perf_event.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. /*
  2. * Performance event support framework for SuperH hardware counters.
  3. *
  4. * Copyright (C) 2009 Paul Mundt
  5. *
  6. * Heavily based on the x86 and PowerPC implementations.
  7. *
  8. * x86:
  9. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  10. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  11. * Copyright (C) 2009 Jaswinder Singh Rajput
  12. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  13. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  14. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  15. *
  16. * ppc:
  17. * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
  18. *
  19. * This file is subject to the terms and conditions of the GNU General Public
  20. * License. See the file "COPYING" in the main directory of this archive
  21. * for more details.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/init.h>
  25. #include <linux/io.h>
  26. #include <linux/irq.h>
  27. #include <linux/perf_event.h>
  28. #include <asm/processor.h>
  29. struct cpu_hw_events {
  30. struct perf_event *events[MAX_HWEVENTS];
  31. unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
  32. unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
  33. };
  34. DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  35. static struct sh_pmu *sh_pmu __read_mostly;
  36. /* Number of perf_events counting hardware events */
  37. static atomic_t num_events;
  38. /* Used to avoid races in calling reserve/release_pmc_hardware */
  39. static DEFINE_MUTEX(pmc_reserve_mutex);
  40. /*
  41. * Stub these out for now, do something more profound later.
  42. */
  43. int reserve_pmc_hardware(void)
  44. {
  45. return 0;
  46. }
  47. void release_pmc_hardware(void)
  48. {
  49. }
  50. static inline int sh_pmu_initialized(void)
  51. {
  52. return !!sh_pmu;
  53. }
  54. /*
  55. * Release the PMU if this is the last perf_event.
  56. */
  57. static void hw_perf_event_destroy(struct perf_event *event)
  58. {
  59. if (!atomic_add_unless(&num_events, -1, 1)) {
  60. mutex_lock(&pmc_reserve_mutex);
  61. if (atomic_dec_return(&num_events) == 0)
  62. release_pmc_hardware();
  63. mutex_unlock(&pmc_reserve_mutex);
  64. }
  65. }
  66. static int hw_perf_cache_event(int config, int *evp)
  67. {
  68. unsigned long type, op, result;
  69. int ev;
  70. if (!sh_pmu->cache_events)
  71. return -EINVAL;
  72. /* unpack config */
  73. type = config & 0xff;
  74. op = (config >> 8) & 0xff;
  75. result = (config >> 16) & 0xff;
  76. if (type >= PERF_COUNT_HW_CACHE_MAX ||
  77. op >= PERF_COUNT_HW_CACHE_OP_MAX ||
  78. result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  79. return -EINVAL;
  80. ev = (*sh_pmu->cache_events)[type][op][result];
  81. if (ev == 0)
  82. return -EOPNOTSUPP;
  83. if (ev == -1)
  84. return -EINVAL;
  85. *evp = ev;
  86. return 0;
  87. }
  88. static int __hw_perf_event_init(struct perf_event *event)
  89. {
  90. struct perf_event_attr *attr = &event->attr;
  91. struct hw_perf_event *hwc = &event->hw;
  92. int config = -1;
  93. int err;
  94. if (!sh_pmu_initialized())
  95. return -ENODEV;
  96. /*
  97. * All of the on-chip counters are "limited", in that they have
  98. * no interrupts, and are therefore unable to do sampling without
  99. * further work and timer assistance.
  100. */
  101. if (hwc->sample_period)
  102. return -EINVAL;
  103. /*
  104. * See if we need to reserve the counter.
  105. *
  106. * If no events are currently in use, then we have to take a
  107. * mutex to ensure that we don't race with another task doing
  108. * reserve_pmc_hardware or release_pmc_hardware.
  109. */
  110. err = 0;
  111. if (!atomic_inc_not_zero(&num_events)) {
  112. mutex_lock(&pmc_reserve_mutex);
  113. if (atomic_read(&num_events) == 0 &&
  114. reserve_pmc_hardware())
  115. err = -EBUSY;
  116. else
  117. atomic_inc(&num_events);
  118. mutex_unlock(&pmc_reserve_mutex);
  119. }
  120. if (err)
  121. return err;
  122. event->destroy = hw_perf_event_destroy;
  123. switch (attr->type) {
  124. case PERF_TYPE_RAW:
  125. config = attr->config & sh_pmu->raw_event_mask;
  126. break;
  127. case PERF_TYPE_HW_CACHE:
  128. err = hw_perf_cache_event(attr->config, &config);
  129. if (err)
  130. return err;
  131. break;
  132. case PERF_TYPE_HARDWARE:
  133. if (attr->config >= sh_pmu->max_events)
  134. return -EINVAL;
  135. config = sh_pmu->event_map(attr->config);
  136. break;
  137. }
  138. if (config == -1)
  139. return -EINVAL;
  140. hwc->config |= config;
  141. return 0;
  142. }
  143. static void sh_perf_event_update(struct perf_event *event,
  144. struct hw_perf_event *hwc, int idx)
  145. {
  146. u64 prev_raw_count, new_raw_count;
  147. s64 delta;
  148. int shift = 0;
  149. /*
  150. * Depending on the counter configuration, they may or may not
  151. * be chained, in which case the previous counter value can be
  152. * updated underneath us if the lower-half overflows.
  153. *
  154. * Our tactic to handle this is to first atomically read and
  155. * exchange a new raw count - then add that new-prev delta
  156. * count to the generic counter atomically.
  157. *
  158. * As there is no interrupt associated with the overflow events,
  159. * this is the simplest approach for maintaining consistency.
