mcp251x.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * .board_specific_setup = &mcp251x_setup,
  41. * .model = CAN_MCP251X_MCP2510,
  42. * .power_enable = mcp251x_power_enable,
  43. * .transceiver_enable = NULL,
  44. * };
  45. *
  46. * static struct spi_board_info spi_board_info[] = {
  47. * {
  48. * .modalias = "mcp251x",
  49. * .platform_data = &mcp251x_info,
  50. * .irq = IRQ_EINT13,
  51. * .max_speed_hz = 2*1000*1000,
  52. * .chip_select = 2,
  53. * },
  54. * };
  55. *
  56. * Please see mcp251x.h for a description of the fields in
  57. * struct mcp251x_platform_data.
  58. *
  59. */
  60. #include <linux/can/core.h>
  61. #include <linux/can/dev.h>
  62. #include <linux/can/platform/mcp251x.h>
  63. #include <linux/completion.h>
  64. #include <linux/delay.h>
  65. #include <linux/device.h>
  66. #include <linux/dma-mapping.h>
  67. #include <linux/freezer.h>
  68. #include <linux/interrupt.h>
  69. #include <linux/io.h>
  70. #include <linux/kernel.h>
  71. #include <linux/module.h>
  72. #include <linux/netdevice.h>
  73. #include <linux/platform_device.h>
  74. #include <linux/slab.h>
  75. #include <linux/spi/spi.h>
  76. #include <linux/uaccess.h>
  77. /* SPI interface instruction set */
  78. #define INSTRUCTION_WRITE 0x02
  79. #define INSTRUCTION_READ 0x03
  80. #define INSTRUCTION_BIT_MODIFY 0x05
  81. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  82. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  83. #define INSTRUCTION_RESET 0xC0
  84. /* MPC251x registers */
  85. #define CANSTAT 0x0e
  86. #define CANCTRL 0x0f
  87. # define CANCTRL_REQOP_MASK 0xe0
  88. # define CANCTRL_REQOP_CONF 0x80
  89. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  90. # define CANCTRL_REQOP_LOOPBACK 0x40
  91. # define CANCTRL_REQOP_SLEEP 0x20
  92. # define CANCTRL_REQOP_NORMAL 0x00
  93. # define CANCTRL_OSM 0x08
  94. # define CANCTRL_ABAT 0x10
  95. #define TEC 0x1c
  96. #define REC 0x1d
  97. #define CNF1 0x2a
  98. # define CNF1_SJW_SHIFT 6
  99. #define CNF2 0x29
  100. # define CNF2_BTLMODE 0x80
  101. # define CNF2_SAM 0x40
  102. # define CNF2_PS1_SHIFT 3
  103. #define CNF3 0x28
  104. # define CNF3_SOF 0x08
  105. # define CNF3_WAKFIL 0x04
  106. # define CNF3_PHSEG2_MASK 0x07
  107. #define CANINTE 0x2b
  108. # define CANINTE_MERRE 0x80
  109. # define CANINTE_WAKIE 0x40
  110. # define CANINTE_ERRIE 0x20
  111. # define CANINTE_TX2IE 0x10
  112. # define CANINTE_TX1IE 0x08
  113. # define CANINTE_TX0IE 0x04
  114. # define CANINTE_RX1IE 0x02
  115. # define CANINTE_RX0IE 0x01
  116. #define CANINTF 0x2c
  117. # define CANINTF_MERRF 0x80
  118. # define CANINTF_WAKIF 0x40
  119. # define CANINTF_ERRIF 0x20
  120. # define CANINTF_TX2IF 0x10
  121. # define CANINTF_TX1IF 0x08
  122. # define CANINTF_TX0IF 0x04
  123. # define CANINTF_RX1IF 0x02
  124. # define CANINTF_RX0IF 0x01
  125. #define EFLG 0x2d
  126. # define EFLG_EWARN 0x01
  127. # define EFLG_RXWAR 0x02
  128. # define EFLG_TXWAR 0x04
  129. # define EFLG_RXEP 0x08
  130. # define EFLG_TXEP 0x10
  131. # define EFLG_TXBO 0x20
  132. # define EFLG_RX0OVR 0x40
  133. # define EFLG_RX1OVR 0x80
  134. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  135. # define TXBCTRL_ABTF 0x40
  136. # define TXBCTRL_MLOA 0x20
  137. # define TXBCTRL_TXERR 0x10
  138. # define TXBCTRL_TXREQ 0x08
  139. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  140. # define SIDH_SHIFT 3
  141. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  142. # define SIDL_SID_MASK 7
  143. # define SIDL_SID_SHIFT 5
  144. # define SIDL_EXIDE_SHIFT 3
  145. # define SIDL_EID_SHIFT 16
  146. # define SIDL_EID_MASK 3
  147. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  148. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  149. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  150. # define DLC_RTR_SHIFT 6
  151. #define TXBCTRL_OFF 0
  152. #define TXBSIDH_OFF 1
  153. #define TXBSIDL_OFF 2
  154. #define TXBEID8_OFF 3
  155. #define TXBEID0_OFF 4
