hw.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
  48. {
  49. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  50. return priv_ops->macversion_supported(ah->hw_version.macVersion);
  51. }
  52. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  53. struct ath9k_channel *chan)
  54. {
  55. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  56. }
  57. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  58. {
  59. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  60. return;
  61. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  62. }
  63. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  64. {
  65. /* You will not have this callback if using the old ANI */
  66. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  67. return;
  68. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  69. }
  70. /********************/
  71. /* Helper Functions */
  72. /********************/
  73. static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
  74. {
  75. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  76. if (!ah->curchan) /* should really check for CCK instead */
  77. return usecs *ATH9K_CLOCK_RATE_CCK;
  78. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  79. return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
  80. if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  81. return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  82. else
  83. return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  88. if (conf_is_ht40(conf))
  89. return ath9k_hw_mac_clks(ah, usecs) * 2;
  90. else
  91. return ath9k_hw_mac_clks(ah, usecs);
  92. }
  93. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  94. {
  95. int i;
  96. BUG_ON(timeout < AH_TIME_QUANTUM);
  97. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  98. if ((REG_READ(ah, reg) & mask) == val)
  99. return true;
  100. udelay(AH_TIME_QUANTUM);
  101. }
  102. ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
  103. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  104. timeout, reg, REG_READ(ah, reg), mask, val);
  105. return false;
  106. }
  107. EXPORT_SYMBOL(ath9k_hw_wait);
  108. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  109. {
  110. u32 retval;
  111. int i;
  112. for (i = 0, retval = 0; i < n; i++) {
  113. retval = (retval << 1) | (val & 1);
  114. val >>= 1;
  115. }
  116. return retval;
  117. }
  118. bool ath9k_get_channel_edges(struct ath_hw *ah,
  119. u16 flags, u16 *low,
  120. u16 *high)
  121. {
  122. struct ath9k_hw_capabilities *pCap = &ah->caps;
  123. if (flags & CHANNEL_5GHZ) {
  124. *low = pCap->low_5ghz_chan;
  125. *high = pCap->high_5ghz_chan;
  126. return true;
  127. }
  128. if ((flags & CHANNEL_2GHZ)) {
  129. *low = pCap->low_2ghz_chan;
  130. *high = pCap->high_2ghz_chan;
  131. return true;
  132. }
  133. return false;
  134. }
  135. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  136. u8 phy, int kbps,
  137. u32 frameLen, u16 rateix,
  138. bool shortPreamble)
  139. {
  140. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  141. if (kbps == 0)
  142. return 0;
  143. switch (phy) {
  144. case WLAN_RC_PHY_CCK:
  145. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  146. if (shortPreamble)
  147. phyTime >>= 1;
  148. numBits = frameLen << 3;
  149. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  150. break;
  151. case WLAN_RC_PHY_OFDM:
  152. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  153. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  154. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  155. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  156. txTime = OFDM_SIFS_TIME_QUARTER
  157. + OFDM_PREAMBLE_TIME_QUARTER
  158. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  159. } else if (ah->curchan &&
  160. IS_CHAN_HALF_RATE(ah->curchan)) {
  161. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  162. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  163. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  164. txTime = OFDM_SIFS_TIME_HALF +
  165. OFDM_PREAMBLE_TIME_HALF
  166. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  167. } else {
  168. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  169. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  170. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  171. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  172. + (numSymbols * OFDM_SYMBOL_TIME);
  173. }
  174. break;
  175. default:
  176. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  177. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  178. txTime = 0;
  179. break;
  180. }
  181. return txTime;
  182. }
  183. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  184. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  185. struct ath9k_channel *chan,
  186. struct chan_centers *centers)
  187. {
  188. int8_t extoff;
  189. if (!IS_CHAN_HT40(chan)) {
  190. centers->ctl_center = centers->ext_center =
  191. centers->synth_center = chan->channel;
  192. return;
  193. }
  194. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  195. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  196. centers->synth_center =
  197. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  198. extoff = 1;
  199. } else {
  200. centers->synth_center =
  201. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  202. extoff = -1;
  203. }
  204. centers->ctl_center =
  205. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  206. /* 25 MHz spacing is supported by hw but not on upper layers */
  207. centers->ext_center =
  208. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  209. }
  210. /******************/
  211. /* Chip Revisions */
  212. /******************/
  213. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  214. {
  215. u32 val;
  216. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  217. if (val == 0xFF) {
  218. val = REG_READ(ah, AR_SREV);
  219. ah->hw_version.macVersion =
  220. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  221. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  222. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  223. } else {
  224. if (!AR_SREV_9100(ah))
  225. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  226. ah->hw_version.macRev = val & AR_SREV_REVISION;
  227. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  228. ah->is_pciexpress = true;
  229. }
  230. }
  231. /************************************/
  232. /* HW Attach, Detach, Init Routines */
  233. /************************************/
  234. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  235. {
  236. if (AR_SREV_9100(ah))
  237. return;
  238. ENABLE_REGWRITE_BUFFER(ah);
  239. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  240. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  241. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  242. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  243. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  244. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  245. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  246. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  247. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  248. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  249. REGWRITE_BUFFER_FLUSH(ah);
  250. DISABLE_REGWRITE_BUFFER(ah);
  251. }
  252. /* This should work for all families including legacy */
  253. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  254. {
  255. struct ath_common *common = ath9k_hw_common(ah);
  256. u32 regAddr[2] = { AR_STA_ID0 };
  257. u32 regHold[2];
  258. u32 patternData[4] = { 0x55555555,
  259. 0xaaaaaaaa,
  260. 0x66666666,
  261. 0x99999999 };
  262. int i, j, loop_max;
  263. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  264. loop_max = 2;
  265. regAddr[1] = AR_PHY_BASE + (8 << 2);
  266. } else
  267. loop_max = 1;
  268. for (i = 0; i < loop_max; i++) {
  269. u32 addr = regAddr[i];
  270. u32 wrData, rdData;
  271. regHold[i] = REG_READ(ah, addr);
  272. for (j = 0; j < 0x100; j++) {
  273. wrData = (j << 16) | j;
  274. REG_WRITE(ah, addr, wrData);
  275. rdData = REG_READ(ah, addr);
  276. if (rdData != wrData) {
  277. ath_print(common, ATH_DBG_FATAL,
  278. "address test failed "
  279. "addr: 0x%08x - wr:0x%08x != "
  280. "rd:0x%08x\n",
  281. addr, wrData, rdData);
  282. return false;
  283. }
  284. }
  285. for (j = 0; j < 4; j++) {
  286. wrData = patternData[j];
  287. REG_WRITE(ah, addr, wrData);
  288. rdData = REG_READ(ah, addr);
  289. if (wrData != rdData) {
  290. ath_print(common, ATH_DBG_FATAL,
  291. "address test failed "
  292. "addr: 0x%08x - wr:0x%08x != "
  293. "rd:0x%08x\n",
  294. addr, wrData, rdData);
  295. return false;
  296. }
  297. }
  298. REG_WRITE(ah, regAddr[i], regHold[i]);
  299. }
  300. udelay(100);
  301. return true;
  302. }
  303. static void ath9k_hw_init_config(struct ath_hw *ah)
  304. {
  305. int i;
  306. ah->config.dma_beacon_response_time = 2;
  307. ah->config.sw_beacon_response_time = 10;
  308. ah->config.additional_swba_backoff = 0;
  309. ah->config.ack_6mb = 0x0;
  310. ah->config.cwm_ignore_extcca = 0;
  311. ah->config.pcie_powersave_enable = 0;
  312. ah->config.pcie_clock_req = 0;
  313. ah->config.pcie_waen = 0;
  314. ah->config.analog_shiftreg = 1;
  315. ah->config.ofdm_trig_low = 200;
  316. ah->config.ofdm_trig_high = 500;
  317. ah->config.cck_trig_high = 200;
  318. ah->config.cck_trig_low = 100;
  319. ah->config.enable_ani = true;
  320. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  321. ah->config.spurchans[i][0] = AR_NO_SPUR;
  322. ah->config.spurchans[i][1] = AR_NO_SPUR;
  323. }
  324. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  325. ah->config.ht_enable = 1;
  326. else
  327. ah->config.ht_enable = 0;
  328. ah->config.rx_intr_mitigation = true;
  329. ah->config.pcieSerDesWrite = true;
  330. /*
  331. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  332. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  333. * This means we use it for all AR5416 devices, and the few
  334. * minor PCI AR9280 devices out there.
  335. *
  336. * Serialization is required because these devices do not handle
  337. * well the case of two concurrent reads/writes due to the latency
  338. * involved. During one read/write another read/write can be issued
  339. * on another CPU while the previous read/write may still be working
  340. * on our hardware, if we hit this case the hardware poops in a loop.
  341. * We prevent this by serializing reads and writes.
  342. *
  343. * This issue is not present on PCI-Express devices or pre-AR5416
  344. * devices (legacy, 802.11abg).
