rt2500usb.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500usb
  19. Abstract: rt2500usb device specific routines.
  20. Supported chipsets: RT2570.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/slab.h>
  28. #include <linux/usb.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00usb.h"
  31. #include "rt2500usb.h"
  32. /*
  33. * Allow hardware encryption to be disabled.
  34. */
  35. static int modparam_nohwcrypt = 0;
  36. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  37. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  38. /*
  39. * Register access.
  40. * All access to the CSR registers will go through the methods
  41. * rt2500usb_register_read and rt2500usb_register_write.
  42. * BBP and RF register require indirect register access,
  43. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  44. * These indirect registers work with busy bits,
  45. * and we will try maximal REGISTER_BUSY_COUNT times to access
  46. * the register while taking a REGISTER_BUSY_DELAY us delay
  47. * between each attampt. When the busy bit is still set at that time,
  48. * the access attempt is considered to have failed,
  49. * and we will print an error.
  50. * If the csr_mutex is already held then the _lock variants must
  51. * be used instead.
  52. */
  53. static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  54. const unsigned int offset,
  55. u16 *value)
  56. {
  57. __le16 reg;
  58. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  59. USB_VENDOR_REQUEST_IN, offset,
  60. &reg, sizeof(reg), REGISTER_TIMEOUT);
  61. *value = le16_to_cpu(reg);
  62. }
  63. static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  64. const unsigned int offset,
  65. u16 *value)
  66. {
  67. __le16 reg;
  68. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  69. USB_VENDOR_REQUEST_IN, offset,
  70. &reg, sizeof(reg), REGISTER_TIMEOUT);
  71. *value = le16_to_cpu(reg);
  72. }
  73. static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  74. const unsigned int offset,
  75. void *value, const u16 length)
  76. {
  77. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  78. USB_VENDOR_REQUEST_IN, offset,
  79. value, length,
  80. REGISTER_TIMEOUT16(length));
  81. }
  82. static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  83. const unsigned int offset,
  84. u16 value)
  85. {
  86. __le16 reg = cpu_to_le16(value);
  87. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  88. USB_VENDOR_REQUEST_OUT, offset,
  89. &reg, sizeof(reg), REGISTER_TIMEOUT);
  90. }
  91. static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  92. const unsigned int offset,
  93. u16 value)
  94. {
  95. __le16 reg = cpu_to_le16(value);
  96. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  97. USB_VENDOR_REQUEST_OUT, offset,
  98. &reg, sizeof(reg), REGISTER_TIMEOUT);
  99. }
  100. static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  101. const unsigned int offset,
  102. void *value, const u16 length)
  103. {
  104. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  105. USB_VENDOR_REQUEST_OUT, offset,
  106. value, length,
  107. REGISTER_TIMEOUT16(length));
  108. }
  109. static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
  110. const unsigned int offset,
  111. struct rt2x00_field16 field,
  112. u16 *reg)
  113. {
  114. unsigned int i;
  115. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  116. rt2500usb_register_read_lock(rt2x00dev, offset, reg);
  117. if (!rt2x00_get_field16(*reg, field))
  118. return 1;
  119. udelay(REGISTER_BUSY_DELAY);
  120. }
  121. ERROR(rt2x00dev, "Indirect register access failed: "
  122. "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
  123. *reg = ~0;
  124. return 0;
  125. }
  126. #define WAIT_FOR_BBP(__dev, __reg) \
  127. rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
  128. #define WAIT_FOR_RF(__dev, __reg) \
  129. rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
  130. static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  131. const unsigned int word, const u8 value)
  132. {
  133. u16 reg;
  134. mutex_lock(&rt2x00dev->csr_mutex);
  135. /*
  136. * Wait until the BBP becomes available, afterwards we
  137. * can safely write the new data into the register.
  138. */
  139. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  140. reg = 0;
  141. rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
  142. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  143. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
  144. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  145. }
  146. mutex_unlock(&rt2x00dev->csr_mutex);
  147. }
  148. static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  149. const unsigned int word, u8 *value)
  150. {
  151. u16 reg;
  152. mutex_lock(&rt2x00dev->csr_mutex);
  153. /*
  154. * Wait until the BBP becomes available, afterwards we
  155. * can safely write the read request into the register.
  156. * After the data has been written, we wait until hardware
  157. * returns the correct value, if at any time the register
  158. * doesn't become available in time, reg will be 0xffffffff
  159. * which means we return 0xff to the caller.
  160. */
  161. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  162. reg = 0;
  163. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  164. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
  165. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  166. if (WAIT_FOR_BBP(rt2x00dev, &reg))
  167. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
  168. }
  169. *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
  170. mutex_unlock(&rt2x00dev->csr_mutex);
  171. }
  172. static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
  173. const unsigned int word, const u32 value)
  174. {
  175. u16 reg;
  176. mutex_lock(&rt2x00dev->csr_mutex);
  177. /*
  178. * Wait until the RF becomes available, afterwards we
  179. * can safely write the new data into the register.