  156. #define TXBDLC_OFF 5
  157. #define TXBDAT_OFF 6
  158. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  159. # define RXBCTRL_BUKT 0x04
  160. # define RXBCTRL_RXM0 0x20
  161. # define RXBCTRL_RXM1 0x40
  162. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  163. # define RXBSIDH_SHIFT 3
  164. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  165. # define RXBSIDL_IDE 0x08
  166. # define RXBSIDL_EID 3
  167. # define RXBSIDL_SHIFT 5
  168. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  169. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  170. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  171. # define RXBDLC_LEN_MASK 0x0f
  172. # define RXBDLC_RTR 0x40
  173. #define RXBCTRL_OFF 0
  174. #define RXBSIDH_OFF 1
  175. #define RXBSIDL_OFF 2
  176. #define RXBEID8_OFF 3
  177. #define RXBEID0_OFF 4
  178. #define RXBDLC_OFF 5
  179. #define RXBDAT_OFF 6
  180. #define RXFSIDH(n) ((n) * 4)
  181. #define RXFSIDL(n) ((n) * 4 + 1)
  182. #define RXFEID8(n) ((n) * 4 + 2)
  183. #define RXFEID0(n) ((n) * 4 + 3)
  184. #define RXMSIDH(n) ((n) * 4 + 0x20)
  185. #define RXMSIDL(n) ((n) * 4 + 0x21)
  186. #define RXMEID8(n) ((n) * 4 + 0x22)
  187. #define RXMEID0(n) ((n) * 4 + 0x23)
  188. #define GET_BYTE(val, byte) \
  189. (((val) >> ((byte) * 8)) & 0xff)
  190. #define SET_BYTE(val, byte) \
  191. (((val) & 0xff) << ((byte) * 8))
  192. /*
  193. * Buffer size required for the largest SPI transfer (i.e., reading a
  194. * frame)
  195. */
  196. #define CAN_FRAME_MAX_DATA_LEN 8
  197. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  198. #define CAN_FRAME_MAX_BITS 128
  199. #define TX_ECHO_SKB_MAX 1
  200. #define DEVICE_NAME "mcp251x"
  201. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  202. module_param(mcp251x_enable_dma, int, S_IRUGO);
  203. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  204. static struct can_bittiming_const mcp251x_bittiming_const = {
  205. .name = DEVICE_NAME,
  206. .tseg1_min = 3,
  207. .tseg1_max = 16,
  208. .tseg2_min = 2,
  209. .tseg2_max = 8,
  210. .sjw_max = 4,
  211. .brp_min = 1,
  212. .brp_max = 64,
  213. .brp_inc = 1,
  214. };
  215. struct mcp251x_priv {
  216. struct can_priv can;
  217. struct net_device *net;
  218. struct spi_device *spi;
  219. struct mutex mcp_lock; /* SPI device lock */
  220. u8 *spi_tx_buf;
  221. u8 *spi_rx_buf;
  222. dma_addr_t spi_tx_dma;
  223. dma_addr_t spi_rx_dma;
  224. struct sk_buff *tx_skb;
  225. int tx_len;
  226. struct workqueue_struct *wq;
  227. struct work_struct tx_work;
  228. struct work_struct restart_work;
  229. int force_quit;
  230. int after_suspend;
  231. #define AFTER_SUSPEND_UP 1
  232. #define AFTER_SUSPEND_DOWN 2
  233. #define AFTER_SUSPEND_POWER 4
  234. #define AFTER_SUSPEND_RESTART 8
  235. int restart_tx;
  236. };
  237. static void mcp251x_clean(struct net_device *net)
  238. {
  239. struct mcp251x_priv *priv = netdev_priv(net);
  240. if (priv->tx_skb || priv->tx_len)
  241. net->stats.tx_errors++;
  242. if (priv->tx_skb)
  243. dev_kfree_skb(priv->tx_skb);
  244. if (priv->tx_len)
  245. can_free_echo_skb(priv->net, 0);
  246. priv->tx_skb = NULL;
  247. priv->tx_len = 0;
  248. }
  249. /*
  250. * Note about handling of error return of mcp251x_spi_trans: accessing
  251. * registers via SPI is not really different conceptually than using
  252. * normal I/O assembler instructions, although it's much more
  253. * complicated from a practical POV. So it's not advisable to always
  254. * check the return value of this function. Imagine that every
  255. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  256. * error();", it would be a great mess (well there are some situation
  257. * when exception handling C++ like could be useful after all). So we
  258. * just check that transfers are OK at the beginning of our
  259. * conversation with the chip and to avoid doing really nasty things
  260. * (like injecting bogus packets in the network stack).