  345. */
  346. if (num_possible_cpus() > 1)
  347. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  348. }
  349. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  350. {
  351. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  352. regulatory->country_code = CTRY_DEFAULT;
  353. regulatory->power_limit = MAX_RATE_POWER;
  354. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  355. ah->hw_version.magic = AR5416_MAGIC;
  356. ah->hw_version.subvendorid = 0;
  357. ah->ah_flags = 0;
  358. if (!AR_SREV_9100(ah))
  359. ah->ah_flags = AH_USE_EEPROM;
  360. ah->atim_window = 0;
  361. ah->sta_id1_defaults =
  362. AR_STA_ID1_CRPT_MIC_ENABLE |
  363. AR_STA_ID1_MCAST_KSRCH;
  364. ah->beacon_interval = 100;
  365. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  366. ah->slottime = (u32) -1;
  367. ah->globaltxtimeout = (u32) -1;
  368. ah->power_mode = ATH9K_PM_UNDEFINED;
  369. }
  370. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  371. {
  372. struct ath_common *common = ath9k_hw_common(ah);
  373. u32 sum;
  374. int i;
  375. u16 eeval;
  376. u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  377. sum = 0;
  378. for (i = 0; i < 3; i++) {
  379. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  380. sum += eeval;
  381. common->macaddr[2 * i] = eeval >> 8;
  382. common->macaddr[2 * i + 1] = eeval & 0xff;
  383. }
  384. if (sum == 0 || sum == 0xffff * 3)
  385. return -EADDRNOTAVAIL;
  386. return 0;
  387. }
  388. static int ath9k_hw_post_init(struct ath_hw *ah)
  389. {
  390. int ecode;
  391. if (!AR_SREV_9271(ah)) {
  392. if (!ath9k_hw_chip_test(ah))
  393. return -ENODEV;
  394. }
  395. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  396. ecode = ar9002_hw_rf_claim(ah);
  397. if (ecode != 0)
  398. return ecode;
  399. }
  400. ecode = ath9k_hw_eeprom_init(ah);
  401. if (ecode != 0)
  402. return ecode;
  403. ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  404. "Eeprom VER: %d, REV: %d\n",
  405. ah->eep_ops->get_eeprom_ver(ah),
  406. ah->eep_ops->get_eeprom_rev(ah));
  407. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  408. if (ecode) {
  409. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  410. "Failed allocating banks for "
  411. "external radio\n");
  412. return ecode;
  413. }
  414. if (!AR_SREV_9100(ah)) {
  415. ath9k_hw_ani_setup(ah);
  416. ath9k_hw_ani_init(ah);
  417. }
  418. return 0;
  419. }
  420. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  421. {
  422. if (AR_SREV_9300_20_OR_LATER(ah))
  423. ar9003_hw_attach_ops(ah);
  424. else
  425. ar9002_hw_attach_ops(ah);
  426. }
  427. /* Called for all hardware families */
  428. static int __ath9k_hw_init(struct ath_hw *ah)
  429. {
  430. struct ath_common *common = ath9k_hw_common(ah);
  431. int r = 0;
  432. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  433. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  434. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  435. ath_print(common, ATH_DBG_FATAL,
  436. "Couldn't reset chip\n");
  437. return -EIO;
  438. }
  439. ath9k_hw_init_defaults(ah);
  440. ath9k_hw_init_config(ah);
  441. ath9k_hw_attach_ops(ah);
  442. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  443. ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
  444. return -EIO;
  445. }
  446. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  447. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  448. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  449. !ah->is_pciexpress)) {
  450. ah->config.serialize_regmode =
  451. SER_REG_MODE_ON;
  452. } else {
  453. ah->config.serialize_regmode =
  454. SER_REG_MODE_OFF;
  455. }
  456. }
  457. ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  458. ah->config.serialize_regmode);
  459. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  460. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  461. else
  462. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  463. if (!ath9k_hw_macversion_supported(ah)) {
  464. ath_print(common, ATH_DBG_FATAL,
  465. "Mac Chip Rev 0x%02x.%x is not supported by "
  466. "this driver\n", ah->hw_version.macVersion,
  467. ah->hw_version.macRev);
  468. return -EOPNOTSUPP;
  469. }
  470. if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
  471. ah->is_pciexpress = false;
  472. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  473. ath9k_hw_init_cal_settings(ah);
  474. ah->ani_function = ATH9K_ANI_ALL;
  475. if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  476. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  477. if (!AR_SREV_9300_20_OR_LATER(ah))
  478. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  479. ath9k_hw_init_mode_regs(ah);
  480. /*
  481. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  482. * We need to do this to avoid RMW of this register. We cannot
  483. * read the reg when chip is asleep.
  484. */
  485. ah->WARegVal = REG_READ(ah, AR_WA);
  486. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  487. AR_WA_ASPM_TIMER_BASED_DISABLE);
  488. if (ah->is_pciexpress)
  489. ath9k_hw_configpcipowersave(ah, 0, 0);
  490. else
  491. ath9k_hw_disablepcie(ah);
  492. if (!AR_SREV_9300_20_OR_LATER(ah))
  493. ar9002_hw_cck_chan14_spread(ah);
  494. r = ath9k_hw_post_init(ah);
  495. if (r)
  496. return r;
  497. ath9k_hw_init_mode_gain_regs(ah);
  498. r = ath9k_hw_fill_cap_info(ah);
  499. if (r)
  500. return r;
  501. r = ath9k_hw_init_macaddr(ah);
  502. if (r) {
  503. ath_print(common, ATH_DBG_FATAL,
  504. "Failed to initialize MAC address\n");
  505. return r;
  506. }
  507. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  508. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  509. else
  510. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  511. ah->bb_watchdog_timeout_ms = 25;
  512. common->state = ATH_HW_INITIALIZED;
  513. return 0;
  514. }
  515. int ath9k_hw_init(struct ath_hw *ah)
  516. {
  517. int ret;
  518. struct ath_common *common = ath9k_hw_common(ah);
  519. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  520. switch (ah->hw_version.devid) {
  521. case AR5416_DEVID_PCI:
  522. case AR5416_DEVID_PCIE:
  523. case AR5416_AR9100_DEVID:
  524. case AR9160_DEVID_PCI:
  525. case AR9280_DEVID_PCI:
  526. case AR9280_DEVID_PCIE:
  527. case AR9285_DEVID_PCIE:
  528. case AR9287_DEVID_PCI:
  529. case AR9287_DEVID_PCIE:
  530. case AR2427_DEVID_PCIE:
  531. case AR9300_DEVID_PCIE:
  532. break;
  533. default:
  534. if (common->bus_ops->ath_bus_type == ATH_USB)
  535. break;
  536. ath_print(common, ATH_DBG_FATAL,
  537. "Hardware device ID 0x%04x not supported\n",
  538. ah->hw_version.devid);
  539. return -EOPNOTSUPP;
  540. }
  541. ret = __ath9k_hw_init(ah);
  542. if (ret) {
  543. ath_print(common, ATH_DBG_FATAL,
  544. "Unable to initialize hardware; "
  545. "initialization status: %d\n", ret);
  546. return ret;
  547. }
  548. return 0;
  549. }
  550. EXPORT_SYMBOL(ath9k_hw_init);
  551. static void ath9k_hw_init_qos(struct ath_hw *ah)
  552. {
  553. ENABLE_REGWRITE_BUFFER(ah);
  554. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  555. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  556. REG_WRITE(ah, AR_QOS_NO_ACK,
  557. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  558. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  559. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  560. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  561. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  562. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  563. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  564. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  565. REGWRITE_BUFFER_FLUSH(ah);
  566. DISABLE_REGWRITE_BUFFER(ah);
  567. }
  568. static void ath9k_hw_init_pll(struct ath_hw *ah,
  569. struct ath9k_channel *chan)
  570. {
  571. u32 pll = ath9k_hw_compute_pll_control(ah, chan);
  572. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  573. /* Switch the core clock for ar9271 to 117Mhz */
  574. if (AR_SREV_9271(ah)) {
  575. udelay(500);
  576. REG_WRITE(ah, 0x50040, 0x304);
  577. }
  578. udelay(RTC_PLL_SETTLE_DELAY);
  579. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  580. }
  581. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  582. enum nl80211_iftype opmode)
  583. {
  584. u32 imr_reg = AR_IMR_TXERR |
  585. AR_IMR_TXURN |
  586. AR_IMR_RXERR |
  587. AR_IMR_RXORN |
  588. AR_IMR_BCNMISC;
  589. if (AR_SREV_9300_20_OR_LATER(ah)) {
  590. imr_reg |= AR_IMR_RXOK_HP;
  591. if (ah->config.rx_intr_mitigation)
  592. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  593. else
  594. imr_reg |= AR_IMR_RXOK_LP;
  595. } else {
  596. if (ah->config.rx_intr_mitigation)
  597. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  598. else
  599. imr_reg |= AR_IMR_RXOK;
  600. }
  601. if (ah->config.tx_intr_mitigation)
  602. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  603. else
  604. imr_reg |= AR_IMR_TXOK;
  605. if (opmode == NL80211_IFTYPE_AP)
  606. imr_reg |= AR_IMR_MIB;
  607. ENABLE_REGWRITE_BUFFER(ah);
  608. REG_WRITE(ah, AR_IMR, imr_reg);
  609. ah->imrs2_reg |= AR_IMR_S2_GTT;
  610. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  611. if (!AR_SREV_9100(ah)) {
  612. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  613. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  614. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  615. }
  616. REGWRITE_BUFFER_FLUSH(ah);
  617. DISABLE_REGWRITE_BUFFER(ah);
  618. if (AR_SREV_9300_20_OR_LATER(ah)) {
  619. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  620. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  621. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  622. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  623. }
  624. }
  625. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  626. {
  627. u32 val = ath9k_hw_mac_to_clks(ah, us);
  628. val = min(val, (u32) 0xFFFF);
  629. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  630. }
  631. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  632. {
  633. u32 val = ath9k_hw_mac_to_clks(ah, us);
  634. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  635. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  636. }
  637. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  638. {
  639. u32 val = ath9k_hw_mac_to_clks(ah, us);
  640. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  641. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  642. }
  643. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  644. {
  645. if (tu > 0xFFFF) {
  646. ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
  647. "bad global tx timeout %u\n", tu);
  648. ah->globaltxtimeout = (u32) -1;
  649. return false;
  650. } else {
  651. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  652. ah->globaltxtimeout = tu;
  653. return true;
  654. }
  655. }
  656. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  657. {
  658. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  659. int acktimeout;
  660. int slottime;
  661. int sifstime;
  662. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  663. ah->misc_mode);
  664. if (ah->misc_mode != 0)
  665. REG_WRITE(ah, AR_PCU_MISC,
  666. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  667. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  668. sifstime = 16;
  669. else
  670. sifstime = 10;
  671. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  672. slottime = ah->slottime + 3 * ah->coverage_class;
  673. acktimeout = slottime + sifstime;
  674. /*
  675. * Workaround for early ACK timeouts, add an offset to match the
  676. * initval's 64us ack timeout value.
