vxge-traffic.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495
  1. /******************************************************************************
  2. * This software may be used and distributed according to the terms of
  3. * the GNU General Public License (GPL), incorporated herein by reference.
  4. * Drivers based on or derived from this code fall under the GPL and must
  5. * retain the authorship, copyright and license notice. This file is not
  6. * a complete program and may only be used when the entire operating
  7. * system is licensed under the GPL.
  8. * See the file COPYING in this distribution for more information.
  9. *
  10. * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
  11. * Virtualized Server Adapter.
  12. * Copyright(c) 2002-2010 Exar Corp.
  13. ******************************************************************************/
  14. #include <linux/etherdevice.h>
  15. #include "vxge-traffic.h"
  16. #include "vxge-config.h"
  17. #include "vxge-main.h"
  18. /*
  19. * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
  20. * @vp: Virtual Path handle.
  21. *
  22. * Enable vpath interrupts. The function is to be executed the last in
  23. * vpath initialization sequence.
  24. *
  25. * See also: vxge_hw_vpath_intr_disable()
  26. */
  27. enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
  28. {
  29. u64 val64;
  30. struct __vxge_hw_virtualpath *vpath;
  31. struct vxge_hw_vpath_reg __iomem *vp_reg;
  32. enum vxge_hw_status status = VXGE_HW_OK;
  33. if (vp == NULL) {
  34. status = VXGE_HW_ERR_INVALID_HANDLE;
  35. goto exit;
  36. }
  37. vpath = vp->vpath;
  38. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  39. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  40. goto exit;
  41. }
  42. vp_reg = vpath->vp_reg;
  43. writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
  44. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  45. &vp_reg->general_errors_reg);
  46. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  47. &vp_reg->pci_config_errors_reg);
  48. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  49. &vp_reg->mrpcim_to_vpath_alarm_reg);
  50. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  51. &vp_reg->srpcim_to_vpath_alarm_reg);
  52. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  53. &vp_reg->vpath_ppif_int_status);
  54. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  55. &vp_reg->srpcim_msg_to_vpath_reg);
  56. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  57. &vp_reg->vpath_pcipif_int_status);
  58. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  59. &vp_reg->prc_alarm_reg);
  60. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  61. &vp_reg->wrdma_alarm_status);
  62. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  63. &vp_reg->asic_ntwk_vp_err_reg);
  64. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  65. &vp_reg->xgmac_vp_int_status);
  66. val64 = readq(&vp_reg->vpath_general_int_status);
  67. /* Mask unwanted interrupts */
  68. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  69. &vp_reg->vpath_pcipif_int_mask);
  70. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  71. &vp_reg->srpcim_msg_to_vpath_mask);
  72. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  73. &vp_reg->srpcim_to_vpath_alarm_mask);
  74. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  75. &vp_reg->mrpcim_to_vpath_alarm_mask);
  76. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  77. &vp_reg->pci_config_errors_mask);
  78. /* Unmask the individual interrupts */
  79. writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
  80. VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
  81. VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
  82. VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
  83. &vp_reg->general_errors_mask);
  84. __vxge_hw_pio_mem_write32_upper(
  85. (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
  86. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
  87. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
  88. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
  89. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
  90. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
  91. &vp_reg->kdfcctl_errors_mask);
  92. __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
  93. __vxge_hw_pio_mem_write32_upper(
  94. (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
  95. &vp_reg->prc_alarm_mask);
  96. __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
  97. __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
  98. if (vpath->hldev->first_vp_id != vpath->vp_id)
  99. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  100. &vp_reg->asic_ntwk_vp_err_mask);
  101. else
  102. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
  103. VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
  104. VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
  105. &vp_reg->asic_ntwk_vp_err_mask);
  106. __vxge_hw_pio_mem_write32_upper(0,
  107. &vp_reg->vpath_general_int_mask);
  108. exit:
  109. return status;
  110. }
  111. /*
  112. * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
  113. * @vp: Virtual Path handle.
  114. *
  115. * Disable vpath interrupts. The function is to be executed the last in
  116. * vpath initialization sequence.
  117. *
  118. * See also: vxge_hw_vpath_intr_enable()
  119. */
  120. enum vxge_hw_status vxge_hw_vpath_intr_disable(
  121. struct __vxge_hw_vpath_handle *vp)
  122. {
  123. u64 val64;
  124. struct __vxge_hw_virtualpath *vpath;
  125. enum vxge_hw_status status = VXGE_HW_OK;
  126. struct vxge_hw_vpath_reg __iomem *vp_reg;
  127. if (vp == NULL) {
  128. status = VXGE_HW_ERR_INVALID_HANDLE;
  129. goto exit;
  130. }
  131. vpath = vp->vpath;
  132. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  133. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  134. goto exit;
  135. }
  136. vp_reg = vpath->vp_reg;
  137. __vxge_hw_pio_mem_write32_upper(
  138. (u32)VXGE_HW_INTR_MASK_ALL,
  139. &vp_reg->vpath_general_int_mask);
  140. val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
  141. writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
  142. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  143. &vp_reg->general_errors_mask);
  144. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  145. &vp_reg->pci_config_errors_mask);
  146. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  147. &vp_reg->mrpcim_to_vpath_alarm_mask);
  148. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  149. &vp_reg->srpcim_to_vpath_alarm_mask);
  150. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  151. &vp_reg->vpath_ppif_int_mask);
  152. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  153. &vp_reg->srpcim_msg_to_vpath_mask);
  154. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  155. &vp_reg->vpath_pcipif_int_mask);
  156. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  157. &vp_reg->wrdma_alarm_mask);
  158. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  159. &vp_reg->prc_alarm_mask);
  160. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  161. &vp_reg->xgmac_vp_int_mask);
  162. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  163. &vp_reg->asic_ntwk_vp_err_mask);
  164. exit:
  165. return status;
  166. }
  167. /**
  168. * vxge_hw_channel_msix_mask - Mask MSIX Vector.
  169. * @channeh: Channel for rx or tx handle
  170. * @msix_id: MSIX ID
  171. *
  172. * The function masks the msix interrupt for the given msix_id
  173. *
  174. * Returns: 0
  175. */
  176. void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
  177. {
  178. __vxge_hw_pio_mem_write32_upper(
  179. (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
  180. &channel->common_reg->set_msix_mask_vect[msix_id%4]);
  181. }
  182. /**
  183. * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
  184. * @channeh: Channel for rx or tx handle
  185. * @msix_id: MSI ID
  186. *
  187. * The function unmasks the msix interrupt for the given msix_id
  188. *
  189. * Returns: 0
  190. */
  191. void
  192. vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
  193. {
  194. __vxge_hw_pio_mem_write32_upper(
  195. (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
  196. &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
  197. }
  198. /**
  199. * vxge_hw_device_set_intr_type - Updates the configuration
  200. * with new interrupt type.
  201. * @hldev: HW device handle.
  202. * @intr_mode: New interrupt type
  203. */
  204. u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
  205. {
  206. if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
  207. (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
  208. (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
  209. (intr_mode != VXGE_HW_INTR_MODE_DEF))
  210. intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
  211. hldev->config.intr_mode = intr_mode;
  212. return intr_mode;
  213. }
  214. /**
  215. * vxge_hw_device_intr_enable - Enable interrupts.
  216. * @hldev: HW device handle.
  217. * @op: One of the enum vxge_hw_device_intr enumerated values specifying
  218. * the type(s) of interrupts to enable.
  219. *
  220. * Enable Titan interrupts. The function is to be executed the last in
  221. * Titan initialization sequence.
  222. *
  223. * See also: vxge_hw_device_intr_disable()
  224. */
  225. void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
  226. {
  227. u32 i;
  228. u64 val64;
  229. u32 val32;
  230. vxge_hw_device_mask_all(hldev);
  231. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  232. if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
  233. continue;
  234. vxge_hw_vpath_intr_enable(
  235. VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
  236. }
  237. if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
  238. val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
  239. hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
  240. if (val64 != 0) {
  241. writeq(val64, &hldev->common_reg->tim_int_status0);
  242. writeq(~val64, &hldev->common_reg->tim_int_mask0);
  243. }
  244. val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
  245. hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
  246. if (val32 != 0) {
  247. __vxge_hw_pio_mem_write32_upper(val32,
  248. &hldev->common_reg->tim_int_status1);
  249. __vxge_hw_pio_mem_write32_upper(~val32,
  250. &hldev->common_reg->tim_int_mask1);
  251. }
  252. }
  253. val64 = readq(&hldev->common_reg->titan_general_int_status);
  254. vxge_hw_device_unmask_all(hldev);
  255. }
  256. /**
  257. * vxge_hw_device_intr_disable - Disable Titan interrupts.
  258. * @hldev: HW device handle.
  259. * @op: One of the enum vxge_hw_device_intr enumerated values specifying
  260. * the type(s) of interrupts to disable.
  261. *
  262. * Disable Titan interrupts.
  263. *
  264. * See also: vxge_hw_device_intr_enable()
  265. */
  266. void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
  267. {
  268. u32 i;
  269. vxge_hw_device_mask_all(hldev);
  270. /* mask all the tim interrupts */
  271. writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
  272. __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
  273. &hldev->common_reg->tim_int_mask1);
  274. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  275. if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
  276. continue;
  277. vxge_hw_vpath_intr_disable(
  278. VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
  279. }
  280. }
  281. /**
  282. * vxge_hw_device_mask_all - Mask all device interrupts.