  261. */
  262. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  263. {
  264. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  265. struct spi_transfer t = {
  266. .tx_buf = priv->spi_tx_buf,
  267. .rx_buf = priv->spi_rx_buf,
  268. .len = len,
  269. .cs_change = 0,
  270. };
  271. struct spi_message m;
  272. int ret;
  273. spi_message_init(&m);
  274. if (mcp251x_enable_dma) {
  275. t.tx_dma = priv->spi_tx_dma;
  276. t.rx_dma = priv->spi_rx_dma;
  277. m.is_dma_mapped = 1;
  278. }
  279. spi_message_add_tail(&t, &m);
  280. ret = spi_sync(spi, &m);
  281. if (ret)
  282. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  283. return ret;
  284. }
  285. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  286. {
  287. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  288. u8 val = 0;
  289. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  290. priv->spi_tx_buf[1] = reg;
  291. mcp251x_spi_trans(spi, 3);
  292. val = priv->spi_rx_buf[2];
  293. return val;
  294. }
  295. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  296. {
  297. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  298. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  299. priv->spi_tx_buf[1] = reg;
  300. priv->spi_tx_buf[2] = val;
  301. mcp251x_spi_trans(spi, 3);
  302. }
  303. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  304. u8 mask, uint8_t val)
  305. {
  306. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  307. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  308. priv->spi_tx_buf[1] = reg;
  309. priv->spi_tx_buf[2] = mask;
  310. priv->spi_tx_buf[3] = val;
  311. mcp251x_spi_trans(spi, 4);
  312. }
  313. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  314. int len, int tx_buf_idx)
  315. {
  316. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  317. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  318. if (pdata->model == CAN_MCP251X_MCP2510) {
  319. int i;
  320. for (i = 1; i < TXBDAT_OFF + len; i++)
  321. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  322. buf[i]);
  323. } else {
  324. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  325. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  326. }
  327. }
  328. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  329. int tx_buf_idx)
  330. {
  331. u32 sid, eid, exide, rtr;
  332. u8 buf[SPI_TRANSFER_BUF_LEN];
  333. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  334. if (exide)
  335. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  336. else
  337. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  338. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  339. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  340. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  341. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  342. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  343. (exide << SIDL_EXIDE_SHIFT) |
  344. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  345. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  346. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  347. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  348. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  349. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  350. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
  351. }
  352. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  353. int buf_idx)
  354. {
  355. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  356. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  357. if (pdata->model == CAN_MCP251X_MCP2510) {
  358. int i, len;
  359. for (i = 1; i < RXBDAT_OFF; i++)
  360. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  361. len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  362. for (; i < (RXBDAT_OFF + len); i++)
  363. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  364. } else {
  365. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  366. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  367. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  368. }
  369. }
  370. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  371. {
  372. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  373. struct sk_buff *skb;
  374. struct can_frame *frame;
  375. u8 buf[SPI_TRANSFER_BUF_LEN];
  376. skb = alloc_can_skb(priv->net, &frame);