  677. * This was initially only meant to work around an issue with delayed
  678. * BA frames in some implementations, but it has been found to fix ACK
  679. * timeout issues in other cases as well.
  680. */
  681. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  682. acktimeout += 64 - sifstime - ah->slottime;
  683. ath9k_hw_setslottime(ah, slottime);
  684. ath9k_hw_set_ack_timeout(ah, acktimeout);
  685. ath9k_hw_set_cts_timeout(ah, acktimeout);
  686. if (ah->globaltxtimeout != (u32) -1)
  687. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  688. }
  689. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  690. void ath9k_hw_deinit(struct ath_hw *ah)
  691. {
  692. struct ath_common *common = ath9k_hw_common(ah);
  693. if (common->state < ATH_HW_INITIALIZED)
  694. goto free_hw;
  695. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  696. free_hw:
  697. ath9k_hw_rf_free_ext_banks(ah);
  698. }
  699. EXPORT_SYMBOL(ath9k_hw_deinit);
  700. /*******/
  701. /* INI */
  702. /*******/
  703. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  704. {
  705. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  706. if (IS_CHAN_B(chan))
  707. ctl |= CTL_11B;
  708. else if (IS_CHAN_G(chan))
  709. ctl |= CTL_11G;
  710. else
  711. ctl |= CTL_11A;
  712. return ctl;
  713. }
  714. /****************************************/
  715. /* Reset and Channel Switching Routines */
  716. /****************************************/
  717. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  718. {
  719. struct ath_common *common = ath9k_hw_common(ah);
  720. u32 regval;
  721. ENABLE_REGWRITE_BUFFER(ah);
  722. /*
  723. * set AHB_MODE not to do cacheline prefetches
  724. */
  725. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  726. regval = REG_READ(ah, AR_AHB_MODE);
  727. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  728. }
  729. /*
  730. * let mac dma reads be in 128 byte chunks
  731. */
  732. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  733. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  734. REGWRITE_BUFFER_FLUSH(ah);
  735. DISABLE_REGWRITE_BUFFER(ah);
  736. /*
  737. * Restore TX Trigger Level to its pre-reset value.
  738. * The initial value depends on whether aggregation is enabled, and is
  739. * adjusted whenever underruns are detected.
  740. */
  741. if (!AR_SREV_9300_20_OR_LATER(ah))
  742. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  743. ENABLE_REGWRITE_BUFFER(ah);
  744. /*
  745. * let mac dma writes be in 128 byte chunks
  746. */
  747. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  748. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  749. /*
  750. * Setup receive FIFO threshold to hold off TX activities
  751. */
  752. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  753. if (AR_SREV_9300_20_OR_LATER(ah)) {
  754. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  755. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  756. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  757. ah->caps.rx_status_len);
  758. }
  759. /*
  760. * reduce the number of usable entries in PCU TXBUF to avoid
  761. * wrap around issues.
  762. */
  763. if (AR_SREV_9285(ah)) {
  764. /* For AR9285 the number of Fifos are reduced to half.
  765. * So set the usable tx buf size also to half to
  766. * avoid data/delimiter underruns
  767. */
  768. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  769. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  770. } else if (!AR_SREV_9271(ah)) {
  771. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  772. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  773. }
  774. REGWRITE_BUFFER_FLUSH(ah);
  775. DISABLE_REGWRITE_BUFFER(ah);
  776. if (AR_SREV_9300_20_OR_LATER(ah))
  777. ath9k_hw_reset_txstatus_ring(ah);
  778. }
  779. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  780. {
  781. u32 val;
  782. val = REG_READ(ah, AR_STA_ID1);
  783. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  784. switch (opmode) {
  785. case NL80211_IFTYPE_AP:
  786. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  787. | AR_STA_ID1_KSRCH_MODE);
  788. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  789. break;
  790. case NL80211_IFTYPE_ADHOC:
  791. case NL80211_IFTYPE_MESH_POINT:
  792. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  793. | AR_STA_ID1_KSRCH_MODE);
  794. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  795. break;
  796. case NL80211_IFTYPE_STATION:
  797. case NL80211_IFTYPE_MONITOR:
  798. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  799. break;
  800. }
  801. }
  802. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  803. u32 *coef_mantissa, u32 *coef_exponent)
  804. {
  805. u32 coef_exp, coef_man;
  806. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  807. if ((coef_scaled >> coef_exp) & 0x1)
  808. break;
  809. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  810. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  811. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  812. *coef_exponent = coef_exp - 16;
  813. }
  814. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  815. {
  816. u32 rst_flags;
  817. u32 tmpReg;
  818. if (AR_SREV_9100(ah)) {
  819. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  820. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  821. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  822. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  823. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  824. }
  825. ENABLE_REGWRITE_BUFFER(ah);
  826. if (AR_SREV_9300_20_OR_LATER(ah)) {
  827. REG_WRITE(ah, AR_WA, ah->WARegVal);
  828. udelay(10);
  829. }
  830. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  831. AR_RTC_FORCE_WAKE_ON_INT);
  832. if (AR_SREV_9100(ah)) {
  833. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  834. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  835. } else {
  836. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  837. if (tmpReg &
  838. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  839. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  840. u32 val;
  841. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  842. val = AR_RC_HOSTIF;
  843. if (!AR_SREV_9300_20_OR_LATER(ah))
  844. val |= AR_RC_AHB;
  845. REG_WRITE(ah, AR_RC, val);
  846. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  847. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  848. rst_flags = AR_RTC_RC_MAC_WARM;
  849. if (type == ATH9K_RESET_COLD)
  850. rst_flags |= AR_RTC_RC_MAC_COLD;
  851. }
  852. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  853. REGWRITE_BUFFER_FLUSH(ah);
  854. DISABLE_REGWRITE_BUFFER(ah);
  855. udelay(50);
  856. REG_WRITE(ah, AR_RTC_RC, 0);
  857. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  858. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  859. "RTC stuck in MAC reset\n");
  860. return false;
  861. }
  862. if (!AR_SREV_9100(ah))
  863. REG_WRITE(ah, AR_RC, 0);
  864. if (AR_SREV_9100(ah))
  865. udelay(50);
  866. return true;
  867. }
  868. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  869. {
  870. ENABLE_REGWRITE_BUFFER(ah);
  871. if (AR_SREV_9300_20_OR_LATER(ah)) {
  872. REG_WRITE(ah, AR_WA, ah->WARegVal);
  873. udelay(10);
  874. }
  875. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  876. AR_RTC_FORCE_WAKE_ON_INT);
  877. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  878. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  879. REG_WRITE(ah, AR_RTC_RESET, 0);
  880. udelay(2);
  881. REGWRITE_BUFFER_FLUSH(ah);
  882. DISABLE_REGWRITE_BUFFER(ah);
  883. if (!AR_SREV_9300_20_OR_LATER(ah))
  884. udelay(2);
  885. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  886. REG_WRITE(ah, AR_RC, 0);
  887. REG_WRITE(ah, AR_RTC_RESET, 1);
  888. if (!ath9k_hw_wait(ah,
  889. AR_RTC_STATUS,
  890. AR_RTC_STATUS_M,
  891. AR_RTC_STATUS_ON,
  892. AH_WAIT_TIMEOUT)) {
  893. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  894. "RTC not waking up\n");
  895. return false;
  896. }
  897. ath9k_hw_read_revisions(ah);
  898. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  899. }
  900. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  901. {
  902. if (AR_SREV_9300_20_OR_LATER(ah)) {
  903. REG_WRITE(ah, AR_WA, ah->WARegVal);
  904. udelay(10);
  905. }
  906. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  907. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  908. switch (type) {
  909. case ATH9K_RESET_POWER_ON:
  910. return ath9k_hw_set_reset_power_on(ah);
  911. case ATH9K_RESET_WARM:
  912. case ATH9K_RESET_COLD:
  913. return ath9k_hw_set_reset(ah, type);
  914. default:
  915. return false;
  916. }
  917. }
  918. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  919. struct ath9k_channel *chan)
  920. {
  921. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  922. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  923. return false;
  924. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  925. return false;
  926. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  927. return false;
  928. ah->chip_fullsleep = false;
  929. ath9k_hw_init_pll(ah, chan);
  930. ath9k_hw_set_rfmode(ah, chan);
  931. return true;
  932. }
  933. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  934. struct ath9k_channel *chan)
  935. {
  936. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  937. struct ath_common *common = ath9k_hw_common(ah);
  938. struct ieee80211_channel *channel = chan->chan;
  939. u32 qnum;
  940. int r;
  941. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  942. if (ath9k_hw_numtxpending(ah, qnum)) {
  943. ath_print(common, ATH_DBG_QUEUE,
  944. "Transmit frames pending on "
  945. "queue %d\n", qnum);
  946. return false;
  947. }
  948. }
  949. if (!ath9k_hw_rfbus_req(ah)) {
  950. ath_print(common, ATH_DBG_FATAL,
  951. "Could not kill baseband RX\n");
  952. return false;
  953. }
  954. ath9k_hw_set_channel_regs(ah, chan);
  955. r = ath9k_hw_rf_set_freq(ah, chan);
  956. if (r) {
  957. ath_print(common, ATH_DBG_FATAL,
  958. "Failed to set channel\n");
  959. return false;
  960. }
  961. ah->eep_ops->set_txpower(ah, chan,
  962. ath9k_regd_get_ctl(regulatory, chan),
  963. channel->max_antenna_gain * 2,
  964. channel->max_power * 2,
  965. min((u32) MAX_RATE_POWER,
  966. (u32) regulatory->power_limit));
  967. ath9k_hw_rfbus_done(ah);
  968. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  969. ath9k_hw_set_delta_slope(ah, chan);