  180. */
  181. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  182. reg = 0;
  183. rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
  184. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
  185. reg = 0;
  186. rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
  187. rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
  188. rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
  189. rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
  190. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
  191. rt2x00_rf_write(rt2x00dev, word, value);
  192. }
  193. mutex_unlock(&rt2x00dev->csr_mutex);
  194. }
  195. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  196. static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  197. const unsigned int offset,
  198. u32 *value)
  199. {
  200. rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
  201. }
  202. static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  203. const unsigned int offset,
  204. u32 value)
  205. {
  206. rt2500usb_register_write(rt2x00dev, offset, value);
  207. }
  208. static const struct rt2x00debug rt2500usb_rt2x00debug = {
  209. .owner = THIS_MODULE,
  210. .csr = {
  211. .read = _rt2500usb_register_read,
  212. .write = _rt2500usb_register_write,
  213. .flags = RT2X00DEBUGFS_OFFSET,
  214. .word_base = CSR_REG_BASE,
  215. .word_size = sizeof(u16),
  216. .word_count = CSR_REG_SIZE / sizeof(u16),
  217. },
  218. .eeprom = {
  219. .read = rt2x00_eeprom_read,
  220. .write = rt2x00_eeprom_write,
  221. .word_base = EEPROM_BASE,
  222. .word_size = sizeof(u16),
  223. .word_count = EEPROM_SIZE / sizeof(u16),
  224. },
  225. .bbp = {
  226. .read = rt2500usb_bbp_read,
  227. .write = rt2500usb_bbp_write,
  228. .word_base = BBP_BASE,
  229. .word_size = sizeof(u8),
  230. .word_count = BBP_SIZE / sizeof(u8),
  231. },
  232. .rf = {
  233. .read = rt2x00_rf_read,
  234. .write = rt2500usb_rf_write,
  235. .word_base = RF_BASE,
  236. .word_size = sizeof(u32),
  237. .word_count = RF_SIZE / sizeof(u32),
  238. },
  239. };
  240. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  241. static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  242. {
  243. u16 reg;
  244. rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
  245. return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
  246. }
  247. #ifdef CONFIG_RT2X00_LIB_LEDS
  248. static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
  249. enum led_brightness brightness)
  250. {
  251. struct rt2x00_led *led =
  252. container_of(led_cdev, struct rt2x00_led, led_dev);
  253. unsigned int enabled = brightness != LED_OFF;
  254. u16 reg;
  255. rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
  256. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  257. rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
  258. else if (led->type == LED_TYPE_ACTIVITY)
  259. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
  260. rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
  261. }
  262. static int rt2500usb_blink_set(struct led_classdev *led_cdev,
  263. unsigned long *delay_on,
  264. unsigned long *delay_off)
  265. {
  266. struct rt2x00_led *led =
  267. container_of(led_cdev, struct rt2x00_led, led_dev);
  268. u16 reg;
  269. rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
  270. rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
  271. rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
  272. rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
  273. return 0;
  274. }
  275. static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
  276. struct rt2x00_led *led,
  277. enum led_type type)
  278. {
  279. led->rt2x00dev = rt2x00dev;
  280. led->type = type;
  281. led->led_dev.brightness_set = rt2500usb_brightness_set;
  282. led->led_dev.blink_set = rt2500usb_blink_set;
  283. led->flags = LED_INITIALIZED;
  284. }
  285. #endif /* CONFIG_RT2X00_LIB_LEDS */
  286. /*
  287. * Configuration handlers.
  288. */
  289. /*
  290. * rt2500usb does not differentiate between shared and pairwise
  291. * keys, so we should use the same function for both key types.
  292. */
  293. static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
  294. struct rt2x00lib_crypto *crypto,
  295. struct ieee80211_key_conf *key)
  296. {
  297. u32 mask;
  298. u16 reg;
  299. enum cipher curr_cipher;
  300. if (crypto->cmd == SET_KEY) {
  301. /*
  302. * Disallow to set WEP key other than with index 0,
  303. * it is known that not work at least on some hardware.
  304. * SW crypto will be used in that case.
  305. */
  306. if (key->alg == ALG_WEP && key->keyidx != 0)
  307. return -EOPNOTSUPP;
  308. /*
  309. * Pairwise key will always be entry 0, but this
  310. * could collide with a shared key on the same
  311. * position...
  312. */
  313. mask = TXRX_CSR0_KEY_ID.bit_mask;
  314. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  315. curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
  316. reg &= mask;
  317. if (reg && reg == mask)
  318. return -ENOSPC;
  319. reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  320. key->hw_key_idx += reg ? ffz(reg) : 0;
  321. /*
  322. * Hardware requires that all keys use the same cipher
  323. * (e.g. TKIP-only, AES-only, but not TKIP+AES).
  324. * If this is not the first key, compare the cipher with the
  325. * first one and fall back to SW crypto if not the same.
  326. */
  327. if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
  328. return -EOPNOTSUPP;
  329. rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
  330. crypto->key, sizeof(crypto->key));
  331. /*
  332. * The driver does not support the IV/EIV generation
  333. * in hardware. However it demands the data to be provided
  334. * both separately as well as inside the frame.
  335. * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
  336. * to ensure rt2x00lib will not strip the data from the
  337. * frame after the copy, now we must tell mac80211
  338. * to generate the IV/EIV data.
  339. */
  340. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  341. key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
  342. }
  343. /*
  344. * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
  345. * a particular key is valid.
  346. */
  347. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  348. rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
  349. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  350. mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  351. if (crypto->cmd == SET_KEY)
  352. mask |= 1 << key->hw_key_idx;
  353. else if (crypto->cmd == DISABLE_KEY)
  354. mask &= ~(1 << key->hw_key_idx);
  355. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
  356. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  357. return 0;
  358. }
  359. static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
  360. const unsigned int filter_flags)
  361. {
  362. u16 reg;
  363. /*
  364. * Start configuration steps.
  365. * Note that the version error will always be dropped
  366. * and broadcast frames will always be accepted since
  367. * there is no filter for it at this time.
  368. */
  369. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  370. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
  371. !(filter_flags & FIF_FCSFAIL));
  372. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
  373. !(filter_flags & FIF_PLCPFAIL));
  374. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
  375. !(filter_flags & FIF_CONTROL));
  376. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
  377. !(filter_flags & FIF_PROMISC_IN_BSS));
  378. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
  379. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  380. !rt2x00dev->intf_ap_count);
  381. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
  382. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
  383. !(filter_flags & FIF_ALLMULTI));
  384. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
  385. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  386. }
  387. static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
  388. struct rt2x00_intf *intf,
  389. struct rt2x00intf_conf *conf,
  390. const unsigned int flags)
  391. {
  392. unsigned int bcn_preload;
  393. u16 reg;
  394. if (flags & CONFIG_UPDATE_TYPE) {
  395. /*
  396. * Enable beacon config
  397. */
  398. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  399. rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
  400. rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
  401. rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
  402. 2 * (conf->type != NL80211_IFTYPE_STATION));
  403. rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
  404. /*
  405. * Enable synchronisation.