  377. if (!skb) {
  378. dev_err(&spi->dev, "cannot allocate RX skb\n");
  379. priv->net->stats.rx_dropped++;
  380. return;
  381. }
  382. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  383. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  384. /* Extended ID format */
  385. frame->can_id = CAN_EFF_FLAG;
  386. frame->can_id |=
  387. /* Extended ID part */
  388. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  389. SET_BYTE(buf[RXBEID8_OFF], 1) |
  390. SET_BYTE(buf[RXBEID0_OFF], 0) |
  391. /* Standard ID part */
  392. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  393. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  394. /* Remote transmission request */
  395. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  396. frame->can_id |= CAN_RTR_FLAG;
  397. } else {
  398. /* Standard ID format */
  399. frame->can_id =
  400. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  401. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  402. }
  403. /* Data length */
  404. frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  405. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  406. priv->net->stats.rx_packets++;
  407. priv->net->stats.rx_bytes += frame->can_dlc;
  408. netif_rx(skb);
  409. }
  410. static void mcp251x_hw_sleep(struct spi_device *spi)
  411. {
  412. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  413. }
  414. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  415. struct net_device *net)
  416. {
  417. struct mcp251x_priv *priv = netdev_priv(net);
  418. struct spi_device *spi = priv->spi;
  419. if (priv->tx_skb || priv->tx_len) {
  420. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  421. return NETDEV_TX_BUSY;
  422. }
  423. if (can_dropped_invalid_skb(net, skb))
  424. return NETDEV_TX_OK;
  425. netif_stop_queue(net);
  426. priv->tx_skb = skb;
  427. queue_work(priv->wq, &priv->tx_work);
  428. return NETDEV_TX_OK;
  429. }
  430. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  431. {
  432. struct mcp251x_priv *priv = netdev_priv(net);
  433. switch (mode) {
  434. case CAN_MODE_START:
  435. mcp251x_clean(net);
  436. /* We have to delay work since SPI I/O may sleep */
  437. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  438. priv->restart_tx = 1;
  439. if (priv->can.restart_ms == 0)
  440. priv->after_suspend = AFTER_SUSPEND_RESTART;
  441. queue_work(priv->wq, &priv->restart_work);
  442. break;
  443. default:
  444. return -EOPNOTSUPP;
  445. }
  446. return 0;
  447. }
  448. static int mcp251x_set_normal_mode(struct spi_device *spi)
  449. {
  450. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  451. unsigned long timeout;
  452. /* Enable interrupts */
  453. mcp251x_write_reg(spi, CANINTE,
  454. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  455. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
  456. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  457. /* Put device into loopback mode */
  458. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  459. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  460. /* Put device into listen-only mode */
  461. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
  462. } else {
  463. /* Put device into normal mode */
  464. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
  465. /* Wait for the device to enter normal mode */
  466. timeout = jiffies + HZ;
  467. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  468. schedule();
  469. if (time_after(jiffies, timeout)) {
  470. dev_err(&spi->dev, "MCP251x didn't"
  471. " enter in normal mode\n");
  472. return -EBUSY;
  473. }
  474. }
  475. }
  476. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  477. return 0;
  478. }
  479. static int mcp251x_do_set_bittiming(struct net_device *net)
  480. {
  481. struct mcp251x_priv *priv = netdev_priv(net);
  482. struct can_bittiming *bt = &priv->can.bittiming;
  483. struct spi_device *spi = priv->spi;
  484. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  485. (bt->brp - 1));
  486. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  487. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  488. CNF2_SAM : 0) |
  489. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  490. (bt->prop_seg - 1));
  491. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  492. (bt->phase_seg2 - 1));