  970. ath9k_hw_spur_mitigate_freq(ah, chan);
  971. return true;
  972. }
  973. bool ath9k_hw_check_alive(struct ath_hw *ah)
  974. {
  975. int count = 50;
  976. u32 reg;
  977. if (AR_SREV_9285_10_OR_LATER(ah))
  978. return true;
  979. do {
  980. reg = REG_READ(ah, AR_OBS_BUS_1);
  981. if ((reg & 0x7E7FFFEF) == 0x00702400)
  982. continue;
  983. switch (reg & 0x7E000B00) {
  984. case 0x1E000000:
  985. case 0x52000B00:
  986. case 0x18000B00:
  987. continue;
  988. default:
  989. return true;
  990. }
  991. } while (count-- > 0);
  992. return false;
  993. }
  994. EXPORT_SYMBOL(ath9k_hw_check_alive);
  995. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  996. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  997. {
  998. struct ath_common *common = ath9k_hw_common(ah);
  999. u32 saveLedState;
  1000. struct ath9k_channel *curchan = ah->curchan;
  1001. u32 saveDefAntenna;
  1002. u32 macStaId1;
  1003. u64 tsf = 0;
  1004. int i, r;
  1005. ah->txchainmask = common->tx_chainmask;
  1006. ah->rxchainmask = common->rx_chainmask;
  1007. if (!ah->chip_fullsleep) {
  1008. ath9k_hw_abortpcurecv(ah);
  1009. if (!ath9k_hw_stopdmarecv(ah)) {
  1010. ath_print(common, ATH_DBG_XMIT,
  1011. "Failed to stop receive dma\n");
  1012. bChannelChange = false;
  1013. }
  1014. }
  1015. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1016. return -EIO;
  1017. if (curchan && !ah->chip_fullsleep && ah->caldata)
  1018. ath9k_hw_getnf(ah, curchan);
  1019. ah->caldata = caldata;
  1020. if (caldata &&
  1021. (chan->channel != caldata->channel ||
  1022. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1023. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1024. /* Operating channel changed, reset channel calibration data */
  1025. memset(caldata, 0, sizeof(*caldata));
  1026. ath9k_init_nfcal_hist_buffer(ah, chan);
  1027. }
  1028. if (bChannelChange &&
  1029. (ah->chip_fullsleep != true) &&
  1030. (ah->curchan != NULL) &&
  1031. (chan->channel != ah->curchan->channel) &&
  1032. ((chan->channelFlags & CHANNEL_ALL) ==
  1033. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1034. !AR_SREV_9280(ah)) {
  1035. if (ath9k_hw_channel_change(ah, chan)) {
  1036. ath9k_hw_loadnf(ah, ah->curchan);
  1037. ath9k_hw_start_nfcal(ah, true);
  1038. return 0;
  1039. }
  1040. }
  1041. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1042. if (saveDefAntenna == 0)
  1043. saveDefAntenna = 1;
  1044. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1045. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1046. if (AR_SREV_9100(ah) ||
  1047. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1048. tsf = ath9k_hw_gettsf64(ah);
  1049. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1050. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1051. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1052. ath9k_hw_mark_phy_inactive(ah);
  1053. /* Only required on the first reset */
  1054. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1055. REG_WRITE(ah,
  1056. AR9271_RESET_POWER_DOWN_CONTROL,
  1057. AR9271_RADIO_RF_RST);
  1058. udelay(50);
  1059. }
  1060. if (!ath9k_hw_chip_reset(ah, chan)) {
  1061. ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
  1062. return -EINVAL;
  1063. }
  1064. /* Only required on the first reset */
  1065. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1066. ah->htc_reset_init = false;
  1067. REG_WRITE(ah,
  1068. AR9271_RESET_POWER_DOWN_CONTROL,
  1069. AR9271_GATE_MAC_CTL);
  1070. udelay(50);
  1071. }
  1072. /* Restore TSF */
  1073. if (tsf)
  1074. ath9k_hw_settsf64(ah, tsf);
  1075. if (AR_SREV_9280_10_OR_LATER(ah))
  1076. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1077. if (!AR_SREV_9300_20_OR_LATER(ah))
  1078. ar9002_hw_enable_async_fifo(ah);
  1079. r = ath9k_hw_process_ini(ah, chan);
  1080. if (r)
  1081. return r;
  1082. /*
  1083. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1084. * right after the chip reset. When that happens, write a new
  1085. * value after the initvals have been applied, with an offset
  1086. * based on measured time difference
  1087. */
  1088. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1089. tsf += 1500;
  1090. ath9k_hw_settsf64(ah, tsf);
  1091. }
  1092. /* Setup MFP options for CCMP */
  1093. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1094. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1095. * frames when constructing CCMP AAD. */
  1096. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1097. 0xc7ff);
  1098. ah->sw_mgmt_crypto = false;
  1099. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1100. /* Disable hardware crypto for management frames */
  1101. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1102. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1103. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1104. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1105. ah->sw_mgmt_crypto = true;
  1106. } else
  1107. ah->sw_mgmt_crypto = true;
  1108. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1109. ath9k_hw_set_delta_slope(ah, chan);
  1110. ath9k_hw_spur_mitigate_freq(ah, chan);
  1111. ah->eep_ops->set_board_values(ah, chan);
  1112. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1113. ENABLE_REGWRITE_BUFFER(ah);
  1114. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1115. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1116. | macStaId1
  1117. | AR_STA_ID1_RTS_USE_DEF
  1118. | (ah->config.
  1119. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1120. | ah->sta_id1_defaults);
  1121. ath_hw_setbssidmask(common);
  1122. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1123. ath9k_hw_write_associd(ah);
  1124. REG_WRITE(ah, AR_ISR, ~0);
  1125. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1126. REGWRITE_BUFFER_FLUSH(ah);
  1127. DISABLE_REGWRITE_BUFFER(ah);
  1128. r = ath9k_hw_rf_set_freq(ah, chan);
  1129. if (r)
  1130. return r;
  1131. ENABLE_REGWRITE_BUFFER(ah);
  1132. for (i = 0; i < AR_NUM_DCU; i++)
  1133. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1134. REGWRITE_BUFFER_FLUSH(ah);
  1135. DISABLE_REGWRITE_BUFFER(ah);
  1136. ah->intr_txqs = 0;
  1137. for (i = 0; i < ah->caps.total_queues; i++)
  1138. ath9k_hw_resettxqueue(ah, i);
  1139. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1140. ath9k_hw_ani_cache_ini_regs(ah);
  1141. ath9k_hw_init_qos(ah);
  1142. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1143. ath9k_enable_rfkill(ah);
  1144. ath9k_hw_init_global_settings(ah);
  1145. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1146. ar9002_hw_update_async_fifo(ah);
  1147. ar9002_hw_enable_wep_aggregation(ah);
  1148. }
  1149. REG_WRITE(ah, AR_STA_ID1,
  1150. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1151. ath9k_hw_set_dma(ah);
  1152. REG_WRITE(ah, AR_OBS, 8);
  1153. if (ah->config.rx_intr_mitigation) {
  1154. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1155. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1156. }
  1157. if (ah->config.tx_intr_mitigation) {
  1158. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1159. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1160. }
  1161. ath9k_hw_init_bb(ah, chan);
  1162. if (!ath9k_hw_init_cal(ah, chan))
  1163. return -EIO;
  1164. ENABLE_REGWRITE_BUFFER(ah);
  1165. ath9k_hw_restore_chainmask(ah);
  1166. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1167. REGWRITE_BUFFER_FLUSH(ah);
  1168. DISABLE_REGWRITE_BUFFER(ah);
  1169. /*
  1170. * For big endian systems turn on swapping for descriptors
  1171. */
  1172. if (AR_SREV_9100(ah)) {
  1173. u32 mask;
  1174. mask = REG_READ(ah, AR_CFG);
  1175. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1176. ath_print(common, ATH_DBG_RESET,
  1177. "CFG Byte Swap Set 0x%x\n", mask);
  1178. } else {
  1179. mask =
  1180. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1181. REG_WRITE(ah, AR_CFG, mask);
  1182. ath_print(common, ATH_DBG_RESET,
  1183. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1184. }
  1185. } else {
  1186. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1187. /* Configure AR9271 target WLAN */
  1188. if (AR_SREV_9271(ah))
  1189. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1190. else
  1191. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1192. }
  1193. #ifdef __BIG_ENDIAN
  1194. else
  1195. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1196. #endif
  1197. }
  1198. if (ah->btcoex_hw.enabled)
  1199. ath9k_hw_btcoex_enable(ah);
  1200. if (AR_SREV_9300_20_OR_LATER(ah))
  1201. ar9003_hw_bb_watchdog_config(ah);
  1202. return 0;
  1203. }
  1204. EXPORT_SYMBOL(ath9k_hw_reset);
  1205. /************************/
  1206. /* Key Cache Management */
  1207. /************************/
  1208. bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
  1209. {
  1210. u32 keyType;
  1211. if (entry >= ah->caps.keycache_size) {
  1212. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1213. "keychache entry %u out of range\n", entry);
  1214. return false;
  1215. }
  1216. keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
  1217. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
  1218. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
  1219. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
  1220. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
  1221. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
  1222. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
  1223. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
  1224. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
  1225. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  1226. u16 micentry = entry + 64;
  1227. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
  1228. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  1229. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
  1230. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  1231. }
  1232. return true;
  1233. }
  1234. EXPORT_SYMBOL(ath9k_hw_keyreset);
  1235. static bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
  1236. {
  1237. u32 macHi, macLo;
  1238. u32 unicast_flag = AR_KEYTABLE_VALID;
  1239. if (entry >= ah->caps.keycache_size) {
  1240. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1241. "keychache entry %u out of range\n", entry);
  1242. return false;
  1243. }
  1244. if (mac != NULL) {
  1245. /*
  1246. * AR_KEYTABLE_VALID indicates that the address is a unicast
  1247. * address, which must match the transmitter address for
  1248. * decrypting frames.
