samsung.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066
  1. /*
  2. * Samsung S3C64XX/S5PC1XX OneNAND driver
  3. *
  4. * Copyright © 2008-2010 Samsung Electronics
  5. * Kyungmin Park <kyungmin.park@samsung.com>
  6. * Marek Szyprowski <m.szyprowski@samsung.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * Implementation:
  13. * S3C64XX and S5PC100: emulate the pseudo BufferRAM
  14. * S5PC110: use DMA
  15. */
  16. #include <linux/module.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/onenand.h>
  22. #include <linux/mtd/partitions.h>
  23. #include <linux/dma-mapping.h>
  24. #include <asm/mach/flash.h>
  25. #include <plat/regs-onenand.h>
  26. #include <linux/io.h>
  27. enum soc_type {
  28. TYPE_S3C6400,
  29. TYPE_S3C6410,
  30. TYPE_S5PC100,
  31. TYPE_S5PC110,
  32. };
  33. #define ONENAND_ERASE_STATUS 0x00
  34. #define ONENAND_MULTI_ERASE_SET 0x01
  35. #define ONENAND_ERASE_START 0x03
  36. #define ONENAND_UNLOCK_START 0x08
  37. #define ONENAND_UNLOCK_END 0x09
  38. #define ONENAND_LOCK_START 0x0A
  39. #define ONENAND_LOCK_END 0x0B
  40. #define ONENAND_LOCK_TIGHT_START 0x0C
  41. #define ONENAND_LOCK_TIGHT_END 0x0D
  42. #define ONENAND_UNLOCK_ALL 0x0E
  43. #define ONENAND_OTP_ACCESS 0x12
  44. #define ONENAND_SPARE_ACCESS_ONLY 0x13
  45. #define ONENAND_MAIN_ACCESS_ONLY 0x14
  46. #define ONENAND_ERASE_VERIFY 0x15
  47. #define ONENAND_MAIN_SPARE_ACCESS 0x16
  48. #define ONENAND_PIPELINE_READ 0x4000
  49. #define MAP_00 (0x0)
  50. #define MAP_01 (0x1)
  51. #define MAP_10 (0x2)
  52. #define MAP_11 (0x3)
  53. #define S3C64XX_CMD_MAP_SHIFT 24
  54. #define S5PC1XX_CMD_MAP_SHIFT 26
  55. #define S3C6400_FBA_SHIFT 10
  56. #define S3C6400_FPA_SHIFT 4
  57. #define S3C6400_FSA_SHIFT 2
  58. #define S3C6410_FBA_SHIFT 12
  59. #define S3C6410_FPA_SHIFT 6
  60. #define S3C6410_FSA_SHIFT 4
  61. #define S5PC100_FBA_SHIFT 13
  62. #define S5PC100_FPA_SHIFT 7
  63. #define S5PC100_FSA_SHIFT 5
  64. /* S5PC110 specific definitions */
  65. #define S5PC110_DMA_SRC_ADDR 0x400
  66. #define S5PC110_DMA_SRC_CFG 0x404
  67. #define S5PC110_DMA_DST_ADDR 0x408
  68. #define S5PC110_DMA_DST_CFG 0x40C
  69. #define S5PC110_DMA_TRANS_SIZE 0x414
  70. #define S5PC110_DMA_TRANS_CMD 0x418
  71. #define S5PC110_DMA_TRANS_STATUS 0x41C
  72. #define S5PC110_DMA_TRANS_DIR 0x420
  73. #define S5PC110_DMA_CFG_SINGLE (0x0 << 16)
  74. #define S5PC110_DMA_CFG_4BURST (0x2 << 16)
  75. #define S5PC110_DMA_CFG_8BURST (0x3 << 16)
  76. #define S5PC110_DMA_CFG_16BURST (0x4 << 16)
  77. #define S5PC110_DMA_CFG_INC (0x0 << 8)
  78. #define S5PC110_DMA_CFG_CNT (0x1 << 8)
  79. #define S5PC110_DMA_CFG_8BIT (0x0 << 0)
  80. #define S5PC110_DMA_CFG_16BIT (0x1 << 0)
  81. #define S5PC110_DMA_CFG_32BIT (0x2 << 0)
  82. #define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \
  83. S5PC110_DMA_CFG_INC | \
  84. S5PC110_DMA_CFG_16BIT)
  85. #define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \
  86. S5PC110_DMA_CFG_INC | \
  87. S5PC110_DMA_CFG_32BIT)
  88. #define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
  89. S5PC110_DMA_CFG_INC | \
  90. S5PC110_DMA_CFG_32BIT)
  91. #define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
  92. S5PC110_DMA_CFG_INC | \
  93. S5PC110_DMA_CFG_16BIT)
  94. #define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18)
  95. #define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16)
  96. #define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0)
  97. #define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18)
  98. #define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17)
  99. #define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16)
  100. #define S5PC110_DMA_DIR_READ 0x0
  101. #define S5PC110_DMA_DIR_WRITE 0x1
  102. struct s3c_onenand {
  103. struct mtd_info *mtd;
  104. struct platform_device *pdev;
  105. enum soc_type type;
  106. void __iomem *base;
