t3_hw.c 118 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962
  1. /*
  2. * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. /**
  37. * t3_wait_op_done_val - wait until an operation is completed
  38. * @adapter: the adapter performing the operation
  39. * @reg: the register to check for completion
  40. * @mask: a single-bit field within @reg that indicates completion
  41. * @polarity: the value of the field when the operation is completed
  42. * @attempts: number of check iterations
  43. * @delay: delay in usecs between iterations
  44. * @valp: where to store the value of the register at completion time
  45. *
  46. * Wait until an operation is completed by checking a bit in a register
  47. * up to @attempts times. If @valp is not NULL the value of the register
  48. * at the time it indicated completion is stored there. Returns 0 if the
  49. * operation completes and -EAGAIN otherwise.
  50. */
  51. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  52. int polarity, int attempts, int delay, u32 *valp)
  53. {
  54. while (1) {
  55. u32 val = t3_read_reg(adapter, reg);
  56. if (!!(val & mask) == polarity) {
  57. if (valp)
  58. *valp = val;
  59. return 0;
  60. }
  61. if (--attempts == 0)
  62. return -EAGAIN;
  63. if (delay)
  64. udelay(delay);
  65. }
  66. }
  67. /**
  68. * t3_write_regs - write a bunch of registers
  69. * @adapter: the adapter to program
  70. * @p: an array of register address/register value pairs
  71. * @n: the number of address/value pairs
  72. * @offset: register address offset
  73. *
  74. * Takes an array of register address/register value pairs and writes each
  75. * value to the corresponding register. Register addresses are adjusted
  76. * by the supplied offset.
  77. */
  78. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  79. int n, unsigned int offset)
  80. {
  81. while (n--) {
  82. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  83. p++;
  84. }
  85. }
  86. /**
  87. * t3_set_reg_field - set a register field to a value
  88. * @adapter: the adapter to program
  89. * @addr: the register address
  90. * @mask: specifies the portion of the register to modify
  91. * @val: the new value for the register field
  92. *
  93. * Sets a register field specified by the supplied mask to the
  94. * given value.
  95. */
  96. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  97. u32 val)
  98. {
  99. u32 v = t3_read_reg(adapter, addr) & ~mask;
  100. t3_write_reg(adapter, addr, v | val);
  101. t3_read_reg(adapter, addr); /* flush */
  102. }
  103. /**
  104. * t3_read_indirect - read indirectly addressed registers
  105. * @adap: the adapter
  106. * @addr_reg: register holding the indirect address
  107. * @data_reg: register holding the value of the indirect register
  108. * @vals: where the read register values are stored
  109. * @start_idx: index of first indirect register to read
  110. * @nregs: how many indirect registers to read
  111. *
  112. * Reads registers that are accessed indirectly through an address/data
  113. * register pair.
  114. */
  115. static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  116. unsigned int data_reg, u32 *vals,
  117. unsigned int nregs, unsigned int start_idx)
  118. {
  119. while (nregs--) {
  120. t3_write_reg(adap, addr_reg, start_idx);
  121. *vals++ = t3_read_reg(adap, data_reg);
  122. start_idx++;
  123. }
  124. }
  125. /**
  126. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  127. * @mc7: identifies MC7 to read from
  128. * @start: index of first 64-bit word to read
  129. * @n: number of 64-bit words to read
  130. * @buf: where to store the read result
  131. *
  132. * Read n 64-bit words from MC7 starting at word start, using backdoor
  133. * accesses.
  134. */
  135. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  136. u64 *buf)
  137. {
  138. static const int shift[] = { 0, 0, 16, 24 };
  139. static const int step[] = { 0, 32, 16, 8 };
  140. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  141. struct adapter *adap = mc7->adapter;
  142. if (start >= size64 || start + n > size64)
  143. return -EINVAL;
  144. start *= (8 << mc7->width);
  145. while (n--) {
  146. int i;
  147. u64 val64 = 0;
  148. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  149. int attempts = 10;
  150. u32 val;
  151. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  153. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  154. while ((val & F_BUSY) && attempts--)
  155. val = t3_read_reg(adap,
  156. mc7->offset + A_MC7_BD_OP);
  157. if (val & F_BUSY)
  158. return -EIO;
  159. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  160. if (mc7->width == 0) {
  161. val64 = t3_read_reg(adap,
  162. mc7->offset +
  163. A_MC7_BD_DATA0);
  164. val64 |= (u64) val << 32;
  165. } else {
  166. if (mc7->width > 1)
  167. val >>= shift[mc7->width];
  168. val64 |= (u64) val << (step[mc7->width] * i);
  169. }
  170. start += 8;
  171. }
  172. *buf++ = val64;
  173. }
  174. return 0;
  175. }
  176. /*
  177. * Initialize MI1.
  178. */
  179. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  180. {
  181. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  182. u32 val = F_PREEN | V_CLKDIV(clkdiv);
  183. t3_write_reg(adap, A_MI1_CFG, val);
  184. }
  185. #define MDIO_ATTEMPTS 20
  186. /*
  187. * MI1 read/write operations for clause 22 PHYs.
  188. */
  189. static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr,
  190. u16 reg_addr)
  191. {
  192. struct port_info *pi = netdev_priv(dev);
  193. struct adapter *adapter = pi->adapter;
  194. int ret;
  195. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  196. mutex_lock(&adapter->mdio_lock);
  197. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  198. t3_write_reg(adapter, A_MI1_ADDR, addr);
  199. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  200. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  201. if (!ret)
  202. ret = t3_read_reg(adapter, A_MI1_DATA);
  203. mutex_unlock(&adapter->mdio_lock);
  204. return ret;
  205. }
  206. static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr,
  207. u16 reg_addr, u16 val)
  208. {
  209. struct port_info *pi = netdev_priv(dev);
  210. struct adapter *adapter = pi->adapter;
  211. int ret;
  212. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  213. mutex_lock(&adapter->mdio_lock);
  214. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  215. t3_write_reg(adapter, A_MI1_ADDR, addr);
  216. t3_write_reg(adapter, A_MI1_DATA, val);
  217. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  218. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  219. mutex_unlock(&adapter->mdio_lock);
  220. return ret;
  221. }
  222. static const struct mdio_ops mi1_mdio_ops = {
  223. .read = t3_mi1_read,
  224. .write = t3_mi1_write,
  225. .mode_support = MDIO_SUPPORTS_C22
  226. };
  227. /*
  228. * Performs the address cycle for clause 45 PHYs.
  229. * Must be called with the MDIO_LOCK held.
  230. */
  231. static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
  232. int reg_addr)
  233. {
  234. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  235. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
  236. t3_write_reg(adapter, A_MI1_ADDR, addr);
  237. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  238. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  239. return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  240. MDIO_ATTEMPTS, 10);
  241. }
  242. /*
  243. * MI1 read/write operations for indirect-addressed PHYs.
  244. */
  245. static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
  246. u16 reg_addr)
  247. {
  248. struct port_info *pi = netdev_priv(dev);
  249. struct adapter *adapter = pi->adapter;
  250. int ret;
  251. mutex_lock(&adapter->mdio_lock);
  252. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  253. if (!ret) {
  254. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  255. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  256. MDIO_ATTEMPTS, 10);
  257. if (!ret)
  258. ret = t3_read_reg(adapter, A_MI1_DATA);
  259. }
  260. mutex_unlock(&adapter->mdio_lock);
  261. return ret;
  262. }
  263. static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr,
  264. u16 reg_addr, u16 val)
  265. {
  266. struct port_info *pi = netdev_priv(dev);
  267. struct adapter *adapter = pi->adapter;
  268. int ret;
  269. mutex_lock(&adapter->mdio_lock);
  270. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  271. if (!ret) {
  272. t3_write_reg(adapter, A_MI1_DATA, val);
  273. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  274. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  275. MDIO_ATTEMPTS, 10);
  276. }
  277. mutex_unlock(&adapter->mdio_lock);
  278. return ret;
  279. }
  280. static const struct mdio_ops mi1_mdio_ext_ops = {
  281. .read = mi1_ext_read,
  282. .write = mi1_ext_write,
  283. .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
  284. };
  285. /**
  286. * t3_mdio_change_bits - modify the value of a PHY register
  287. * @phy: the PHY to operate on
  288. * @mmd: the device address
  289. * @reg: the register address
  290. * @clear: what part of the register value to mask off
  291. * @set: what part of the register value to set
  292. *
  293. * Changes the value of a PHY register by applying a mask to its current
  294. * value and ORing the result with a new value.
  295. */
  296. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  297. unsigned int set)
  298. {
  299. int ret;
  300. unsigned int val;
  301. ret = t3_mdio_read(phy, mmd, reg, &val);
  302. if (!ret) {
  303. val &= ~clear;
  304. ret = t3_mdio_write(phy, mmd, reg, val | set);
  305. }
  306. return ret;
  307. }
  308. /**
  309. * t3_phy_reset - reset a PHY block
  310. * @phy: the PHY to operate on
  311. * @mmd: the device address of the PHY block to reset
  312. * @wait: how long to wait for the reset to complete in 1ms increments
  313. *
  314. * Resets a PHY block and optionally waits for the reset to complete.
  315. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  316. * for 10G PHYs.
  317. */
  318. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  319. {
  320. int err;
  321. unsigned int ctl;
  322. err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER,
  323. MDIO_CTRL1_RESET);
  324. if (err || !wait)
  325. return err;
  326. do {
  327. err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl);
  328. if (err)
  329. return err;
  330. ctl &= MDIO_CTRL1_RESET;
  331. if (ctl)
  332. msleep(1);
  333. } while (ctl && --wait);
  334. return ctl ? -1 : 0;
  335. }
  336. /**
  337. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  338. * @phy: the PHY to operate on
  339. * @advert: bitmap of capabilities the PHY should advertise
  340. *
  341. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  342. * requested capabilities.
  343. */
  344. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  345. {
  346. int err;
  347. unsigned int val = 0;
  348. err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val);
  349. if (err)
  350. return err;
  351. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  352. if (advert & ADVERTISED_1000baseT_Half)
  353. val |= ADVERTISE_1000HALF;
  354. if (advert & ADVERTISED_1000baseT_Full)
  355. val |= ADVERTISE_1000FULL;
  356. err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val);
  357. if (err)
  358. return err;
  359. val = 1;
  360. if (advert & ADVERTISED_10baseT_Half)
  361. val |= ADVERTISE_10HALF;
  362. if (advert & ADVERTISED_10baseT_Full)
  363. val |= ADVERTISE_10FULL;
  364. if (advert & ADVERTISED_100baseT_Half)
  365. val |= ADVERTISE_100HALF;
  366. if (advert & ADVERTISED_100baseT_Full)
  367. val |= ADVERTISE_100FULL;
  368. if (advert & ADVERTISED_Pause)
  369. val |= ADVERTISE_PAUSE_CAP;
  370. if (advert & ADVERTISED_Asym_Pause)
  371. val |= ADVERTISE_PAUSE_ASYM;
  372. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
  373. }
  374. /**
  375. * t3_phy_advertise_fiber - set fiber PHY advertisement register
  376. * @phy: the PHY to operate on
  377. * @advert: bitmap of capabilities the PHY should advertise
  378. *
  379. * Sets a fiber PHY's advertisement register to advertise the
  380. * requested capabilities.
  381. */
  382. int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
  383. {
  384. unsigned int val = 0;
  385. if (advert & ADVERTISED_1000baseT_Half)
  386. val |= ADVERTISE_1000XHALF;
  387. if (advert & ADVERTISED_1000baseT_Full)
  388. val |= ADVERTISE_1000XFULL;
  389. if (advert & ADVERTISED_Pause)
  390. val |= ADVERTISE_1000XPAUSE;
  391. if (advert & ADVERTISED_Asym_Pause)
  392. val |= ADVERTISE_1000XPSE_ASYM;
  393. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
  394. }
  395. /**
  396. * t3_set_phy_speed_duplex - force PHY speed and duplex
  397. * @phy: the PHY to operate on
  398. * @speed: requested PHY speed
  399. * @duplex: requested PHY duplex
  400. *
  401. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  402. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  403. */
  404. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  405. {
  406. int err;
  407. unsigned int ctl;
  408. err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl);
  409. if (err)
  410. return err;
  411. if (speed >= 0) {
  412. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  413. if (speed == SPEED_100)
  414. ctl |= BMCR_SPEED100;
  415. else if (speed == SPEED_1000)
  416. ctl |= BMCR_SPEED1000;
  417. }
  418. if (duplex >= 0) {
  419. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  420. if (duplex == DUPLEX_FULL)
  421. ctl |= BMCR_FULLDPLX;
  422. }
  423. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  424. ctl |= BMCR_ANENABLE;
  425. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl);
  426. }
  427. int t3_phy_lasi_intr_enable(struct cphy *phy)
  428. {
  429. return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
  430. MDIO_PMA_LASI_LSALARM);
  431. }
  432. int t3_phy_lasi_intr_disable(struct cphy *phy)
  433. {
  434. return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0);
  435. }
  436. int t3_phy_lasi_intr_clear(struct cphy *phy)
  437. {
  438. u32 val;
  439. return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val);
  440. }
  441. int t3_phy_lasi_intr_handler(struct cphy *phy)
  442. {
  443. unsigned int status;
  444. int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT,
  445. &status);
  446. if (err)
  447. return err;
  448. return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0;
  449. }
  450. static const struct adapter_info t3_adap_info[] = {
  451. {1, 1, 0,
  452. F_GPIO2_OEN | F_GPIO4_OEN |
  453. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  454. &mi1_mdio_ops, "Chelsio PE9000"},
  455. {1, 1, 0,
  456. F_GPIO2_OEN | F_GPIO4_OEN |
  457. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  458. &mi1_mdio_ops, "Chelsio T302"},
  459. {1, 0, 0,
  460. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  461. F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  462. { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  463. &mi1_mdio_ext_ops, "Chelsio T310"},
  464. {1, 1, 0,
  465. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  466. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  467. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  468. { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  469. &mi1_mdio_ext_ops, "Chelsio T320"},
  470. {},
  471. {},
  472. {1, 0, 0,
  473. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
  474. F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  475. { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  476. &mi1_mdio_ext_ops, "Chelsio T310" },
  477. {1, 0, 0,
  478. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
  479. F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL,
  480. { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  481. &mi1_mdio_ext_ops, "Chelsio N320E-G2" },
  482. };
  483. /*
  484. * Return the adapter_info structure with a given index. Out-of-range indices
  485. * return NULL.