  1249. * Not setting this bit allows the hardware to use the key
  1250. * for multicast frame decryption.
  1251. */
  1252. if (mac[0] & 0x01)
  1253. unicast_flag = 0;
  1254. macHi = (mac[5] << 8) | mac[4];
  1255. macLo = (mac[3] << 24) |
  1256. (mac[2] << 16) |
  1257. (mac[1] << 8) |
  1258. mac[0];
  1259. macLo >>= 1;
  1260. macLo |= (macHi & 1) << 31;
  1261. macHi >>= 1;
  1262. } else {
  1263. macLo = macHi = 0;
  1264. }
  1265. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  1266. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
  1267. return true;
  1268. }
  1269. bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
  1270. const struct ath9k_keyval *k,
  1271. const u8 *mac)
  1272. {
  1273. const struct ath9k_hw_capabilities *pCap = &ah->caps;
  1274. struct ath_common *common = ath9k_hw_common(ah);
  1275. u32 key0, key1, key2, key3, key4;
  1276. u32 keyType;
  1277. if (entry >= pCap->keycache_size) {
  1278. ath_print(common, ATH_DBG_FATAL,
  1279. "keycache entry %u out of range\n", entry);
  1280. return false;
  1281. }
  1282. switch (k->kv_type) {
  1283. case ATH9K_CIPHER_AES_OCB:
  1284. keyType = AR_KEYTABLE_TYPE_AES;
  1285. break;
  1286. case ATH9K_CIPHER_AES_CCM:
  1287. if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
  1288. ath_print(common, ATH_DBG_ANY,
  1289. "AES-CCM not supported by mac rev 0x%x\n",
  1290. ah->hw_version.macRev);
  1291. return false;
  1292. }
  1293. keyType = AR_KEYTABLE_TYPE_CCM;
  1294. break;
  1295. case ATH9K_CIPHER_TKIP:
  1296. keyType = AR_KEYTABLE_TYPE_TKIP;
  1297. if (ATH9K_IS_MIC_ENABLED(ah)
  1298. && entry + 64 >= pCap->keycache_size) {
  1299. ath_print(common, ATH_DBG_ANY,
  1300. "entry %u inappropriate for TKIP\n", entry);
  1301. return false;
  1302. }
  1303. break;
  1304. case ATH9K_CIPHER_WEP:
  1305. if (k->kv_len < WLAN_KEY_LEN_WEP40) {
  1306. ath_print(common, ATH_DBG_ANY,
  1307. "WEP key length %u too small\n", k->kv_len);
  1308. return false;
  1309. }
  1310. if (k->kv_len <= WLAN_KEY_LEN_WEP40)
  1311. keyType = AR_KEYTABLE_TYPE_40;
  1312. else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  1313. keyType = AR_KEYTABLE_TYPE_104;
  1314. else
  1315. keyType = AR_KEYTABLE_TYPE_128;
  1316. break;
  1317. case ATH9K_CIPHER_CLR:
  1318. keyType = AR_KEYTABLE_TYPE_CLR;
  1319. break;
  1320. default:
  1321. ath_print(common, ATH_DBG_FATAL,
  1322. "cipher %u not supported\n", k->kv_type);
  1323. return false;
  1324. }
  1325. key0 = get_unaligned_le32(k->kv_val + 0);
  1326. key1 = get_unaligned_le16(k->kv_val + 4);
  1327. key2 = get_unaligned_le32(k->kv_val + 6);
  1328. key3 = get_unaligned_le16(k->kv_val + 10);
  1329. key4 = get_unaligned_le32(k->kv_val + 12);
  1330. if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  1331. key4 &= 0xff;
  1332. /*
  1333. * Note: Key cache registers access special memory area that requires
  1334. * two 32-bit writes to actually update the values in the internal
  1335. * memory. Consequently, the exact order and pairs used here must be
  1336. * maintained.
  1337. */
  1338. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  1339. u16 micentry = entry + 64;
  1340. /*
  1341. * Write inverted key[47:0] first to avoid Michael MIC errors
  1342. * on frames that could be sent or received at the same time.
  1343. * The correct key will be written in the end once everything
  1344. * else is ready.
  1345. */
  1346. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  1347. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  1348. /* Write key[95:48] */
  1349. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  1350. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  1351. /* Write key[127:96] and key type */
  1352. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  1353. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  1354. /* Write MAC address for the entry */
  1355. (void) ath9k_hw_keysetmac(ah, entry, mac);
  1356. if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
  1357. /*
  1358. * TKIP uses two key cache entries:
  1359. * Michael MIC TX/RX keys in the same key cache entry
  1360. * (idx = main index + 64):
  1361. * key0 [31:0] = RX key [31:0]
  1362. * key1 [15:0] = TX key [31:16]
  1363. * key1 [31:16] = reserved
  1364. * key2 [31:0] = RX key [63:32]
  1365. * key3 [15:0] = TX key [15:0]
  1366. * key3 [31:16] = reserved
  1367. * key4 [31:0] = TX key [63:32]
  1368. */
  1369. u32 mic0, mic1, mic2, mic3, mic4;
  1370. mic0 = get_unaligned_le32(k->kv_mic + 0);
  1371. mic2 = get_unaligned_le32(k->kv_mic + 4);
  1372. mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
  1373. mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
  1374. mic4 = get_unaligned_le32(k->kv_txmic + 4);
  1375. /* Write RX[31:0] and TX[31:16] */
  1376. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  1377. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  1378. /* Write RX[63:32] and TX[15:0] */
  1379. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  1380. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  1381. /* Write TX[63:32] and keyType(reserved) */
  1382. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  1383. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  1384. AR_KEYTABLE_TYPE_CLR);
  1385. } else {
  1386. /*
  1387. * TKIP uses four key cache entries (two for group
  1388. * keys):
  1389. * Michael MIC TX/RX keys are in different key cache
  1390. * entries (idx = main index + 64 for TX and
  1391. * main index + 32 + 96 for RX):
  1392. * key0 [31:0] = TX/RX MIC key [31:0]
  1393. * key1 [31:0] = reserved
  1394. * key2 [31:0] = TX/RX MIC key [63:32]
  1395. * key3 [31:0] = reserved
  1396. * key4 [31:0] = reserved
  1397. *
  1398. * Upper layer code will call this function separately
  1399. * for TX and RX keys when these registers offsets are
  1400. * used.
  1401. */
  1402. u32 mic0, mic2;
  1403. mic0 = get_unaligned_le32(k->kv_mic + 0);
  1404. mic2 = get_unaligned_le32(k->kv_mic + 4);
  1405. /* Write MIC key[31:0] */
  1406. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  1407. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  1408. /* Write MIC key[63:32] */
  1409. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  1410. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  1411. /* Write TX[63:32] and keyType(reserved) */
  1412. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
  1413. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  1414. AR_KEYTABLE_TYPE_CLR);
  1415. }
  1416. /* MAC address registers are reserved for the MIC entry */
  1417. REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  1418. REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  1419. /*
  1420. * Write the correct (un-inverted) key[47:0] last to enable
  1421. * TKIP now that all other registers are set with correct
  1422. * values.
  1423. */
  1424. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  1425. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  1426. } else {
  1427. /* Write key[47:0] */
  1428. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  1429. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  1430. /* Write key[95:48] */
  1431. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  1432. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  1433. /* Write key[127:96] and key type */
  1434. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  1435. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  1436. /* Write MAC address for the entry */
  1437. (void) ath9k_hw_keysetmac(ah, entry, mac);
  1438. }
  1439. return true;
  1440. }
  1441. EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
  1442. /******************************/
  1443. /* Power Management (Chipset) */
  1444. /******************************/
  1445. /*
  1446. * Notify Power Mgt is disabled in self-generated frames.