  406. */
  407. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  408. rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
  409. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  410. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  411. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  412. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
  413. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  414. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  415. }
  416. if (flags & CONFIG_UPDATE_MAC)
  417. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
  418. (3 * sizeof(__le16)));
  419. if (flags & CONFIG_UPDATE_BSSID)
  420. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
  421. (3 * sizeof(__le16)));
  422. }
  423. static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
  424. struct rt2x00lib_erp *erp)
  425. {
  426. u16 reg;
  427. rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
  428. rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
  429. !!erp->short_preamble);
  430. rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
  431. rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
  432. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  433. rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
  434. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  435. rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
  436. rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
  437. rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
  438. }
  439. static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
  440. struct antenna_setup *ant)
  441. {
  442. u8 r2;
  443. u8 r14;
  444. u16 csr5;
  445. u16 csr6;
  446. /*
  447. * We should never come here because rt2x00lib is supposed
  448. * to catch this and send us the correct antenna explicitely.
  449. */
  450. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  451. ant->tx == ANTENNA_SW_DIVERSITY);
  452. rt2500usb_bbp_read(rt2x00dev, 2, &r2);
  453. rt2500usb_bbp_read(rt2x00dev, 14, &r14);
  454. rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
  455. rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
  456. /*
  457. * Configure the TX antenna.
  458. */
  459. switch (ant->tx) {
  460. case ANTENNA_HW_DIVERSITY:
  461. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
  462. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
  463. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
  464. break;
  465. case ANTENNA_A:
  466. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  467. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
  468. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
  469. break;
  470. case ANTENNA_B:
  471. default:
  472. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  473. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
  474. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
  475. break;
  476. }
  477. /*
  478. * Configure the RX antenna.
  479. */
  480. switch (ant->rx) {
  481. case ANTENNA_HW_DIVERSITY:
  482. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
  483. break;
  484. case ANTENNA_A:
  485. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  486. break;
  487. case ANTENNA_B:
  488. default:
  489. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  490. break;
  491. }
  492. /*
  493. * RT2525E and RT5222 need to flip TX I/Q
  494. */
  495. if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
  496. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  497. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
  498. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
  499. /*
  500. * RT2525E does not need RX I/Q Flip.
  501. */
  502. if (rt2x00_rf(rt2x00dev, RF2525E))
  503. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  504. } else {
  505. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
  506. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
  507. }
  508. rt2500usb_bbp_write(rt2x00dev, 2, r2);
  509. rt2500usb_bbp_write(rt2x00dev, 14, r14);
  510. rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
  511. rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
  512. }
  513. static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
  514. struct rf_channel *rf, const int txpower)
  515. {
  516. /*
  517. * Set TXpower.
  518. */
  519. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  520. /*
  521. * For RT2525E we should first set the channel to half band higher.
  522. */
  523. if (rt2x00_rf(rt2x00dev, RF2525E)) {
  524. static const u32 vals[] = {
  525. 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
  526. 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
  527. 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
  528. 0x00000902, 0x00000906
  529. };
  530. rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  531. if (rf->rf4)
  532. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  533. }
  534. rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
  535. rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
  536. rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
  537. if (rf->rf4)
  538. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  539. }
  540. static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
  541. const int txpower)
  542. {
  543. u32 rf3;
  544. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  545. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  546. rt2500usb_rf_write(rt2x00dev, 3, rf3);
  547. }
  548. static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
  549. struct rt2x00lib_conf *libconf)
  550. {
  551. enum dev_state state =
  552. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  553. STATE_SLEEP : STATE_AWAKE;
  554. u16 reg;
  555. if (state == STATE_SLEEP) {
  556. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  557. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
  558. rt2x00dev->beacon_int - 20);
  559. rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
  560. libconf->conf->listen_interval - 1);
  561. /* We must first disable autowake before it can be enabled */
  562. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
  563. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  564. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
  565. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  566. } else {
  567. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  568. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
  569. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  570. }
  571. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  572. }
  573. static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
  574. struct rt2x00lib_conf *libconf,
  575. const unsigned int flags)
  576. {
  577. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  578. rt2500usb_config_channel(rt2x00dev, &libconf->rf,
  579. libconf->conf->power_level);
  580. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  581. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  582. rt2500usb_config_txpower(rt2x00dev,
  583. libconf->conf->power_level);
  584. if (flags & IEEE80211_CONF_CHANGE_PS)
  585. rt2500usb_config_ps(rt2x00dev, libconf);
  586. }
  587. /*
  588. * Link tuning
  589. */
  590. static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
  591. struct link_qual *qual)
  592. {
  593. u16 reg;
  594. /*
  595. * Update FCS error count from register.
  596. */
  597. rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
  598. qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
  599. /*
  600. * Update False CCA count from register.
  601. */
  602. rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
  603. qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
  604. }
  605. static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
  606. struct link_qual *qual)
  607. {
  608. u16 eeprom;
  609. u16 value;
  610. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
  611. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
  612. rt2500usb_bbp_write(rt2x00dev, 24, value);
  613. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
  614. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
  615. rt2500usb_bbp_write(rt2x00dev, 25, value);
  616. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
  617. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
  618. rt2500usb_bbp_write(rt2x00dev, 61, value);
  619. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
  620. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
  621. rt2500usb_bbp_write(rt2x00dev, 17, value);
  622. qual->vgc_level = value;
  623. }
  624. /*
  625. * Initialization functions.