  486. */
  487. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  488. {
  489. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  490. }
  491. struct port_type_info {
  492. int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
  493. int phy_addr, const struct mdio_ops *ops);
  494. };
  495. static const struct port_type_info port_types[] = {
  496. { NULL },
  497. { t3_ael1002_phy_prep },
  498. { t3_vsc8211_phy_prep },
  499. { NULL},
  500. { t3_xaui_direct_phy_prep },
  501. { t3_ael2005_phy_prep },
  502. { t3_qt2045_phy_prep },
  503. { t3_ael1006_phy_prep },
  504. { NULL },
  505. { t3_aq100x_phy_prep },
  506. { t3_ael2020_phy_prep },
  507. };
  508. #define VPD_ENTRY(name, len) \
  509. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  510. /*
  511. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  512. * VPD-R sections.
  513. */
  514. struct t3_vpd {
  515. u8 id_tag;
  516. u8 id_len[2];
  517. u8 id_data[16];
  518. u8 vpdr_tag;
  519. u8 vpdr_len[2];
  520. VPD_ENTRY(pn, 16); /* part number */
  521. VPD_ENTRY(ec, 16); /* EC level */
  522. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  523. VPD_ENTRY(na, 12); /* MAC address base */
  524. VPD_ENTRY(cclk, 6); /* core clock */
  525. VPD_ENTRY(mclk, 6); /* mem clock */
  526. VPD_ENTRY(uclk, 6); /* uP clk */
  527. VPD_ENTRY(mdc, 6); /* MDIO clk */
  528. VPD_ENTRY(mt, 2); /* mem timing */
  529. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  530. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  531. VPD_ENTRY(port0, 2); /* PHY0 complex */
  532. VPD_ENTRY(port1, 2); /* PHY1 complex */
  533. VPD_ENTRY(port2, 2); /* PHY2 complex */
  534. VPD_ENTRY(port3, 2); /* PHY3 complex */
  535. VPD_ENTRY(rv, 1); /* csum */
  536. u32 pad; /* for multiple-of-4 sizing and alignment */
  537. };
  538. #define EEPROM_MAX_POLL 40
  539. #define EEPROM_STAT_ADDR 0x4000
  540. #define VPD_BASE 0xc00
  541. /**
  542. * t3_seeprom_read - read a VPD EEPROM location
  543. * @adapter: adapter to read
  544. * @addr: EEPROM address
  545. * @data: where to store the read data
  546. *
  547. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  548. * VPD ROM capability. A zero is written to the flag bit when the
  549. * addres is written to the control register. The hardware device will
  550. * set the flag to 1 when 4 bytes have been read into the data register.
  551. */
  552. int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
  553. {
  554. u16 val;
  555. int attempts = EEPROM_MAX_POLL;
  556. u32 v;
  557. unsigned int base = adapter->params.pci.vpd_cap_addr;
  558. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  559. return -EINVAL;
  560. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  561. do {
  562. udelay(10);
  563. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  564. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  565. if (!(val & PCI_VPD_ADDR_F)) {
  566. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  567. return -EIO;
  568. }
  569. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
  570. *data = cpu_to_le32(v);
  571. return 0;
  572. }
  573. /**
  574. * t3_seeprom_write - write a VPD EEPROM location
  575. * @adapter: adapter to write
  576. * @addr: EEPROM address
  577. * @data: value to write
  578. *
  579. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  580. * VPD ROM capability.
  581. */
  582. int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
  583. {
  584. u16 val;
  585. int attempts = EEPROM_MAX_POLL;
  586. unsigned int base = adapter->params.pci.vpd_cap_addr;
  587. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  588. return -EINVAL;
  589. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  590. le32_to_cpu(data));
  591. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  592. addr | PCI_VPD_ADDR_F);
  593. do {
  594. msleep(1);
  595. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  596. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  597. if (val & PCI_VPD_ADDR_F) {
  598. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  599. return -EIO;
  600. }
  601. return 0;
  602. }
  603. /**
  604. * t3_seeprom_wp - enable/disable EEPROM write protection
  605. * @adapter: the adapter
  606. * @enable: 1 to enable write protection, 0 to disable it
  607. *
  608. * Enables or disables write protection on the serial EEPROM.
  609. */
  610. int t3_seeprom_wp(struct adapter *adapter, int enable)
  611. {
  612. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  613. }
  614. /**
  615. * get_vpd_params - read VPD parameters from VPD EEPROM
  616. * @adapter: adapter to read
  617. * @p: where to store the parameters
  618. *
  619. * Reads card parameters stored in VPD EEPROM.
  620. */
  621. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  622. {
  623. int i, addr, ret;
  624. struct t3_vpd vpd;
  625. /*
  626. * Card information is normally at VPD_BASE but some early cards had
  627. * it at 0.
  628. */
  629. ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
  630. if (ret)
  631. return ret;
  632. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  633. for (i = 0; i < sizeof(vpd); i += 4) {
  634. ret = t3_seeprom_read(adapter, addr + i,
  635. (__le32 *)((u8 *)&vpd + i));
  636. if (ret)
  637. return ret;
  638. }
  639. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  640. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  641. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  642. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  643. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  644. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  645. /* Old eeproms didn't have port information */
  646. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  647. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  648. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  649. } else {
  650. p->port_type[0] = hex_to_bin(vpd.port0_data[0]);
  651. p->port_type[1] = hex_to_bin(vpd.port1_data[0]);
  652. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  653. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  654. }
  655. for (i = 0; i < 6; i++)
  656. p->eth_base[i] = hex_to_bin(vpd.na_data[2 * i]) * 16 +
  657. hex_to_bin(vpd.na_data[2 * i + 1]);
  658. return 0;
  659. }
  660. /* serial flash and firmware constants */
  661. enum {
  662. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  663. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  664. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  665. /* flash command opcodes */
  666. SF_PROG_PAGE = 2, /* program page */
  667. SF_WR_DISABLE = 4, /* disable writes */
  668. SF_RD_STATUS = 5, /* read status register */
  669. SF_WR_ENABLE = 6, /* enable writes */
  670. SF_RD_DATA_FAST = 0xb, /* read flash */
  671. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  672. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  673. FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
  674. FW_MIN_SIZE = 8 /* at least version and csum */
  675. };
  676. /**
  677. * sf1_read - read data from the serial flash
  678. * @adapter: the adapter
  679. * @byte_cnt: number of bytes to read
  680. * @cont: whether another operation will be chained
  681. * @valp: where to store the read data
  682. *
  683. * Reads up to 4 bytes of data from the serial flash. The location of
  684. * the read needs to be specified prior to calling this by issuing the
  685. * appropriate commands to the serial flash.
  686. */
  687. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  688. u32 *valp)
  689. {
  690. int ret;
  691. if (!byte_cnt || byte_cnt > 4)
  692. return -EINVAL;
  693. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  694. return -EBUSY;
  695. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  696. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  697. if (!ret)
  698. *valp = t3_read_reg(adapter, A_SF_DATA);
  699. return ret;
  700. }
  701. /**
  702. * sf1_write - write data to the serial flash
  703. * @adapter: the adapter
  704. * @byte_cnt: number of bytes to write
  705. * @cont: whether another operation will be chained
  706. * @val: value to write
  707. *
  708. * Writes up to 4 bytes of data to the serial flash. The location of
  709. * the write needs to be specified prior to calling this by issuing the
  710. * appropriate commands to the serial flash.
  711. */
  712. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  713. u32 val)
  714. {
  715. if (!byte_cnt || byte_cnt > 4)
  716. return -EINVAL;
  717. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  718. return -EBUSY;
  719. t3_write_reg(adapter, A_SF_DATA, val);
  720. t3_write_reg(adapter, A_SF_OP,
  721. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  722. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  723. }
  724. /**
  725. * flash_wait_op - wait for a flash operation to complete
  726. * @adapter: the adapter
  727. * @attempts: max number of polls of the status register
  728. * @delay: delay between polls in ms
  729. *
  730. * Wait for a flash operation to complete by polling the status register.
  731. */
  732. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  733. {
  734. int ret;
  735. u32 status;
  736. while (1) {
  737. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  738. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  739. return ret;
  740. if (!(status & 1))
  741. return 0;
  742. if (--attempts == 0)
  743. return -EAGAIN;
  744. if (delay)
  745. msleep(delay);
  746. }
  747. }
  748. /**
  749. * t3_read_flash - read words from serial flash
  750. * @adapter: the adapter
  751. * @addr: the start address for the read
  752. * @nwords: how many 32-bit words to read
  753. * @data: where to store the read data
  754. * @byte_oriented: whether to store data as bytes or as words
  755. *
  756. * Read the specified number of 32-bit words from the serial flash.
  757. * If @byte_oriented is set the read data is stored as a byte array
  758. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  759. * natural endianess.
  760. */
  761. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  762. unsigned int nwords, u32 *data, int byte_oriented)
  763. {
  764. int ret;
  765. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  766. return -EINVAL;
  767. addr = swab32(addr) | SF_RD_DATA_FAST;
  768. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  769. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  770. return ret;
  771. for (; nwords; nwords--, data++) {
  772. ret = sf1_read(adapter, 4, nwords > 1, data);
  773. if (ret)
  774. return ret;
  775. if (byte_oriented)
  776. *data = htonl(*data);
  777. }
  778. return 0;
  779. }
  780. /**
  781. * t3_write_flash - write up to a page of data to the serial flash
  782. * @adapter: the adapter
  783. * @addr: the start address to write
  784. * @n: length of data to write
  785. * @data: the data to write
  786. *
  787. * Writes up to a page of data (256 bytes) to the serial flash starting
  788. * at the given address.
  789. */
  790. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  791. unsigned int n, const u8 *data)
  792. {
  793. int ret;
  794. u32 buf[64];
  795. unsigned int i, c, left, val, offset = addr & 0xff;
  796. if (addr + n > SF_SIZE || offset + n > 256)
  797. return -EINVAL;
  798. val = swab32(addr) | SF_PROG_PAGE;
  799. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  800. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  801. return ret;
  802. for (left = n; left; left -= c) {
  803. c = min(left, 4U);
  804. for (val = 0, i = 0; i < c; ++i)
  805. val = (val << 8) + *data++;
  806. ret = sf1_write(adapter, c, c != left, val);
  807. if (ret)
  808. return ret;
  809. }
  810. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  811. return ret;
  812. /* Read the page to verify the write succeeded */
  813. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  814. if (ret)
  815. return ret;
  816. if (memcmp(data - n, (u8 *) buf + offset, n))
  817. return -EIO;
  818. return 0;
  819. }
  820. /**
  821. * t3_get_tp_version - read the tp sram version
  822. * @adapter: the adapter
  823. * @vers: where to place the version
  824. *
  825. * Reads the protocol sram version from sram.
  826. */
  827. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  828. {
  829. int ret;
  830. /* Get version loaded in SRAM */
  831. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  832. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  833. 1, 1, 5, 1);
  834. if (ret)
  835. return ret;
  836. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  837. return 0;
  838. }
  839. /**
  840. * t3_check_tpsram_version - read the tp sram version
  841. * @adapter: the adapter
  842. *
  843. * Reads the protocol sram version from flash.
  844. */
  845. int t3_check_tpsram_version(struct adapter *adapter)
  846. {
  847. int ret;
  848. u32 vers;
  849. unsigned int major, minor;
  850. if (adapter->params.rev == T3_REV_A)
  851. return 0;
  852. ret = t3_get_tp_version(adapter, &vers);
  853. if (ret)
  854. return ret;
  855. major = G_TP_VERSION_MAJOR(vers);
  856. minor = G_TP_VERSION_MINOR(vers);
  857. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  858. return 0;
  859. else {
  860. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  861. "driver compiled for version %d.%d\n", major, minor,
  862. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  863. }
  864. return -EINVAL;
  865. }
  866. /**
  867. * t3_check_tpsram - check if provided protocol SRAM
  868. * is compatible with this driver
  869. * @adapter: the adapter
  870. * @tp_sram: the firmware image to write
  871. * @size: image size
  872. *
  873. * Checks if an adapter's tp sram is compatible with the driver.
  874. * Returns 0 if the versions are compatible, a negative error otherwise.