  1447. * If requested, force chip to sleep.
  1448. */
  1449. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1450. {
  1451. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1452. if (setChip) {
  1453. /*
  1454. * Clear the RTC force wake bit to allow the
  1455. * mac to go to sleep.
  1456. */
  1457. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1458. AR_RTC_FORCE_WAKE_EN);
  1459. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1460. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1461. /* Shutdown chip. Active low */
  1462. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1463. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1464. AR_RTC_RESET_EN);
  1465. }
  1466. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1467. if (AR_SREV_9300_20_OR_LATER(ah))
  1468. REG_WRITE(ah, AR_WA,
  1469. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1470. }
  1471. /*
  1472. * Notify Power Management is enabled in self-generating
  1473. * frames. If request, set power mode of chip to
  1474. * auto/normal. Duration in units of 128us (1/8 TU).
  1475. */
  1476. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1477. {
  1478. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1479. if (setChip) {
  1480. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1481. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1482. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1483. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1484. AR_RTC_FORCE_WAKE_ON_INT);
  1485. } else {
  1486. /*
  1487. * Clear the RTC force wake bit to allow the
  1488. * mac to go to sleep.
  1489. */
  1490. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1491. AR_RTC_FORCE_WAKE_EN);
  1492. }
  1493. }
  1494. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1495. if (AR_SREV_9300_20_OR_LATER(ah))
  1496. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1497. }
  1498. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1499. {
  1500. u32 val;
  1501. int i;
  1502. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1503. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1504. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1505. udelay(10);
  1506. }
  1507. if (setChip) {
  1508. if ((REG_READ(ah, AR_RTC_STATUS) &
  1509. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1510. if (ath9k_hw_set_reset_reg(ah,
  1511. ATH9K_RESET_POWER_ON) != true) {
  1512. return false;
  1513. }
  1514. if (!AR_SREV_9300_20_OR_LATER(ah))
  1515. ath9k_hw_init_pll(ah, NULL);
  1516. }
  1517. if (AR_SREV_9100(ah))
  1518. REG_SET_BIT(ah, AR_RTC_RESET,
  1519. AR_RTC_RESET_EN);
  1520. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1521. AR_RTC_FORCE_WAKE_EN);
  1522. udelay(50);
  1523. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1524. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1525. if (val == AR_RTC_STATUS_ON)
  1526. break;
  1527. udelay(50);
  1528. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1529. AR_RTC_FORCE_WAKE_EN);
  1530. }
  1531. if (i == 0) {
  1532. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1533. "Failed to wakeup in %uus\n",
  1534. POWER_UP_TIME / 20);
  1535. return false;
  1536. }
  1537. }
  1538. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1539. return true;
  1540. }
  1541. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1542. {
  1543. struct ath_common *common = ath9k_hw_common(ah);
  1544. int status = true, setChip = true;
  1545. static const char *modes[] = {
  1546. "AWAKE",
  1547. "FULL-SLEEP",
  1548. "NETWORK SLEEP",
  1549. "UNDEFINED"
  1550. };
  1551. if (ah->power_mode == mode)
  1552. return status;
  1553. ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
  1554. modes[ah->power_mode], modes[mode]);
  1555. switch (mode) {
  1556. case ATH9K_PM_AWAKE:
  1557. status = ath9k_hw_set_power_awake(ah, setChip);
  1558. break;
  1559. case ATH9K_PM_FULL_SLEEP:
  1560. ath9k_set_power_sleep(ah, setChip);
  1561. ah->chip_fullsleep = true;
  1562. break;
  1563. case ATH9K_PM_NETWORK_SLEEP:
  1564. ath9k_set_power_network_sleep(ah, setChip);
  1565. break;
  1566. default:
  1567. ath_print(common, ATH_DBG_FATAL,
  1568. "Unknown power mode %u\n", mode);
  1569. return false;
  1570. }
  1571. ah->power_mode = mode;
  1572. return status;
  1573. }
  1574. EXPORT_SYMBOL(ath9k_hw_setpower);
  1575. /*******************/
  1576. /* Beacon Handling */
  1577. /*******************/
  1578. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1579. {
  1580. int flags = 0;
  1581. ah->beacon_interval = beacon_period;
  1582. ENABLE_REGWRITE_BUFFER(ah);
  1583. switch (ah->opmode) {
  1584. case NL80211_IFTYPE_STATION:
  1585. case NL80211_IFTYPE_MONITOR:
  1586. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1587. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  1588. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  1589. flags |= AR_TBTT_TIMER_EN;
  1590. break;
  1591. case NL80211_IFTYPE_ADHOC:
  1592. case NL80211_IFTYPE_MESH_POINT:
  1593. REG_SET_BIT(ah, AR_TXCFG,
  1594. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1595. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  1596. TU_TO_USEC(next_beacon +
  1597. (ah->atim_window ? ah->
  1598. atim_window : 1)));
  1599. flags |= AR_NDP_TIMER_EN;
  1600. case NL80211_IFTYPE_AP:
  1601. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1602. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  1603. TU_TO_USEC(next_beacon -
  1604. ah->config.
  1605. dma_beacon_response_time));
  1606. REG_WRITE(ah, AR_NEXT_SWBA,
  1607. TU_TO_USEC(next_beacon -
  1608. ah->config.
  1609. sw_beacon_response_time));
  1610. flags |=
  1611. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1612. break;
  1613. default:
  1614. ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1615. "%s: unsupported opmode: %d\n",
  1616. __func__, ah->opmode);
  1617. return;
  1618. break;
  1619. }
  1620. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1621. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1622. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  1623. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  1624. REGWRITE_BUFFER_FLUSH(ah);
  1625. DISABLE_REGWRITE_BUFFER(ah);
  1626. beacon_period &= ~ATH9K_BEACON_ENA;
  1627. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  1628. ath9k_hw_reset_tsf(ah);
  1629. }
  1630. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1631. }
  1632. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1633. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1634. const struct ath9k_beacon_state *bs)
  1635. {
  1636. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1637. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1638. struct ath_common *common = ath9k_hw_common(ah);
  1639. ENABLE_REGWRITE_BUFFER(ah);
  1640. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1641. REG_WRITE(ah, AR_BEACON_PERIOD,
  1642. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1643. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1644. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1645. REGWRITE_BUFFER_FLUSH(ah);
  1646. DISABLE_REGWRITE_BUFFER(ah);
  1647. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1648. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1649. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1650. if (bs->bs_sleepduration > beaconintval)
  1651. beaconintval = bs->bs_sleepduration;
  1652. dtimperiod = bs->bs_dtimperiod;
  1653. if (bs->bs_sleepduration > dtimperiod)
  1654. dtimperiod = bs->bs_sleepduration;
  1655. if (beaconintval == dtimperiod)
  1656. nextTbtt = bs->bs_nextdtim;
  1657. else
  1658. nextTbtt = bs->bs_nexttbtt;
  1659. ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1660. ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1661. ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1662. ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1663. ENABLE_REGWRITE_BUFFER(ah);
  1664. REG_WRITE(ah, AR_NEXT_DTIM,
  1665. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1666. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1667. REG_WRITE(ah, AR_SLEEP1,
  1668. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1669. | AR_SLEEP1_ASSUME_DTIM);
  1670. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1671. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1672. else
  1673. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1674. REG_WRITE(ah, AR_SLEEP2,
  1675. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1676. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1677. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1678. REGWRITE_BUFFER_FLUSH(ah);
  1679. DISABLE_REGWRITE_BUFFER(ah);
  1680. REG_SET_BIT(ah, AR_TIMER_MODE,
  1681. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1682. AR_DTIM_TIMER_EN);
  1683. /* TSF Out of Range Threshold */
  1684. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1685. }
  1686. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1687. /*******************/
  1688. /* HW Capabilities */
  1689. /*******************/
  1690. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1691. {
  1692. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1693. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1694. struct ath_common *common = ath9k_hw_common(ah);
  1695. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1696. u16 capField = 0, eeval;
  1697. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1698. regulatory->current_rd = eeval;
  1699. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1700. if (AR_SREV_9285_10_OR_LATER(ah))
  1701. eeval |= AR9285_RDEXT_DEFAULT;
  1702. regulatory->current_rd_ext = eeval;
  1703. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1704. if (ah->opmode != NL80211_IFTYPE_AP &&
  1705. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1706. if (regulatory->current_rd == 0x64 ||
  1707. regulatory->current_rd == 0x65)
  1708. regulatory->current_rd += 5;
  1709. else if (regulatory->current_rd == 0x41)
  1710. regulatory->current_rd = 0x43;
  1711. ath_print(common, ATH_DBG_REGULATORY,
  1712. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1713. }
  1714. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1715. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1716. ath_print(common, ATH_DBG_FATAL,
  1717. "no band has been marked as supported in EEPROM.\n");
  1718. return -EINVAL;
  1719. }
  1720. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  1721. if (eeval & AR5416_OPFLAGS_11A) {
  1722. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  1723. if (ah->config.ht_enable) {
  1724. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  1725. set_bit(ATH9K_MODE_11NA_HT20,
  1726. pCap->wireless_modes);
  1727. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  1728. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  1729. pCap->wireless_modes);
  1730. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  1731. pCap->wireless_modes);
  1732. }
  1733. }
  1734. }
  1735. if (eeval & AR5416_OPFLAGS_11G) {
  1736. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  1737. if (ah->config.ht_enable) {
  1738. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  1739. set_bit(ATH9K_MODE_11NG_HT20,
  1740. pCap->wireless_modes);
  1741. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  1742. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  1743. pCap->wireless_modes);
  1744. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  1745. pCap->wireless_modes);
  1746. }
  1747. }
  1748. }
  1749. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1750. /*
  1751. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1752. * the EEPROM.