  283. * @hldev: HW device handle.
  284. *
  285. * Mask all device interrupts.
  286. *
  287. * See also: vxge_hw_device_unmask_all()
  288. */
  289. void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
  290. {
  291. u64 val64;
  292. val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
  293. VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
  294. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
  295. &hldev->common_reg->titan_mask_all_int);
  296. }
  297. /**
  298. * vxge_hw_device_unmask_all - Unmask all device interrupts.
  299. * @hldev: HW device handle.
  300. *
  301. * Unmask all device interrupts.
  302. *
  303. * See also: vxge_hw_device_mask_all()
  304. */
  305. void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
  306. {
  307. u64 val64 = 0;
  308. if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
  309. val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
  310. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
  311. &hldev->common_reg->titan_mask_all_int);
  312. }
  313. /**
  314. * vxge_hw_device_flush_io - Flush io writes.
  315. * @hldev: HW device handle.
  316. *
  317. * The function performs a read operation to flush io writes.
  318. *
  319. * Returns: void
  320. */
  321. void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
  322. {
  323. u32 val32;
  324. val32 = readl(&hldev->common_reg->titan_general_int_status);
  325. }
  326. /**
  327. * vxge_hw_device_begin_irq - Begin IRQ processing.
  328. * @hldev: HW device handle.
  329. * @skip_alarms: Do not clear the alarms
  330. * @reason: "Reason" for the interrupt, the value of Titan's
  331. * general_int_status register.
  332. *
  333. * The function performs two actions, It first checks whether (shared IRQ) the
  334. * interrupt was raised by the device. Next, it masks the device interrupts.
  335. *
  336. * Note:
  337. * vxge_hw_device_begin_irq() does not flush MMIO writes through the
  338. * bridge. Therefore, two back-to-back interrupts are potentially possible.
  339. *
  340. * Returns: 0, if the interrupt is not "ours" (note that in this case the
  341. * device remain enabled).
  342. * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
  343. * status.
  344. */
  345. enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
  346. u32 skip_alarms, u64 *reason)
  347. {
  348. u32 i;
  349. u64 val64;
  350. u64 adapter_status;
  351. u64 vpath_mask;
  352. enum vxge_hw_status ret = VXGE_HW_OK;
  353. val64 = readq(&hldev->common_reg->titan_general_int_status);
  354. if (unlikely(!val64)) {
  355. /* not Titan interrupt */
  356. *reason = 0;
  357. ret = VXGE_HW_ERR_WRONG_IRQ;
  358. goto exit;
  359. }
  360. if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
  361. adapter_status = readq(&hldev->common_reg->adapter_status);
  362. if (adapter_status == VXGE_HW_ALL_FOXES) {
  363. __vxge_hw_device_handle_error(hldev,
  364. NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
  365. *reason = 0;
  366. ret = VXGE_HW_ERR_SLOT_FREEZE;
  367. goto exit;
  368. }
  369. }
  370. hldev->stats.sw_dev_info_stats.total_intr_cnt++;
  371. *reason = val64;
  372. vpath_mask = hldev->vpaths_deployed >>
  373. (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
  374. if (val64 &
  375. VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
  376. hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
  377. return VXGE_HW_OK;
  378. }
  379. hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
  380. if (unlikely(val64 &
  381. VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
  382. enum vxge_hw_status error_level = VXGE_HW_OK;
  383. hldev->stats.sw_dev_err_stats.vpath_alarms++;
  384. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  385. if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
  386. continue;
  387. ret = __vxge_hw_vpath_alarm_process(
  388. &hldev->virtual_paths[i], skip_alarms);
  389. error_level = VXGE_HW_SET_LEVEL(ret, error_level);
  390. if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
  391. (ret == VXGE_HW_ERR_SLOT_FREEZE)))
  392. break;
  393. }
  394. ret = error_level;
  395. }
  396. exit:
  397. return ret;
  398. }
  399. /*
  400. * __vxge_hw_device_handle_link_up_ind
  401. * @hldev: HW device handle.
  402. *
  403. * Link up indication handler. The function is invoked by HW when
  404. * Titan indicates that the link is up for programmable amount of time.
  405. */
  406. enum vxge_hw_status
  407. __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
  408. {
  409. /*
  410. * If the previous link state is not down, return.
  411. */
  412. if (hldev->link_state == VXGE_HW_LINK_UP)
  413. goto exit;
  414. hldev->link_state = VXGE_HW_LINK_UP;
  415. /* notify driver */
  416. if (hldev->uld_callbacks.link_up)
  417. hldev->uld_callbacks.link_up(hldev);
  418. exit:
  419. return VXGE_HW_OK;
  420. }
  421. /*
  422. * __vxge_hw_device_handle_link_down_ind
  423. * @hldev: HW device handle.
  424. *
  425. * Link down indication handler. The function is invoked by HW when
  426. * Titan indicates that the link is down.
  427. */
  428. enum vxge_hw_status
  429. __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
  430. {
  431. /*
  432. * If the previous link state is not down, return.
  433. */
  434. if (hldev->link_state == VXGE_HW_LINK_DOWN)
  435. goto exit;
  436. hldev->link_state = VXGE_HW_LINK_DOWN;
  437. /* notify driver */
  438. if (hldev->uld_callbacks.link_down)
  439. hldev->uld_callbacks.link_down(hldev);
  440. exit:
  441. return VXGE_HW_OK;
  442. }
  443. /**
  444. * __vxge_hw_device_handle_error - Handle error
  445. * @hldev: HW device
  446. * @vp_id: Vpath Id
  447. * @type: Error type. Please see enum vxge_hw_event{}
  448. *
  449. * Handle error.
  450. */
  451. enum vxge_hw_status
  452. __vxge_hw_device_handle_error(
  453. struct __vxge_hw_device *hldev,
  454. u32 vp_id,
  455. enum vxge_hw_event type)
  456. {
  457. switch (type) {
  458. case VXGE_HW_EVENT_UNKNOWN:
  459. break;
  460. case VXGE_HW_EVENT_RESET_START:
  461. case VXGE_HW_EVENT_RESET_COMPLETE:
  462. case VXGE_HW_EVENT_LINK_DOWN:
  463. case VXGE_HW_EVENT_LINK_UP:
  464. goto out;
  465. case VXGE_HW_EVENT_ALARM_CLEARED:
  466. goto out;
  467. case VXGE_HW_EVENT_ECCERR:
  468. case VXGE_HW_EVENT_MRPCIM_ECCERR:
  469. goto out;
  470. case VXGE_HW_EVENT_FIFO_ERR:
  471. case VXGE_HW_EVENT_VPATH_ERR:
  472. case VXGE_HW_EVENT_CRITICAL_ERR:
  473. case VXGE_HW_EVENT_SERR:
  474. break;
  475. case VXGE_HW_EVENT_SRPCIM_SERR:
  476. case VXGE_HW_EVENT_MRPCIM_SERR:
  477. goto out;
  478. case VXGE_HW_EVENT_SLOT_FREEZE:
  479. break;
  480. default:
  481. vxge_assert(0);
  482. goto out;
  483. }
  484. /* notify driver */
  485. if (hldev->uld_callbacks.crit_err)
  486. hldev->uld_callbacks.crit_err(
  487. (struct __vxge_hw_device *)hldev,
  488. type, vp_id);
  489. out:
  490. return VXGE_HW_OK;
  491. }
  492. /**
  493. * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
  494. * condition that has caused the Tx and RX interrupt.
  495. * @hldev: HW device.
  496. *
  497. * Acknowledge (that is, clear) the condition that has caused
  498. * the Tx and Rx interrupt.
  499. * See also: vxge_hw_device_begin_irq(),
  500. * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
  501. */
  502. void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
  503. {
  504. if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
  505. (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
  506. writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
  507. hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
  508. &hldev->common_reg->tim_int_status0);
  509. }
  510. if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
  511. (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
  512. __vxge_hw_pio_mem_write32_upper(
  513. (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
  514. hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
  515. &hldev->common_reg->tim_int_status1);
  516. }
  517. }
  518. /*
  519. * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
  520. * @channel: Channel
  521. * @dtrh: Buffer to return the DTR pointer
  522. *
  523. * Allocates a dtr from the reserve array. If the reserve array is empty,
  524. * it swaps the reserve and free arrays.
  525. *
  526. */
  527. enum vxge_hw_status
  528. vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
  529. {
  530. void **tmp_arr;
  531. if (channel->reserve_ptr - channel->reserve_top > 0) {
  532. _alloc_after_swap:
  533. *dtrh = channel->reserve_arr[--channel->reserve_ptr];
  534. return VXGE_HW_OK;
  535. }
  536. /* switch between empty and full arrays */
  537. /* the idea behind such a design is that by having free and reserved
  538. * arrays separated we basically separated irq and non-irq parts.
  539. * i.e. no additional lock need to be done when we free a resource */
  540. if (channel->length - channel->free_ptr > 0) {
  541. tmp_arr = channel->reserve_arr;
  542. channel->reserve_arr = channel->free_arr;
  543. channel->free_arr = tmp_arr;
  544. channel->reserve_ptr = channel->length;
  545. channel->reserve_top = channel->free_ptr;
  546. channel->free_ptr = channel->length;
  547. channel->stats->reserve_free_swaps_cnt++;
  548. goto _alloc_after_swap;
  549. }
  550. channel->stats->full_cnt++;
  551. *dtrh = NULL;
  552. return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
  553. }
  554. /*
  555. * vxge_hw_channel_dtr_post - Post a dtr to the channel
  556. * @channelh: Channel
  557. * @dtrh: DTR pointer
  558. *
  559. * Posts a dtr to work array.