  875. */
  876. int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
  877. unsigned int size)
  878. {
  879. u32 csum;
  880. unsigned int i;
  881. const __be32 *p = (const __be32 *)tp_sram;
  882. /* Verify checksum */
  883. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  884. csum += ntohl(p[i]);
  885. if (csum != 0xffffffff) {
  886. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  887. csum);
  888. return -EINVAL;
  889. }
  890. return 0;
  891. }
  892. enum fw_version_type {
  893. FW_VERSION_N3,
  894. FW_VERSION_T3
  895. };
  896. /**
  897. * t3_get_fw_version - read the firmware version
  898. * @adapter: the adapter
  899. * @vers: where to place the version
  900. *
  901. * Reads the FW version from flash.
  902. */
  903. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  904. {
  905. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  906. }
  907. /**
  908. * t3_check_fw_version - check if the FW is compatible with this driver
  909. * @adapter: the adapter
  910. *
  911. * Checks if an adapter's FW is compatible with the driver. Returns 0
  912. * if the versions are compatible, a negative error otherwise.
  913. */
  914. int t3_check_fw_version(struct adapter *adapter)
  915. {
  916. int ret;
  917. u32 vers;
  918. unsigned int type, major, minor;
  919. ret = t3_get_fw_version(adapter, &vers);
  920. if (ret)
  921. return ret;
  922. type = G_FW_VERSION_TYPE(vers);
  923. major = G_FW_VERSION_MAJOR(vers);
  924. minor = G_FW_VERSION_MINOR(vers);
  925. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  926. minor == FW_VERSION_MINOR)
  927. return 0;
  928. else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
  929. CH_WARN(adapter, "found old FW minor version(%u.%u), "
  930. "driver compiled for version %u.%u\n", major, minor,
  931. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  932. else {
  933. CH_WARN(adapter, "found newer FW version(%u.%u), "
  934. "driver compiled for version %u.%u\n", major, minor,
  935. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  936. return 0;
  937. }
  938. return -EINVAL;
  939. }
  940. /**
  941. * t3_flash_erase_sectors - erase a range of flash sectors
  942. * @adapter: the adapter
  943. * @start: the first sector to erase
  944. * @end: the last sector to erase
  945. *
  946. * Erases the sectors in the given range.
  947. */
  948. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  949. {
  950. while (start <= end) {
  951. int ret;
  952. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  953. (ret = sf1_write(adapter, 4, 0,
  954. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  955. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  956. return ret;
  957. start++;
  958. }
  959. return 0;
  960. }
  961. /*
  962. * t3_load_fw - download firmware
  963. * @adapter: the adapter
  964. * @fw_data: the firmware image to write
  965. * @size: image size
  966. *
  967. * Write the supplied firmware image to the card's serial flash.
  968. * The FW image has the following sections: @size - 8 bytes of code and
  969. * data, followed by 4 bytes of FW version, followed by the 32-bit
  970. * 1's complement checksum of the whole image.
  971. */
  972. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  973. {
  974. u32 csum;
  975. unsigned int i;
  976. const __be32 *p = (const __be32 *)fw_data;
  977. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  978. if ((size & 3) || size < FW_MIN_SIZE)
  979. return -EINVAL;
  980. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  981. return -EFBIG;
  982. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  983. csum += ntohl(p[i]);
  984. if (csum != 0xffffffff) {
  985. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  986. csum);
  987. return -EINVAL;
  988. }
  989. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  990. if (ret)
  991. goto out;
  992. size -= 8; /* trim off version and checksum */
  993. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  994. unsigned int chunk_size = min(size, 256U);
  995. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  996. if (ret)
  997. goto out;
  998. addr += chunk_size;
  999. fw_data += chunk_size;
  1000. size -= chunk_size;
  1001. }
  1002. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  1003. out:
  1004. if (ret)
  1005. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  1006. return ret;
  1007. }
  1008. #define CIM_CTL_BASE 0x2000
  1009. /**
  1010. * t3_cim_ctl_blk_read - read a block from CIM control region
  1011. *
  1012. * @adap: the adapter
  1013. * @addr: the start address within the CIM control region
  1014. * @n: number of words to read
  1015. * @valp: where to store the result
  1016. *
  1017. * Reads a block of 4-byte words from the CIM control region.
  1018. */
  1019. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  1020. unsigned int n, unsigned int *valp)
  1021. {
  1022. int ret = 0;
  1023. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  1024. return -EBUSY;
  1025. for ( ; !ret && n--; addr += 4) {
  1026. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  1027. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  1028. 0, 5, 2);
  1029. if (!ret)
  1030. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  1031. }
  1032. return ret;
  1033. }
  1034. static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
  1035. u32 *rx_hash_high, u32 *rx_hash_low)
  1036. {
  1037. /* stop Rx unicast traffic */
  1038. t3_mac_disable_exact_filters(mac);
  1039. /* stop broadcast, multicast, promiscuous mode traffic */
  1040. *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
  1041. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1042. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1043. F_DISBCAST);
  1044. *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
  1045. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
  1046. *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
  1047. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
  1048. /* Leave time to drain max RX fifo */
  1049. msleep(1);
  1050. }
  1051. static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
  1052. u32 rx_hash_high, u32 rx_hash_low)
  1053. {
  1054. t3_mac_enable_exact_filters(mac);
  1055. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1056. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1057. rx_cfg);
  1058. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
  1059. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
  1060. }
  1061. /**
  1062. * t3_link_changed - handle interface link changes
  1063. * @adapter: the adapter
  1064. * @port_id: the port index that changed link state
  1065. *
  1066. * Called when a port's link settings change to propagate the new values
  1067. * to the associated PHY and MAC. After performing the common tasks it
  1068. * invokes an OS-specific handler.
  1069. */
  1070. void t3_link_changed(struct adapter *adapter, int port_id)
  1071. {
  1072. int link_ok, speed, duplex, fc;
  1073. struct port_info *pi = adap2pinfo(adapter, port_id);
  1074. struct cphy *phy = &pi->phy;
  1075. struct cmac *mac = &pi->mac;
  1076. struct link_config *lc = &pi->link_config;
  1077. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1078. if (!lc->link_ok && link_ok) {
  1079. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1080. u32 status;
  1081. t3_xgm_intr_enable(adapter, port_id);
  1082. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1083. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1084. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1085. status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
  1086. if (status & F_LINKFAULTCHANGE) {
  1087. mac->stats.link_faults++;
  1088. pi->link_fault = 1;
  1089. }
  1090. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1091. }
  1092. if (lc->requested_fc & PAUSE_AUTONEG)
  1093. fc &= lc->requested_fc;
  1094. else
  1095. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1096. if (link_ok == lc->link_ok && speed == lc->speed &&
  1097. duplex == lc->duplex && fc == lc->fc)
  1098. return; /* nothing changed */
  1099. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1100. uses_xaui(adapter)) {
  1101. if (link_ok)
  1102. t3b_pcs_reset(mac);
  1103. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1104. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1105. }
  1106. lc->link_ok = link_ok;
  1107. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1108. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1109. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1110. /* Set MAC speed, duplex, and flow control to match PHY. */
  1111. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1112. lc->fc = fc;
  1113. }
  1114. t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault,
  1115. speed, duplex, fc);
  1116. }
  1117. void t3_link_fault(struct adapter *adapter, int port_id)
  1118. {
  1119. struct port_info *pi = adap2pinfo(adapter, port_id);
  1120. struct cmac *mac = &pi->mac;
  1121. struct cphy *phy = &pi->phy;
  1122. struct link_config *lc = &pi->link_config;
  1123. int link_ok, speed, duplex, fc, link_fault;
  1124. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1125. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1126. if (adapter->params.rev > 0 && uses_xaui(adapter))
  1127. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
  1128. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1129. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1130. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1131. link_fault = t3_read_reg(adapter,
  1132. A_XGM_INT_STATUS + mac->offset);
  1133. link_fault &= F_LINKFAULTCHANGE;
  1134. link_ok = lc->link_ok;
  1135. speed = lc->speed;
  1136. duplex = lc->duplex;
  1137. fc = lc->fc;
  1138. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1139. if (link_fault) {
  1140. lc->link_ok = 0;
  1141. lc->speed = SPEED_INVALID;
  1142. lc->duplex = DUPLEX_INVALID;
  1143. t3_os_link_fault(adapter, port_id, 0);
  1144. /* Account link faults only when the phy reports a link up */
  1145. if (link_ok)
  1146. mac->stats.link_faults++;
  1147. } else {
  1148. if (link_ok)
  1149. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1150. F_TXACTENABLE | F_RXEN);
  1151. pi->link_fault = 0;
  1152. lc->link_ok = (unsigned char)link_ok;
  1153. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1154. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1155. t3_os_link_fault(adapter, port_id, link_ok);
  1156. }
  1157. }
  1158. /**
  1159. * t3_link_start - apply link configuration to MAC/PHY
  1160. * @phy: the PHY to setup
  1161. * @mac: the MAC to setup
  1162. * @lc: the requested link configuration
  1163. *
  1164. * Set up a port's MAC and PHY according to a desired link configuration.
  1165. * - If the PHY can auto-negotiate first decide what to advertise, then
  1166. * enable/disable auto-negotiation as desired, and reset.
  1167. * - If the PHY does not auto-negotiate just reset it.
  1168. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1169. * otherwise do it later based on the outcome of auto-negotiation.
  1170. */
  1171. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1172. {
  1173. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1174. lc->link_ok = 0;
  1175. if (lc->supported & SUPPORTED_Autoneg) {
  1176. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1177. if (fc) {
  1178. lc->advertising |= ADVERTISED_Asym_Pause;
  1179. if (fc & PAUSE_RX)
  1180. lc->advertising |= ADVERTISED_Pause;
  1181. }
  1182. phy->ops->advertise(phy, lc->advertising);
  1183. if (lc->autoneg == AUTONEG_DISABLE) {
  1184. lc->speed = lc->requested_speed;
  1185. lc->duplex = lc->requested_duplex;
  1186. lc->fc = (unsigned char)fc;
  1187. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1188. fc);
  1189. /* Also disables autoneg */
  1190. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1191. } else
  1192. phy->ops->autoneg_enable(phy);
  1193. } else {
  1194. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1195. lc->fc = (unsigned char)fc;
  1196. phy->ops->reset(phy, 0);
  1197. }
  1198. return 0;
  1199. }
  1200. /**
  1201. * t3_set_vlan_accel - control HW VLAN extraction
  1202. * @adapter: the adapter
  1203. * @ports: bitmap of adapter ports to operate on
  1204. * @on: enable (1) or disable (0) HW VLAN extraction
  1205. *
  1206. * Enables or disables HW extraction of VLAN tags for the given port.
  1207. */
  1208. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1209. {
  1210. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1211. ports << S_VLANEXTRACTIONENABLE,
  1212. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1213. }
  1214. struct intr_info {
  1215. unsigned int mask; /* bits to check in interrupt status */
  1216. const char *msg; /* message to print or NULL */
  1217. short stat_idx; /* stat counter to increment or -1 */
  1218. unsigned short fatal; /* whether the condition reported is fatal */
  1219. };
  1220. /**
  1221. * t3_handle_intr_status - table driven interrupt handler
  1222. * @adapter: the adapter that generated the interrupt
  1223. * @reg: the interrupt status register to process
  1224. * @mask: a mask to apply to the interrupt status
  1225. * @acts: table of interrupt actions
  1226. * @stats: statistics counters tracking interrupt occurences
  1227. *
  1228. * A table driven interrupt handler that applies a set of masks to an
  1229. * interrupt status word and performs the corresponding actions if the
  1230. * interrupts described by the mask have occured. The actions include
  1231. * optionally printing a warning or alert message, and optionally
  1232. * incrementing a stat counter. The table is terminated by an entry
  1233. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1234. */
  1235. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1236. unsigned int mask,
  1237. const struct intr_info *acts,
  1238. unsigned long *stats)
  1239. {
  1240. int fatal = 0;
  1241. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1242. for (; acts->mask; ++acts) {
  1243. if (!(status & acts->mask))
  1244. continue;
  1245. if (acts->fatal) {
  1246. fatal++;
  1247. CH_ALERT(adapter, "%s (0x%x)\n",
  1248. acts->msg, status & acts->mask);
  1249. } else if (acts->msg)
  1250. CH_WARN(adapter, "%s (0x%x)\n",
  1251. acts->msg, status & acts->mask);
  1252. if (acts->stat_idx >= 0)
  1253. stats[acts->stat_idx]++;
  1254. }
  1255. if (status) /* clear processed interrupts */
  1256. t3_write_reg(adapter, reg, status);
  1257. return fatal;
  1258. }
  1259. #define SGE_INTR_MASK (F_RSPQDISABLED | \
  1260. F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
  1261. F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
  1262. F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
  1263. V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
  1264. F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
  1265. F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \
  1266. F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \
  1267. F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \
  1268. F_LOPIODRBDROPERR)
  1269. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1270. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1271. F_NFASRCHFAIL)
  1272. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1273. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1274. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1275. F_TXFIFO_UNDERRUN)
  1276. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1277. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1278. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1279. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1280. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1281. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1282. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1283. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1284. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1285. F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
  1286. F_TXPARERR | V_BISTERR(M_BISTERR))
  1287. #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
  1288. F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
  1289. F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
  1290. #define ULPTX_INTR_MASK 0xfc
  1291. #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
  1292. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1293. F_ZERO_SWITCH_ERROR)
  1294. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1295. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1296. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1297. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
  1298. F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
  1299. F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
  1300. F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
  1301. F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
  1302. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1303. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1304. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1305. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1306. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1307. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1308. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1309. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1310. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1311. V_MCAPARERRENB(M_MCAPARERRENB))
  1312. #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
  1313. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1314. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1315. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1316. F_MPS0 | F_CPL_SWITCH)
  1317. /*
  1318. * Interrupt handler for the PCIX1 module.