  1753. */
  1754. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1755. !(eeval & AR5416_OPFLAGS_11A) &&
  1756. !(AR_SREV_9271(ah)))
  1757. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1758. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1759. else
  1760. /* Use rx_chainmask from EEPROM. */
  1761. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1762. if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
  1763. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1764. pCap->low_2ghz_chan = 2312;
  1765. pCap->high_2ghz_chan = 2732;
  1766. pCap->low_5ghz_chan = 4920;
  1767. pCap->high_5ghz_chan = 6100;
  1768. pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
  1769. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
  1770. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
  1771. pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
  1772. pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
  1773. pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
  1774. if (ah->config.ht_enable)
  1775. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1776. else
  1777. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1778. pCap->hw_caps |= ATH9K_HW_CAP_GTT;
  1779. pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
  1780. pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
  1781. pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
  1782. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  1783. pCap->total_queues =
  1784. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  1785. else
  1786. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  1787. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  1788. pCap->keycache_size =
  1789. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  1790. else
  1791. pCap->keycache_size = AR_KEYTABLE_SIZE;
  1792. pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
  1793. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  1794. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
  1795. else
  1796. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  1797. if (AR_SREV_9271(ah))
  1798. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1799. else if (AR_DEVID_7010(ah))
  1800. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1801. else if (AR_SREV_9285_10_OR_LATER(ah))
  1802. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1803. else if (AR_SREV_9280_10_OR_LATER(ah))
  1804. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1805. else
  1806. pCap->num_gpio_pins = AR_NUM_GPIO;
  1807. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1808. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1809. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1810. } else {
  1811. pCap->rts_aggr_limit = (8 * 1024);
  1812. }
  1813. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  1814. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1815. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1816. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1817. ah->rfkill_gpio =
  1818. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1819. ah->rfkill_polarity =
  1820. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1821. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1822. }
  1823. #endif
  1824. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1825. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1826. else
  1827. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1828. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1829. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1830. else
  1831. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1832. if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  1833. pCap->reg_cap =
  1834. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1835. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  1836. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  1837. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  1838. } else {
  1839. pCap->reg_cap =
  1840. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1841. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  1842. }
  1843. /* Advertise midband for AR5416 with FCC midband set in eeprom */
  1844. if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
  1845. AR_SREV_5416(ah))
  1846. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  1847. pCap->num_antcfg_5ghz =
  1848. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
  1849. pCap->num_antcfg_2ghz =
  1850. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
  1851. if (AR_SREV_9280_10_OR_LATER(ah) &&
  1852. ath9k_hw_btcoex_supported(ah)) {
  1853. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1854. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1855. if (AR_SREV_9285(ah)) {
  1856. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1857. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1858. } else {
  1859. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1860. }
  1861. } else {
  1862. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1863. }
  1864. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1865. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
  1866. ATH9K_HW_CAP_FASTCLOCK;
  1867. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1868. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1869. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1870. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1871. pCap->txs_len = sizeof(struct ar9003_txs);
  1872. if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1873. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1874. } else {
  1875. pCap->tx_desc_len = sizeof(struct ath_desc);
  1876. if (AR_SREV_9280_20(ah) &&
  1877. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1878. AR5416_EEP_MINOR_VER_16) ||
  1879. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1880. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1881. }
  1882. if (AR_SREV_9300_20_OR_LATER(ah))
  1883. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1884. if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
  1885. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1886. return 0;
  1887. }
  1888. /****************************/
  1889. /* GPIO / RFKILL / Antennae */
  1890. /****************************/
  1891. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1892. u32 gpio, u32 type)
  1893. {
  1894. int addr;
  1895. u32 gpio_shift, tmp;
  1896. if (gpio > 11)
  1897. addr = AR_GPIO_OUTPUT_MUX3;
  1898. else if (gpio > 5)
  1899. addr = AR_GPIO_OUTPUT_MUX2;
  1900. else
  1901. addr = AR_GPIO_OUTPUT_MUX1;
  1902. gpio_shift = (gpio % 6) * 5;
  1903. if (AR_SREV_9280_20_OR_LATER(ah)
  1904. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1905. REG_RMW(ah, addr, (type << gpio_shift),
  1906. (0x1f << gpio_shift));
  1907. } else {
  1908. tmp = REG_READ(ah, addr);
  1909. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1910. tmp &= ~(0x1f << gpio_shift);
  1911. tmp |= (type << gpio_shift);
  1912. REG_WRITE(ah, addr, tmp);
  1913. }
  1914. }
  1915. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1916. {
  1917. u32 gpio_shift;
  1918. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1919. if (AR_DEVID_7010(ah)) {
  1920. gpio_shift = gpio;
  1921. REG_RMW(ah, AR7010_GPIO_OE,
  1922. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1923. (AR7010_GPIO_OE_MASK << gpio_shift));
  1924. return;
  1925. }
  1926. gpio_shift = gpio << 1;
  1927. REG_RMW(ah,
  1928. AR_GPIO_OE_OUT,
  1929. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1930. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1931. }
  1932. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1933. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1934. {
  1935. #define MS_REG_READ(x, y) \
  1936. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1937. if (gpio >= ah->caps.num_gpio_pins)
  1938. return 0xffffffff;
  1939. if (AR_DEVID_7010(ah)) {
  1940. u32 val;
  1941. val = REG_READ(ah, AR7010_GPIO_IN);
  1942. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1943. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1944. return MS_REG_READ(AR9300, gpio) != 0;
  1945. else if (AR_SREV_9271(ah))
  1946. return MS_REG_READ(AR9271, gpio) != 0;
  1947. else if (AR_SREV_9287_10_OR_LATER(ah))
  1948. return MS_REG_READ(AR9287, gpio) != 0;
  1949. else if (AR_SREV_9285_10_OR_LATER(ah))
  1950. return MS_REG_READ(AR9285, gpio) != 0;
  1951. else if (AR_SREV_9280_10_OR_LATER(ah))
  1952. return MS_REG_READ(AR928X, gpio) != 0;
  1953. else
  1954. return MS_REG_READ(AR, gpio) != 0;
  1955. }
  1956. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1957. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1958. u32 ah_signal_type)
  1959. {
  1960. u32 gpio_shift;
  1961. if (AR_DEVID_7010(ah)) {
  1962. gpio_shift = gpio;
  1963. REG_RMW(ah, AR7010_GPIO_OE,
  1964. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1965. (AR7010_GPIO_OE_MASK << gpio_shift));
  1966. return;
  1967. }
  1968. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1969. gpio_shift = 2 * gpio;
  1970. REG_RMW(ah,
  1971. AR_GPIO_OE_OUT,
  1972. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1973. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1974. }
  1975. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1976. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1977. {
  1978. if (AR_DEVID_7010(ah)) {
  1979. val = val ? 0 : 1;
  1980. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1981. AR_GPIO_BIT(gpio));
  1982. return;
  1983. }
  1984. if (AR_SREV_9271(ah))
  1985. val = ~val;
  1986. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1987. AR_GPIO_BIT(gpio));
  1988. }
  1989. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1990. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1991. {
  1992. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1993. }
  1994. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1995. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1996. {
  1997. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1998. }
  1999. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2000. /*********************/
  2001. /* General Operation */
  2002. /*********************/
  2003. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2004. {
  2005. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2006. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2007. if (phybits & AR_PHY_ERR_RADAR)
  2008. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2009. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2010. bits |= ATH9K_RX_FILTER_PHYERR;
  2011. return bits;
  2012. }
  2013. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2014. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2015. {
  2016. u32 phybits;
  2017. ENABLE_REGWRITE_BUFFER(ah);
  2018. REG_WRITE(ah, AR_RX_FILTER, bits);
  2019. phybits = 0;
  2020. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2021. phybits |= AR_PHY_ERR_RADAR;
  2022. if (bits & ATH9K_RX_FILTER_PHYERR)
  2023. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2024. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2025. if (phybits)
  2026. REG_WRITE(ah, AR_RXCFG,
  2027. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  2028. else
  2029. REG_WRITE(ah, AR_RXCFG,
  2030. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  2031. REGWRITE_BUFFER_FLUSH(ah);
  2032. DISABLE_REGWRITE_BUFFER(ah);
  2033. }
  2034. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2035. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2036. {
  2037. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2038. return false;
  2039. ath9k_hw_init_pll(ah, NULL);
  2040. return true;
  2041. }
  2042. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2043. bool ath9k_hw_disable(struct ath_hw *ah)
  2044. {
  2045. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2046. return false;
  2047. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2048. return false;
  2049. ath9k_hw_init_pll(ah, NULL);
  2050. return true;
  2051. }
  2052. EXPORT_SYMBOL(ath9k_hw_disable);
  2053. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
  2054. {
  2055. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  2056. struct ath9k_channel *chan = ah->curchan;