  560. *
  561. */
  562. void vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
  563. {
  564. vxge_assert(channel->work_arr[channel->post_index] == NULL);
  565. channel->work_arr[channel->post_index++] = dtrh;
  566. /* wrap-around */
  567. if (channel->post_index == channel->length)
  568. channel->post_index = 0;
  569. }
  570. /*
  571. * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
  572. * @channel: Channel
  573. * @dtr: Buffer to return the next completed DTR pointer
  574. *
  575. * Returns the next completed dtr with out removing it from work array
  576. *
  577. */
  578. void
  579. vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
  580. {
  581. vxge_assert(channel->compl_index < channel->length);
  582. *dtrh = channel->work_arr[channel->compl_index];
  583. prefetch(*dtrh);
  584. }
  585. /*
  586. * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
  587. * @channel: Channel handle
  588. *
  589. * Removes the next completed dtr from work array
  590. *
  591. */
  592. void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
  593. {
  594. channel->work_arr[channel->compl_index] = NULL;
  595. /* wrap-around */
  596. if (++channel->compl_index == channel->length)
  597. channel->compl_index = 0;
  598. channel->stats->total_compl_cnt++;
  599. }
  600. /*
  601. * vxge_hw_channel_dtr_free - Frees a dtr
  602. * @channel: Channel handle
  603. * @dtr: DTR pointer
  604. *
  605. * Returns the dtr to free array
  606. *
  607. */
  608. void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
  609. {
  610. channel->free_arr[--channel->free_ptr] = dtrh;
  611. }
  612. /*
  613. * vxge_hw_channel_dtr_count
  614. * @channel: Channel handle. Obtained via vxge_hw_channel_open().
  615. *
  616. * Retreive number of DTRs available. This function can not be called
  617. * from data path. ring_initial_replenishi() is the only user.
  618. */
  619. int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
  620. {
  621. return (channel->reserve_ptr - channel->reserve_top) +
  622. (channel->length - channel->free_ptr);
  623. }
  624. /**
  625. * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
  626. * @ring: Handle to the ring object used for receive
  627. * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
  628. * with a valid handle.
  629. *
  630. * Reserve Rx descriptor for the subsequent filling-in driver
  631. * and posting on the corresponding channel (@channelh)
  632. * via vxge_hw_ring_rxd_post().
  633. *
  634. * Returns: VXGE_HW_OK - success.
  635. * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
  636. *
  637. */
  638. enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
  639. void **rxdh)
  640. {
  641. enum vxge_hw_status status;
  642. struct __vxge_hw_channel *channel;
  643. channel = &ring->channel;
  644. status = vxge_hw_channel_dtr_alloc(channel, rxdh);
  645. if (status == VXGE_HW_OK) {
  646. struct vxge_hw_ring_rxd_1 *rxdp =
  647. (struct vxge_hw_ring_rxd_1 *)*rxdh;
  648. rxdp->control_0 = rxdp->control_1 = 0;
  649. }
  650. return status;
  651. }
  652. /**
  653. * vxge_hw_ring_rxd_free - Free descriptor.
  654. * @ring: Handle to the ring object used for receive
  655. * @rxdh: Descriptor handle.
  656. *
  657. * Free the reserved descriptor. This operation is "symmetrical" to
  658. * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
  659. * lifecycle.
  660. *
  661. * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
  662. * be:
  663. *
  664. * - reserved (vxge_hw_ring_rxd_reserve);
  665. *
  666. * - posted (vxge_hw_ring_rxd_post);
  667. *
  668. * - completed (vxge_hw_ring_rxd_next_completed);
  669. *
  670. * - and recycled again (vxge_hw_ring_rxd_free).
  671. *
  672. * For alternative state transitions and more details please refer to
  673. * the design doc.
  674. *
  675. */
  676. void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
  677. {
  678. struct __vxge_hw_channel *channel;
  679. channel = &ring->channel;
  680. vxge_hw_channel_dtr_free(channel, rxdh);
  681. }
  682. /**
  683. * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
  684. * @ring: Handle to the ring object used for receive
  685. * @rxdh: Descriptor handle.
  686. *
  687. * This routine prepares a rxd and posts
  688. */
  689. void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
  690. {
  691. struct __vxge_hw_channel *channel;
  692. channel = &ring->channel;
  693. vxge_hw_channel_dtr_post(channel, rxdh);
  694. }
  695. /**
  696. * vxge_hw_ring_rxd_post_post - Process rxd after post.
  697. * @ring: Handle to the ring object used for receive
  698. * @rxdh: Descriptor handle.
  699. *
  700. * Processes rxd after post
  701. */
  702. void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
  703. {
  704. struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
  705. struct __vxge_hw_channel *channel;
  706. channel = &ring->channel;
  707. rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
  708. if (ring->stats->common_stats.usage_cnt > 0)
  709. ring->stats->common_stats.usage_cnt--;
  710. }
  711. /**
  712. * vxge_hw_ring_rxd_post - Post descriptor on the ring.
  713. * @ring: Handle to the ring object used for receive
  714. * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
  715. *
  716. * Post descriptor on the ring.
  717. * Prior to posting the descriptor should be filled in accordance with
  718. * Host/Titan interface specification for a given service (LL, etc.).
  719. *
  720. */
  721. void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
  722. {
  723. struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
  724. struct __vxge_hw_channel *channel;
  725. channel = &ring->channel;
  726. wmb();
  727. rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
  728. vxge_hw_channel_dtr_post(channel, rxdh);
  729. if (ring->stats->common_stats.usage_cnt > 0)
  730. ring->stats->common_stats.usage_cnt--;
  731. }
  732. /**
  733. * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
  734. * @ring: Handle to the ring object used for receive
  735. * @rxdh: Descriptor handle.
  736. *
  737. * Processes rxd after post with memory barrier.
  738. */
  739. void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
  740. {
  741. struct __vxge_hw_channel *channel;
  742. channel = &ring->channel;
  743. wmb();
  744. vxge_hw_ring_rxd_post_post(ring, rxdh);
  745. }
  746. /**
  747. * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
  748. * @ring: Handle to the ring object used for receive
  749. * @rxdh: Descriptor handle. Returned by HW.
  750. * @t_code: Transfer code, as per Titan User Guide,
  751. * Receive Descriptor Format. Returned by HW.
  752. *
  753. * Retrieve the _next_ completed descriptor.
  754. * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
  755. * driver of new completed descriptors. After that
  756. * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
  757. * completions (the very first completion is passed by HW via
  758. * vxge_hw_ring_callback_f).
  759. *
  760. * Implementation-wise, the driver is free to call
  761. * vxge_hw_ring_rxd_next_completed either immediately from inside the
  762. * ring callback, or in a deferred fashion and separate (from HW)
  763. * context.
  764. *
  765. * Non-zero @t_code means failure to fill-in receive buffer(s)
  766. * of the descriptor.
  767. * For instance, parity error detected during the data transfer.
  768. * In this case Titan will complete the descriptor and indicate
  769. * for the host that the received data is not to be used.
  770. * For details please refer to Titan User Guide.
  771. *
  772. * Returns: VXGE_HW_OK - success.
  773. * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
  774. * are currently available for processing.
  775. *
  776. * See also: vxge_hw_ring_callback_f{},
  777. * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
  778. */
  779. enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
  780. struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
  781. {
  782. struct __vxge_hw_channel *channel;
  783. struct vxge_hw_ring_rxd_1 *rxdp;
  784. enum vxge_hw_status status = VXGE_HW_OK;
  785. u64 control_0, own;
  786. channel = &ring->channel;
  787. vxge_hw_channel_dtr_try_complete(channel, rxdh);
  788. rxdp = (struct vxge_hw_ring_rxd_1 *)*rxdh;
  789. if (rxdp == NULL) {
  790. status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
  791. goto exit;
  792. }
  793. control_0 = rxdp->control_0;
  794. own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
  795. *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
  796. /* check whether it is not the end */
  797. if (!own || ((*t_code == VXGE_HW_RING_T_CODE_FRM_DROP) && own)) {
  798. vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control !=
  799. 0);
  800. ++ring->cmpl_cnt;
  801. vxge_hw_channel_dtr_complete(channel);
  802. vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
  803. ring->stats->common_stats.usage_cnt++;
  804. if (ring->stats->common_stats.usage_max <
  805. ring->stats->common_stats.usage_cnt)
  806. ring->stats->common_stats.usage_max =
  807. ring->stats->common_stats.usage_cnt;
  808. status = VXGE_HW_OK;
  809. goto exit;
  810. }
  811. /* reset it. since we don't want to return
  812. * garbage to the driver */
  813. *rxdh = NULL;
  814. status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
  815. exit:
  816. return status;
  817. }
  818. /**
  819. * vxge_hw_ring_handle_tcode - Handle transfer code.
  820. * @ring: Handle to the ring object used for receive
  821. * @rxdh: Descriptor handle.