  626. */
  627. static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
  628. {
  629. u16 reg;
  630. rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
  631. USB_MODE_TEST, REGISTER_TIMEOUT);
  632. rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
  633. 0x00f0, REGISTER_TIMEOUT);
  634. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  635. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
  636. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  637. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
  638. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
  639. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  640. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
  641. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
  642. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  643. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  644. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  645. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  646. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  647. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  648. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  649. rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
  650. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
  651. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
  652. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
  653. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
  654. rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
  655. rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
  656. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
  657. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
  658. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
  659. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
  660. rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
  661. rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
  662. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
  663. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
  664. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
  665. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
  666. rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
  667. rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
  668. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
  669. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
  670. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
  671. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
  672. rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
  673. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  674. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
  675. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
  676. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
  677. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  678. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  679. rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
  680. rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
  681. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  682. return -EBUSY;
  683. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  684. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  685. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  686. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
  687. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  688. if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
  689. rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
  690. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
  691. } else {
  692. reg = 0;
  693. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
  694. rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
  695. }
  696. rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
  697. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
  698. rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
  699. rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
  700. rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
  701. rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
  702. rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
  703. rt2x00dev->rx->data_size);
  704. rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
  705. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  706. rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
  707. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  708. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
  709. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  710. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  711. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
  712. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  713. rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
  714. rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
  715. rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
  716. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  717. rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
  718. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  719. return 0;
  720. }
  721. static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  722. {
  723. unsigned int i;
  724. u8 value;
  725. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  726. rt2500usb_bbp_read(rt2x00dev, 0, &value);
  727. if ((value != 0xff) && (value != 0x00))
  728. return 0;
  729. udelay(REGISTER_BUSY_DELAY);
  730. }
  731. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  732. return -EACCES;
  733. }
  734. static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
  735. {
  736. unsigned int i;
  737. u16 eeprom;
  738. u8 value;
  739. u8 reg_id;
  740. if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
  741. return -EACCES;
  742. rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
  743. rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
  744. rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
  745. rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
  746. rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
  747. rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
  748. rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
  749. rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
  750. rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
  751. rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
  752. rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
  753. rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
  754. rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
  755. rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
  756. rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
  757. rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
  758. rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
  759. rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
  760. rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
  761. rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
  762. rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
  763. rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
  764. rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
  765. rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
  766. rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
  767. rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
  768. rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
  769. rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
  770. rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
  771. rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
  772. rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
  773. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  774. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  775. if (eeprom != 0xffff && eeprom != 0x0000) {
  776. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  777. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  778. rt2500usb_bbp_write(rt2x00dev, reg_id, value);
  779. }
  780. }
  781. return 0;
  782. }
  783. /*
  784. * Device state switch handlers.
  785. */
  786. static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
  787. enum dev_state state)
  788. {
  789. u16 reg;
  790. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  791. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
  792. (state == STATE_RADIO_RX_OFF) ||
  793. (state == STATE_RADIO_RX_OFF_LINK));
  794. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  795. }
  796. static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
  797. {
  798. /*
  799. * Initialize all registers.
  800. */
  801. if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
  802. rt2500usb_init_bbp(rt2x00dev)))
  803. return -EIO;
  804. return 0;
  805. }
  806. static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
  807. {
  808. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
  809. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
  810. /*
  811. * Disable synchronisation.
  812. */
  813. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  814. rt2x00usb_disable_radio(rt2x00dev);
  815. }
  816. static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
  817. enum dev_state state)
  818. {
  819. u16 reg;
  820. u16 reg2;
  821. unsigned int i;
  822. char put_to_sleep;
  823. char bbp_state;
  824. char rf_state;
  825. put_to_sleep = (state != STATE_AWAKE);
  826. reg = 0;
  827. rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
  828. rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
  829. rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
  830. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  831. rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
  832. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  833. /*
  834. * Device is not guaranteed to be in the requested state yet.
  835. * We must wait until the register indicates that the
  836. * device has entered the correct state.
  837. */
  838. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  839. rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
  840. bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
  841. rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
  842. if (bbp_state == state && rf_state == state)
  843. return 0;
  844. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  845. msleep(30);
  846. }
  847. return -EBUSY;
  848. }
  849. static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
  850. enum dev_state state)
  851. {
  852. int retval = 0;
  853. switch (state) {
  854. case STATE_RADIO_ON:
  855. retval = rt2500usb_enable_radio(rt2x00dev);
  856. break;
  857. case STATE_RADIO_OFF:
  858. rt2500usb_disable_radio(rt2x00dev);
  859. break;
  860. case STATE_RADIO_RX_ON:
  861. case STATE_RADIO_RX_ON_LINK:
  862. case STATE_RADIO_RX_OFF:
  863. case STATE_RADIO_RX_OFF_LINK:
  864. rt2500usb_toggle_rx(rt2x00dev, state);
  865. break;
  866. case STATE_RADIO_IRQ_ON:
  867. case STATE_RADIO_IRQ_ON_ISR:
  868. case STATE_RADIO_IRQ_OFF:
  869. case STATE_RADIO_IRQ_OFF_ISR:
  870. /* No support, but no error either */
  871. break;
  872. case STATE_DEEP_SLEEP:
  873. case STATE_SLEEP:
  874. case STATE_STANDBY:
  875. case STATE_AWAKE:
  876. retval = rt2500usb_set_state(rt2x00dev, state);
  877. break;
  878. default:
  879. retval = -ENOTSUPP;
  880. break;
  881. }
  882. if (unlikely(retval))
  883. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  884. state, retval);
  885. return retval;
  886. }
  887. /*
  888. * TX descriptor initialization
  889. */
  890. static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  891. struct sk_buff *skb,
  892. struct txentry_desc *txdesc)
  893. {
  894. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  895. __le32 *txd = (__le32 *) skb->data;
  896. u32 word;
  897. /*
  898. * Start writing the descriptor words.