  107. struct resource *base_res;
  108. void __iomem *ahb_addr;
  109. struct resource *ahb_res;
  110. int bootram_command;
  111. void __iomem *page_buf;
  112. void __iomem *oob_buf;
  113. unsigned int (*mem_addr)(int fba, int fpa, int fsa);
  114. unsigned int (*cmd_map)(unsigned int type, unsigned int val);
  115. void __iomem *dma_addr;
  116. struct resource *dma_res;
  117. unsigned long phys_base;
  118. #ifdef CONFIG_MTD_PARTITIONS
  119. struct mtd_partition *parts;
  120. #endif
  121. };
  122. #define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1)))
  123. #define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr)))
  124. #define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr)))
  125. #define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2)))
  126. static struct s3c_onenand *onenand;
  127. #ifdef CONFIG_MTD_PARTITIONS
  128. static const char *part_probes[] = { "cmdlinepart", NULL, };
  129. #endif
  130. static inline int s3c_read_reg(int offset)
  131. {
  132. return readl(onenand->base + offset);
  133. }
  134. static inline void s3c_write_reg(int value, int offset)
  135. {
  136. writel(value, onenand->base + offset);
  137. }
  138. static inline int s3c_read_cmd(unsigned int cmd)
  139. {
  140. return readl(onenand->ahb_addr + cmd);
  141. }
  142. static inline void s3c_write_cmd(int value, unsigned int cmd)
  143. {
  144. writel(value, onenand->ahb_addr + cmd);
  145. }
  146. #ifdef SAMSUNG_DEBUG
  147. static void s3c_dump_reg(void)
  148. {
  149. int i;
  150. for (i = 0; i < 0x400; i += 0x40) {
  151. printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  152. (unsigned int) onenand->base + i,
  153. s3c_read_reg(i), s3c_read_reg(i + 0x10),
  154. s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30));
  155. }
  156. }
  157. #endif
  158. static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val)
  159. {
  160. return (type << S3C64XX_CMD_MAP_SHIFT) | val;
  161. }
  162. static unsigned int s5pc1xx_cmd_map(unsigned type, unsigned val)
  163. {
  164. return (type << S5PC1XX_CMD_MAP_SHIFT) | val;
  165. }
  166. static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa)
  167. {
  168. return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) |
  169. (fsa << S3C6400_FSA_SHIFT);
  170. }
  171. static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa)
  172. {
  173. return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) |
  174. (fsa << S3C6410_FSA_SHIFT);
  175. }
  176. static unsigned int s5pc100_mem_addr(int fba, int fpa, int fsa)
  177. {
  178. return (fba << S5PC100_FBA_SHIFT) | (fpa << S5PC100_FPA_SHIFT) |
  179. (fsa << S5PC100_FSA_SHIFT);
  180. }
  181. static void s3c_onenand_reset(void)
  182. {
  183. unsigned long timeout = 0x10000;
  184. int stat;
  185. s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
  186. while (1 && timeout--) {
  187. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  188. if (stat & RST_CMP)
  189. break;
  190. }
  191. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  192. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  193. /* Clear interrupt */
  194. s3c_write_reg(0x0, INT_ERR_ACK_OFFSET);
  195. /* Clear the ECC status */
  196. s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET);
  197. }
  198. static unsigned short s3c_onenand_readw(void __iomem *addr)
  199. {
  200. struct onenand_chip *this = onenand->mtd->priv;
  201. struct device *dev = &onenand->pdev->dev;
  202. int reg = addr - this->base;
  203. int word_addr = reg >> 1;
  204. int value;
  205. /* It's used for probing time */
  206. switch (reg) {
  207. case ONENAND_REG_MANUFACTURER_ID:
  208. return s3c_read_reg(MANUFACT_ID_OFFSET);
  209. case ONENAND_REG_DEVICE_ID:
  210. return s3c_read_reg(DEVICE_ID_OFFSET);
  211. case ONENAND_REG_VERSION_ID:
  212. return s3c_read_reg(FLASH_VER_ID_OFFSET);
  213. case ONENAND_REG_DATA_BUFFER_SIZE:
  214. return s3c_read_reg(DATA_BUF_SIZE_OFFSET);
  215. case ONENAND_REG_TECHNOLOGY:
  216. return s3c_read_reg(TECH_OFFSET);
  217. case ONENAND_REG_SYS_CFG1:
  218. return s3c_read_reg(MEM_CFG_OFFSET);
  219. /* Used at unlock all status */
  220. case ONENAND_REG_CTRL_STATUS:
  221. return 0;
  222. case ONENAND_REG_WP_STATUS:
  223. return ONENAND_WP_US;
  224. default:
  225. break;
  226. }
  227. /* BootRAM access control */
  228. if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) {
  229. if (word_addr == 0)
  230. return s3c_read_reg(MANUFACT_ID_OFFSET);
  231. if (word_addr == 1)
  232. return s3c_read_reg(DEVICE_ID_OFFSET);
  233. if (word_addr == 2)
  234. return s3c_read_reg(FLASH_VER_ID_OFFSET);
  235. }
  236. value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff;
  237. dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
  238. word_addr, value);
  239. return value;
  240. }
  241. static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
  242. {
  243. struct onenand_chip *this = onenand->mtd->priv;
  244. struct device *dev = &onenand->pdev->dev;
  245. unsigned int reg = addr - this->base;
  246. unsigned int word_addr = reg >> 1;
  247. /* It's used for probing time */
  248. switch (reg) {
  249. case ONENAND_REG_SYS_CFG1:
  250. s3c_write_reg(value, MEM_CFG_OFFSET);
  251. return;
  252. case ONENAND_REG_START_ADDRESS1:
  253. case ONENAND_REG_START_ADDRESS2:
  254. return;
  255. /* Lock/lock-tight/unlock/unlock_all */
  256. case ONENAND_REG_START_BLOCK_ADDRESS:
  257. return;
  258. default:
  259. break;
  260. }
  261. /* BootRAM access control */
  262. if ((unsigned int)addr < ONENAND_DATARAM) {
  263. if (value == ONENAND_CMD_READID) {
  264. onenand->bootram_command = 1;
  265. return;
  266. }
  267. if (value == ONENAND_CMD_RESET) {
  268. s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
  269. onenand->bootram_command = 0;
  270. return;
  271. }
  272. }
  273. dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
  274. word_addr, value);
  275. s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr));
  276. }
  277. static int s3c_onenand_wait(struct mtd_info *mtd, int state)
  278. {
  279. struct device *dev = &onenand->pdev->dev;
  280. unsigned int flags = INT_ACT;
  281. unsigned int stat, ecc;
  282. unsigned long timeout;
  283. switch (state) {
  284. case FL_READING:
  285. flags |= BLK_RW_CMP | LOAD_CMP;
  286. break;
  287. case FL_WRITING:
  288. flags |= BLK_RW_CMP | PGM_CMP;
  289. break;
  290. case FL_ERASING:
  291. flags |= BLK_RW_CMP | ERS_CMP;
  292. break;
  293. case FL_LOCKING:
  294. flags |= BLK_RW_CMP;
  295. break;
  296. default:
  297. break;
  298. }
  299. /* The 20 msec is enough */
  300. timeout = jiffies + msecs_to_jiffies(20);
  301. while (time_before(jiffies, timeout)) {
  302. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  303. if (stat & flags)
  304. break;
  305. if (state != FL_READING)
  306. cond_resched();
  307. }
  308. /* To get correct interrupt status in timeout case */
  309. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  310. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  311. /*
  312. * In the Spec. it checks the controller status first
  313. * However if you get the correct information in case of
  314. * power off recovery (POR) test, it should read ECC status first
  315. */
  316. if (stat & LOAD_CMP) {
  317. ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
  318. if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
  319. dev_info(dev, "%s: ECC error = 0x%04x\n", __func__,
  320. ecc);
  321. mtd->ecc_stats.failed++;
  322. return -EBADMSG;
  323. }
  324. }
  325. if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
  326. dev_info(dev, "%s: controller error = 0x%04x\n", __func__,
  327. stat);
  328. if (stat & LOCKED_BLK)
  329. dev_info(dev, "%s: it's locked error = 0x%04x\n",
  330. __func__, stat);