  1319. */
  1320. static void pci_intr_handler(struct adapter *adapter)
  1321. {
  1322. static const struct intr_info pcix1_intr_info[] = {
  1323. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1324. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1325. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1326. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1327. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1328. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1329. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1330. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1331. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1332. 1},
  1333. {F_DETCORECCERR, "PCI correctable ECC error",
  1334. STAT_PCI_CORR_ECC, 0},
  1335. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1336. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1337. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1338. 1},
  1339. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1340. 1},
  1341. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1342. 1},
  1343. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1344. "error", -1, 1},
  1345. {0}
  1346. };
  1347. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1348. pcix1_intr_info, adapter->irq_stats))
  1349. t3_fatal_err(adapter);
  1350. }
  1351. /*
  1352. * Interrupt handler for the PCIE module.
  1353. */
  1354. static void pcie_intr_handler(struct adapter *adapter)
  1355. {
  1356. static const struct intr_info pcie_intr_info[] = {
  1357. {F_PEXERR, "PCI PEX error", -1, 1},
  1358. {F_UNXSPLCPLERRR,
  1359. "PCI unexpected split completion DMA read error", -1, 1},
  1360. {F_UNXSPLCPLERRC,
  1361. "PCI unexpected split completion DMA command error", -1, 1},
  1362. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1363. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1364. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1365. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1366. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1367. "PCI MSI-X table/PBA parity error", -1, 1},
  1368. {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
  1369. {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
  1370. {F_RXPARERR, "PCI Rx parity error", -1, 1},
  1371. {F_TXPARERR, "PCI Tx parity error", -1, 1},
  1372. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1373. {0}
  1374. };
  1375. if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
  1376. CH_ALERT(adapter, "PEX error code 0x%x\n",
  1377. t3_read_reg(adapter, A_PCIE_PEX_ERR));
  1378. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1379. pcie_intr_info, adapter->irq_stats))
  1380. t3_fatal_err(adapter);
  1381. }
  1382. /*
  1383. * TP interrupt handler.
  1384. */
  1385. static void tp_intr_handler(struct adapter *adapter)
  1386. {
  1387. static const struct intr_info tp_intr_info[] = {
  1388. {0xffffff, "TP parity error", -1, 1},
  1389. {0x1000000, "TP out of Rx pages", -1, 1},
  1390. {0x2000000, "TP out of Tx pages", -1, 1},
  1391. {0}
  1392. };
  1393. static struct intr_info tp_intr_info_t3c[] = {
  1394. {0x1fffffff, "TP parity error", -1, 1},
  1395. {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
  1396. {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
  1397. {0}
  1398. };
  1399. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1400. adapter->params.rev < T3_REV_C ?
  1401. tp_intr_info : tp_intr_info_t3c, NULL))
  1402. t3_fatal_err(adapter);
  1403. }
  1404. /*
  1405. * CIM interrupt handler.
  1406. */
  1407. static void cim_intr_handler(struct adapter *adapter)
  1408. {
  1409. static const struct intr_info cim_intr_info[] = {
  1410. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1411. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1412. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1413. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1414. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1415. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1416. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1417. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1418. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1419. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1420. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1421. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1422. {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
  1423. {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
  1424. {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
  1425. {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
  1426. {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
  1427. {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
  1428. {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
  1429. {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
  1430. {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
  1431. {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
  1432. {F_ITAGPARERR, "CIM itag parity error", -1, 1},
  1433. {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
  1434. {0}
  1435. };
  1436. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1437. cim_intr_info, NULL))
  1438. t3_fatal_err(adapter);
  1439. }
  1440. /*
  1441. * ULP RX interrupt handler.
  1442. */
  1443. static void ulprx_intr_handler(struct adapter *adapter)
  1444. {
  1445. static const struct intr_info ulprx_intr_info[] = {
  1446. {F_PARERRDATA, "ULP RX data parity error", -1, 1},
  1447. {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
  1448. {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
  1449. {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
  1450. {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
  1451. {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
  1452. {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
  1453. {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
  1454. {0}
  1455. };
  1456. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1457. ulprx_intr_info, NULL))
  1458. t3_fatal_err(adapter);
  1459. }
  1460. /*
  1461. * ULP TX interrupt handler.
  1462. */
  1463. static void ulptx_intr_handler(struct adapter *adapter)
  1464. {
  1465. static const struct intr_info ulptx_intr_info[] = {
  1466. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1467. STAT_ULP_CH0_PBL_OOB, 0},
  1468. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1469. STAT_ULP_CH1_PBL_OOB, 0},
  1470. {0xfc, "ULP TX parity error", -1, 1},
  1471. {0}
  1472. };
  1473. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1474. ulptx_intr_info, adapter->irq_stats))
  1475. t3_fatal_err(adapter);
  1476. }
  1477. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1478. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1479. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1480. F_ICSPI1_TX_FRAMING_ERROR)
  1481. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1482. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1483. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1484. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1485. /*
  1486. * PM TX interrupt handler.
  1487. */
  1488. static void pmtx_intr_handler(struct adapter *adapter)
  1489. {
  1490. static const struct intr_info pmtx_intr_info[] = {
  1491. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1492. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1493. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1494. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1495. "PMTX ispi parity error", -1, 1},
  1496. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1497. "PMTX ospi parity error", -1, 1},
  1498. {0}
  1499. };
  1500. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1501. pmtx_intr_info, NULL))
  1502. t3_fatal_err(adapter);
  1503. }
  1504. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1505. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1506. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1507. F_IESPI1_TX_FRAMING_ERROR)
  1508. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1509. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1510. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1511. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1512. /*
  1513. * PM RX interrupt handler.
  1514. */
  1515. static void pmrx_intr_handler(struct adapter *adapter)
  1516. {
  1517. static const struct intr_info pmrx_intr_info[] = {
  1518. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1519. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1520. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1521. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1522. "PMRX ispi parity error", -1, 1},
  1523. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1524. "PMRX ospi parity error", -1, 1},
  1525. {0}
  1526. };
  1527. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1528. pmrx_intr_info, NULL))
  1529. t3_fatal_err(adapter);
  1530. }
  1531. /*
  1532. * CPL switch interrupt handler.
  1533. */
  1534. static void cplsw_intr_handler(struct adapter *adapter)
  1535. {
  1536. static const struct intr_info cplsw_intr_info[] = {
  1537. {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
  1538. {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
  1539. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1540. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1541. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1542. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1543. {0}
  1544. };
  1545. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1546. cplsw_intr_info, NULL))
  1547. t3_fatal_err(adapter);
  1548. }
  1549. /*
  1550. * MPS interrupt handler.
  1551. */
  1552. static void mps_intr_handler(struct adapter *adapter)
  1553. {
  1554. static const struct intr_info mps_intr_info[] = {
  1555. {0x1ff, "MPS parity error", -1, 1},
  1556. {0}
  1557. };
  1558. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1559. mps_intr_info, NULL))
  1560. t3_fatal_err(adapter);
  1561. }
  1562. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1563. /*
  1564. * MC7 interrupt handler.
  1565. */
  1566. static void mc7_intr_handler(struct mc7 *mc7)
  1567. {
  1568. struct adapter *adapter = mc7->adapter;
  1569. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1570. if (cause & F_CE) {
  1571. mc7->stats.corr_err++;
  1572. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1573. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1574. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1575. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1576. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1577. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1578. }
  1579. if (cause & F_UE) {
  1580. mc7->stats.uncorr_err++;
  1581. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1582. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1583. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1584. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1585. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1586. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1587. }
  1588. if (G_PE(cause)) {
  1589. mc7->stats.parity_err++;
  1590. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1591. mc7->name, G_PE(cause));
  1592. }
  1593. if (cause & F_AE) {
  1594. u32 addr = 0;
  1595. if (adapter->params.rev > 0)
  1596. addr = t3_read_reg(adapter,
  1597. mc7->offset + A_MC7_ERR_ADDR);
  1598. mc7->stats.addr_err++;
  1599. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1600. mc7->name, addr);
  1601. }
  1602. if (cause & MC7_INTR_FATAL)
  1603. t3_fatal_err(adapter);
  1604. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1605. }
  1606. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1607. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1608. /*
  1609. * XGMAC interrupt handler.
  1610. */
  1611. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1612. {
  1613. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1614. /*
  1615. * We mask out interrupt causes for which we're not taking interrupts.
  1616. * This allows us to use polling logic to monitor some of the other
  1617. * conditions when taking interrupts would impose too much load on the
  1618. * system.
  1619. */
  1620. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
  1621. ~F_RXFIFO_OVERFLOW;
  1622. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1623. mac->stats.tx_fifo_parity_err++;
  1624. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1625. }
  1626. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1627. mac->stats.rx_fifo_parity_err++;
  1628. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1629. }
  1630. if (cause & F_TXFIFO_UNDERRUN)
  1631. mac->stats.tx_fifo_urun++;
  1632. if (cause & F_RXFIFO_OVERFLOW)
  1633. mac->stats.rx_fifo_ovfl++;
  1634. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1635. mac->stats.serdes_signal_loss++;
  1636. if (cause & F_XAUIPCSCTCERR)
  1637. mac->stats.xaui_pcs_ctc_err++;
  1638. if (cause & F_XAUIPCSALIGNCHANGE)
  1639. mac->stats.xaui_pcs_align_change++;
  1640. if (cause & F_XGM_INT) {
  1641. t3_set_reg_field(adap,
  1642. A_XGM_INT_ENABLE + mac->offset,
  1643. F_XGM_INT, 0);
  1644. mac->stats.link_faults++;
  1645. t3_os_link_fault_handler(adap, idx);
  1646. }
  1647. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1648. if (cause & XGM_INTR_FATAL)
  1649. t3_fatal_err(adap);
  1650. return cause != 0;
  1651. }
  1652. /*
  1653. * Interrupt handler for PHY events.
  1654. */
  1655. int t3_phy_intr_handler(struct adapter *adapter)
  1656. {
  1657. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1658. for_each_port(adapter, i) {
  1659. struct port_info *p = adap2pinfo(adapter, i);
  1660. if (!(p->phy.caps & SUPPORTED_IRQ))
  1661. continue;
  1662. if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
  1663. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1664. if (phy_cause & cphy_cause_link_change)
  1665. t3_link_changed(adapter, i);
  1666. if (phy_cause & cphy_cause_fifo_error)
  1667. p->phy.fifo_errors++;
  1668. if (phy_cause & cphy_cause_module_change)
  1669. t3_os_phymod_changed(adapter, i);
  1670. }
  1671. }
  1672. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1673. return 0;
  1674. }
  1675. /*
  1676. * T3 slow path (non-data) interrupt handler.
  1677. */
  1678. int t3_slow_intr_handler(struct adapter *adapter)
  1679. {
  1680. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1681. cause &= adapter->slow_intr_mask;
  1682. if (!cause)
  1683. return 0;
  1684. if (cause & F_PCIM0) {
  1685. if (is_pcie(adapter))
  1686. pcie_intr_handler(adapter);
  1687. else
  1688. pci_intr_handler(adapter);
  1689. }
  1690. if (cause & F_SGE3)
  1691. t3_sge_err_intr_handler(adapter);
  1692. if (cause & F_MC7_PMRX)
  1693. mc7_intr_handler(&adapter->pmrx);
  1694. if (cause & F_MC7_PMTX)
  1695. mc7_intr_handler(&adapter->pmtx);
  1696. if (cause & F_MC7_CM)
  1697. mc7_intr_handler(&adapter->cm);
  1698. if (cause & F_CIM)
  1699. cim_intr_handler(adapter);
  1700. if (cause & F_TP1)
  1701. tp_intr_handler(adapter);
  1702. if (cause & F_ULP2_RX)
  1703. ulprx_intr_handler(adapter);
  1704. if (cause & F_ULP2_TX)
  1705. ulptx_intr_handler(adapter);
  1706. if (cause & F_PM1_RX)
  1707. pmrx_intr_handler(adapter);
  1708. if (cause & F_PM1_TX)
  1709. pmtx_intr_handler(adapter);
  1710. if (cause & F_CPL_SWITCH)
  1711. cplsw_intr_handler(adapter);
  1712. if (cause & F_MPS0)
  1713. mps_intr_handler(adapter);
  1714. if (cause & F_MC5A)
  1715. t3_mc5_intr_handler(&adapter->mc5);
  1716. if (cause & F_XGMAC0_0)
  1717. mac_intr_handler(adapter, 0);
  1718. if (cause & F_XGMAC0_1)
  1719. mac_intr_handler(adapter, 1);
  1720. if (cause & F_T3DBG)
  1721. t3_os_ext_intr_handler(adapter);
  1722. /* Clear the interrupts just processed. */
  1723. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1724. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1725. return 1;
  1726. }
  1727. static unsigned int calc_gpio_intr(struct adapter *adap)
  1728. {
  1729. unsigned int i, gpi_intr = 0;
  1730. for_each_port(adap, i)
  1731. if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
  1732. adapter_info(adap)->gpio_intr[i])
  1733. gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
  1734. return gpi_intr;
  1735. }
  1736. /**
  1737. * t3_intr_enable - enable interrupts
  1738. * @adapter: the adapter whose interrupts should be enabled
  1739. *
  1740. * Enable interrupts by setting the interrupt enable registers of the
  1741. * various HW modules and then enabling the top-level interrupt
  1742. * concentrator.