  899. */
  900. rt2x00_desc_read(txd, 0, &word);
  901. rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
  902. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  903. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  904. rt2x00_set_field32(&word, TXD_W0_ACK,
  905. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  906. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  907. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  908. rt2x00_set_field32(&word, TXD_W0_OFDM,
  909. (txdesc->rate_mode == RATE_MODE_OFDM));
  910. rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
  911. test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
  912. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  913. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
  914. rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
  915. rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
  916. rt2x00_desc_write(txd, 0, word);
  917. rt2x00_desc_read(txd, 1, &word);
  918. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
  919. rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
  920. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  921. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  922. rt2x00_desc_write(txd, 1, word);
  923. rt2x00_desc_read(txd, 2, &word);
  924. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  925. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  926. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  927. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  928. rt2x00_desc_write(txd, 2, word);
  929. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
  930. _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
  931. _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
  932. }
  933. /*
  934. * Register descriptor details in skb frame descriptor.
  935. */
  936. skbdesc->flags |= SKBDESC_DESC_IN_SKB;
  937. skbdesc->desc = txd;
  938. skbdesc->desc_len = TXD_DESC_SIZE;
  939. }
  940. /*
  941. * TX data initialization
  942. */
  943. static void rt2500usb_beacondone(struct urb *urb);
  944. static void rt2500usb_write_beacon(struct queue_entry *entry,
  945. struct txentry_desc *txdesc)
  946. {
  947. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  948. struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
  949. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  950. int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
  951. int length;
  952. u16 reg, reg0;
  953. /*
  954. * Disable beaconing while we are reloading the beacon data,
  955. * otherwise we might be sending out invalid data.
  956. */
  957. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  958. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  959. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  960. /*
  961. * Add space for the descriptor in front of the skb.
  962. */
  963. skb_push(entry->skb, TXD_DESC_SIZE);
  964. memset(entry->skb->data, 0, TXD_DESC_SIZE);
  965. /*
  966. * Write the TX descriptor for the beacon.
  967. */
  968. rt2500usb_write_tx_desc(rt2x00dev, entry->skb, txdesc);
  969. /*
  970. * Dump beacon to userspace through debugfs.
  971. */
  972. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
  973. /*
  974. * USB devices cannot blindly pass the skb->len as the
  975. * length of the data to usb_fill_bulk_urb. Pass the skb
  976. * to the driver to determine what the length should be.
  977. */
  978. length = rt2x00dev->ops->lib->get_tx_data_len(entry);
  979. usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
  980. entry->skb->data, length, rt2500usb_beacondone,
  981. entry);
  982. /*
  983. * Second we need to create the guardian byte.
  984. * We only need a single byte, so lets recycle
  985. * the 'flags' field we are not using for beacons.
  986. */
  987. bcn_priv->guardian_data = 0;
  988. usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
  989. &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
  990. entry);
  991. /*
  992. * Send out the guardian byte.
  993. */
  994. usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
  995. /*
  996. * Enable beaconing again.
  997. */
  998. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  999. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  1000. reg0 = reg;
  1001. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
  1002. /*
  1003. * Beacon generation will fail initially.
  1004. * To prevent this we need to change the TXRX_CSR19
  1005. * register several times (reg0 is the same as reg
  1006. * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
  1007. * and 1 in reg).
  1008. */
  1009. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1010. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
  1011. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1012. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
  1013. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1014. }
  1015. static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
  1016. {
  1017. int length;
  1018. /*
  1019. * The length _must_ be a multiple of 2,
  1020. * but it must _not_ be a multiple of the USB packet size.
  1021. */
  1022. length = roundup(entry->skb->len, 2);
  1023. length += (2 * !(length % entry->queue->usb_maxpacket));
  1024. return length;
  1025. }
  1026. /*
  1027. * RX control handlers
  1028. */
  1029. static void rt2500usb_fill_rxdone(struct queue_entry *entry,
  1030. struct rxdone_entry_desc *rxdesc)
  1031. {
  1032. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1033. struct queue_entry_priv_usb *entry_priv = entry->priv_data;
  1034. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1035. __le32 *rxd =
  1036. (__le32 *)(entry->skb->data +
  1037. (entry_priv->urb->actual_length -
  1038. entry->queue->desc_size));
  1039. u32 word0;
  1040. u32 word1;
  1041. /*
  1042. * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
  1043. * frame data in rt2x00usb.
  1044. */
  1045. memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
  1046. rxd = (__le32 *)skbdesc->desc;
  1047. /*
  1048. * It is now safe to read the descriptor on all architectures.
  1049. */
  1050. rt2x00_desc_read(rxd, 0, &word0);
  1051. rt2x00_desc_read(rxd, 1, &word1);
  1052. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1053. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1054. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1055. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1056. rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
  1057. if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
  1058. rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
  1059. if (rxdesc->cipher != CIPHER_NONE) {
  1060. _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
  1061. _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
  1062. rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
  1063. /* ICV is located at the end of frame */
  1064. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  1065. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  1066. rxdesc->flags |= RX_FLAG_DECRYPTED;
  1067. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  1068. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  1069. }
  1070. /*
  1071. * Obtain the status about this packet.
  1072. * When frame was received with an OFDM bitrate,
  1073. * the signal is the PLCP value. If it was received with
  1074. * a CCK bitrate the signal is the rate in 100kbit/s.
  1075. */
  1076. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1077. rxdesc->rssi =
  1078. rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
  1079. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1080. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1081. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1082. else
  1083. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1084. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1085. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1086. /*
  1087. * Adjust the skb memory window to the frame boundaries.
  1088. */
  1089. skb_trim(entry->skb, rxdesc->size);
  1090. }
  1091. /*
  1092. * Interrupt functions.