  331. return -EIO;
  332. }
  333. return 0;
  334. }
  335. static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
  336. size_t len)
  337. {
  338. struct onenand_chip *this = mtd->priv;
  339. unsigned int *m, *s;
  340. int fba, fpa, fsa = 0;
  341. unsigned int mem_addr, cmd_map_01, cmd_map_10;
  342. int i, mcount, scount;
  343. int index;
  344. fba = (int) (addr >> this->erase_shift);
  345. fpa = (int) (addr >> this->page_shift);
  346. fpa &= this->page_mask;
  347. mem_addr = onenand->mem_addr(fba, fpa, fsa);
  348. cmd_map_01 = CMD_MAP_01(onenand, mem_addr);
  349. cmd_map_10 = CMD_MAP_10(onenand, mem_addr);
  350. switch (cmd) {
  351. case ONENAND_CMD_READ:
  352. case ONENAND_CMD_READOOB:
  353. case ONENAND_CMD_BUFFERRAM:
  354. ONENAND_SET_NEXT_BUFFERRAM(this);
  355. default:
  356. break;
  357. }
  358. index = ONENAND_CURRENT_BUFFERRAM(this);
  359. /*
  360. * Emulate Two BufferRAMs and access with 4 bytes pointer
  361. */
  362. m = (unsigned int *) onenand->page_buf;
  363. s = (unsigned int *) onenand->oob_buf;
  364. if (index) {
  365. m += (this->writesize >> 2);
  366. s += (mtd->oobsize >> 2);
  367. }
  368. mcount = mtd->writesize >> 2;
  369. scount = mtd->oobsize >> 2;
  370. switch (cmd) {
  371. case ONENAND_CMD_READ:
  372. /* Main */
  373. for (i = 0; i < mcount; i++)
  374. *m++ = s3c_read_cmd(cmd_map_01);
  375. return 0;
  376. case ONENAND_CMD_READOOB:
  377. s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
  378. /* Main */
  379. for (i = 0; i < mcount; i++)
  380. *m++ = s3c_read_cmd(cmd_map_01);
  381. /* Spare */
  382. for (i = 0; i < scount; i++)
  383. *s++ = s3c_read_cmd(cmd_map_01);
  384. s3c_write_reg(0, TRANS_SPARE_OFFSET);
  385. return 0;
  386. case ONENAND_CMD_PROG:
  387. /* Main */
  388. for (i = 0; i < mcount; i++)
  389. s3c_write_cmd(*m++, cmd_map_01);
  390. return 0;
  391. case ONENAND_CMD_PROGOOB:
  392. s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
  393. /* Main - dummy write */
  394. for (i = 0; i < mcount; i++)
  395. s3c_write_cmd(0xffffffff, cmd_map_01);
  396. /* Spare */
  397. for (i = 0; i < scount; i++)
  398. s3c_write_cmd(*s++, cmd_map_01);
  399. s3c_write_reg(0, TRANS_SPARE_OFFSET);
  400. return 0;
  401. case ONENAND_CMD_UNLOCK_ALL:
  402. s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10);
  403. return 0;
  404. case ONENAND_CMD_ERASE:
  405. s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10);
  406. return 0;
  407. default:
  408. break;
  409. }
  410. return 0;
  411. }
  412. static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
  413. {
  414. struct onenand_chip *this = mtd->priv;
  415. int index = ONENAND_CURRENT_BUFFERRAM(this);
  416. unsigned char *p;
  417. if (area == ONENAND_DATARAM) {
  418. p = (unsigned char *) onenand->page_buf;
  419. if (index == 1)
  420. p += this->writesize;
  421. } else {
  422. p = (unsigned char *) onenand->oob_buf;
  423. if (index == 1)
  424. p += mtd->oobsize;
  425. }
  426. return p;
  427. }
  428. static int onenand_read_bufferram(struct mtd_info *mtd, int area,
  429. unsigned char *buffer, int offset,
  430. size_t count)
  431. {
  432. unsigned char *p;
  433. p = s3c_get_bufferram(mtd, area);
  434. memcpy(buffer, p + offset, count);
  435. return 0;
  436. }
  437. static int onenand_write_bufferram(struct mtd_info *mtd, int area,
  438. const unsigned char *buffer, int offset,
  439. size_t count)
  440. {
  441. unsigned char *p;
  442. p = s3c_get_bufferram(mtd, area);
  443. memcpy(p + offset, buffer, count);
  444. return 0;
  445. }
  446. static int s5pc110_dma_ops(void *dst, void *src, size_t count, int direction)
  447. {
  448. void __iomem *base = onenand->dma_addr;
  449. int status;
  450. writel(src, base + S5PC110_DMA_SRC_ADDR);
  451. writel(dst, base + S5PC110_DMA_DST_ADDR);
  452. if (direction == S5PC110_DMA_DIR_READ) {
  453. writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