  822. * @t_code: One of the enumerated (and documented in the Titan user guide)
  823. * "transfer codes".
  824. *
  825. * Handle descriptor's transfer code. The latter comes with each completed
  826. * descriptor.
  827. *
  828. * Returns: one of the enum vxge_hw_status{} enumerated types.
  829. * VXGE_HW_OK - for success.
  830. * VXGE_HW_ERR_CRITICAL - when encounters critical error.
  831. */
  832. enum vxge_hw_status vxge_hw_ring_handle_tcode(
  833. struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
  834. {
  835. struct __vxge_hw_channel *channel;
  836. enum vxge_hw_status status = VXGE_HW_OK;
  837. channel = &ring->channel;
  838. /* If the t_code is not supported and if the
  839. * t_code is other than 0x5 (unparseable packet
  840. * such as unknown UPV6 header), Drop it !!!
  841. */
  842. if (t_code == VXGE_HW_RING_T_CODE_OK ||
  843. t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
  844. status = VXGE_HW_OK;
  845. goto exit;
  846. }
  847. if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
  848. status = VXGE_HW_ERR_INVALID_TCODE;
  849. goto exit;
  850. }
  851. ring->stats->rxd_t_code_err_cnt[t_code]++;
  852. exit:
  853. return status;
  854. }
  855. /**
  856. * __vxge_hw_non_offload_db_post - Post non offload doorbell
  857. *
  858. * @fifo: fifohandle
  859. * @txdl_ptr: The starting location of the TxDL in host memory
  860. * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
  861. * @no_snoop: No snoop flags
  862. *
  863. * This function posts a non-offload doorbell to doorbell FIFO
  864. *
  865. */
  866. static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
  867. u64 txdl_ptr, u32 num_txds, u32 no_snoop)
  868. {
  869. struct __vxge_hw_channel *channel;
  870. channel = &fifo->channel;
  871. writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
  872. VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
  873. VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
  874. &fifo->nofl_db->control_0);
  875. mmiowb();
  876. writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
  877. mmiowb();
  878. }
  879. /**
  880. * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
  881. * the fifo
  882. * @fifoh: Handle to the fifo object used for non offload send
  883. */
  884. u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
  885. {
  886. return vxge_hw_channel_dtr_count(&fifoh->channel);
  887. }
  888. /**
  889. * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
  890. * @fifoh: Handle to the fifo object used for non offload send
  891. * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
  892. * with a valid handle.
  893. * @txdl_priv: Buffer to return the pointer to per txdl space
  894. *
  895. * Reserve a single TxDL (that is, fifo descriptor)
  896. * for the subsequent filling-in by driver)
  897. * and posting on the corresponding channel (@channelh)
  898. * via vxge_hw_fifo_txdl_post().
  899. *
  900. * Note: it is the responsibility of driver to reserve multiple descriptors
  901. * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
  902. * carries up to configured number (fifo.max_frags) of contiguous buffers.
  903. *
  904. * Returns: VXGE_HW_OK - success;
  905. * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
  906. *
  907. */
  908. enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
  909. struct __vxge_hw_fifo *fifo,
  910. void **txdlh, void **txdl_priv)
  911. {
  912. struct __vxge_hw_channel *channel;
  913. enum vxge_hw_status status;
  914. int i;
  915. channel = &fifo->channel;
  916. status = vxge_hw_channel_dtr_alloc(channel, txdlh);
  917. if (status == VXGE_HW_OK) {
  918. struct vxge_hw_fifo_txd *txdp =
  919. (struct vxge_hw_fifo_txd *)*txdlh;
  920. struct __vxge_hw_fifo_txdl_priv *priv;
  921. priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
  922. /* reset the TxDL's private */
  923. priv->align_dma_offset = 0;
  924. priv->align_vaddr_start = priv->align_vaddr;
  925. priv->align_used_frags = 0;
  926. priv->frags = 0;
  927. priv->alloc_frags = fifo->config->max_frags;
  928. priv->next_txdl_priv = NULL;
  929. *txdl_priv = (void *)(size_t)txdp->host_control;
  930. for (i = 0; i < fifo->config->max_frags; i++) {
  931. txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
  932. txdp->control_0 = txdp->control_1 = 0;
  933. }
  934. }
  935. return status;
  936. }
  937. /**
  938. * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
  939. * descriptor.
  940. * @fifo: Handle to the fifo object used for non offload send
  941. * @txdlh: Descriptor handle.
  942. * @frag_idx: Index of the data buffer in the caller's scatter-gather list
  943. * (of buffers).
  944. * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
  945. * @size: Size of the data buffer (in bytes).
  946. *
  947. * This API is part of the preparation of the transmit descriptor for posting
  948. * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
  949. * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
  950. * All three APIs fill in the fields of the fifo descriptor,
  951. * in accordance with the Titan specification.
  952. *
  953. */
  954. void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
  955. void *txdlh, u32 frag_idx,
  956. dma_addr_t dma_pointer, u32 size)
  957. {
  958. struct __vxge_hw_fifo_txdl_priv *txdl_priv;
  959. struct vxge_hw_fifo_txd *txdp, *txdp_last;
  960. struct __vxge_hw_channel *channel;
  961. channel = &fifo->channel;
  962. txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
  963. txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags;
  964. if (frag_idx != 0)
  965. txdp->control_0 = txdp->control_1 = 0;
  966. else {
  967. txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
  968. VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
  969. txdp->control_1 |= fifo->interrupt_type;
  970. txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
  971. fifo->tx_intr_num);
  972. if (txdl_priv->frags) {
  973. txdp_last = (struct vxge_hw_fifo_txd *)txdlh +
  974. (txdl_priv->frags - 1);
  975. txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
  976. VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
  977. }
  978. }
  979. vxge_assert(frag_idx < txdl_priv->alloc_frags);
  980. txdp->buffer_pointer = (u64)dma_pointer;
  981. txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
  982. fifo->stats->total_buffers++;
  983. txdl_priv->frags++;
  984. }
  985. /**
  986. * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
  987. * @fifo: Handle to the fifo object used for non offload send
  988. * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
  989. * @frags: Number of contiguous buffers that are part of a single
  990. * transmit operation.
  991. *
  992. * Post descriptor on the 'fifo' type channel for transmission.
  993. * Prior to posting the descriptor should be filled in accordance with
  994. * Host/Titan interface specification for a given service (LL, etc.).
  995. *
  996. */
  997. void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
  998. {
  999. struct __vxge_hw_fifo_txdl_priv *txdl_priv;
  1000. struct vxge_hw_fifo_txd *txdp_last;
  1001. struct vxge_hw_fifo_txd *txdp_first;
  1002. struct __vxge_hw_channel *channel;
  1003. channel = &fifo->channel;
  1004. txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
  1005. txdp_first = (struct vxge_hw_fifo_txd *)txdlh;
  1006. txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1);
  1007. txdp_last->control_0 |=
  1008. VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
  1009. txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
  1010. vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
  1011. __vxge_hw_non_offload_db_post(fifo,
  1012. (u64)txdl_priv->dma_addr,
  1013. txdl_priv->frags - 1,
  1014. fifo->no_snoop_bits);
  1015. fifo->stats->total_posts++;
  1016. fifo->stats->common_stats.usage_cnt++;
  1017. if (fifo->stats->common_stats.usage_max <
  1018. fifo->stats->common_stats.usage_cnt)
  1019. fifo->stats->common_stats.usage_max =
  1020. fifo->stats->common_stats.usage_cnt;
  1021. }
  1022. /**
  1023. * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
  1024. * @fifo: Handle to the fifo object used for non offload send
  1025. * @txdlh: Descriptor handle. Returned by HW.
  1026. * @t_code: Transfer code, as per Titan User Guide,
  1027. * Transmit Descriptor Format.
  1028. * Returned by HW.
  1029. *
  1030. * Retrieve the _next_ completed descriptor.
  1031. * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
  1032. * driver of new completed descriptors. After that
  1033. * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
  1034. * completions (the very first completion is passed by HW via
  1035. * vxge_hw_channel_callback_f).
  1036. *
  1037. * Implementation-wise, the driver is free to call
  1038. * vxge_hw_fifo_txdl_next_completed either immediately from inside the
  1039. * channel callback, or in a deferred fashion and separate (from HW)
  1040. * context.
  1041. *
  1042. * Non-zero @t_code means failure to process the descriptor.
  1043. * The failure could happen, for instance, when the link is
  1044. * down, in which case Titan completes the descriptor because it
  1045. * is not able to send the data out.
  1046. *
  1047. * For details please refer to Titan User Guide.
  1048. *
  1049. * Returns: VXGE_HW_OK - success.
  1050. * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
  1051. * are currently available for processing.