  493. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  494. mcp251x_read_reg(spi, CNF1),
  495. mcp251x_read_reg(spi, CNF2),
  496. mcp251x_read_reg(spi, CNF3));
  497. return 0;
  498. }
  499. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  500. struct spi_device *spi)
  501. {
  502. mcp251x_do_set_bittiming(net);
  503. mcp251x_write_reg(spi, RXBCTRL(0),
  504. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  505. mcp251x_write_reg(spi, RXBCTRL(1),
  506. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  507. return 0;
  508. }
  509. static int mcp251x_hw_reset(struct spi_device *spi)
  510. {
  511. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  512. int ret;
  513. unsigned long timeout;
  514. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  515. ret = spi_write(spi, priv->spi_tx_buf, 1);
  516. if (ret) {
  517. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  518. return -EIO;
  519. }
  520. /* Wait for reset to finish */
  521. timeout = jiffies + HZ;
  522. mdelay(10);
  523. while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
  524. != CANCTRL_REQOP_CONF) {
  525. schedule();
  526. if (time_after(jiffies, timeout)) {
  527. dev_err(&spi->dev, "MCP251x didn't"
  528. " enter in conf mode after reset\n");
  529. return -EBUSY;
  530. }
  531. }
  532. return 0;
  533. }
  534. static int mcp251x_hw_probe(struct spi_device *spi)
  535. {
  536. int st1, st2;
  537. mcp251x_hw_reset(spi);
  538. /*
  539. * Please note that these are "magic values" based on after
  540. * reset defaults taken from data sheet which allows us to see
  541. * if we really have a chip on the bus (we avoid common all
  542. * zeroes or all ones situations)
  543. */
  544. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  545. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  546. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  547. /* Check for power up default values */
  548. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  549. }
  550. static void mcp251x_open_clean(struct net_device *net)
  551. {
  552. struct mcp251x_priv *priv = netdev_priv(net);
  553. struct spi_device *spi = priv->spi;
  554. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  555. free_irq(spi->irq, priv);
  556. mcp251x_hw_sleep(spi);
  557. if (pdata->transceiver_enable)
  558. pdata->transceiver_enable(0);
  559. close_candev(net);
  560. }
  561. static int mcp251x_stop(struct net_device *net)
  562. {
  563. struct mcp251x_priv *priv = netdev_priv(net);
  564. struct spi_device *spi = priv->spi;
  565. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  566. close_candev(net);
  567. priv->force_quit = 1;
  568. free_irq(spi->irq, priv);
  569. destroy_workqueue(priv->wq);
  570. priv->wq = NULL;
  571. mutex_lock(&priv->mcp_lock);
  572. /* Disable and clear pending interrupts */
  573. mcp251x_write_reg(spi, CANINTE, 0x00);
  574. mcp251x_write_reg(spi, CANINTF, 0x00);
  575. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  576. mcp251x_clean(net);
  577. mcp251x_hw_sleep(spi);
  578. if (pdata->transceiver_enable)
  579. pdata->transceiver_enable(0);
  580. priv->can.state = CAN_STATE_STOPPED;
  581. mutex_unlock(&priv->mcp_lock);
  582. return 0;
  583. }
  584. static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
  585. {
  586. struct sk_buff *skb;
  587. struct can_frame *frame;
  588. skb = alloc_can_err_skb(net, &frame);
  589. if (skb) {
  590. frame->can_id = can_id;
  591. frame->data[1] = data1;
  592. netif_rx(skb);
  593. } else {
  594. dev_err(&net->dev,
  595. "cannot allocate error skb\n");
  596. }
  597. }
  598. static void mcp251x_tx_work_handler(struct work_struct *ws)
  599. {
  600. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  601. tx_work);
  602. struct spi_device *spi = priv->spi;
  603. struct net_device *net = priv->net;
  604. struct can_frame *frame;
  605. mutex_lock(&priv->mcp_lock);
  606. if (priv->tx_skb) {
  607. if (priv->can.state == CAN_STATE_BUS_OFF) {
  608. mcp251x_clean(net);
  609. } else {
  610. frame = (struct can_frame *)priv->tx_skb->data;
  611. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  612. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  613. mcp251x_hw_tx(spi, frame, 0);
  614. priv->tx_len = 1 + frame->can_dlc;
  615. can_put_echo_skb(priv->tx_skb, net, 0);