  454. writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
  455. } else {
  456. writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
  457. writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
  458. }
  459. writel(count, base + S5PC110_DMA_TRANS_SIZE);
  460. writel(direction, base + S5PC110_DMA_TRANS_DIR);
  461. writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
  462. do {
  463. status = readl(base + S5PC110_DMA_TRANS_STATUS);
  464. } while (!(status & S5PC110_DMA_TRANS_STATUS_TD));
  465. if (status & S5PC110_DMA_TRANS_STATUS_TE) {
  466. writel(S5PC110_DMA_TRANS_CMD_TEC, base + S5PC110_DMA_TRANS_CMD);
  467. writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD);
  468. return -EIO;
  469. }
  470. writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD);
  471. return 0;
  472. }
  473. static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
  474. unsigned char *buffer, int offset, size_t count)
  475. {
  476. struct onenand_chip *this = mtd->priv;
  477. void __iomem *bufferram;
  478. void __iomem *p;
  479. void *buf = (void *) buffer;
  480. dma_addr_t dma_src, dma_dst;
  481. int err;
  482. p = bufferram = this->base + area;
  483. if (ONENAND_CURRENT_BUFFERRAM(this)) {
  484. if (area == ONENAND_DATARAM)
  485. p += this->writesize;
  486. else
  487. p += mtd->oobsize;
  488. }
  489. if (offset & 3 || (size_t) buf & 3 ||
  490. !onenand->dma_addr || count != mtd->writesize)
  491. goto normal;
  492. /* Handle vmalloc address */
  493. if (buf >= high_memory) {
  494. struct page *page;
  495. if (((size_t) buf & PAGE_MASK) !=
  496. ((size_t) (buf + count - 1) & PAGE_MASK))
  497. goto normal;
  498. page = vmalloc_to_page(buf);
  499. if (!page)
  500. goto normal;
  501. buf = page_address(page) + ((size_t) buf & ~PAGE_MASK);
  502. }
  503. /* DMA routine */
  504. dma_src = onenand->phys_base + (p - this->base);
  505. dma_dst = dma_map_single(&onenand->pdev->dev,
  506. buf, count, DMA_FROM_DEVICE);
  507. if (dma_mapping_error(&onenand->pdev->dev, dma_dst)) {
  508. dev_err(&onenand->pdev->dev,
  509. "Couldn't map a %d byte buffer for DMA\n", count);
  510. goto normal;
  511. }
  512. err = s5pc110_dma_ops((void *) dma_dst, (void *) dma_src,
  513. count, S5PC110_DMA_DIR_READ);
  514. dma_unmap_single(&onenand->pdev->dev, dma_dst, count, DMA_FROM_DEVICE);
  515. if (!err)
  516. return 0;
  517. normal:
  518. if (count != mtd->writesize) {
  519. /* Copy the bufferram to memory to prevent unaligned access */
  520. memcpy(this->page_buf, bufferram, mtd->writesize);
  521. p = this->page_buf + offset;
  522. }
  523. memcpy(buffer, p, count);
  524. return 0;
  525. }
  526. static int s5pc110_chip_probe(struct mtd_info *mtd)
  527. {
  528. /* Now just return 0 */
  529. return 0;
  530. }
  531. static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
  532. {
  533. unsigned int flags = INT_ACT | LOAD_CMP;
  534. unsigned int stat;
  535. unsigned long timeout;
  536. /* The 20 msec is enough */
  537. timeout = jiffies + msecs_to_jiffies(20);
  538. while (time_before(jiffies, timeout)) {
  539. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  540. if (stat & flags)
  541. break;
  542. }
  543. /* To get correct interrupt status in timeout case */
  544. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  545. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  546. if (stat & LD_FAIL_ECC_ERR) {
  547. s3c_onenand_reset();
  548. return ONENAND_BBT_READ_ERROR;
  549. }
  550. if (stat & LOAD_CMP) {
  551. int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
  552. if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
  553. s3c_onenand_reset();
  554. return ONENAND_BBT_READ_ERROR;
  555. }
  556. }
  557. return 0;
  558. }
  559. static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
  560. {
  561. struct onenand_chip *this = mtd->priv;