  1093. */
  1094. static void rt2500usb_beacondone(struct urb *urb)
  1095. {
  1096. struct queue_entry *entry = (struct queue_entry *)urb->context;
  1097. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  1098. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
  1099. return;
  1100. /*
  1101. * Check if this was the guardian beacon,
  1102. * if that was the case we need to send the real beacon now.
  1103. * Otherwise we should free the sk_buffer, the device
  1104. * should be doing the rest of the work now.
  1105. */
  1106. if (bcn_priv->guardian_urb == urb) {
  1107. usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
  1108. } else if (bcn_priv->urb == urb) {
  1109. dev_kfree_skb(entry->skb);
  1110. entry->skb = NULL;
  1111. }
  1112. }
  1113. /*
  1114. * Device probe functions.
  1115. */
  1116. static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1117. {
  1118. u16 word;
  1119. u8 *mac;
  1120. u8 bbp;
  1121. rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
  1122. /*
  1123. * Start validation of the data that has been read.
  1124. */
  1125. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1126. if (!is_valid_ether_addr(mac)) {
  1127. random_ether_addr(mac);
  1128. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1129. }
  1130. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1131. if (word == 0xffff) {
  1132. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1133. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1134. ANTENNA_SW_DIVERSITY);
  1135. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1136. ANTENNA_SW_DIVERSITY);
  1137. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1138. LED_MODE_DEFAULT);
  1139. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1140. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1141. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1142. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1143. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1144. }
  1145. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1146. if (word == 0xffff) {
  1147. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1148. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1149. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1150. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1151. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1152. }
  1153. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1154. if (word == 0xffff) {
  1155. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1156. DEFAULT_RSSI_OFFSET);
  1157. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1158. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1159. }
  1160. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
  1161. if (word == 0xffff) {
  1162. rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
  1163. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
  1164. EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
  1165. }
  1166. /*
  1167. * Switch lower vgc bound to current BBP R17 value,
  1168. * lower the value a bit for better quality.
  1169. */
  1170. rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
  1171. bbp -= 6;
  1172. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
  1173. if (word == 0xffff) {
  1174. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
  1175. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1176. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1177. EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
  1178. } else {
  1179. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1180. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1181. }
  1182. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
  1183. if (word == 0xffff) {
  1184. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
  1185. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
  1186. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
  1187. EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
  1188. }
  1189. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
  1190. if (word == 0xffff) {
  1191. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
  1192. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
  1193. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
  1194. EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
  1195. }
  1196. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
  1197. if (word == 0xffff) {
  1198. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
  1199. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
  1200. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
  1201. EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
  1202. }
  1203. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
  1204. if (word == 0xffff) {
  1205. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
  1206. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
  1207. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
  1208. EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
  1209. }
  1210. return 0;
  1211. }
  1212. static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1213. {
  1214. u16 reg;
  1215. u16 value;
  1216. u16 eeprom;
  1217. /*
  1218. * Read EEPROM word for configuration.
  1219. */
  1220. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1221. /*
  1222. * Identify RF chipset.
  1223. */
  1224. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1225. rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  1226. rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
  1227. if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
  1228. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  1229. return -ENODEV;
  1230. }
  1231. if (!rt2x00_rf(rt2x00dev, RF2522) &&
  1232. !rt2x00_rf(rt2x00dev, RF2523) &&
  1233. !rt2x00_rf(rt2x00dev, RF2524) &&
  1234. !rt2x00_rf(rt2x00dev, RF2525) &&
  1235. !rt2x00_rf(rt2x00dev, RF2525E) &&
  1236. !rt2x00_rf(rt2x00dev, RF5222)) {
  1237. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1238. return -ENODEV;
  1239. }
  1240. /*
  1241. * Identify default antenna configuration.
  1242. */
  1243. rt2x00dev->default_ant.tx =
  1244. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1245. rt2x00dev->default_ant.rx =
  1246. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1247. /*
  1248. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1249. * I am not 100% sure about this, but the legacy drivers do not
  1250. * indicate antenna swapping in software is required when
  1251. * diversity is enabled.
  1252. */
  1253. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1254. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1255. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1256. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1257. /*
  1258. * Store led mode, for correct led behaviour.
  1259. */
  1260. #ifdef CONFIG_RT2X00_LIB_LEDS
  1261. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1262. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1263. if (value == LED_MODE_TXRX_ACTIVITY ||
  1264. value == LED_MODE_DEFAULT ||
  1265. value == LED_MODE_ASUS)
  1266. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1267. LED_TYPE_ACTIVITY);
  1268. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1269. /*
  1270. * Detect if this device has an hardware controlled radio.
  1271. */
  1272. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1273. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1274. /*
  1275. * Read the RSSI <-> dBm offset information.