  1052. *
  1053. */
  1054. enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
  1055. struct __vxge_hw_fifo *fifo, void **txdlh,
  1056. enum vxge_hw_fifo_tcode *t_code)
  1057. {
  1058. struct __vxge_hw_channel *channel;
  1059. struct vxge_hw_fifo_txd *txdp;
  1060. enum vxge_hw_status status = VXGE_HW_OK;
  1061. channel = &fifo->channel;
  1062. vxge_hw_channel_dtr_try_complete(channel, txdlh);
  1063. txdp = (struct vxge_hw_fifo_txd *)*txdlh;
  1064. if (txdp == NULL) {
  1065. status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
  1066. goto exit;
  1067. }
  1068. /* check whether host owns it */
  1069. if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
  1070. vxge_assert(txdp->host_control != 0);
  1071. vxge_hw_channel_dtr_complete(channel);
  1072. *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
  1073. if (fifo->stats->common_stats.usage_cnt > 0)
  1074. fifo->stats->common_stats.usage_cnt--;
  1075. status = VXGE_HW_OK;
  1076. goto exit;
  1077. }
  1078. /* no more completions */
  1079. *txdlh = NULL;
  1080. status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
  1081. exit:
  1082. return status;
  1083. }
  1084. /**
  1085. * vxge_hw_fifo_handle_tcode - Handle transfer code.
  1086. * @fifo: Handle to the fifo object used for non offload send
  1087. * @txdlh: Descriptor handle.
  1088. * @t_code: One of the enumerated (and documented in the Titan user guide)
  1089. * "transfer codes".
  1090. *
  1091. * Handle descriptor's transfer code. The latter comes with each completed
  1092. * descriptor.
  1093. *
  1094. * Returns: one of the enum vxge_hw_status{} enumerated types.
  1095. * VXGE_HW_OK - for success.
  1096. * VXGE_HW_ERR_CRITICAL - when encounters critical error.
  1097. */
  1098. enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
  1099. void *txdlh,
  1100. enum vxge_hw_fifo_tcode t_code)
  1101. {
  1102. struct __vxge_hw_channel *channel;
  1103. enum vxge_hw_status status = VXGE_HW_OK;
  1104. channel = &fifo->channel;
  1105. if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
  1106. status = VXGE_HW_ERR_INVALID_TCODE;
  1107. goto exit;
  1108. }
  1109. fifo->stats->txd_t_code_err_cnt[t_code]++;
  1110. exit:
  1111. return status;
  1112. }
  1113. /**
  1114. * vxge_hw_fifo_txdl_free - Free descriptor.
  1115. * @fifo: Handle to the fifo object used for non offload send
  1116. * @txdlh: Descriptor handle.
  1117. *
  1118. * Free the reserved descriptor. This operation is "symmetrical" to
  1119. * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
  1120. * lifecycle.
  1121. *
  1122. * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
  1123. * be:
  1124. *
  1125. * - reserved (vxge_hw_fifo_txdl_reserve);
  1126. *
  1127. * - posted (vxge_hw_fifo_txdl_post);
  1128. *
  1129. * - completed (vxge_hw_fifo_txdl_next_completed);
  1130. *
  1131. * - and recycled again (vxge_hw_fifo_txdl_free).
  1132. *
  1133. * For alternative state transitions and more details please refer to
  1134. * the design doc.
  1135. *
  1136. */
  1137. void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
  1138. {
  1139. struct __vxge_hw_fifo_txdl_priv *txdl_priv;
  1140. u32 max_frags;
  1141. struct __vxge_hw_channel *channel;
  1142. channel = &fifo->channel;
  1143. txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
  1144. (struct vxge_hw_fifo_txd *)txdlh);
  1145. max_frags = fifo->config->max_frags;
  1146. vxge_hw_channel_dtr_free(channel, txdlh);
  1147. }
  1148. /**
  1149. * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
  1150. * to MAC address table.
  1151. * @vp: Vpath handle.
  1152. * @macaddr: MAC address to be added for this vpath into the list
  1153. * @macaddr_mask: MAC address mask for macaddr
  1154. * @duplicate_mode: Duplicate MAC address add mode. Please see
  1155. * enum vxge_hw_vpath_mac_addr_add_mode{}
  1156. *
  1157. * Adds the given mac address and mac address mask into the list for this
  1158. * vpath.
  1159. * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
  1160. * vxge_hw_vpath_mac_addr_get_next
  1161. *
  1162. */
  1163. enum vxge_hw_status
  1164. vxge_hw_vpath_mac_addr_add(
  1165. struct __vxge_hw_vpath_handle *vp,
  1166. u8 (macaddr)[ETH_ALEN],
  1167. u8 (macaddr_mask)[ETH_ALEN],
  1168. enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
  1169. {
  1170. u32 i;
  1171. u64 data1 = 0ULL;
  1172. u64 data2 = 0ULL;
  1173. enum vxge_hw_status status = VXGE_HW_OK;
  1174. if (vp == NULL) {
  1175. status = VXGE_HW_ERR_INVALID_HANDLE;
  1176. goto exit;
  1177. }
  1178. for (i = 0; i < ETH_ALEN; i++) {
  1179. data1 <<= 8;
  1180. data1 |= (u8)macaddr[i];
  1181. data2 <<= 8;
  1182. data2 |= (u8)macaddr_mask[i];
  1183. }
  1184. switch (duplicate_mode) {
  1185. case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
  1186. i = 0;
  1187. break;
  1188. case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
  1189. i = 1;
  1190. break;
  1191. case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
  1192. i = 2;
  1193. break;
  1194. default:
  1195. i = 0;
  1196. break;
  1197. }
  1198. status = __vxge_hw_vpath_rts_table_set(vp,
  1199. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
  1200. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
  1201. 0,
  1202. VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
  1203. VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
  1204. VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
  1205. exit:
  1206. return status;
  1207. }
  1208. /**
  1209. * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
  1210. * from MAC address table.
  1211. * @vp: Vpath handle.
  1212. * @macaddr: First MAC address entry for this vpath in the list
  1213. * @macaddr_mask: MAC address mask for macaddr
  1214. *
  1215. * Returns the first mac address and mac address mask in the list for this
  1216. * vpath.
  1217. * see also: vxge_hw_vpath_mac_addr_get_next
  1218. *
  1219. */
  1220. enum vxge_hw_status
  1221. vxge_hw_vpath_mac_addr_get(
  1222. struct __vxge_hw_vpath_handle *vp,
  1223. u8 (macaddr)[ETH_ALEN],
  1224. u8 (macaddr_mask)[ETH_ALEN])
  1225. {
  1226. u32 i;
  1227. u64 data1 = 0ULL;
  1228. u64 data2 = 0ULL;
  1229. enum vxge_hw_status status = VXGE_HW_OK;
  1230. if (vp == NULL) {
  1231. status = VXGE_HW_ERR_INVALID_HANDLE;
  1232. goto exit;
  1233. }
  1234. status = __vxge_hw_vpath_rts_table_get(vp,
  1235. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
  1236. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
  1237. 0, &data1, &data2);
  1238. if (status != VXGE_HW_OK)
  1239. goto exit;
  1240. data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
  1241. data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
  1242. for (i = ETH_ALEN; i > 0; i--) {
  1243. macaddr[i-1] = (u8)(data1 & 0xFF);
  1244. data1 >>= 8;
  1245. macaddr_mask[i-1] = (u8)(data2 & 0xFF);
  1246. data2 >>= 8;
  1247. }
  1248. exit:
  1249. return status;
  1250. }
  1251. /**
  1252. * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
  1253. * vpath
  1254. * from MAC address table.
  1255. * @vp: Vpath handle.
  1256. * @macaddr: Next MAC address entry for this vpath in the list
  1257. * @macaddr_mask: MAC address mask for macaddr
  1258. *
  1259. * Returns the next mac address and mac address mask in the list for this
  1260. * vpath.
  1261. * see also: vxge_hw_vpath_mac_addr_get
  1262. *
  1263. */
  1264. enum vxge_hw_status
  1265. vxge_hw_vpath_mac_addr_get_next(
  1266. struct __vxge_hw_vpath_handle *vp,
  1267. u8 (macaddr)[ETH_ALEN],
  1268. u8 (macaddr_mask)[ETH_ALEN])
  1269. {
  1270. u32 i;
  1271. u64 data1 = 0ULL;
  1272. u64 data2 = 0ULL;
  1273. enum vxge_hw_status status = VXGE_HW_OK;
  1274. if (vp == NULL) {
  1275. status = VXGE_HW_ERR_INVALID_HANDLE;
  1276. goto exit;
  1277. }
  1278. status = __vxge_hw_vpath_rts_table_get(vp,
  1279. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
  1280. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
  1281. 0, &data1, &data2);
  1282. if (status != VXGE_HW_OK)
  1283. goto exit;
  1284. data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
  1285. data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
  1286. for (i = ETH_ALEN; i > 0; i--) {
  1287. macaddr[i-1] = (u8)(data1 & 0xFF);
  1288. data1 >>= 8;
  1289. macaddr_mask[i-1] = (u8)(data2 & 0xFF);
  1290. data2 >>= 8;
  1291. }
  1292. exit:
  1293. return status;
  1294. }
  1295. /**
  1296. * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
  1297. * to MAC address table.
  1298. * @vp: Vpath handle.
  1299. * @macaddr: MAC address to be added for this vpath into the list
  1300. * @macaddr_mask: MAC address mask for macaddr
  1301. *
  1302. * Delete the given mac address and mac address mask into the list for this
  1303. * vpath.