  562. struct device *dev = &onenand->pdev->dev;
  563. unsigned int block, end;
  564. int tmp;
  565. end = this->chipsize >> this->erase_shift;
  566. for (block = 0; block < end; block++) {
  567. unsigned int mem_addr = onenand->mem_addr(block, 0, 0);
  568. tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr));
  569. if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) {
  570. dev_err(dev, "block %d is write-protected!\n", block);
  571. s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET);
  572. }
  573. }
  574. }
  575. static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
  576. size_t len, int cmd)
  577. {
  578. struct onenand_chip *this = mtd->priv;
  579. int start, end, start_mem_addr, end_mem_addr;
  580. start = ofs >> this->erase_shift;
  581. start_mem_addr = onenand->mem_addr(start, 0, 0);
  582. end = start + (len >> this->erase_shift) - 1;
  583. end_mem_addr = onenand->mem_addr(end, 0, 0);
  584. if (cmd == ONENAND_CMD_LOCK) {
  585. s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand,
  586. start_mem_addr));
  587. s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand,
  588. end_mem_addr));
  589. } else {
  590. s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand,
  591. start_mem_addr));
  592. s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand,
  593. end_mem_addr));
  594. }
  595. this->wait(mtd, FL_LOCKING);
  596. }
  597. static void s3c_unlock_all(struct mtd_info *mtd)
  598. {
  599. struct onenand_chip *this = mtd->priv;
  600. loff_t ofs = 0;
  601. size_t len = this->chipsize;
  602. if (this->options & ONENAND_HAS_UNLOCK_ALL) {
  603. /* Write unlock command */
  604. this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
  605. /* No need to check return value */
  606. this->wait(mtd, FL_LOCKING);
  607. /* Workaround for all block unlock in DDP */
  608. if (!ONENAND_IS_DDP(this)) {
  609. s3c_onenand_check_lock_status(mtd);
  610. return;
  611. }
  612. /* All blocks on another chip */
  613. ofs = this->chipsize >> 1;
  614. len = this->chipsize >> 1;
  615. }
  616. s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
  617. s3c_onenand_check_lock_status(mtd);
  618. }
  619. static void s3c_onenand_setup(struct mtd_info *mtd)
  620. {
  621. struct onenand_chip *this = mtd->priv;
  622. onenand->mtd = mtd;
  623. if (onenand->type == TYPE_S3C6400) {
  624. onenand->mem_addr = s3c6400_mem_addr;
  625. onenand->cmd_map = s3c64xx_cmd_map;
  626. } else if (onenand->type == TYPE_S3C6410) {
  627. onenand->mem_addr = s3c6410_mem_addr;
  628. onenand->cmd_map = s3c64xx_cmd_map;
  629. } else if (onenand->type == TYPE_S5PC100) {
  630. onenand->mem_addr = s5pc100_mem_addr;
  631. onenand->cmd_map = s5pc1xx_cmd_map;
  632. } else if (onenand->type == TYPE_S5PC110) {
  633. /* Use generic onenand functions */
  634. onenand->cmd_map = s5pc1xx_cmd_map;
  635. this->read_bufferram = s5pc110_read_bufferram;
  636. this->chip_probe = s5pc110_chip_probe;
  637. return;
  638. } else {
  639. BUG();
  640. }
  641. this->read_word = s3c_onenand_readw;
  642. this->write_word = s3c_onenand_writew;
  643. this->wait = s3c_onenand_wait;
  644. this->bbt_wait = s3c_onenand_bbt_wait;
  645. this->unlock_all = s3c_unlock_all;
  646. this->command = s3c_onenand_command;
  647. this->read_bufferram = onenand_read_bufferram;
  648. this->write_bufferram = onenand_write_bufferram;
  649. }
  650. static int s3c_onenand_probe(struct platform_device *pdev)
  651. {
  652. struct onenand_platform_data *pdata;
  653. struct onenand_chip *this;
  654. struct mtd_info *mtd;
  655. struct resource *r;
  656. int size, err;
  657. pdata = pdev->dev.platform_data;
  658. /* No need to check pdata. the platform data is optional */
  659. size = sizeof(struct mtd_info) + sizeof(struct onenand_chip);
  660. mtd = kzalloc(size, GFP_KERNEL);
  661. if (!mtd) {
  662. dev_err(&pdev->dev, "failed to allocate memory\n");