  1276. */
  1277. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1278. rt2x00dev->rssi_offset =
  1279. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1280. return 0;
  1281. }
  1282. /*
  1283. * RF value list for RF2522
  1284. * Supports: 2.4 GHz
  1285. */
  1286. static const struct rf_channel rf_vals_bg_2522[] = {
  1287. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1288. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1289. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1290. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1291. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1292. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1293. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1294. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1295. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1296. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1297. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1298. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1299. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1300. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1301. };
  1302. /*
  1303. * RF value list for RF2523
  1304. * Supports: 2.4 GHz
  1305. */
  1306. static const struct rf_channel rf_vals_bg_2523[] = {
  1307. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1308. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1309. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1310. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1311. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1312. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1313. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1314. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1315. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1316. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1317. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1318. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1319. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1320. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1321. };
  1322. /*
  1323. * RF value list for RF2524
  1324. * Supports: 2.4 GHz
  1325. */
  1326. static const struct rf_channel rf_vals_bg_2524[] = {
  1327. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1328. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1329. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1330. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1331. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1332. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1333. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1334. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1335. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1336. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1337. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1338. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1339. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1340. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1341. };
  1342. /*
  1343. * RF value list for RF2525
  1344. * Supports: 2.4 GHz
  1345. */
  1346. static const struct rf_channel rf_vals_bg_2525[] = {
  1347. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1348. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1349. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1350. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1351. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1352. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1353. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1354. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1355. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1356. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1357. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1358. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1359. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1360. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1361. };
  1362. /*
  1363. * RF value list for RF2525e
  1364. * Supports: 2.4 GHz
  1365. */
  1366. static const struct rf_channel rf_vals_bg_2525e[] = {
  1367. { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
  1368. { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
  1369. { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
  1370. { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
  1371. { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
  1372. { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
  1373. { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
  1374. { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
  1375. { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
  1376. { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
  1377. { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
  1378. { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
  1379. { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
  1380. { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
  1381. };
  1382. /*
  1383. * RF value list for RF5222
  1384. * Supports: 2.4 GHz & 5.2 GHz
  1385. */
  1386. static const struct rf_channel rf_vals_5222[] = {
  1387. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1388. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1389. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1390. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1391. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1392. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1393. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1394. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1395. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1396. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1397. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1398. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1399. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1400. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1401. /* 802.11 UNI / HyperLan 2 */
  1402. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1403. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1404. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1405. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1406. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1407. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1408. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1409. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1410. /* 802.11 HyperLan 2 */
  1411. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1412. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1413. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1414. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1415. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1416. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1417. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1418. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1419. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1420. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1421. /* 802.11 UNII */
  1422. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1423. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1424. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1425. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1426. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1427. };
  1428. static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1429. {
  1430. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1431. struct channel_info *info;
  1432. char *tx_power;
  1433. unsigned int i;
  1434. /*
  1435. * Initialize all hw fields.
  1436. */
  1437. rt2x00dev->hw->flags =
  1438. IEEE80211_HW_RX_INCLUDES_FCS |
  1439. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1440. IEEE80211_HW_SIGNAL_DBM |
  1441. IEEE80211_HW_SUPPORTS_PS |
  1442. IEEE80211_HW_PS_NULLFUNC_STACK;
  1443. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1444. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1445. rt2x00_eeprom_addr(rt2x00dev,
  1446. EEPROM_MAC_ADDR_0));
  1447. /*
  1448. * Initialize hw_mode information.
  1449. */
  1450. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1451. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1452. if (rt2x00_rf(rt2x00dev, RF2522)) {
  1453. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1454. spec->channels = rf_vals_bg_2522;
  1455. } else if (rt2x00_rf(rt2x00dev, RF2523)) {
  1456. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1457. spec->channels = rf_vals_bg_2523;
  1458. } else if (rt2x00_rf(rt2x00dev, RF2524)) {
  1459. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1460. spec->channels = rf_vals_bg_2524;
  1461. } else if (rt2x00_rf(rt2x00dev, RF2525)) {
  1462. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1463. spec->channels = rf_vals_bg_2525;
  1464. } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
  1465. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1466. spec->channels = rf_vals_bg_2525e;
  1467. } else if (rt2x00_rf(rt2x00dev, RF5222)) {
  1468. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1469. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1470. spec->channels = rf_vals_5222;
  1471. }
  1472. /*
  1473. * Create channel information array
  1474. */
  1475. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1476. if (!info)
  1477. return -ENOMEM;
  1478. spec->channels_info = info;
  1479. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1480. for (i = 0; i < 14; i++)
  1481. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1482. if (spec->num_channels > 14) {
  1483. for (i = 14; i < spec->num_channels; i++)
  1484. info[i].tx_power1 = DEFAULT_TXPOWER;
  1485. }
  1486. return 0;
  1487. }
  1488. static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
  1489. {
  1490. int retval;
  1491. /*
  1492. * Allocate eeprom data.
  1493. */
  1494. retval = rt2500usb_validate_eeprom(rt2x00dev);
  1495. if (retval)
  1496. return retval;
  1497. retval = rt2500usb_init_eeprom(rt2x00dev);
  1498. if (retval)
  1499. return retval;
  1500. /*
  1501. * Initialize hw specifications.
  1502. */
  1503. retval = rt2500usb_probe_hw_mode(rt2x00dev);
  1504. if (retval)
  1505. return retval;
  1506. /*
  1507. * This device requires the atim queue
  1508. */
  1509. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1510. __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
  1511. if (!modparam_nohwcrypt) {
  1512. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  1513. __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
  1514. }
  1515. __set_bit(DRIVER_SUPPORT_WATCHDOG, &rt2x00dev->flags);
  1516. /*
  1517. * Set the rssi offset.