  1304. * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
  1305. * vxge_hw_vpath_mac_addr_get_next
  1306. *
  1307. */
  1308. enum vxge_hw_status
  1309. vxge_hw_vpath_mac_addr_delete(
  1310. struct __vxge_hw_vpath_handle *vp,
  1311. u8 (macaddr)[ETH_ALEN],
  1312. u8 (macaddr_mask)[ETH_ALEN])
  1313. {
  1314. u32 i;
  1315. u64 data1 = 0ULL;
  1316. u64 data2 = 0ULL;
  1317. enum vxge_hw_status status = VXGE_HW_OK;
  1318. if (vp == NULL) {
  1319. status = VXGE_HW_ERR_INVALID_HANDLE;
  1320. goto exit;
  1321. }
  1322. for (i = 0; i < ETH_ALEN; i++) {
  1323. data1 <<= 8;
  1324. data1 |= (u8)macaddr[i];
  1325. data2 <<= 8;
  1326. data2 |= (u8)macaddr_mask[i];
  1327. }
  1328. status = __vxge_hw_vpath_rts_table_set(vp,
  1329. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
  1330. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
  1331. 0,
  1332. VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
  1333. VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
  1334. exit:
  1335. return status;
  1336. }
  1337. /**
  1338. * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
  1339. * to vlan id table.
  1340. * @vp: Vpath handle.
  1341. * @vid: vlan id to be added for this vpath into the list
  1342. *
  1343. * Adds the given vlan id into the list for this vpath.
  1344. * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
  1345. * vxge_hw_vpath_vid_get_next
  1346. *
  1347. */
  1348. enum vxge_hw_status
  1349. vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
  1350. {
  1351. enum vxge_hw_status status = VXGE_HW_OK;
  1352. if (vp == NULL) {
  1353. status = VXGE_HW_ERR_INVALID_HANDLE;
  1354. goto exit;
  1355. }
  1356. status = __vxge_hw_vpath_rts_table_set(vp,
  1357. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
  1358. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
  1359. 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
  1360. exit:
  1361. return status;
  1362. }
  1363. /**
  1364. * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
  1365. * from vlan id table.
  1366. * @vp: Vpath handle.
  1367. * @vid: Buffer to return vlan id
  1368. *
  1369. * Returns the first vlan id in the list for this vpath.
  1370. * see also: vxge_hw_vpath_vid_get_next
  1371. *
  1372. */
  1373. enum vxge_hw_status
  1374. vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
  1375. {
  1376. u64 data;
  1377. enum vxge_hw_status status = VXGE_HW_OK;
  1378. if (vp == NULL) {
  1379. status = VXGE_HW_ERR_INVALID_HANDLE;
  1380. goto exit;
  1381. }
  1382. status = __vxge_hw_vpath_rts_table_get(vp,
  1383. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
  1384. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
  1385. 0, vid, &data);
  1386. *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
  1387. exit:
  1388. return status;
  1389. }
  1390. /**
  1391. * vxge_hw_vpath_vid_get_next - Get the next vid entry for this vpath
  1392. * from vlan id table.
  1393. * @vp: Vpath handle.
  1394. * @vid: Buffer to return vlan id
  1395. *
  1396. * Returns the next vlan id in the list for this vpath.
  1397. * see also: vxge_hw_vpath_vid_get
  1398. *
  1399. */
  1400. enum vxge_hw_status
  1401. vxge_hw_vpath_vid_get_next(struct __vxge_hw_vpath_handle *vp, u64 *vid)
  1402. {
  1403. u64 data;
  1404. enum vxge_hw_status status = VXGE_HW_OK;
  1405. if (vp == NULL) {
  1406. status = VXGE_HW_ERR_INVALID_HANDLE;
  1407. goto exit;
  1408. }
  1409. status = __vxge_hw_vpath_rts_table_get(vp,
  1410. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
  1411. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
  1412. 0, vid, &data);
  1413. *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
  1414. exit:
  1415. return status;
  1416. }
  1417. /**
  1418. * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
  1419. * to vlan id table.
  1420. * @vp: Vpath handle.
  1421. * @vid: vlan id to be added for this vpath into the list
  1422. *
  1423. * Adds the given vlan id into the list for this vpath.
  1424. * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
  1425. * vxge_hw_vpath_vid_get_next
  1426. *
  1427. */
  1428. enum vxge_hw_status
  1429. vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
  1430. {
  1431. enum vxge_hw_status status = VXGE_HW_OK;
  1432. if (vp == NULL) {
  1433. status = VXGE_HW_ERR_INVALID_HANDLE;
  1434. goto exit;
  1435. }
  1436. status = __vxge_hw_vpath_rts_table_set(vp,
  1437. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
  1438. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
  1439. 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
  1440. exit:
  1441. return status;
  1442. }
  1443. /**
  1444. * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
  1445. * @vp: Vpath handle.
  1446. *
  1447. * Enable promiscuous mode of Titan-e operation.
  1448. *
  1449. * See also: vxge_hw_vpath_promisc_disable().
  1450. */
  1451. enum vxge_hw_status vxge_hw_vpath_promisc_enable(
  1452. struct __vxge_hw_vpath_handle *vp)
  1453. {
  1454. u64 val64;
  1455. struct __vxge_hw_virtualpath *vpath;
  1456. enum vxge_hw_status status = VXGE_HW_OK;
  1457. if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
  1458. status = VXGE_HW_ERR_INVALID_HANDLE;
  1459. goto exit;
  1460. }
  1461. vpath = vp->vpath;
  1462. /* Enable promiscous mode for function 0 only */
  1463. if (!(vpath->hldev->access_rights &
  1464. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
  1465. return VXGE_HW_OK;
  1466. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  1467. if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
  1468. val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
  1469. VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
  1470. VXGE_HW_RXMAC_VCFG0_BCAST_EN |
  1471. VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
  1472. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  1473. }
  1474. exit:
  1475. return status;
  1476. }
  1477. /**
  1478. * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
  1479. * @vp: Vpath handle.
  1480. *
  1481. * Disable promiscuous mode of Titan-e operation.
  1482. *
  1483. * See also: vxge_hw_vpath_promisc_enable().
  1484. */
  1485. enum vxge_hw_status vxge_hw_vpath_promisc_disable(
  1486. struct __vxge_hw_vpath_handle *vp)
  1487. {
  1488. u64 val64;
  1489. struct __vxge_hw_virtualpath *vpath;
  1490. enum vxge_hw_status status = VXGE_HW_OK;
  1491. if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
  1492. status = VXGE_HW_ERR_INVALID_HANDLE;
  1493. goto exit;
  1494. }
  1495. vpath = vp->vpath;
  1496. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  1497. if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
  1498. val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
  1499. VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
  1500. VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
  1501. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  1502. }
  1503. exit:
  1504. return status;
  1505. }
  1506. /*
  1507. * vxge_hw_vpath_bcast_enable - Enable broadcast
  1508. * @vp: Vpath handle.
  1509. *
  1510. * Enable receiving broadcasts.
  1511. */
  1512. enum vxge_hw_status vxge_hw_vpath_bcast_enable(
  1513. struct __vxge_hw_vpath_handle *vp)
  1514. {
  1515. u64 val64;
  1516. struct __vxge_hw_virtualpath *vpath;
  1517. enum vxge_hw_status status = VXGE_HW_OK;
  1518. if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
  1519. status = VXGE_HW_ERR_INVALID_HANDLE;
  1520. goto exit;
  1521. }
  1522. vpath = vp->vpath;
  1523. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  1524. if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
  1525. val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
  1526. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  1527. }
  1528. exit:
  1529. return status;
  1530. }
  1531. /**
  1532. * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
  1533. * @vp: Vpath handle.
  1534. *
  1535. * Enable Titan-e multicast addresses.
  1536. * Returns: VXGE_HW_OK on success.
  1537. *
  1538. */
  1539. enum vxge_hw_status vxge_hw_vpath_mcast_enable(
  1540. struct __vxge_hw_vpath_handle *vp)
  1541. {
  1542. u64 val64;
  1543. struct __vxge_hw_virtualpath *vpath;
  1544. enum vxge_hw_status status = VXGE_HW_OK;
  1545. if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
  1546. status = VXGE_HW_ERR_INVALID_HANDLE;
  1547. goto exit;
  1548. }
  1549. vpath = vp->vpath;
  1550. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  1551. if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
  1552. val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
  1553. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  1554. }
  1555. exit:
  1556. return status;
  1557. }
  1558. /**
  1559. * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
  1560. * @vp: Vpath handle.
  1561. *
  1562. * Disable Titan-e multicast addresses.
  1563. * Returns: VXGE_HW_OK - success.
  1564. * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
  1565. *
  1566. */
  1567. enum vxge_hw_status
  1568. vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
  1569. {
  1570. u64 val64;
  1571. struct __vxge_hw_virtualpath *vpath;
  1572. enum vxge_hw_status status = VXGE_HW_OK;
  1573. if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
  1574. status = VXGE_HW_ERR_INVALID_HANDLE;
  1575. goto exit;
  1576. }
  1577. vpath = vp->vpath;
  1578. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  1579. if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
  1580. val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
  1581. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  1582. }
  1583. exit:
  1584. return status;
  1585. }
  1586. /*
  1587. * __vxge_hw_vpath_alarm_process - Process Alarms.
  1588. * @vpath: Virtual Path.
  1589. * @skip_alarms: Do not clear the alarms
  1590. *
  1591. * Process vpath alarms.