  2057. struct ieee80211_channel *channel = chan->chan;
  2058. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  2059. ah->eep_ops->set_txpower(ah, chan,
  2060. ath9k_regd_get_ctl(regulatory, chan),
  2061. channel->max_antenna_gain * 2,
  2062. channel->max_power * 2,
  2063. min((u32) MAX_RATE_POWER,
  2064. (u32) regulatory->power_limit));
  2065. }
  2066. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2067. void ath9k_hw_setopmode(struct ath_hw *ah)
  2068. {
  2069. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2070. }
  2071. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2072. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2073. {
  2074. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2075. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2076. }
  2077. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2078. void ath9k_hw_write_associd(struct ath_hw *ah)
  2079. {
  2080. struct ath_common *common = ath9k_hw_common(ah);
  2081. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2082. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2083. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2084. }
  2085. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2086. #define ATH9K_MAX_TSF_READ 10
  2087. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2088. {
  2089. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2090. int i;
  2091. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2092. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2093. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2094. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2095. if (tsf_upper2 == tsf_upper1)
  2096. break;
  2097. tsf_upper1 = tsf_upper2;
  2098. }
  2099. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2100. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2101. }
  2102. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2103. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2104. {
  2105. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2106. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2107. }
  2108. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2109. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2110. {
  2111. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2112. AH_TSF_WRITE_TIMEOUT))
  2113. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  2114. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2115. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2116. }
  2117. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2118. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  2119. {
  2120. if (setting)
  2121. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2122. else
  2123. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2124. }
  2125. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2126. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2127. {
  2128. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2129. u32 macmode;
  2130. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2131. macmode = AR_2040_JOINED_RX_CLEAR;
  2132. else
  2133. macmode = 0;
  2134. REG_WRITE(ah, AR_2040_MODE, macmode);
  2135. }
  2136. /* HW Generic timers configuration */
  2137. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2138. {
  2139. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2140. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2141. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2142. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2143. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2144. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2145. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2146. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2147. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2148. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2149. AR_NDP2_TIMER_MODE, 0x0002},
  2150. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2151. AR_NDP2_TIMER_MODE, 0x0004},
  2152. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2153. AR_NDP2_TIMER_MODE, 0x0008},
  2154. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2155. AR_NDP2_TIMER_MODE, 0x0010},
  2156. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2157. AR_NDP2_TIMER_MODE, 0x0020},
  2158. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2159. AR_NDP2_TIMER_MODE, 0x0040},
  2160. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2161. AR_NDP2_TIMER_MODE, 0x0080}
  2162. };
  2163. /* HW generic timer primitives */
  2164. /* compute and clear index of rightmost 1 */
  2165. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2166. {
  2167. u32 b;
  2168. b = *mask;
  2169. b &= (0-b);
  2170. *mask &= ~b;
  2171. b *= debruijn32;
  2172. b >>= 27;
  2173. return timer_table->gen_timer_index[b];
  2174. }
  2175. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2176. {
  2177. return REG_READ(ah, AR_TSF_L32);
  2178. }
  2179. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2180. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2181. void (*trigger)(void *),
  2182. void (*overflow)(void *),
  2183. void *arg,
  2184. u8 timer_index)
  2185. {
  2186. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2187. struct ath_gen_timer *timer;
  2188. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2189. if (timer == NULL) {
  2190. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  2191. "Failed to allocate memory"
  2192. "for hw timer[%d]\n", timer_index);
  2193. return NULL;
  2194. }
  2195. /* allocate a hardware generic timer slot */
  2196. timer_table->timers[timer_index] = timer;
  2197. timer->index = timer_index;
  2198. timer->trigger = trigger;
  2199. timer->overflow = overflow;
  2200. timer->arg = arg;
  2201. return timer;
  2202. }
  2203. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2204. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2205. struct ath_gen_timer *timer,
  2206. u32 timer_next,
  2207. u32 timer_period)
  2208. {
  2209. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2210. u32 tsf;
  2211. BUG_ON(!timer_period);
  2212. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2213. tsf = ath9k_hw_gettsf32(ah);
  2214. ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  2215. "curent tsf %x period %x"
  2216. "timer_next %x\n", tsf, timer_period, timer_next);
  2217. /*
  2218. * Pull timer_next forward if the current TSF already passed it
  2219. * because of software latency
  2220. */
  2221. if (timer_next < tsf)
  2222. timer_next = tsf + timer_period;
  2223. /*
  2224. * Program generic timer registers
  2225. */
  2226. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2227. timer_next);
  2228. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2229. timer_period);
  2230. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2231. gen_tmr_configuration[timer->index].mode_mask);
  2232. /* Enable both trigger and thresh interrupt masks */
  2233. REG_SET_BIT(ah, AR_IMR_S5,
  2234. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2235. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2236. }
  2237. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2238. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2239. {
  2240. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2241. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2242. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2243. return;
  2244. }
  2245. /* Clear generic timer enable bits. */
  2246. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2247. gen_tmr_configuration[timer->index].mode_mask);
  2248. /* Disable both trigger and thresh interrupt masks */
  2249. REG_CLR_BIT(ah, AR_IMR_S5,
  2250. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2251. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2252. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2253. }
  2254. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2255. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2256. {
  2257. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2258. /* free the hardware generic timer slot */
  2259. timer_table->timers[timer->index] = NULL;
  2260. kfree(timer);
  2261. }
  2262. EXPORT_SYMBOL(ath_gen_timer_free);
  2263. /*
  2264. * Generic Timer Interrupts handling
  2265. */
  2266. void ath_gen_timer_isr(struct ath_hw *ah)
  2267. {
  2268. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2269. struct ath_gen_timer *timer;
  2270. struct ath_common *common = ath9k_hw_common(ah);
  2271. u32 trigger_mask, thresh_mask, index;
  2272. /* get hardware generic timer interrupt status */
  2273. trigger_mask = ah->intr_gen_timer_trigger;
  2274. thresh_mask = ah->intr_gen_timer_thresh;
  2275. trigger_mask &= timer_table->timer_mask.val;
  2276. thresh_mask &= timer_table->timer_mask.val;
  2277. trigger_mask &= ~thresh_mask;
  2278. while (thresh_mask) {
  2279. index = rightmost_index(timer_table, &thresh_mask);
  2280. timer = timer_table->timers[index];
  2281. BUG_ON(!timer);
  2282. ath_print(common, ATH_DBG_HWTIMER,
  2283. "TSF overflow for Gen timer %d\n", index);
  2284. timer->overflow(timer->arg);
  2285. }
  2286. while (trigger_mask) {
  2287. index = rightmost_index(timer_table, &trigger_mask);
  2288. timer = timer_table->timers[index];
  2289. BUG_ON(!timer);
  2290. ath_print(common, ATH_DBG_HWTIMER,
  2291. "Gen timer[%d] trigger\n", index);
  2292. timer->trigger(timer->arg);
  2293. }
  2294. }
  2295. EXPORT_SYMBOL(ath_gen_timer_isr);
  2296. /********/
  2297. /* HTC */
  2298. /********/
  2299. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2300. {
  2301. ah->htc_reset_init = true;
  2302. }
  2303. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2304. static struct {
  2305. u32 version;
  2306. const char * name;
  2307. } ath_mac_bb_names[] = {
  2308. /* Devices with external radios */
  2309. { AR_SREV_VERSION_5416_PCI, "5416" },
  2310. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2311. { AR_SREV_VERSION_9100, "9100" },
  2312. { AR_SREV_VERSION_9160, "9160" },
  2313. /* Single-chip solutions */
  2314. { AR_SREV_VERSION_9280, "9280" },
  2315. { AR_SREV_VERSION_9285, "9285" },
  2316. { AR_SREV_VERSION_9287, "9287" },
  2317. { AR_SREV_VERSION_9271, "9271" },
  2318. { AR_SREV_VERSION_9300, "9300" },
  2319. };
  2320. /* For devices with external radios */
  2321. static struct {
  2322. u16 version;
  2323. const char * name;
  2324. } ath_rf_names[] = {
  2325. { 0, "5133" },
  2326. { AR_RAD5133_SREV_MAJOR, "5133" },
  2327. { AR_RAD5122_SREV_MAJOR, "5122" },
  2328. { AR_RAD2133_SREV_MAJOR, "2133" },
  2329. { AR_RAD2122_SREV_MAJOR, "2122" }
  2330. };
  2331. /*
  2332. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2333. */
  2334. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2335. {
  2336. int i;
  2337. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2338. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2339. return ath_mac_bb_names[i].name;
  2340. }
  2341. }
  2342. return "????";
  2343. }
  2344. /*
  2345. * Return the RF name. "????" is returned if the RF is unknown.
  2346. * Used for devices with external radios.
  2347. */
  2348. static const char *ath9k_hw_rf_name(u16 rf_version)
  2349. {
  2350. int i;
  2351. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2352. if (ath_rf_names[i].version == rf_version) {
  2353. return ath_rf_names[i].name;
  2354. }
  2355. }
  2356. return "????";
  2357. }
  2358. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2359. {
  2360. int used;
  2361. /* chipsets >= AR9280 are single-chip */
  2362. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2363. used = snprintf(hw_name, len,
  2364. "Atheros AR%s Rev:%x",
  2365. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2366. ah->hw_version.macRev);
  2367. }
  2368. else {
  2369. used = snprintf(hw_name, len,
  2370. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2371. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2372. ah->hw_version.macRev,
  2373. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2374. AR_RADIO_SREV_MAJOR)),
  2375. ah->hw_version.phyRev);
  2376. }
  2377. hw_name[used] = '\0';
  2378. }
  2379. EXPORT_SYMBOL(ath9k_hw_name);