  1743. */
  1744. void t3_intr_enable(struct adapter *adapter)
  1745. {
  1746. static const struct addr_val_pair intr_en_avp[] = {
  1747. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1748. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1749. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1750. MC7_INTR_MASK},
  1751. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1752. MC7_INTR_MASK},
  1753. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1754. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1755. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1756. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1757. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1758. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1759. };
  1760. adapter->slow_intr_mask = PL_INTR_MASK;
  1761. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1762. t3_write_reg(adapter, A_TP_INT_ENABLE,
  1763. adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
  1764. if (adapter->params.rev > 0) {
  1765. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1766. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1767. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1768. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1769. F_PBL_BOUND_ERR_CH1);
  1770. } else {
  1771. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1772. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1773. }
  1774. t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
  1775. if (is_pcie(adapter))
  1776. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1777. else
  1778. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1779. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1780. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1781. }
  1782. /**
  1783. * t3_intr_disable - disable a card's interrupts
  1784. * @adapter: the adapter whose interrupts should be disabled
  1785. *
  1786. * Disable interrupts. We only disable the top-level interrupt
  1787. * concentrator and the SGE data interrupts.
  1788. */
  1789. void t3_intr_disable(struct adapter *adapter)
  1790. {
  1791. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1792. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1793. adapter->slow_intr_mask = 0;
  1794. }
  1795. /**
  1796. * t3_intr_clear - clear all interrupts
  1797. * @adapter: the adapter whose interrupts should be cleared
  1798. *
  1799. * Clears all interrupts.
  1800. */
  1801. void t3_intr_clear(struct adapter *adapter)
  1802. {
  1803. static const unsigned int cause_reg_addr[] = {
  1804. A_SG_INT_CAUSE,
  1805. A_SG_RSPQ_FL_STATUS,
  1806. A_PCIX_INT_CAUSE,
  1807. A_MC7_INT_CAUSE,
  1808. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1809. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1810. A_CIM_HOST_INT_CAUSE,
  1811. A_TP_INT_CAUSE,
  1812. A_MC5_DB_INT_CAUSE,
  1813. A_ULPRX_INT_CAUSE,
  1814. A_ULPTX_INT_CAUSE,
  1815. A_CPL_INTR_CAUSE,
  1816. A_PM1_TX_INT_CAUSE,
  1817. A_PM1_RX_INT_CAUSE,
  1818. A_MPS_INT_CAUSE,
  1819. A_T3DBG_INT_CAUSE,
  1820. };
  1821. unsigned int i;
  1822. /* Clear PHY and MAC interrupts for each port. */
  1823. for_each_port(adapter, i)
  1824. t3_port_intr_clear(adapter, i);
  1825. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1826. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1827. if (is_pcie(adapter))
  1828. t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
  1829. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1830. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1831. }
  1832. void t3_xgm_intr_enable(struct adapter *adapter, int idx)
  1833. {
  1834. struct port_info *pi = adap2pinfo(adapter, idx);
  1835. t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
  1836. XGM_EXTRA_INTR_MASK);
  1837. }
  1838. void t3_xgm_intr_disable(struct adapter *adapter, int idx)
  1839. {
  1840. struct port_info *pi = adap2pinfo(adapter, idx);
  1841. t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
  1842. 0x7ff);
  1843. }
  1844. /**
  1845. * t3_port_intr_enable - enable port-specific interrupts
  1846. * @adapter: associated adapter
  1847. * @idx: index of port whose interrupts should be enabled
  1848. *
  1849. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1850. * adapter port.
  1851. */
  1852. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1853. {
  1854. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1855. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1856. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1857. phy->ops->intr_enable(phy);
  1858. }
  1859. /**
  1860. * t3_port_intr_disable - disable port-specific interrupts
  1861. * @adapter: associated adapter
  1862. * @idx: index of port whose interrupts should be disabled
  1863. *
  1864. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1865. * adapter port.
  1866. */
  1867. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1868. {
  1869. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1870. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1871. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1872. phy->ops->intr_disable(phy);
  1873. }
  1874. /**
  1875. * t3_port_intr_clear - clear port-specific interrupts
  1876. * @adapter: associated adapter
  1877. * @idx: index of port whose interrupts to clear
  1878. *
  1879. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1880. * adapter port.
  1881. */
  1882. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1883. {
  1884. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1885. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1886. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1887. phy->ops->intr_clear(phy);
  1888. }
  1889. #define SG_CONTEXT_CMD_ATTEMPTS 100
  1890. /**
  1891. * t3_sge_write_context - write an SGE context
  1892. * @adapter: the adapter
  1893. * @id: the context id
  1894. * @type: the context type
  1895. *
  1896. * Program an SGE context with the values already loaded in the
  1897. * CONTEXT_DATA? registers.
  1898. */
  1899. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1900. unsigned int type)
  1901. {
  1902. if (type == F_RESPONSEQ) {
  1903. /*
  1904. * Can't write the Response Queue Context bits for
  1905. * Interrupt Armed or the Reserve bits after the chip
  1906. * has been initialized out of reset. Writing to these
  1907. * bits can confuse the hardware.
  1908. */
  1909. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1910. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1911. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
  1912. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1913. } else {
  1914. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1915. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1916. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1917. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1918. }
  1919. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1920. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1921. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1922. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1923. }
  1924. /**
  1925. * clear_sge_ctxt - completely clear an SGE context
  1926. * @adapter: the adapter
  1927. * @id: the context id
  1928. * @type: the context type
  1929. *
  1930. * Completely clear an SGE context. Used predominantly at post-reset
  1931. * initialization. Note in particular that we don't skip writing to any
  1932. * "sensitive bits" in the contexts the way that t3_sge_write_context()
  1933. * does ...
  1934. */
  1935. static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
  1936. unsigned int type)
  1937. {
  1938. t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
  1939. t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
  1940. t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
  1941. t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
  1942. t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
  1943. t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
  1944. t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
  1945. t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
  1946. t3_write_reg(adap, A_SG_CONTEXT_CMD,
  1947. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1948. return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1949. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1950. }
  1951. /**
  1952. * t3_sge_init_ecntxt - initialize an SGE egress context
  1953. * @adapter: the adapter to configure
  1954. * @id: the context id
  1955. * @gts_enable: whether to enable GTS for the context
  1956. * @type: the egress context type
  1957. * @respq: associated response queue
  1958. * @base_addr: base address of queue
  1959. * @size: number of queue entries
  1960. * @token: uP token
  1961. * @gen: initial generation value for the context
  1962. * @cidx: consumer pointer
  1963. *
  1964. * Initialize an SGE egress context and make it ready for use. If the
  1965. * platform allows concurrent context operations, the caller is
  1966. * responsible for appropriate locking.
  1967. */
  1968. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1969. enum sge_context_type type, int respq, u64 base_addr,
  1970. unsigned int size, unsigned int token, int gen,
  1971. unsigned int cidx)
  1972. {
  1973. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1974. if (base_addr & 0xfff) /* must be 4K aligned */
  1975. return -EINVAL;
  1976. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1977. return -EBUSY;
  1978. base_addr >>= 12;
  1979. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1980. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1981. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1982. V_EC_BASE_LO(base_addr & 0xffff));
  1983. base_addr >>= 16;
  1984. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1985. base_addr >>= 32;
  1986. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1987. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1988. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1989. F_EC_VALID);
  1990. return t3_sge_write_context(adapter, id, F_EGRESS);
  1991. }
  1992. /**
  1993. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1994. * @adapter: the adapter to configure
  1995. * @id: the context id
  1996. * @gts_enable: whether to enable GTS for the context
  1997. * @base_addr: base address of queue
  1998. * @size: number of queue entries
  1999. * @bsize: size of each buffer for this queue
  2000. * @cong_thres: threshold to signal congestion to upstream producers
  2001. * @gen: initial generation value for the context
  2002. * @cidx: consumer pointer
  2003. *
  2004. * Initialize an SGE free list context and make it ready for use. The
  2005. * caller is responsible for ensuring only one context operation occurs
  2006. * at a time.
  2007. */
  2008. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  2009. int gts_enable, u64 base_addr, unsigned int size,
  2010. unsigned int bsize, unsigned int cong_thres, int gen,
  2011. unsigned int cidx)
  2012. {
  2013. if (base_addr & 0xfff) /* must be 4K aligned */
  2014. return -EINVAL;
  2015. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2016. return -EBUSY;
  2017. base_addr >>= 12;
  2018. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  2019. base_addr >>= 32;
  2020. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  2021. V_FL_BASE_HI((u32) base_addr) |
  2022. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  2023. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  2024. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  2025. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  2026. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  2027. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  2028. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  2029. return t3_sge_write_context(adapter, id, F_FREELIST);
  2030. }
  2031. /**
  2032. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  2033. * @adapter: the adapter to configure
  2034. * @id: the context id
  2035. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  2036. * @base_addr: base address of queue
  2037. * @size: number of queue entries
  2038. * @fl_thres: threshold for selecting the normal or jumbo free list
  2039. * @gen: initial generation value for the context
  2040. * @cidx: consumer pointer
  2041. *
  2042. * Initialize an SGE response queue context and make it ready for use.
  2043. * The caller is responsible for ensuring only one context operation
  2044. * occurs at a time.
  2045. */
  2046. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  2047. int irq_vec_idx, u64 base_addr, unsigned int size,
  2048. unsigned int fl_thres, int gen, unsigned int cidx)
  2049. {
  2050. unsigned int intr = 0;
  2051. if (base_addr & 0xfff) /* must be 4K aligned */
  2052. return -EINVAL;
  2053. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2054. return -EBUSY;
  2055. base_addr >>= 12;
  2056. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  2057. V_CQ_INDEX(cidx));
  2058. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2059. base_addr >>= 32;
  2060. if (irq_vec_idx >= 0)
  2061. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  2062. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2063. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  2064. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  2065. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  2066. }
  2067. /**
  2068. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  2069. * @adapter: the adapter to configure
  2070. * @id: the context id
  2071. * @base_addr: base address of queue
  2072. * @size: number of queue entries
  2073. * @rspq: response queue for async notifications
  2074. * @ovfl_mode: CQ overflow mode
  2075. * @credits: completion queue credits
  2076. * @credit_thres: the credit threshold
  2077. *
  2078. * Initialize an SGE completion queue context and make it ready for use.
  2079. * The caller is responsible for ensuring only one context operation
  2080. * occurs at a time.
  2081. */
  2082. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  2083. unsigned int size, int rspq, int ovfl_mode,
  2084. unsigned int credits, unsigned int credit_thres)
  2085. {
  2086. if (base_addr & 0xfff) /* must be 4K aligned */
  2087. return -EINVAL;
  2088. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2089. return -EBUSY;
  2090. base_addr >>= 12;
  2091. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  2092. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2093. base_addr >>= 32;
  2094. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2095. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  2096. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
  2097. V_CQ_ERR(ovfl_mode));
  2098. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  2099. V_CQ_CREDIT_THRES(credit_thres));
  2100. return t3_sge_write_context(adapter, id, F_CQ);
  2101. }
  2102. /**
  2103. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  2104. * @adapter: the adapter
  2105. * @id: the egress context id
  2106. * @enable: enable (1) or disable (0) the context
  2107. *
  2108. * Enable or disable an SGE egress context. The caller is responsible for
  2109. * ensuring only one context operation occurs at a time.
  2110. */
  2111. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  2112. {
  2113. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2114. return -EBUSY;
  2115. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2116. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2117. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2118. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  2119. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  2120. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2121. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  2122. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2123. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2124. }
  2125. /**
  2126. * t3_sge_disable_fl - disable an SGE free-buffer list
  2127. * @adapter: the adapter
  2128. * @id: the free list context id
  2129. *
  2130. * Disable an SGE free-buffer list. The caller is responsible for
  2131. * ensuring only one context operation occurs at a time.
  2132. */
  2133. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  2134. {
  2135. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2136. return -EBUSY;
  2137. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2138. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2139. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  2140. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2141. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  2142. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2143. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  2144. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2145. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2146. }
  2147. /**
  2148. * t3_sge_disable_rspcntxt - disable an SGE response queue
  2149. * @adapter: the adapter
  2150. * @id: the response queue context id
  2151. *
  2152. * Disable an SGE response queue. The caller is responsible for
  2153. * ensuring only one context operation occurs at a time.
  2154. */
  2155. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  2156. {
  2157. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2158. return -EBUSY;
  2159. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2160. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2161. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2162. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2163. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2164. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2165. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  2166. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2167. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2168. }
  2169. /**
  2170. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  2171. * @adapter: the adapter
  2172. * @id: the completion queue context id
  2173. *
  2174. * Disable an SGE completion queue. The caller is responsible for
  2175. * ensuring only one context operation occurs at a time.
  2176. */
  2177. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  2178. {
  2179. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2180. return -EBUSY;
  2181. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2182. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2183. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2184. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2185. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2186. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2187. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  2188. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2189. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2190. }
  2191. /**
  2192. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  2193. * @adapter: the adapter
  2194. * @id: the context id
  2195. * @op: the operation to perform
  2196. *
  2197. * Perform the selected operation on an SGE completion queue context.
  2198. * The caller is responsible for ensuring only one context operation
  2199. * occurs at a time.