  1592. *
  1593. */
  1594. enum vxge_hw_status __vxge_hw_vpath_alarm_process(
  1595. struct __vxge_hw_virtualpath *vpath,
  1596. u32 skip_alarms)
  1597. {
  1598. u64 val64;
  1599. u64 alarm_status;
  1600. u64 pic_status;
  1601. struct __vxge_hw_device *hldev = NULL;
  1602. enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
  1603. u64 mask64;
  1604. struct vxge_hw_vpath_stats_sw_info *sw_stats;
  1605. struct vxge_hw_vpath_reg __iomem *vp_reg;
  1606. if (vpath == NULL) {
  1607. alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
  1608. alarm_event);
  1609. goto out2;
  1610. }
  1611. hldev = vpath->hldev;
  1612. vp_reg = vpath->vp_reg;
  1613. alarm_status = readq(&vp_reg->vpath_general_int_status);
  1614. if (alarm_status == VXGE_HW_ALL_FOXES) {
  1615. alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
  1616. alarm_event);
  1617. goto out;
  1618. }
  1619. sw_stats = vpath->sw_stats;
  1620. if (alarm_status & ~(
  1621. VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
  1622. VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
  1623. VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
  1624. VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
  1625. sw_stats->error_stats.unknown_alarms++;
  1626. alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
  1627. alarm_event);
  1628. goto out;
  1629. }
  1630. if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
  1631. val64 = readq(&vp_reg->xgmac_vp_int_status);
  1632. if (val64 &
  1633. VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
  1634. val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
  1635. if (((val64 &
  1636. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
  1637. (!(val64 &
  1638. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
  1639. ((val64 &
  1640. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
  1641. (!(val64 &
  1642. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
  1643. ))) {
  1644. sw_stats->error_stats.network_sustained_fault++;
  1645. writeq(
  1646. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
  1647. &vp_reg->asic_ntwk_vp_err_mask);
  1648. __vxge_hw_device_handle_link_down_ind(hldev);
  1649. alarm_event = VXGE_HW_SET_LEVEL(
  1650. VXGE_HW_EVENT_LINK_DOWN, alarm_event);
  1651. }
  1652. if (((val64 &
  1653. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
  1654. (!(val64 &
  1655. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
  1656. ((val64 &
  1657. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
  1658. (!(val64 &
  1659. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
  1660. ))) {
  1661. sw_stats->error_stats.network_sustained_ok++;
  1662. writeq(
  1663. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
  1664. &vp_reg->asic_ntwk_vp_err_mask);
  1665. __vxge_hw_device_handle_link_up_ind(hldev);
  1666. alarm_event = VXGE_HW_SET_LEVEL(
  1667. VXGE_HW_EVENT_LINK_UP, alarm_event);
  1668. }
  1669. writeq(VXGE_HW_INTR_MASK_ALL,
  1670. &vp_reg->asic_ntwk_vp_err_reg);
  1671. alarm_event = VXGE_HW_SET_LEVEL(
  1672. VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
  1673. if (skip_alarms)
  1674. return VXGE_HW_OK;
  1675. }
  1676. }
  1677. if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
  1678. pic_status = readq(&vp_reg->vpath_ppif_int_status);
  1679. if (pic_status &
  1680. VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
  1681. val64 = readq(&vp_reg->general_errors_reg);
  1682. mask64 = readq(&vp_reg->general_errors_mask);
  1683. if ((val64 &
  1684. VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
  1685. ~mask64) {
  1686. sw_stats->error_stats.ini_serr_det++;
  1687. alarm_event = VXGE_HW_SET_LEVEL(
  1688. VXGE_HW_EVENT_SERR, alarm_event);
  1689. }
  1690. if ((val64 &
  1691. VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
  1692. ~mask64) {
  1693. sw_stats->error_stats.dblgen_fifo0_overflow++;
  1694. alarm_event = VXGE_HW_SET_LEVEL(
  1695. VXGE_HW_EVENT_FIFO_ERR, alarm_event);
  1696. }
  1697. if ((val64 &
  1698. VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
  1699. ~mask64)
  1700. sw_stats->error_stats.statsb_pif_chain_error++;
  1701. if ((val64 &
  1702. VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
  1703. ~mask64)
  1704. sw_stats->error_stats.statsb_drop_timeout++;
  1705. if ((val64 &
  1706. VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
  1707. ~mask64)
  1708. sw_stats->error_stats.target_illegal_access++;
  1709. if (!skip_alarms) {
  1710. writeq(VXGE_HW_INTR_MASK_ALL,
  1711. &vp_reg->general_errors_reg);
  1712. alarm_event = VXGE_HW_SET_LEVEL(
  1713. VXGE_HW_EVENT_ALARM_CLEARED,
  1714. alarm_event);
  1715. }
  1716. }
  1717. if (pic_status &
  1718. VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
  1719. val64 = readq(&vp_reg->kdfcctl_errors_reg);
  1720. mask64 = readq(&vp_reg->kdfcctl_errors_mask);
  1721. if ((val64 &
  1722. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
  1723. ~mask64) {
  1724. sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
  1725. alarm_event = VXGE_HW_SET_LEVEL(
  1726. VXGE_HW_EVENT_FIFO_ERR,
  1727. alarm_event);
  1728. }
  1729. if ((val64 &
  1730. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
  1731. ~mask64) {
  1732. sw_stats->error_stats.kdfcctl_fifo0_poison++;
  1733. alarm_event = VXGE_HW_SET_LEVEL(
  1734. VXGE_HW_EVENT_FIFO_ERR,
  1735. alarm_event);
  1736. }
  1737. if ((val64 &
  1738. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
  1739. ~mask64) {
  1740. sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
  1741. alarm_event = VXGE_HW_SET_LEVEL(
  1742. VXGE_HW_EVENT_FIFO_ERR,
  1743. alarm_event);
  1744. }
  1745. if (!skip_alarms) {
  1746. writeq(VXGE_HW_INTR_MASK_ALL,
  1747. &vp_reg->kdfcctl_errors_reg);
  1748. alarm_event = VXGE_HW_SET_LEVEL(
  1749. VXGE_HW_EVENT_ALARM_CLEARED,
  1750. alarm_event);
  1751. }
  1752. }
  1753. }
  1754. if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
  1755. val64 = readq(&vp_reg->wrdma_alarm_status);
  1756. if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
  1757. val64 = readq(&vp_reg->prc_alarm_reg);
  1758. mask64 = readq(&vp_reg->prc_alarm_mask);
  1759. if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
  1760. ~mask64)
  1761. sw_stats->error_stats.prc_ring_bumps++;
  1762. if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
  1763. ~mask64) {
  1764. sw_stats->error_stats.prc_rxdcm_sc_err++;
  1765. alarm_event = VXGE_HW_SET_LEVEL(
  1766. VXGE_HW_EVENT_VPATH_ERR,
  1767. alarm_event);
  1768. }
  1769. if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
  1770. & ~mask64) {
  1771. sw_stats->error_stats.prc_rxdcm_sc_abort++;
  1772. alarm_event = VXGE_HW_SET_LEVEL(
  1773. VXGE_HW_EVENT_VPATH_ERR,
  1774. alarm_event);
  1775. }
  1776. if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
  1777. & ~mask64) {
  1778. sw_stats->error_stats.prc_quanta_size_err++;
  1779. alarm_event = VXGE_HW_SET_LEVEL(
  1780. VXGE_HW_EVENT_VPATH_ERR,
  1781. alarm_event);
  1782. }
  1783. if (!skip_alarms) {
  1784. writeq(VXGE_HW_INTR_MASK_ALL,
  1785. &vp_reg->prc_alarm_reg);
  1786. alarm_event = VXGE_HW_SET_LEVEL(
  1787. VXGE_HW_EVENT_ALARM_CLEARED,
  1788. alarm_event);
  1789. }
  1790. }
  1791. }
  1792. out:
  1793. hldev->stats.sw_dev_err_stats.vpath_alarms++;
  1794. out2:
  1795. if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
  1796. (alarm_event == VXGE_HW_EVENT_UNKNOWN))
  1797. return VXGE_HW_OK;
  1798. __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
  1799. if (alarm_event == VXGE_HW_EVENT_SERR)
  1800. return VXGE_HW_ERR_CRITICAL;
  1801. return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
  1802. VXGE_HW_ERR_SLOT_FREEZE :
  1803. (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
  1804. VXGE_HW_ERR_VPATH;
  1805. }
  1806. /*
  1807. * vxge_hw_vpath_alarm_process - Process Alarms.
  1808. * @vpath: Virtual Path.
  1809. * @skip_alarms: Do not clear the alarms
  1810. *
  1811. * Process vpath alarms.
  1812. *
  1813. */
  1814. enum vxge_hw_status vxge_hw_vpath_alarm_process(
  1815. struct __vxge_hw_vpath_handle *vp,
  1816. u32 skip_alarms)
  1817. {
  1818. enum vxge_hw_status status = VXGE_HW_OK;
  1819. if (vp == NULL) {
  1820. status = VXGE_HW_ERR_INVALID_HANDLE;
  1821. goto exit;
  1822. }
  1823. status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
  1824. exit:
  1825. return status;
  1826. }
  1827. /**
  1828. * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
  1829. * alrms
  1830. * @vp: Virtual Path handle.
  1831. * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
  1832. * interrupts(Can be repeated). If fifo or ring are not enabled
  1833. * the MSIX vector for that should be set to 0
  1834. * @alarm_msix_id: MSIX vector for alarm.
  1835. *
  1836. * This API will associate a given MSIX vector numbers with the four TIM
  1837. * interrupts and alarm interrupt.