  616. priv->tx_skb = NULL;
  617. }
  618. }
  619. mutex_unlock(&priv->mcp_lock);
  620. }
  621. static void mcp251x_restart_work_handler(struct work_struct *ws)
  622. {
  623. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  624. restart_work);
  625. struct spi_device *spi = priv->spi;
  626. struct net_device *net = priv->net;
  627. mutex_lock(&priv->mcp_lock);
  628. if (priv->after_suspend) {
  629. mdelay(10);
  630. mcp251x_hw_reset(spi);
  631. mcp251x_setup(net, priv, spi);
  632. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  633. mcp251x_set_normal_mode(spi);
  634. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  635. netif_device_attach(net);
  636. mcp251x_clean(net);
  637. mcp251x_set_normal_mode(spi);
  638. netif_wake_queue(net);
  639. } else {
  640. mcp251x_hw_sleep(spi);
  641. }
  642. priv->after_suspend = 0;
  643. priv->force_quit = 0;
  644. }
  645. if (priv->restart_tx) {
  646. priv->restart_tx = 0;
  647. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  648. mcp251x_clean(net);
  649. netif_wake_queue(net);
  650. mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
  651. }
  652. mutex_unlock(&priv->mcp_lock);
  653. }
  654. static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
  655. {
  656. struct mcp251x_priv *priv = dev_id;
  657. struct spi_device *spi = priv->spi;
  658. struct net_device *net = priv->net;
  659. mutex_lock(&priv->mcp_lock);
  660. while (!priv->force_quit) {
  661. enum can_state new_state;
  662. u8 intf = mcp251x_read_reg(spi, CANINTF);
  663. u8 eflag;
  664. int can_id = 0, data1 = 0;
  665. if (intf & CANINTF_RX0IF) {
  666. mcp251x_hw_rx(spi, 0);
  667. /* Free one buffer ASAP */
  668. mcp251x_write_bits(spi, CANINTF, intf & CANINTF_RX0IF,
  669. 0x00);
  670. }
  671. if (intf & CANINTF_RX1IF)
  672. mcp251x_hw_rx(spi, 1);
  673. mcp251x_write_bits(spi, CANINTF, intf, 0x00);
  674. eflag = mcp251x_read_reg(spi, EFLG);
  675. mcp251x_write_reg(spi, EFLG, 0x00);
  676. /* Update can state */
  677. if (eflag & EFLG_TXBO) {
  678. new_state = CAN_STATE_BUS_OFF;
  679. can_id |= CAN_ERR_BUSOFF;
  680. } else if (eflag & EFLG_TXEP) {
  681. new_state = CAN_STATE_ERROR_PASSIVE;
  682. can_id |= CAN_ERR_CRTL;
  683. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  684. } else if (eflag & EFLG_RXEP) {
  685. new_state = CAN_STATE_ERROR_PASSIVE;
  686. can_id |= CAN_ERR_CRTL;
  687. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  688. } else if (eflag & EFLG_TXWAR) {
  689. new_state = CAN_STATE_ERROR_WARNING;
  690. can_id |= CAN_ERR_CRTL;
  691. data1 |= CAN_ERR_CRTL_TX_WARNING;
  692. } else if (eflag & EFLG_RXWAR) {
  693. new_state = CAN_STATE_ERROR_WARNING;
  694. can_id |= CAN_ERR_CRTL;
  695. data1 |= CAN_ERR_CRTL_RX_WARNING;
  696. } else {
  697. new_state = CAN_STATE_ERROR_ACTIVE;
  698. }
  699. /* Update can state statistics */
  700. switch (priv->can.state) {
  701. case CAN_STATE_ERROR_ACTIVE:
  702. if (new_state >= CAN_STATE_ERROR_WARNING &&
  703. new_state <= CAN_STATE_BUS_OFF)
  704. priv->can.can_stats.error_warning++;
  705. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  706. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  707. new_state <= CAN_STATE_BUS_OFF)
  708. priv->can.can_stats.error_passive++;
  709. break;
  710. default:
  711. break;
  712. }
  713. priv->can.state = new_state;
  714. if (intf & CANINTF_ERRIF) {
  715. /* Handle overflow counters */
  716. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  717. if (eflag & EFLG_RX0OVR)
  718. net->stats.rx_over_errors++;
  719. if (eflag & EFLG_RX1OVR)
  720. net->stats.rx_over_errors++;
  721. can_id |= CAN_ERR_CRTL;
  722. data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
  723. }
  724. mcp251x_error_skb(net, can_id, data1);
  725. }
  726. if (priv->can.state == CAN_STATE_BUS_OFF) {
  727. if (priv->can.restart_ms == 0) {
  728. priv->force_quit = 1;
  729. can_bus_off(net);
  730. mcp251x_hw_sleep(spi);
  731. break;
  732. }
  733. }
  734. if (intf == 0)
  735. break;
  736. if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
  737. net->stats.tx_packets++;
  738. net->stats.tx_bytes += priv->tx_len - 1;
  739. if (priv->tx_len) {
  740. can_get_echo_skb(net, 0);
  741. priv->tx_len = 0;
  742. }
  743. netif_wake_queue(net);
  744. }
  745. }
  746. mutex_unlock(&priv->mcp_lock);
