .name = KBUILD_MODNAME,
  981. .id_table = rt2800pci_device_table,
  982. .probe = rt2x00pci_probe,
  983. .remove = __devexit_p(rt2x00pci_remove),
  984. .suspend = rt2x00pci_suspend,
  985. .resume = rt2x00pci_resume,
  986. };
  987. #endif /* CONFIG_RT2800PCI_PCI */
  988. static int __init rt2800pci_init(void)
  989. {
  990. int ret = 0;
  991. #ifdef CONFIG_RT2800PCI_SOC
  992. ret = platform_driver_register(&rt2800soc_driver);
  993. if (ret)
  994. return ret;
  995. #endif
  996. #ifdef CONFIG_RT2800PCI_PCI
  997. ret = pci_register_driver(&rt2800pci_driver);
  998. if (ret) {
  999. #ifdef CONFIG_RT2800PCI_SOC
  1000. platform_driver_unregister(&rt2800soc_driver);
  1001. #endif
  1002. return ret;
  1003. }
  1004. #endif
  1005. return ret;
  1006. }
  1007. static void __exit rt2800pci_exit(void)
  1008. {
  1009. #ifdef CONFIG_RT2800PCI_PCI
  1010. pci_unregister_driver(&rt2800pci_driver);
  1011. #endif
  1012. #ifdef CONFIG_RT2800PCI_SOC
  1013. platform_driver_unregister(&rt2800soc_driver);
  1014. #endif
  1015. }
  1016. module_init(rt2800pci_init);
  1017. module_exit(rt2800pci_exit);