  1838. */
  1839. void
  1840. vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
  1841. int alarm_msix_id)
  1842. {
  1843. u64 val64;
  1844. struct __vxge_hw_virtualpath *vpath = vp->vpath;
  1845. struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
  1846. u32 vp_id = vp->vpath->vp_id;
  1847. val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
  1848. (vp_id * 4) + tim_msix_id[0]) |
  1849. VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
  1850. (vp_id * 4) + tim_msix_id[1]);
  1851. writeq(val64, &vp_reg->interrupt_cfg0);
  1852. writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
  1853. (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
  1854. &vp_reg->interrupt_cfg2);
  1855. if (vpath->hldev->config.intr_mode ==
  1856. VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
  1857. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
  1858. VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
  1859. 0, 32), &vp_reg->one_shot_vect1_en);
  1860. }
  1861. if (vpath->hldev->config.intr_mode ==
  1862. VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
  1863. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
  1864. VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
  1865. 0, 32), &vp_reg->one_shot_vect2_en);
  1866. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
  1867. VXGE_HW_ONE_SHOT_VECT3_EN_ONE_SHOT_VECT3_EN,
  1868. 0, 32), &vp_reg->one_shot_vect3_en);
  1869. }
  1870. }
  1871. /**
  1872. * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
  1873. * @vp: Virtual Path handle.
  1874. * @msix_id: MSIX ID
  1875. *
  1876. * The function masks the msix interrupt for the given msix_id
  1877. *
  1878. * Returns: 0,
  1879. * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
  1880. * status.
  1881. * See also:
  1882. */
  1883. void
  1884. vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
  1885. {
  1886. struct __vxge_hw_device *hldev = vp->vpath->hldev;
  1887. __vxge_hw_pio_mem_write32_upper(
  1888. (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
  1889. &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
  1890. }
  1891. /**
  1892. * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
  1893. * @vp: Virtual Path handle.
  1894. * @msix_id: MSI ID
  1895. *
  1896. * The function clears the msix interrupt for the given msix_id
  1897. *
  1898. * Returns: 0,
  1899. * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
  1900. * status.
  1901. * See also:
  1902. */
  1903. void
  1904. vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
  1905. {
  1906. struct __vxge_hw_device *hldev = vp->vpath->hldev;
  1907. if (hldev->config.intr_mode ==
  1908. VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
  1909. __vxge_hw_pio_mem_write32_upper(
  1910. (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
  1911. &hldev->common_reg->
  1912. clr_msix_one_shot_vec[msix_id%4]);
  1913. } else {
  1914. __vxge_hw_pio_mem_write32_upper(
  1915. (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
  1916. &hldev->common_reg->
  1917. clear_msix_mask_vect[msix_id%4]);
  1918. }
  1919. }
  1920. /**
  1921. * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
  1922. * @vp: Virtual Path handle.
  1923. * @msix_id: MSI ID
  1924. *
  1925. * The function unmasks the msix interrupt for the given msix_id
  1926. *
  1927. * Returns: 0,
  1928. * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
  1929. * status.
  1930. * See also:
  1931. */
  1932. void
  1933. vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
  1934. {
  1935. struct __vxge_hw_device *hldev = vp->vpath->hldev;
  1936. __vxge_hw_pio_mem_write32_upper(
  1937. (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
  1938. &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
  1939. }
  1940. /**
  1941. * vxge_hw_vpath_msix_mask_all - Mask all MSIX vectors for the vpath.
  1942. * @vp: Virtual Path handle.
  1943. *
  1944. * The function masks all msix interrupt for the given vpath
  1945. *
  1946. */
  1947. void
  1948. vxge_hw_vpath_msix_mask_all(struct __vxge_hw_vpath_handle *vp)
  1949. {
  1950. __vxge_hw_pio_mem_write32_upper(
  1951. (u32)vxge_bVALn(vxge_mBIT(vp->vpath->vp_id), 0, 32),
  1952. &vp->vpath->hldev->common_reg->set_msix_mask_all_vect);
  1953. }
  1954. /**
  1955. * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
  1956. * @vp: Virtual Path handle.
  1957. *
  1958. * Mask Tx and Rx vpath interrupts.
  1959. *
  1960. * See also: vxge_hw_vpath_inta_mask_tx_rx()
  1961. */
  1962. void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
  1963. {
  1964. u64 tim_int_mask0[4] = {[0 ...3] = 0};
  1965. u32 tim_int_mask1[4] = {[0 ...3] = 0};
  1966. u64 val64;
  1967. struct __vxge_hw_device *hldev = vp->vpath->hldev;
  1968. VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
  1969. tim_int_mask1, vp->vpath->vp_id);
  1970. val64 = readq(&hldev->common_reg->tim_int_mask0);
  1971. if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
  1972. (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
  1973. writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
  1974. tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
  1975. &hldev->common_reg->tim_int_mask0);
  1976. }
  1977. val64 = readl(&hldev->common_reg->tim_int_mask1);
  1978. if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
  1979. (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
  1980. __vxge_hw_pio_mem_write32_upper(
  1981. (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
  1982. tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
  1983. &hldev->common_reg->tim_int_mask1);
  1984. }
  1985. }
  1986. /**
  1987. * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
  1988. * @vp: Virtual Path handle.
  1989. *
  1990. * Unmask Tx and Rx vpath interrupts.
  1991. *
  1992. * See also: vxge_hw_vpath_inta_mask_tx_rx()
  1993. */
  1994. void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
  1995. {
  1996. u64 tim_int_mask0[4] = {[0 ...3] = 0};
  1997. u32 tim_int_mask1[4] = {[0 ...3] = 0};
  1998. u64 val64;
  1999. struct __vxge_hw_device *hldev = vp->vpath->hldev;
  2000. VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
  2001. tim_int_mask1, vp->vpath->vp_id);
  2002. val64 = readq(&hldev->common_reg->tim_int_mask0);
  2003. if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
  2004. (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
  2005. writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
  2006. tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
  2007. &hldev->common_reg->tim_int_mask0);
  2008. }
  2009. if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
  2010. (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
  2011. __vxge_hw_pio_mem_write32_upper(
  2012. (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
  2013. tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
  2014. &hldev->common_reg->tim_int_mask1);
  2015. }
  2016. }
  2017. /**
  2018. * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
  2019. * descriptors and process the same.
  2020. * @ring: Handle to the ring object used for receive
  2021. *
  2022. * The function polls the Rx for the completed descriptors and calls
  2023. * the driver via supplied completion callback.
  2024. *
  2025. * Returns: VXGE_HW_OK, if the polling is completed successful.
  2026. * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
  2027. * descriptors available which are yet to be processed.
  2028. *
  2029. * See also: vxge_hw_vpath_poll_rx()
  2030. */
  2031. enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
  2032. {
  2033. u8 t_code;
  2034. enum vxge_hw_status status = VXGE_HW_OK;
  2035. void *first_rxdh;
  2036. u64 val64 = 0;
  2037. int new_count = 0;
  2038. ring->cmpl_cnt = 0;
  2039. status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
  2040. if (status == VXGE_HW_OK)
  2041. ring->callback(ring, first_rxdh,
  2042. t_code, ring->channel.userdata);
  2043. if (ring->cmpl_cnt != 0) {
  2044. ring->doorbell_cnt += ring->cmpl_cnt;
  2045. if (ring->doorbell_cnt >= ring->rxds_limit) {
  2046. /*
  2047. * Each RxD is of 4 qwords, update the number of
  2048. * qwords replenished
  2049. */
  2050. new_count = (ring->doorbell_cnt * 4);
  2051. /* For each block add 4 more qwords */
  2052. ring->total_db_cnt += ring->doorbell_cnt;
  2053. if (ring->total_db_cnt >= ring->rxds_per_block) {
  2054. new_count += 4;
  2055. /* Reset total count */
  2056. ring->total_db_cnt %= ring->rxds_per_block;
  2057. }
  2058. writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
  2059. &ring->vp_reg->prc_rxd_doorbell);
  2060. val64 =
  2061. readl(&ring->common_reg->titan_general_int_status);
  2062. ring->doorbell_cnt = 0;
  2063. }
  2064. }
  2065. return status;
  2066. }
  2067. /**
  2068. * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
  2069. * the same.
  2070. * @fifo: Handle to the fifo object used for non offload send
  2071. *
  2072. * The function polls the Tx for the completed descriptors and calls
  2073. * the driver via supplied completion callback.
  2074. *
  2075. * Returns: VXGE_HW_OK, if the polling is completed successful.
  2076. * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
  2077. * descriptors available which are yet to be processed.
  2078. */
  2079. enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
  2080. struct sk_buff ***skb_ptr, int nr_skb,
  2081. int *more)
  2082. {
  2083. enum vxge_hw_fifo_tcode t_code;
  2084. void *first_txdlh;
  2085. enum vxge_hw_status status = VXGE_HW_OK;
  2086. struct __vxge_hw_channel *channel;
  2087. channel = &fifo->channel;
  2088. status = vxge_hw_fifo_txdl_next_completed(fifo,
  2089. &first_txdlh, &t_code);
  2090. if (status == VXGE_HW_OK)
  2091. if (fifo->callback(fifo, first_txdlh, t_code,
  2092. channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
  2093. status = VXGE_HW_COMPLETIONS_REMAIN;
  2094. return status;
  2095. }