  747. return IRQ_HANDLED;
  748. }
  749. static int mcp251x_open(struct net_device *net)
  750. {
  751. struct mcp251x_priv *priv = netdev_priv(net);
  752. struct spi_device *spi = priv->spi;
  753. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  754. int ret;
  755. ret = open_candev(net);
  756. if (ret) {
  757. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  758. return ret;
  759. }
  760. mutex_lock(&priv->mcp_lock);
  761. if (pdata->transceiver_enable)
  762. pdata->transceiver_enable(1);
  763. priv->force_quit = 0;
  764. priv->tx_skb = NULL;
  765. priv->tx_len = 0;
  766. ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
  767. IRQF_TRIGGER_FALLING, DEVICE_NAME, priv);
  768. if (ret) {
  769. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  770. if (pdata->transceiver_enable)
  771. pdata->transceiver_enable(0);
  772. close_candev(net);
  773. goto open_unlock;
  774. }
  775. priv->wq = create_freezeable_workqueue("mcp251x_wq");
  776. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  777. INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
  778. ret = mcp251x_hw_reset(spi);
  779. if (ret) {
  780. mcp251x_open_clean(net);
  781. goto open_unlock;
  782. }
  783. ret = mcp251x_setup(net, priv, spi);
  784. if (ret) {
  785. mcp251x_open_clean(net);
  786. goto open_unlock;
  787. }
  788. ret = mcp251x_set_normal_mode(spi);
  789. if (ret) {
  790. mcp251x_open_clean(net);
  791. goto open_unlock;
  792. }
  793. netif_wake_queue(net);
  794. open_unlock:
  795. mutex_unlock(&priv->mcp_lock);
  796. return ret;
  797. }
  798. static const struct net_device_ops mcp251x_netdev_ops = {
  799. .ndo_open = mcp251x_open,
  800. .ndo_stop = mcp251x_stop,
  801. .ndo_start_xmit = mcp251x_hard_start_xmit,
  802. };
  803. static int __devinit mcp251x_can_probe(struct spi_device *spi)
  804. {
  805. struct net_device *net;
  806. struct mcp251x_priv *priv;
  807. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  808. int model = spi_get_device_id(spi)->driver_data;
  809. int ret = -ENODEV;
  810. if (!pdata)
  811. /* Platform data is required for osc freq */
  812. goto error_out;
  813. if (model)
  814. pdata->model = model;
  815. /* Allocate can/net device */
  816. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  817. if (!net) {
  818. ret = -ENOMEM;
  819. goto error_alloc;
  820. }
  821. net->netdev_ops = &mcp251x_netdev_ops;
  822. net->flags |= IFF_ECHO;
  823. priv = netdev_priv(net);
  824. priv->can.bittiming_const = &mcp251x_bittiming_const;
  825. priv->can.do_set_mode = mcp251x_do_set_mode;
  826. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  827. priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
  828. CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
  829. priv->net = net;
  830. dev_set_drvdata(&spi->dev, priv);
  831. priv->spi = spi;
  832. mutex_init(&priv->mcp_lock);
  833. /* If requested, allocate DMA buffers */
  834. if (mcp251x_enable_dma) {
  835. spi->dev.coherent_dma_mask = ~0;
  836. /*
  837. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  838. * that much and share it between Tx and Rx DMA buffers.
  839. */
  840. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  841. PAGE_SIZE,
  842. &priv->spi_tx_dma,
  843. GFP_DMA);
  844. if (priv->spi_tx_buf) {
  845. priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
  846. (PAGE_SIZE / 2));
  847. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  848. (PAGE_SIZE / 2));
  849. } else {
  850. /* Fall back to non-DMA */
  851. mcp251x_enable_dma = 0;
  852. }
  853. }
  854. /* Allocate non-DMA buffers */
  855. if (!mcp251x_enable_dma) {
  856. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  857. if (!priv->spi_tx_buf) {
  858. ret = -ENOMEM;
  859. goto error_tx_buf;
  860. }
  861. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  862. if (!priv->spi_rx_buf) {
  863. ret = -ENOMEM;
  864. goto error_rx_buf;
  865. }
  866. }
  867. if (pdata->power_enable)
  868. pdata->power_enable(1);
  869. /* Call out to platform specific setup */
  870. if (pdata->board_specific_setup)
  871. pdata->board_specific_setup(spi);
  872. SET_NETDEV_DEV(net, &spi->dev);
  873. /* Configure the SPI bus */
  874. spi->mode = SPI_MODE_0;
  875. spi->bits_per_word = 8;
  876. spi_setup(spi);
  877. /* Here is OK to not lock the MCP, no one knows about it yet */