  663. return -ENOMEM;
  664. }
  665. onenand = kzalloc(sizeof(struct s3c_onenand), GFP_KERNEL);
  666. if (!onenand) {
  667. err = -ENOMEM;
  668. goto onenand_fail;
  669. }
  670. this = (struct onenand_chip *) &mtd[1];
  671. mtd->priv = this;
  672. mtd->dev.parent = &pdev->dev;
  673. mtd->owner = THIS_MODULE;
  674. onenand->pdev = pdev;
  675. onenand->type = platform_get_device_id(pdev)->driver_data;
  676. s3c_onenand_setup(mtd);
  677. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  678. if (!r) {
  679. dev_err(&pdev->dev, "no memory resource defined\n");
  680. return -ENOENT;
  681. goto ahb_resource_failed;
  682. }
  683. onenand->base_res = request_mem_region(r->start, resource_size(r),
  684. pdev->name);
  685. if (!onenand->base_res) {
  686. dev_err(&pdev->dev, "failed to request memory resource\n");
  687. err = -EBUSY;
  688. goto resource_failed;
  689. }
  690. onenand->base = ioremap(r->start, resource_size(r));
  691. if (!onenand->base) {
  692. dev_err(&pdev->dev, "failed to map memory resource\n");
  693. err = -EFAULT;
  694. goto ioremap_failed;
  695. }
  696. /* Set onenand_chip also */
  697. this->base = onenand->base;
  698. /* Use runtime badblock check */
  699. this->options |= ONENAND_SKIP_UNLOCK_CHECK;
  700. if (onenand->type != TYPE_S5PC110) {
  701. r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  702. if (!r) {
  703. dev_err(&pdev->dev, "no buffer memory resource defined\n");
  704. return -ENOENT;
  705. goto ahb_resource_failed;
  706. }
  707. onenand->ahb_res = request_mem_region(r->start, resource_size(r),
  708. pdev->name);
  709. if (!onenand->ahb_res) {
  710. dev_err(&pdev->dev, "failed to request buffer memory resource\n");
  711. err = -EBUSY;
  712. goto ahb_resource_failed;
  713. }
  714. onenand->ahb_addr = ioremap(r->start, resource_size(r));
  715. if (!onenand->ahb_addr) {
  716. dev_err(&pdev->dev, "failed to map buffer memory resource\n");
  717. err = -EINVAL;
  718. goto ahb_ioremap_failed;
  719. }
  720. /* Allocate 4KiB BufferRAM */
  721. onenand->page_buf = kzalloc(SZ_4K, GFP_KERNEL);
  722. if (!onenand->page_buf) {
  723. err = -ENOMEM;
  724. goto page_buf_fail;
  725. }
  726. /* Allocate 128 SpareRAM */
  727. onenand->oob_buf = kzalloc(128, GFP_KERNEL);
  728. if (!onenand->oob_buf) {
  729. err = -ENOMEM;
  730. goto oob_buf_fail;
  731. }
  732. /* S3C doesn't handle subpage write */
  733. mtd->subpage_sft = 0;
  734. this->subpagesize = mtd->writesize;
  735. } else { /* S5PC110 */
  736. r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  737. if (!r) {
  738. dev_err(&pdev->dev, "no dma memory resource defined\n");
  739. return -ENOENT;
  740. goto dma_resource_failed;
  741. }
  742. onenand->dma_res = request_mem_region(r->start, resource_size(r),
  743. pdev->name);
  744. if (!onenand->dma_res) {
  745. dev_err(&pdev->dev, "failed to request dma memory resource\n");
  746. err = -EBUSY;
  747. goto dma_resource_failed;
  748. }
  749. onenand->dma_addr = ioremap(r->start, resource_size(r));
  750. if (!onenand->dma_addr) {
  751. dev_err(&pdev->dev, "failed to map dma memory resource\n");
  752. err = -EINVAL;
  753. goto dma_ioremap_failed;
  754. }
  755. onenand->phys_base = onenand->base_res->start;
  756. }
  757. if (onenand_scan(mtd, 1)) {
  758. err = -EFAULT;
  759. goto scan_failed;
  760. }
  761. if (onenand->type != TYPE_S5PC110) {
  762. /* S3C doesn't handle subpage write */
  763. mtd->subpage_sft = 0;
  764. this->subpagesize = mtd->writesize;
  765. }
  766. if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
  767. dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
  768. #ifdef CONFIG_MTD_PARTITIONS
  769. err = parse_mtd_partitions(mtd, part_probes, &onenand->parts, 0);
  770. if (err > 0)
  771. add_mtd_partitions(mtd, onenand->parts, err);
  772. else if (err <= 0 && pdata && pdata->parts)