  160. */
  161. again:
  162. prev_raw_count = local64_read(&hwc->prev_count);
  163. new_raw_count = sh_pmu->read(idx);
  164. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  165. new_raw_count) != prev_raw_count)
  166. goto again;
  167. /*
  168. * Now we have the new raw value and have updated the prev
  169. * timestamp already. We can now calculate the elapsed delta
  170. * (counter-)time and add that to the generic counter.
  171. *
  172. * Careful, not all hw sign-extends above the physical width
  173. * of the count.
  174. */
  175. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  176. delta >>= shift;
  177. local64_add(delta, &event->count);
  178. }
  179. static void sh_pmu_stop(struct perf_event *event, int flags)
  180. {
  181. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  182. struct hw_perf_event *hwc = &event->hw;
  183. int idx = hwc->idx;
  184. if (!(event->hw.state & PERF_HES_STOPPED)) {
  185. sh_pmu->disable(hwc, idx);
  186. cpuc->events[idx] = NULL;
  187. event->hw.state |= PERF_HES_STOPPED;
  188. }
  189. if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
  190. sh_perf_event_update(event, &event->hw, idx);
  191. event->hw.state |= PERF_HES_UPTODATE;
  192. }
  193. }
  194. static void sh_pmu_start(struct perf_event *event, int flags)
  195. {
  196. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  197. struct hw_perf_event *hwc = &event->hw;
  198. int idx = hwc->idx;
  199. if (WARN_ON_ONCE(idx == -1))
  200. return;
  201. if (flags & PERF_EF_RELOAD)
  202. WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
  203. cpuc->events[idx] = event;
  204. event->hw.state = 0;
  205. sh_pmu->enable(hwc, idx);
  206. }
  207. static void sh_pmu_del(struct perf_event *event, int flags)
  208. {
  209. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  210. sh_pmu_stop(event, PERF_EF_UPDATE);
  211. __clear_bit(event->hw.idx, cpuc->used_mask);
  212. perf_event_update_userpage(event);
  213. }
  214. static int sh_pmu_add(struct perf_event *event, int flags)
  215. {
  216. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  217. struct hw_perf_event *hwc = &event->hw;
  218. int idx = hwc->idx;
  219. int ret = -EAGAIN;
  220. perf_pmu_disable(event->pmu);
  221. if (__test_and_set_bit(idx, cpuc->used_mask)) {
  222. idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
  223. if (idx == sh_pmu->num_events)
  224. goto out;
  225. __set_bit(idx, cpuc->used_mask);
  226. hwc->idx = idx;
  227. }
  228. sh_pmu->disable(hwc, idx);
  229. event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
  230. if (flags & PERF_EF_START)
  231. sh_pmu_start(event, PERF_EF_RELOAD);
  232. perf_event_update_userpage(event);
  233. ret = 0;
  234. out:
  235. perf_pmu_enable(event->pmu);
  236. return ret;
  237. }
  238. static void sh_pmu_read(struct perf_event *event)
  239. {
  240. sh_perf_event_update(event, &event->hw, event->hw.idx);
  241. }
  242. static int sh_pmu_event_init(struct perf_event *event)
  243. {
  244. int err;
  245. switch (event->attr.type) {
  246. case PERF_TYPE_RAW:
  247. case PERF_TYPE_HW_CACHE:
  248. case PERF_TYPE_HARDWARE:
  249. err = __hw_perf_event_init(event);
  250. break;
  251. default:
  252. return -ENOENT;
  253. }
  254. if (unlikely(err)) {
  255. if (event->destroy)
  256. event->destroy(event);
  257. }
  258. return err;
  259. }
  260. static void sh_pmu_enable(struct pmu *pmu)
  261. {
  262. if (!sh_pmu_initialized())
  263. return;
  264. sh_pmu->enable_all();
  265. }
  266. static void sh_pmu_disable(struct pmu *pmu)
  267. {
  268. if (!sh_pmu_initialized())
  269. return;
  270. sh_pmu->disable_all();
  271. }
  272. static struct pmu pmu = {
  273. .pmu_enable = sh_pmu_enable,
  274. .pmu_disable = sh_pmu_disable,
  275. .event_init = sh_pmu_event_init,
  276. .add = sh_pmu_add,
  277. .del = sh_pmu_del,
  278. .start = sh_pmu_start,
  279. .stop = sh_pmu_stop,
  280. .read = sh_pmu_read,
  281. };
  282. static void sh_pmu_setup(int cpu)
  283. {
  284. struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
  285. memset(cpuhw, 0, sizeof(struct cpu_hw_events));
  286. }
  287. static int __cpuinit
  288. sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  289. {
  290. unsigned int cpu = (long)hcpu;
  291. switch (action & ~CPU_TASKS_FROZEN) {
  292. case CPU_UP_PREPARE:
  293. sh_pmu_setup(cpu);
  294. break;
  295. default:
  296. break;
  297. }
  298. return NOTIFY_OK;
  299. }
  300. int __cpuinit register_sh_pmu(struct sh_pmu *_pmu)
  301. {
  302. if (sh_pmu)
  303. return -EBUSY;
  304. sh_pmu = _pmu;
  305. pr_info("Performance Events: %s support registered\n", _pmu->name);
  306. WARN_ON(_pmu->num_events > MAX_HWEVENTS);
  307. perf_pmu_register(&pmu);
  308. perf_cpu_notifier(sh_pmu_notifier);
  309. return 0;
  310. }