  2200. */
  2201. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  2202. unsigned int credits)
  2203. {
  2204. u32 val;
  2205. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2206. return -EBUSY;
  2207. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  2208. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  2209. V_CONTEXT(id) | F_CQ);
  2210. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2211. 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
  2212. return -EIO;
  2213. if (op >= 2 && op < 7) {
  2214. if (adapter->params.rev > 0)
  2215. return G_CQ_INDEX(val);
  2216. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2217. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  2218. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  2219. F_CONTEXT_CMD_BUSY, 0,
  2220. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2221. return -EIO;
  2222. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  2223. }
  2224. return 0;
  2225. }
  2226. /**
  2227. * t3_sge_read_context - read an SGE context
  2228. * @type: the context type
  2229. * @adapter: the adapter
  2230. * @id: the context id
  2231. * @data: holds the retrieved context
  2232. *
  2233. * Read an SGE egress context. The caller is responsible for ensuring
  2234. * only one context operation occurs at a time.
  2235. */
  2236. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  2237. unsigned int id, u32 data[4])
  2238. {
  2239. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2240. return -EBUSY;
  2241. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2242. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  2243. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  2244. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2245. return -EIO;
  2246. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  2247. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  2248. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  2249. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  2250. return 0;
  2251. }
  2252. /**
  2253. * t3_sge_read_ecntxt - read an SGE egress context
  2254. * @adapter: the adapter
  2255. * @id: the context id
  2256. * @data: holds the retrieved context
  2257. *
  2258. * Read an SGE egress context. The caller is responsible for ensuring
  2259. * only one context operation occurs at a time.
  2260. */
  2261. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  2262. {
  2263. if (id >= 65536)
  2264. return -EINVAL;
  2265. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  2266. }
  2267. /**
  2268. * t3_sge_read_cq - read an SGE CQ context
  2269. * @adapter: the adapter
  2270. * @id: the context id
  2271. * @data: holds the retrieved context
  2272. *
  2273. * Read an SGE CQ context. The caller is responsible for ensuring
  2274. * only one context operation occurs at a time.
  2275. */
  2276. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  2277. {
  2278. if (id >= 65536)
  2279. return -EINVAL;
  2280. return t3_sge_read_context(F_CQ, adapter, id, data);
  2281. }
  2282. /**
  2283. * t3_sge_read_fl - read an SGE free-list context
  2284. * @adapter: the adapter
  2285. * @id: the context id
  2286. * @data: holds the retrieved context
  2287. *
  2288. * Read an SGE free-list context. The caller is responsible for ensuring
  2289. * only one context operation occurs at a time.
  2290. */
  2291. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  2292. {
  2293. if (id >= SGE_QSETS * 2)
  2294. return -EINVAL;
  2295. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  2296. }
  2297. /**
  2298. * t3_sge_read_rspq - read an SGE response queue context
  2299. * @adapter: the adapter
  2300. * @id: the context id
  2301. * @data: holds the retrieved context
  2302. *
  2303. * Read an SGE response queue context. The caller is responsible for
  2304. * ensuring only one context operation occurs at a time.
  2305. */
  2306. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  2307. {
  2308. if (id >= SGE_QSETS)
  2309. return -EINVAL;
  2310. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  2311. }
  2312. /**
  2313. * t3_config_rss - configure Rx packet steering
  2314. * @adapter: the adapter
  2315. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2316. * @cpus: values for the CPU lookup table (0xff terminated)
  2317. * @rspq: values for the response queue lookup table (0xffff terminated)
  2318. *
  2319. * Programs the receive packet steering logic. @cpus and @rspq provide
  2320. * the values for the CPU and response queue lookup tables. If they
  2321. * provide fewer values than the size of the tables the supplied values
  2322. * are used repeatedly until the tables are fully populated.
  2323. */
  2324. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2325. const u8 * cpus, const u16 *rspq)
  2326. {
  2327. int i, j, cpu_idx = 0, q_idx = 0;
  2328. if (cpus)
  2329. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2330. u32 val = i << 16;
  2331. for (j = 0; j < 2; ++j) {
  2332. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2333. if (cpus[cpu_idx] == 0xff)
  2334. cpu_idx = 0;
  2335. }
  2336. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2337. }
  2338. if (rspq)
  2339. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2340. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2341. (i << 16) | rspq[q_idx++]);
  2342. if (rspq[q_idx] == 0xffff)
  2343. q_idx = 0;
  2344. }
  2345. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2346. }
  2347. /**
  2348. * t3_read_rss - read the contents of the RSS tables
  2349. * @adapter: the adapter
  2350. * @lkup: holds the contents of the RSS lookup table
  2351. * @map: holds the contents of the RSS map table
  2352. *
  2353. * Reads the contents of the receive packet steering tables.
  2354. */
  2355. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  2356. {
  2357. int i;
  2358. u32 val;
  2359. if (lkup)
  2360. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2361. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  2362. 0xffff0000 | i);
  2363. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  2364. if (!(val & 0x80000000))
  2365. return -EAGAIN;
  2366. *lkup++ = val;
  2367. *lkup++ = (val >> 8);
  2368. }
  2369. if (map)
  2370. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2371. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2372. 0xffff0000 | i);
  2373. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  2374. if (!(val & 0x80000000))
  2375. return -EAGAIN;
  2376. *map++ = val;
  2377. }
  2378. return 0;
  2379. }
  2380. /**
  2381. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2382. * @adap: the adapter
  2383. * @enable: 1 to select offload mode, 0 for regular NIC
  2384. *
  2385. * Switches TP to NIC/offload mode.
  2386. */
  2387. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2388. {
  2389. if (is_offload(adap) || !enable)
  2390. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2391. V_NICMODE(!enable));
  2392. }
  2393. /**
  2394. * pm_num_pages - calculate the number of pages of the payload memory
  2395. * @mem_size: the size of the payload memory
  2396. * @pg_size: the size of each payload memory page
  2397. *
  2398. * Calculate the number of pages, each of the given size, that fit in a
  2399. * memory of the specified size, respecting the HW requirement that the
  2400. * number of pages must be a multiple of 24.
  2401. */
  2402. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2403. unsigned int pg_size)
  2404. {
  2405. unsigned int n = mem_size / pg_size;
  2406. return n - n % 24;
  2407. }
  2408. #define mem_region(adap, start, size, reg) \
  2409. t3_write_reg((adap), A_ ## reg, (start)); \
  2410. start += size
  2411. /**
  2412. * partition_mem - partition memory and configure TP memory settings
  2413. * @adap: the adapter
  2414. * @p: the TP parameters
  2415. *
  2416. * Partitions context and payload memory and configures TP's memory
  2417. * registers.
  2418. */
  2419. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2420. {
  2421. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2422. unsigned int timers = 0, timers_shift = 22;
  2423. if (adap->params.rev > 0) {
  2424. if (tids <= 16 * 1024) {
  2425. timers = 1;
  2426. timers_shift = 16;
  2427. } else if (tids <= 64 * 1024) {
  2428. timers = 2;
  2429. timers_shift = 18;
  2430. } else if (tids <= 256 * 1024) {
  2431. timers = 3;
  2432. timers_shift = 20;
  2433. }
  2434. }
  2435. t3_write_reg(adap, A_TP_PMM_SIZE,
  2436. p->chan_rx_size | (p->chan_tx_size >> 16));
  2437. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2438. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2439. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2440. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2441. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2442. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2443. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2444. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2445. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2446. /* Add a bit of headroom and make multiple of 24 */
  2447. pstructs += 48;
  2448. pstructs -= pstructs % 24;
  2449. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2450. m = tids * TCB_SIZE;
  2451. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2452. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2453. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2454. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2455. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2456. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2457. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2458. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2459. m = (m + 4095) & ~0xfff;
  2460. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2461. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2462. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2463. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2464. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2465. if (tids < m)
  2466. adap->params.mc5.nservers += m - tids;
  2467. }
  2468. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2469. u32 val)
  2470. {
  2471. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2472. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2473. }
  2474. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2475. {
  2476. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2477. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2478. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2479. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2480. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2481. V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
  2482. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2483. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2484. V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
  2485. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2486. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
  2487. F_IPV6ENABLE | F_NICMODE);
  2488. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2489. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2490. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2491. adap->params.rev > 0 ? F_ENABLEESND :
  2492. F_T3A_ENABLEESND);
  2493. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2494. F_ENABLEEPCMDAFULL,
  2495. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2496. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2497. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
  2498. F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
  2499. F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
  2500. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2501. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2502. if (adap->params.rev > 0) {
  2503. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2504. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2505. F_TXPACEAUTO);
  2506. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2507. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2508. } else
  2509. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2510. if (adap->params.rev == T3_REV_C)
  2511. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2512. V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
  2513. V_TABLELATENCYDELTA(4));
  2514. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2515. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2516. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2517. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2518. }
  2519. /* Desired TP timer resolution in usec */
  2520. #define TP_TMR_RES 50
  2521. /* TCP timer values in ms */
  2522. #define TP_DACK_TIMER 50
  2523. #define TP_RTO_MIN 250
  2524. /**
  2525. * tp_set_timers - set TP timing parameters
  2526. * @adap: the adapter to set
  2527. * @core_clk: the core clock frequency in Hz
  2528. *
  2529. * Set TP's timing parameters, such as the various timer resolutions and
  2530. * the TCP timer values.
  2531. */
  2532. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2533. {
  2534. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2535. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2536. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2537. unsigned int tps = core_clk >> tre;
  2538. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2539. V_DELAYEDACKRESOLUTION(dack_re) |
  2540. V_TIMESTAMPRESOLUTION(tstamp_re));
  2541. t3_write_reg(adap, A_TP_DACK_TIMER,
  2542. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2543. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2544. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2545. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2546. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2547. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2548. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2549. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2550. V_KEEPALIVEMAX(9));
  2551. #define SECONDS * tps
  2552. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2553. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2554. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2555. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2556. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2557. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2558. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2559. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2560. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2561. #undef SECONDS
  2562. }
  2563. /**
  2564. * t3_tp_set_coalescing_size - set receive coalescing size
  2565. * @adap: the adapter
  2566. * @size: the receive coalescing size
  2567. * @psh: whether a set PSH bit should deliver coalesced data
  2568. *
  2569. * Set the receive coalescing size and PSH bit handling.
  2570. */
  2571. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2572. {
  2573. u32 val;
  2574. if (size > MAX_RX_COALESCING_LEN)
  2575. return -EINVAL;
  2576. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2577. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2578. if (size) {
  2579. val |= F_RXCOALESCEENABLE;
  2580. if (psh)
  2581. val |= F_RXCOALESCEPSHEN;
  2582. size = min(MAX_RX_COALESCING_LEN, size);
  2583. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2584. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2585. }
  2586. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2587. return 0;
  2588. }
  2589. /**
  2590. * t3_tp_set_max_rxsize - set the max receive size
  2591. * @adap: the adapter
  2592. * @size: the max receive size
  2593. *
  2594. * Set TP's max receive size. This is the limit that applies when
  2595. * receive coalescing is disabled.
  2596. */
  2597. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2598. {
  2599. t3_write_reg(adap, A_TP_PARA_REG7,
  2600. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2601. }
  2602. static void init_mtus(unsigned short mtus[])
  2603. {
  2604. /*
  2605. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2606. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2607. * are enabled and still have at least 8 bytes of payload.
  2608. */
  2609. mtus[0] = 88;
  2610. mtus[1] = 88;
  2611. mtus[2] = 256;
  2612. mtus[3] = 512;
  2613. mtus[4] = 576;
  2614. mtus[5] = 1024;
  2615. mtus[6] = 1280;
  2616. mtus[7] = 1492;
  2617. mtus[8] = 1500;
  2618. mtus[9] = 2002;
  2619. mtus[10] = 2048;
  2620. mtus[11] = 4096;
  2621. mtus[12] = 4352;
  2622. mtus[13] = 8192;
  2623. mtus[14] = 9000;
  2624. mtus[15] = 9600;
  2625. }
  2626. /*
  2627. * Initial congestion control parameters.
  2628. */
  2629. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  2630. {
  2631. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2632. a[9] = 2;
  2633. a[10] = 3;
  2634. a[11] = 4;
  2635. a[12] = 5;
  2636. a[13] = 6;
  2637. a[14] = 7;
  2638. a[15] = 8;
  2639. a[16] = 9;
  2640. a[17] = 10;
  2641. a[18] = 14;
  2642. a[19] = 17;
  2643. a[20] = 21;
  2644. a[21] = 25;
  2645. a[22] = 30;
  2646. a[23] = 35;
  2647. a[24] = 45;
  2648. a[25] = 60;
  2649. a[26] = 80;
  2650. a[27] = 100;
  2651. a[28] = 200;
  2652. a[29] = 300;
  2653. a[30] = 400;
  2654. a[31] = 500;
  2655. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2656. b[9] = b[10] = 1;
  2657. b[11] = b[12] = 2;
  2658. b[13] = b[14] = b[15] = b[16] = 3;
  2659. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2660. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2661. b[28] = b[29] = 6;
  2662. b[30] = b[31] = 7;
  2663. }
  2664. /* The minimum additive increment value for the congestion control table */
  2665. #define CC_MIN_INCR 2U
  2666. /**
  2667. * t3_load_mtus - write the MTU and congestion control HW tables
  2668. * @adap: the adapter
  2669. * @mtus: the unrestricted values for the MTU table
  2670. * @alphs: the values for the congestion control alpha parameter
  2671. * @beta: the values for the congestion control beta parameter
  2672. * @mtu_cap: the maximum permitted effective MTU
  2673. *
  2674. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2675. * Update the high-speed congestion control table with the supplied alpha,
  2676. * beta, and MTUs.