  773. add_mtd_partitions(mtd, pdata->parts, pdata->nr_parts);
  774. else
  775. #endif
  776. err = add_mtd_device(mtd);
  777. platform_set_drvdata(pdev, mtd);
  778. return 0;
  779. scan_failed:
  780. if (onenand->dma_addr)
  781. iounmap(onenand->dma_addr);
  782. dma_ioremap_failed:
  783. if (onenand->dma_res)
  784. release_mem_region(onenand->dma_res->start,
  785. resource_size(onenand->dma_res));
  786. kfree(onenand->oob_buf);
  787. oob_buf_fail:
  788. kfree(onenand->page_buf);
  789. page_buf_fail:
  790. if (onenand->ahb_addr)
  791. iounmap(onenand->ahb_addr);
  792. ahb_ioremap_failed:
  793. if (onenand->ahb_res)
  794. release_mem_region(onenand->ahb_res->start,
  795. resource_size(onenand->ahb_res));
  796. dma_resource_failed:
  797. ahb_resource_failed:
  798. iounmap(onenand->base);
  799. ioremap_failed:
  800. if (onenand->base_res)
  801. release_mem_region(onenand->base_res->start,
  802. resource_size(onenand->base_res));
  803. resource_failed:
  804. kfree(onenand);
  805. onenand_fail:
  806. kfree(mtd);
  807. return err;
  808. }
  809. static int __devexit s3c_onenand_remove(struct platform_device *pdev)
  810. {
  811. struct mtd_info *mtd = platform_get_drvdata(pdev);
  812. onenand_release(mtd);
  813. if (onenand->ahb_addr)
  814. iounmap(onenand->ahb_addr);
  815. if (onenand->ahb_res)
  816. release_mem_region(onenand->ahb_res->start,
  817. resource_size(onenand->ahb_res));
  818. if (onenand->dma_addr)
  819. iounmap(onenand->dma_addr);
  820. if (onenand->dma_res)
  821. release_mem_region(onenand->dma_res->start,
  822. resource_size(onenand->dma_res));
  823. iounmap(onenand->base);
  824. release_mem_region(onenand->base_res->start,
  825. resource_size(onenand->base_res));
  826. platform_set_drvdata(pdev, NULL);
  827. kfree(onenand->oob_buf);
  828. kfree(onenand->page_buf);
  829. kfree(onenand);
  830. kfree(mtd);
  831. return 0;
  832. }
  833. static int s3c_pm_ops_suspend(struct device *dev)
  834. {
  835. struct platform_device *pdev = to_platform_device(dev);
  836. struct mtd_info *mtd = platform_get_drvdata(pdev);
  837. struct onenand_chip *this = mtd->priv;
  838. this->wait(mtd, FL_PM_SUSPENDED);
  839. return mtd->suspend(mtd);
  840. }
  841. static int s3c_pm_ops_resume(struct device *dev)
  842. {
  843. struct platform_device *pdev = to_platform_device(dev);
  844. struct mtd_info *mtd = platform_get_drvdata(pdev);
  845. struct onenand_chip *this = mtd->priv;
  846. mtd->resume(mtd);
  847. this->unlock_all(mtd);
  848. return 0;
  849. }
  850. static const struct dev_pm_ops s3c_pm_ops = {
  851. .suspend = s3c_pm_ops_suspend,
  852. .resume = s3c_pm_ops_resume,
  853. };
  854. static struct platform_device_id s3c_onenand_driver_ids[] = {
  855. {
  856. .name = "s3c6400-onenand",
  857. .driver_data = TYPE_S3C6400,
  858. }, {
  859. .name = "s3c6410-onenand",
  860. .driver_data = TYPE_S3C6410,
  861. }, {
  862. .name = "s5pc100-onenand",
  863. .driver_data = TYPE_S5PC100,
  864. }, {
  865. .name = "s5pc110-onenand",
  866. .driver_data = TYPE_S5PC110,
  867. }, { },
  868. };
  869. MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids);
  870. static struct platform_driver s3c_onenand_driver = {
  871. .driver = {
  872. .name = "samsung-onenand",
  873. .pm = &s3c_pm_ops,
  874. },
  875. .id_table = s3c_onenand_driver_ids,
  876. .probe = s3c_onenand_probe,
  877. .remove = __devexit_p(s3c_onenand_remove),
  878. };
  879. static int __init s3c_onenand_init(void)
  880. {
  881. return platform_driver_register(&s3c_onenand_driver);
  882. }
  883. static void __exit s3c_onenand_exit(void)
  884. {
  885. platform_driver_unregister(&s3c_onenand_driver);
  886. }
  887. module_init(s3c_onenand_init);
  888. module_exit(s3c_onenand_exit);
  889. MODULE_LICENSE("GPL");
  890. MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
  891. MODULE_DESCRIPTION("Samsung OneNAND controller support");