  878. if (!mcp251x_hw_probe(spi)) {
  879. dev_info(&spi->dev, "Probe failed\n");
  880. goto error_probe;
  881. }
  882. mcp251x_hw_sleep(spi);
  883. if (pdata->transceiver_enable)
  884. pdata->transceiver_enable(0);
  885. ret = register_candev(net);
  886. if (!ret) {
  887. dev_info(&spi->dev, "probed\n");
  888. return ret;
  889. }
  890. error_probe:
  891. if (!mcp251x_enable_dma)
  892. kfree(priv->spi_rx_buf);
  893. error_rx_buf:
  894. if (!mcp251x_enable_dma)
  895. kfree(priv->spi_tx_buf);
  896. error_tx_buf:
  897. free_candev(net);
  898. if (mcp251x_enable_dma)
  899. dma_free_coherent(&spi->dev, PAGE_SIZE,
  900. priv->spi_tx_buf, priv->spi_tx_dma);
  901. error_alloc:
  902. if (pdata->power_enable)
  903. pdata->power_enable(0);
  904. dev_err(&spi->dev, "probe failed\n");
  905. error_out:
  906. return ret;
  907. }
  908. static int __devexit mcp251x_can_remove(struct spi_device *spi)
  909. {
  910. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  911. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  912. struct net_device *net = priv->net;
  913. unregister_candev(net);
  914. free_candev(net);
  915. if (mcp251x_enable_dma) {
  916. dma_free_coherent(&spi->dev, PAGE_SIZE,
  917. priv->spi_tx_buf, priv->spi_tx_dma);
  918. } else {
  919. kfree(priv->spi_tx_buf);
  920. kfree(priv->spi_rx_buf);
  921. }
  922. if (pdata->power_enable)
  923. pdata->power_enable(0);
  924. return 0;
  925. }
  926. #ifdef CONFIG_PM
  927. static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
  928. {
  929. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  930. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  931. struct net_device *net = priv->net;
  932. priv->force_quit = 1;
  933. disable_irq(spi->irq);
  934. /*
  935. * Note: at this point neither IST nor workqueues are running.
  936. * open/stop cannot be called anyway so locking is not needed
  937. */
  938. if (netif_running(net)) {
  939. netif_device_detach(net);
  940. mcp251x_hw_sleep(spi);
  941. if (pdata->transceiver_enable)
  942. pdata->transceiver_enable(0);
  943. priv->after_suspend = AFTER_SUSPEND_UP;
  944. } else {
  945. priv->after_suspend = AFTER_SUSPEND_DOWN;
  946. }
  947. if (pdata->power_enable) {
  948. pdata->power_enable(0);
  949. priv->after_suspend |= AFTER_SUSPEND_POWER;
  950. }
  951. return 0;
  952. }
  953. static int mcp251x_can_resume(struct spi_device *spi)
  954. {
  955. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  956. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  957. if (priv->after_suspend & AFTER_SUSPEND_POWER) {
  958. pdata->power_enable(1);
  959. queue_work(priv->wq, &priv->restart_work);
  960. } else {
  961. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  962. if (pdata->transceiver_enable)
  963. pdata->transceiver_enable(1);
  964. queue_work(priv->wq, &priv->restart_work);
  965. } else {
  966. priv->after_suspend = 0;
  967. }
  968. }
  969. priv->force_quit = 0;
  970. enable_irq(spi->irq);
  971. return 0;
  972. }
  973. #else
  974. #define mcp251x_can_suspend NULL
  975. #define mcp251x_can_resume NULL
  976. #endif
  977. static struct spi_device_id mcp251x_id_table[] = {
  978. { "mcp251x", 0 /* Use pdata.model */ },
  979. { "mcp2510", CAN_MCP251X_MCP2510 },
  980. { "mcp2515", CAN_MCP251X_MCP2515 },
  981. { },
  982. };
  983. MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
  984. static struct spi_driver mcp251x_can_driver = {
  985. .driver = {
  986. .name = DEVICE_NAME,
  987. .bus = &spi_bus_type,
  988. .owner = THIS_MODULE,
  989. },
  990. .id_table = mcp251x_id_table,
  991. .probe = mcp251x_can_probe,
  992. .remove = __devexit_p(mcp251x_can_remove),
  993. .suspend = mcp251x_can_suspend,
  994. .resume = mcp251x_can_resume,
  995. };
  996. static int __init mcp251x_can_init(void)
  997. {
  998. return spi_register_driver(&mcp251x_can_driver);
  999. }
  1000. static void __exit mcp251x_can_exit(void)
  1001. {
  1002. spi_unregister_driver(&mcp251x_can_driver);
  1003. }
  1004. module_init(mcp251x_can_init);
  1005. module_exit(mcp251x_can_exit);
  1006. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  1007. "Christian Pellegrin <chripell@evolware.org>");
  1008. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  1009. MODULE_LICENSE("GPL v2");