  2677. */
  2678. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2679. unsigned short alpha[NCCTRL_WIN],
  2680. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2681. {
  2682. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2683. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2684. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2685. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2686. };
  2687. unsigned int i, w;
  2688. for (i = 0; i < NMTUS; ++i) {
  2689. unsigned int mtu = min(mtus[i], mtu_cap);
  2690. unsigned int log2 = fls(mtu);
  2691. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2692. log2--;
  2693. t3_write_reg(adap, A_TP_MTU_TABLE,
  2694. (i << 24) | (log2 << 16) | mtu);
  2695. for (w = 0; w < NCCTRL_WIN; ++w) {
  2696. unsigned int inc;
  2697. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2698. CC_MIN_INCR);
  2699. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2700. (w << 16) | (beta[w] << 13) | inc);
  2701. }
  2702. }
  2703. }
  2704. /**
  2705. * t3_read_hw_mtus - returns the values in the HW MTU table
  2706. * @adap: the adapter
  2707. * @mtus: where to store the HW MTU values
  2708. *
  2709. * Reads the HW MTU table.
  2710. */
  2711. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2712. {
  2713. int i;
  2714. for (i = 0; i < NMTUS; ++i) {
  2715. unsigned int val;
  2716. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2717. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2718. mtus[i] = val & 0x3fff;
  2719. }
  2720. }
  2721. /**
  2722. * t3_get_cong_cntl_tab - reads the congestion control table
  2723. * @adap: the adapter
  2724. * @incr: where to store the alpha values
  2725. *
  2726. * Reads the additive increments programmed into the HW congestion
  2727. * control table.
  2728. */
  2729. void t3_get_cong_cntl_tab(struct adapter *adap,
  2730. unsigned short incr[NMTUS][NCCTRL_WIN])
  2731. {
  2732. unsigned int mtu, w;
  2733. for (mtu = 0; mtu < NMTUS; ++mtu)
  2734. for (w = 0; w < NCCTRL_WIN; ++w) {
  2735. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2736. 0xffff0000 | (mtu << 5) | w);
  2737. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2738. 0x1fff;
  2739. }
  2740. }
  2741. /**
  2742. * t3_tp_get_mib_stats - read TP's MIB counters
  2743. * @adap: the adapter
  2744. * @tps: holds the returned counter values
  2745. *
  2746. * Returns the values of TP's MIB counters.
  2747. */
  2748. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2749. {
  2750. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2751. sizeof(*tps) / sizeof(u32), 0);
  2752. }
  2753. #define ulp_region(adap, name, start, len) \
  2754. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2755. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2756. (start) + (len) - 1); \
  2757. start += len
  2758. #define ulptx_region(adap, name, start, len) \
  2759. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2760. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2761. (start) + (len) - 1)
  2762. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2763. {
  2764. unsigned int m = p->chan_rx_size;
  2765. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2766. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2767. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2768. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2769. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2770. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2771. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2772. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2773. }
  2774. /**
  2775. * t3_set_proto_sram - set the contents of the protocol sram
  2776. * @adapter: the adapter
  2777. * @data: the protocol image
  2778. *
  2779. * Write the contents of the protocol SRAM.
  2780. */
  2781. int t3_set_proto_sram(struct adapter *adap, const u8 *data)
  2782. {
  2783. int i;
  2784. const __be32 *buf = (const __be32 *)data;
  2785. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2786. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
  2787. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
  2788. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
  2789. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
  2790. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
  2791. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2792. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2793. return -EIO;
  2794. }
  2795. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2796. return 0;
  2797. }
  2798. void t3_config_trace_filter(struct adapter *adapter,
  2799. const struct trace_params *tp, int filter_index,
  2800. int invert, int enable)
  2801. {
  2802. u32 addr, key[4], mask[4];
  2803. key[0] = tp->sport | (tp->sip << 16);
  2804. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2805. key[2] = tp->dip;
  2806. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2807. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2808. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2809. mask[2] = tp->dip_mask;
  2810. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2811. if (invert)
  2812. key[3] |= (1 << 29);
  2813. if (enable)
  2814. key[3] |= (1 << 28);
  2815. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2816. tp_wr_indirect(adapter, addr++, key[0]);
  2817. tp_wr_indirect(adapter, addr++, mask[0]);
  2818. tp_wr_indirect(adapter, addr++, key[1]);
  2819. tp_wr_indirect(adapter, addr++, mask[1]);
  2820. tp_wr_indirect(adapter, addr++, key[2]);
  2821. tp_wr_indirect(adapter, addr++, mask[2]);
  2822. tp_wr_indirect(adapter, addr++, key[3]);
  2823. tp_wr_indirect(adapter, addr, mask[3]);
  2824. t3_read_reg(adapter, A_TP_PIO_DATA);
  2825. }
  2826. /**
  2827. * t3_config_sched - configure a HW traffic scheduler
  2828. * @adap: the adapter
  2829. * @kbps: target rate in Kbps
  2830. * @sched: the scheduler index
  2831. *
  2832. * Configure a HW scheduler for the target rate
  2833. */
  2834. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2835. {
  2836. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2837. unsigned int clk = adap->params.vpd.cclk * 1000;
  2838. unsigned int selected_cpt = 0, selected_bpt = 0;
  2839. if (kbps > 0) {
  2840. kbps *= 125; /* -> bytes */
  2841. for (cpt = 1; cpt <= 255; cpt++) {
  2842. tps = clk / cpt;
  2843. bpt = (kbps + tps / 2) / tps;
  2844. if (bpt > 0 && bpt <= 255) {
  2845. v = bpt * tps;
  2846. delta = v >= kbps ? v - kbps : kbps - v;
  2847. if (delta <= mindelta) {
  2848. mindelta = delta;
  2849. selected_cpt = cpt;
  2850. selected_bpt = bpt;
  2851. }
  2852. } else if (selected_cpt)
  2853. break;
  2854. }
  2855. if (!selected_cpt)
  2856. return -EINVAL;
  2857. }
  2858. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2859. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2860. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2861. if (sched & 1)
  2862. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2863. else
  2864. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2865. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2866. return 0;
  2867. }
  2868. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2869. {
  2870. int busy = 0;
  2871. tp_config(adap, p);
  2872. t3_set_vlan_accel(adap, 3, 0);
  2873. if (is_offload(adap)) {
  2874. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2875. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2876. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2877. 0, 1000, 5);
  2878. if (busy)
  2879. CH_ERR(adap, "TP initialization timed out\n");
  2880. }
  2881. if (!busy)
  2882. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2883. return busy;
  2884. }
  2885. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2886. {
  2887. if (port_mask & ~((1 << adap->params.nports) - 1))
  2888. return -EINVAL;
  2889. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2890. port_mask << S_PORT0ACTIVE);
  2891. return 0;
  2892. }
  2893. /*
  2894. * Perform the bits of HW initialization that are dependent on the Tx
  2895. * channels being used.
  2896. */
  2897. static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
  2898. {
  2899. int i;
  2900. if (chan_map != 3) { /* one channel */
  2901. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2902. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2903. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
  2904. (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
  2905. F_TPTXPORT1EN | F_PORT1ACTIVE));
  2906. t3_write_reg(adap, A_PM1_TX_CFG,
  2907. chan_map == 1 ? 0xffffffff : 0);
  2908. } else { /* two channels */
  2909. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2910. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2911. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2912. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2913. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2914. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2915. F_ENFORCEPKT);
  2916. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2917. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2918. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2919. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2920. for (i = 0; i < 16; i++)
  2921. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2922. (i << 16) | 0x1010);
  2923. }
  2924. }
  2925. static int calibrate_xgm(struct adapter *adapter)
  2926. {
  2927. if (uses_xaui(adapter)) {
  2928. unsigned int v, i;
  2929. for (i = 0; i < 5; ++i) {
  2930. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2931. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2932. msleep(1);
  2933. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2934. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2935. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2936. V_XAUIIMP(G_CALIMP(v) >> 2));
  2937. return 0;
  2938. }
  2939. }
  2940. CH_ERR(adapter, "MAC calibration failed\n");
  2941. return -1;
  2942. } else {
  2943. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2944. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2945. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2946. F_XGM_IMPSETUPDATE);
  2947. }
  2948. return 0;
  2949. }
  2950. static void calibrate_xgm_t3b(struct adapter *adapter)
  2951. {
  2952. if (!uses_xaui(adapter)) {
  2953. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2954. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2955. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2956. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2957. F_XGM_IMPSETUPDATE);
  2958. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2959. 0);
  2960. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2961. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2962. }
  2963. }
  2964. struct mc7_timing_params {
  2965. unsigned char ActToPreDly;
  2966. unsigned char ActToRdWrDly;
  2967. unsigned char PreCyc;
  2968. unsigned char RefCyc[5];
  2969. unsigned char BkCyc;
  2970. unsigned char WrToRdDly;
  2971. unsigned char RdToWrDly;
  2972. };
  2973. /*
  2974. * Write a value to a register and check that the write completed. These
  2975. * writes normally complete in a cycle or two, so one read should suffice.
  2976. * The very first read exists to flush the posted write to the device.
  2977. */
  2978. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2979. {
  2980. t3_write_reg(adapter, addr, val);
  2981. t3_read_reg(adapter, addr); /* flush */
  2982. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2983. return 0;
  2984. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2985. return -EIO;
  2986. }
  2987. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2988. {
  2989. static const unsigned int mc7_mode[] = {
  2990. 0x632, 0x642, 0x652, 0x432, 0x442
  2991. };
  2992. static const struct mc7_timing_params mc7_timings[] = {
  2993. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2994. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2995. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2996. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2997. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2998. };
  2999. u32 val;
  3000. unsigned int width, density, slow, attempts;
  3001. struct adapter *adapter = mc7->adapter;
  3002. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  3003. if (!mc7->size)
  3004. return 0;
  3005. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3006. slow = val & F_SLOW;
  3007. width = G_WIDTH(val);
  3008. density = G_DEN(val);
  3009. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  3010. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  3011. msleep(1);
  3012. if (!slow) {
  3013. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  3014. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  3015. msleep(1);
  3016. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  3017. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  3018. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  3019. mc7->name);
  3020. goto out_fail;
  3021. }
  3022. }
  3023. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  3024. V_ACTTOPREDLY(p->ActToPreDly) |
  3025. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  3026. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  3027. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  3028. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  3029. val | F_CLKEN | F_TERM150);
  3030. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  3031. if (!slow)
  3032. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  3033. F_DLLENB);
  3034. udelay(1);
  3035. val = slow ? 3 : 6;
  3036. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  3037. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  3038. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  3039. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  3040. goto out_fail;
  3041. if (!slow) {
  3042. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  3043. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  3044. udelay(5);
  3045. }
  3046. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  3047. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  3048. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  3049. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  3050. mc7_mode[mem_type]) ||
  3051. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  3052. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  3053. goto out_fail;
  3054. /* clock value is in KHz */
  3055. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  3056. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  3057. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  3058. F_PERREFEN | V_PREREFDIV(mc7_clock));
  3059. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  3060. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  3061. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  3062. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  3063. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  3064. (mc7->size << width) - 1);
  3065. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  3066. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  3067. attempts = 50;
  3068. do {
  3069. msleep(250);
  3070. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  3071. } while ((val & F_BUSY) && --attempts);
  3072. if (val & F_BUSY) {
  3073. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  3074. goto out_fail;
  3075. }
  3076. /* Enable normal memory accesses. */
  3077. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  3078. return 0;
  3079. out_fail:
  3080. return -1;
  3081. }
  3082. static void config_pcie(struct adapter *adap)
  3083. {
  3084. static const u16 ack_lat[4][6] = {
  3085. {237, 416, 559, 1071, 2095, 4143},
  3086. {128, 217, 289, 545, 1057, 2081},
  3087. {73, 118, 154, 282, 538, 1050},
  3088. {67, 107, 86, 150, 278, 534}
  3089. };
  3090. static const u16 rpl_tmr[4][6] = {
  3091. {711, 1248, 1677, 3213, 6285, 12429},
  3092. {384, 651, 867, 1635, 3171, 6243},
  3093. {219, 354, 462, 846, 1614, 3150},
  3094. {201, 321, 258, 450, 834, 1602}
  3095. };
  3096. u16 val, devid;
  3097. unsigned int log2_width, pldsize;
  3098. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  3099. pci_read_config_word(adap->pdev,
  3100. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  3101. &val);
  3102. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  3103. pci_read_config_word(adap->pdev, 0x2, &devid);
  3104. if (devid == 0x37) {
  3105. pci_write_config_word(adap->pdev,
  3106. adap->params.pci.pcie_cap_addr +
  3107. PCI_EXP_DEVCTL,
  3108. val & ~PCI_EXP_DEVCTL_READRQ &
  3109. ~PCI_EXP_DEVCTL_PAYLOAD);
  3110. pldsize = 0;
  3111. }
  3112. pci_read_config_word(adap->pdev,
  3113. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  3114. &val);
  3115. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  3116. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  3117. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  3118. log2_width = fls(adap->params.pci.width) - 1;
  3119. acklat = ack_lat[log2_width][pldsize];
  3120. if (val & 1) /* check LOsEnable */
  3121. acklat += fst_trn_tx * 4;
  3122. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  3123. if (adap->params.rev == 0)
  3124. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  3125. V_T3A_ACKLAT(M_T3A_ACKLAT),
  3126. V_T3A_ACKLAT(acklat));
  3127. else
  3128. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  3129. V_ACKLAT(acklat));
  3130. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  3131. V_REPLAYLMT(rpllmt));
  3132. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  3133. t3_set_reg_field(adap, A_PCIE_CFG, 0,
  3134. F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
  3135. F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
  3136. }
  3137. /*
  3138. * Initialize and configure T3 HW modules. This performs the
  3139. * initialization steps that need to be done once after a card is reset.