  1518. */
  1519. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1520. return 0;
  1521. }
  1522. static const struct ieee80211_ops rt2500usb_mac80211_ops = {
  1523. .tx = rt2x00mac_tx,
  1524. .start = rt2x00mac_start,
  1525. .stop = rt2x00mac_stop,
  1526. .add_interface = rt2x00mac_add_interface,
  1527. .remove_interface = rt2x00mac_remove_interface,
  1528. .config = rt2x00mac_config,
  1529. .configure_filter = rt2x00mac_configure_filter,
  1530. .set_tim = rt2x00mac_set_tim,
  1531. .set_key = rt2x00mac_set_key,
  1532. .sw_scan_start = rt2x00mac_sw_scan_start,
  1533. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  1534. .get_stats = rt2x00mac_get_stats,
  1535. .bss_info_changed = rt2x00mac_bss_info_changed,
  1536. .conf_tx = rt2x00mac_conf_tx,
  1537. .rfkill_poll = rt2x00mac_rfkill_poll,
  1538. };
  1539. static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
  1540. .probe_hw = rt2500usb_probe_hw,
  1541. .initialize = rt2x00usb_initialize,
  1542. .uninitialize = rt2x00usb_uninitialize,
  1543. .clear_entry = rt2x00usb_clear_entry,
  1544. .set_device_state = rt2500usb_set_device_state,
  1545. .rfkill_poll = rt2500usb_rfkill_poll,
  1546. .link_stats = rt2500usb_link_stats,
  1547. .reset_tuner = rt2500usb_reset_tuner,
  1548. .watchdog = rt2x00usb_watchdog,
  1549. .write_tx_desc = rt2500usb_write_tx_desc,
  1550. .write_beacon = rt2500usb_write_beacon,
  1551. .get_tx_data_len = rt2500usb_get_tx_data_len,
  1552. .kick_tx_queue = rt2x00usb_kick_tx_queue,
  1553. .kill_tx_queue = rt2x00usb_kill_tx_queue,
  1554. .fill_rxdone = rt2500usb_fill_rxdone,
  1555. .config_shared_key = rt2500usb_config_key,
  1556. .config_pairwise_key = rt2500usb_config_key,
  1557. .config_filter = rt2500usb_config_filter,
  1558. .config_intf = rt2500usb_config_intf,
  1559. .config_erp = rt2500usb_config_erp,
  1560. .config_ant = rt2500usb_config_ant,
  1561. .config = rt2500usb_config,
  1562. };
  1563. static const struct data_queue_desc rt2500usb_queue_rx = {
  1564. .entry_num = RX_ENTRIES,
  1565. .data_size = DATA_FRAME_SIZE,
  1566. .desc_size = RXD_DESC_SIZE,
  1567. .priv_size = sizeof(struct queue_entry_priv_usb),
  1568. };
  1569. static const struct data_queue_desc rt2500usb_queue_tx = {
  1570. .entry_num = TX_ENTRIES,
  1571. .data_size = DATA_FRAME_SIZE,
  1572. .desc_size = TXD_DESC_SIZE,
  1573. .priv_size = sizeof(struct queue_entry_priv_usb),
  1574. };
  1575. static const struct data_queue_desc rt2500usb_queue_bcn = {
  1576. .entry_num = BEACON_ENTRIES,
  1577. .data_size = MGMT_FRAME_SIZE,
  1578. .desc_size = TXD_DESC_SIZE,
  1579. .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
  1580. };
  1581. static const struct data_queue_desc rt2500usb_queue_atim = {
  1582. .entry_num = ATIM_ENTRIES,
  1583. .data_size = DATA_FRAME_SIZE,
  1584. .desc_size = TXD_DESC_SIZE,
  1585. .priv_size = sizeof(struct queue_entry_priv_usb),
  1586. };
  1587. static const struct rt2x00_ops rt2500usb_ops = {
  1588. .name = KBUILD_MODNAME,
  1589. .max_sta_intf = 1,
  1590. .max_ap_intf = 1,
  1591. .eeprom_size = EEPROM_SIZE,
  1592. .rf_size = RF_SIZE,
  1593. .tx_queues = NUM_TX_QUEUES,
  1594. .extra_tx_headroom = TXD_DESC_SIZE,
  1595. .rx = &rt2500usb_queue_rx,
  1596. .tx = &rt2500usb_queue_tx,
  1597. .bcn = &rt2500usb_queue_bcn,
  1598. .atim = &rt2500usb_queue_atim,
  1599. .lib = &rt2500usb_rt2x00_ops,
  1600. .hw = &rt2500usb_mac80211_ops,
  1601. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1602. .debugfs = &rt2500usb_rt2x00debug,
  1603. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1604. };
  1605. /*
  1606. * rt2500usb module information.
  1607. */
  1608. static struct usb_device_id rt2500usb_device_table[] = {
  1609. /* ASUS */
  1610. { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1611. { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
  1612. /* Belkin */
  1613. { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
  1614. { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
  1615. { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1616. /* Cisco Systems */
  1617. { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
  1618. { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
  1619. { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1620. /* CNet */
  1621. { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
  1622. /* Conceptronic */
  1623. { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
  1624. /* D-LINK */
  1625. { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
  1626. /* Gigabyte */
  1627. { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
  1628. { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
  1629. /* Hercules */
  1630. { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
  1631. /* Melco */
  1632. { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
  1633. { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
  1634. { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
  1635. { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1636. { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
  1637. /* MSI */
  1638. { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
  1639. { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
  1640. { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
  1641. /* Ralink */
  1642. { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1643. { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
  1644. { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
  1645. { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1646. /* Sagem */
  1647. { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1648. /* Siemens */
  1649. { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
  1650. /* SMC */
  1651. { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
  1652. /* Spairon */
  1653. { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
  1654. /* SURECOM */
  1655. { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
  1656. /* Trust */
  1657. { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1658. /* VTech */
  1659. { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
  1660. /* Zinwell */
  1661. { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
  1662. { 0, }
  1663. };
  1664. MODULE_AUTHOR(DRV_PROJECT);
  1665. MODULE_VERSION(DRV_VERSION);
  1666. MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
  1667. MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
  1668. MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
  1669. MODULE_LICENSE("GPL");
  1670. static struct usb_driver rt2500usb_driver = {
  1671. .name = KBUILD_MODNAME,
  1672. .id_table = rt2500usb_device_table,
  1673. .probe = rt2x00usb_probe,
  1674. .disconnect = rt2x00usb_disconnect,
  1675. .suspend = rt2x00usb_suspend,
  1676. .resume = rt2x00usb_resume,
  1677. };
  1678. static int __init rt2500usb_init(void)
  1679. {
  1680. return usb_register(&rt2500usb_driver);
  1681. }
  1682. static void __exit rt2500usb_exit(void)
  1683. {
  1684. usb_deregister(&rt2500usb_driver);
  1685. }
  1686. module_init(rt2500usb_init);
  1687. module_exit(rt2500usb_exit);