  3140. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  3141. *
  3142. * fw_params are passed to FW and their value is platform dependent. Only the
  3143. * top 8 bits are available for use, the rest must be 0.
  3144. */
  3145. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  3146. {
  3147. int err = -EIO, attempts, i;
  3148. const struct vpd_params *vpd = &adapter->params.vpd;
  3149. if (adapter->params.rev > 0)
  3150. calibrate_xgm_t3b(adapter);
  3151. else if (calibrate_xgm(adapter))
  3152. goto out_err;
  3153. if (vpd->mclk) {
  3154. partition_mem(adapter, &adapter->params.tp);
  3155. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  3156. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  3157. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  3158. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  3159. adapter->params.mc5.nfilters,
  3160. adapter->params.mc5.nroutes))
  3161. goto out_err;
  3162. for (i = 0; i < 32; i++)
  3163. if (clear_sge_ctxt(adapter, i, F_CQ))
  3164. goto out_err;
  3165. }
  3166. if (tp_init(adapter, &adapter->params.tp))
  3167. goto out_err;
  3168. t3_tp_set_coalescing_size(adapter,
  3169. min(adapter->params.sge.max_pkt_size,
  3170. MAX_RX_COALESCING_LEN), 1);
  3171. t3_tp_set_max_rxsize(adapter,
  3172. min(adapter->params.sge.max_pkt_size, 16384U));
  3173. ulp_config(adapter, &adapter->params.tp);
  3174. if (is_pcie(adapter))
  3175. config_pcie(adapter);
  3176. else
  3177. t3_set_reg_field(adapter, A_PCIX_CFG, 0,
  3178. F_DMASTOPEN | F_CLIDECEN);
  3179. if (adapter->params.rev == T3_REV_C)
  3180. t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
  3181. F_CFG_CQE_SOP_MASK);
  3182. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  3183. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  3184. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  3185. chan_init_hw(adapter, adapter->params.chan_map);
  3186. t3_sge_init(adapter, &adapter->params.sge);
  3187. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
  3188. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  3189. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  3190. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  3191. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  3192. attempts = 100;
  3193. do { /* wait for uP to initialize */
  3194. msleep(20);
  3195. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  3196. if (!attempts) {
  3197. CH_ERR(adapter, "uP initialization timed out\n");
  3198. goto out_err;
  3199. }
  3200. err = 0;
  3201. out_err:
  3202. return err;
  3203. }
  3204. /**
  3205. * get_pci_mode - determine a card's PCI mode
  3206. * @adapter: the adapter
  3207. * @p: where to store the PCI settings
  3208. *
  3209. * Determines a card's PCI mode and associated parameters, such as speed
  3210. * and width.
  3211. */
  3212. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3213. {
  3214. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  3215. u32 pci_mode, pcie_cap;
  3216. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  3217. if (pcie_cap) {
  3218. u16 val;
  3219. p->variant = PCI_VARIANT_PCIE;
  3220. p->pcie_cap_addr = pcie_cap;
  3221. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  3222. &val);
  3223. p->width = (val >> 4) & 0x3f;
  3224. return;
  3225. }
  3226. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  3227. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  3228. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  3229. pci_mode = G_PCIXINITPAT(pci_mode);
  3230. if (pci_mode == 0)
  3231. p->variant = PCI_VARIANT_PCI;
  3232. else if (pci_mode < 4)
  3233. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  3234. else if (pci_mode < 8)
  3235. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  3236. else
  3237. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  3238. }
  3239. /**
  3240. * init_link_config - initialize a link's SW state
  3241. * @lc: structure holding the link state
  3242. * @ai: information about the current card
  3243. *
  3244. * Initializes the SW state maintained for each link, including the link's
  3245. * capabilities and default speed/duplex/flow-control/autonegotiation
  3246. * settings.
  3247. */
  3248. static void init_link_config(struct link_config *lc, unsigned int caps)
  3249. {
  3250. lc->supported = caps;
  3251. lc->requested_speed = lc->speed = SPEED_INVALID;
  3252. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  3253. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3254. if (lc->supported & SUPPORTED_Autoneg) {
  3255. lc->advertising = lc->supported;
  3256. lc->autoneg = AUTONEG_ENABLE;
  3257. lc->requested_fc |= PAUSE_AUTONEG;
  3258. } else {
  3259. lc->advertising = 0;
  3260. lc->autoneg = AUTONEG_DISABLE;
  3261. }
  3262. }
  3263. /**
  3264. * mc7_calc_size - calculate MC7 memory size
  3265. * @cfg: the MC7 configuration
  3266. *
  3267. * Calculates the size of an MC7 memory in bytes from the value of its
  3268. * configuration register.
  3269. */
  3270. static unsigned int mc7_calc_size(u32 cfg)
  3271. {
  3272. unsigned int width = G_WIDTH(cfg);
  3273. unsigned int banks = !!(cfg & F_BKS) + 1;
  3274. unsigned int org = !!(cfg & F_ORG) + 1;
  3275. unsigned int density = G_DEN(cfg);
  3276. unsigned int MBs = ((256 << density) * banks) / (org << width);
  3277. return MBs << 20;
  3278. }
  3279. static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  3280. unsigned int base_addr, const char *name)
  3281. {
  3282. u32 cfg;
  3283. mc7->adapter = adapter;
  3284. mc7->name = name;
  3285. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  3286. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3287. mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  3288. mc7->width = G_WIDTH(cfg);
  3289. }
  3290. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3291. {
  3292. u16 devid;
  3293. mac->adapter = adapter;
  3294. pci_read_config_word(adapter->pdev, 0x2, &devid);
  3295. if (devid == 0x37 && !adapter->params.vpd.xauicfg[1])
  3296. index = 0;
  3297. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3298. mac->nucast = 1;
  3299. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3300. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3301. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3302. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3303. F_ENRGMII, 0);
  3304. }
  3305. }
  3306. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  3307. {
  3308. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3309. mi1_init(adapter, ai);
  3310. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3311. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3312. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3313. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3314. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3315. t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
  3316. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3317. val |= F_ENRGMII;
  3318. /* Enable MAC clocks so we can access the registers */
  3319. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3320. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3321. val |= F_CLKDIVRESET_;
  3322. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3323. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3324. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3325. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3326. }
  3327. /*
  3328. * Reset the adapter.
  3329. * Older PCIe cards lose their config space during reset, PCI-X
  3330. * ones don't.
  3331. */
  3332. int t3_reset_adapter(struct adapter *adapter)
  3333. {
  3334. int i, save_and_restore_pcie =
  3335. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3336. uint16_t devid = 0;
  3337. if (save_and_restore_pcie)
  3338. pci_save_state(adapter->pdev);
  3339. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3340. /*
  3341. * Delay. Give Some time to device to reset fully.
  3342. * XXX The delay time should be modified.
  3343. */
  3344. for (i = 0; i < 10; i++) {
  3345. msleep(50);
  3346. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3347. if (devid == 0x1425)
  3348. break;
  3349. }
  3350. if (devid != 0x1425)
  3351. return -1;
  3352. if (save_and_restore_pcie)
  3353. pci_restore_state(adapter->pdev);
  3354. return 0;
  3355. }
  3356. static int init_parity(struct adapter *adap)
  3357. {
  3358. int i, err, addr;
  3359. if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  3360. return -EBUSY;
  3361. for (err = i = 0; !err && i < 16; i++)
  3362. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3363. for (i = 0xfff0; !err && i <= 0xffff; i++)
  3364. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3365. for (i = 0; !err && i < SGE_QSETS; i++)
  3366. err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
  3367. if (err)
  3368. return err;
  3369. t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
  3370. for (i = 0; i < 4; i++)
  3371. for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
  3372. t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
  3373. F_IBQDBGWR | V_IBQDBGQID(i) |
  3374. V_IBQDBGADDR(addr));
  3375. err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
  3376. F_IBQDBGBUSY, 0, 2, 1);
  3377. if (err)
  3378. return err;
  3379. }
  3380. return 0;
  3381. }
  3382. /*
  3383. * Initialize adapter SW state for the various HW modules, set initial values
  3384. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3385. * interface.
  3386. */
  3387. int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
  3388. int reset)
  3389. {
  3390. int ret;
  3391. unsigned int i, j = -1;
  3392. get_pci_mode(adapter, &adapter->params.pci);
  3393. adapter->params.info = ai;
  3394. adapter->params.nports = ai->nports0 + ai->nports1;
  3395. adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
  3396. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3397. /*
  3398. * We used to only run the "adapter check task" once a second if
  3399. * we had PHYs which didn't support interrupts (we would check
  3400. * their link status once a second). Now we check other conditions
  3401. * in that routine which could potentially impose a very high
  3402. * interrupt load on the system. As such, we now always scan the
  3403. * adapter state once a second ...
  3404. */
  3405. adapter->params.linkpoll_period = 10;
  3406. adapter->params.stats_update_period = is_10G(adapter) ?
  3407. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3408. adapter->params.pci.vpd_cap_addr =
  3409. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3410. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3411. if (ret < 0)
  3412. return ret;
  3413. if (reset && t3_reset_adapter(adapter))
  3414. return -1;
  3415. t3_sge_prep(adapter, &adapter->params.sge);
  3416. if (adapter->params.vpd.mclk) {
  3417. struct tp_params *p = &adapter->params.tp;
  3418. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3419. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3420. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3421. p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
  3422. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3423. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3424. p->cm_size = t3_mc7_size(&adapter->cm);
  3425. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3426. p->chan_tx_size = p->pmtx_size / p->nchan;
  3427. p->rx_pg_size = 64 * 1024;
  3428. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3429. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3430. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3431. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3432. adapter->params.rev > 0 ? 12 : 6;
  3433. }
  3434. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3435. t3_mc7_size(&adapter->pmtx) &&
  3436. t3_mc7_size(&adapter->cm);
  3437. if (is_offload(adapter)) {
  3438. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3439. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3440. DEFAULT_NFILTERS : 0;
  3441. adapter->params.mc5.nroutes = 0;
  3442. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3443. init_mtus(adapter->params.mtus);
  3444. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3445. }
  3446. early_hw_init(adapter, ai);
  3447. ret = init_parity(adapter);
  3448. if (ret)
  3449. return ret;
  3450. for_each_port(adapter, i) {
  3451. u8 hw_addr[6];
  3452. const struct port_type_info *pti;
  3453. struct port_info *p = adap2pinfo(adapter, i);
  3454. while (!adapter->params.vpd.port_type[++j])
  3455. ;
  3456. pti = &port_types[adapter->params.vpd.port_type[j]];
  3457. if (!pti->phy_prep) {
  3458. CH_ALERT(adapter, "Invalid port type index %d\n",
  3459. adapter->params.vpd.port_type[j]);
  3460. return -EINVAL;
  3461. }
  3462. p->phy.mdio.dev = adapter->port[i];
  3463. ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3464. ai->mdio_ops);
  3465. if (ret)
  3466. return ret;
  3467. mac_prep(&p->mac, adapter, j);
  3468. /*
  3469. * The VPD EEPROM stores the base Ethernet address for the
  3470. * card. A port's address is derived from the base by adding
  3471. * the port's index to the base's low octet.
  3472. */
  3473. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3474. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3475. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3476. ETH_ALEN);
  3477. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3478. ETH_ALEN);
  3479. init_link_config(&p->link_config, p->phy.caps);
  3480. p->phy.ops->power_down(&p->phy, 1);
  3481. /*
  3482. * If the PHY doesn't support interrupts for link status
  3483. * changes, schedule a scan of the adapter links at least
  3484. * once a second.
  3485. */
  3486. if (!(p->phy.caps & SUPPORTED_IRQ) &&
  3487. adapter->params.linkpoll_period > 10)
  3488. adapter->params.linkpoll_period = 10;
  3489. }
  3490. return 0;
  3491. }
  3492. void t3_led_ready(struct adapter *adapter)
  3493. {
  3494. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3495. F_GPIO0_OUT_VAL);
  3496. }
  3497. int t3_replay_prep_adapter(struct adapter *adapter)
  3498. {
  3499. const struct adapter_info *ai = adapter->params.info;
  3500. unsigned int i, j = -1;
  3501. int ret;
  3502. early_hw_init(adapter, ai);
  3503. ret = init_parity(adapter);
  3504. if (ret)
  3505. return ret;
  3506. for_each_port(adapter, i) {
  3507. const struct port_type_info *pti;
  3508. struct port_info *p = adap2pinfo(adapter, i);
  3509. while (!adapter->params.vpd.port_type[++j])
  3510. ;
  3511. pti = &port_types[adapter->params.vpd.port_type[j]];
  3512. ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL);
  3513. if (ret)
  3514. return ret;
  3515. p->phy.ops->power_down(&p->phy, 1);
  3516. }
  3517. return 0;
  3518. }