mmu.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/memblock.h>
  17. #include <linux/sort.h>
  18. #include <asm/cputype.h>
  19. #include <asm/sections.h>
  20. #include <asm/cachetype.h>
  21. #include <asm/setup.h>
  22. #include <asm/sizes.h>
  23. #include <asm/smp_plat.h>
  24. #include <asm/tlb.h>
  25. #include <asm/highmem.h>
  26. #include <asm/mach/arch.h>
  27. #include <asm/mach/map.h>
  28. #include "mm.h"
  29. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  30. /*
  31. * empty_zero_page is a special page that is used for
  32. * zero-initialized data and COW.
  33. */
  34. struct page *empty_zero_page;
  35. EXPORT_SYMBOL(empty_zero_page);
  36. /*
  37. * The pmd table for the upper-most set of pages.
  38. */
  39. pmd_t *top_pmd;
  40. #define CPOLICY_UNCACHED 0
  41. #define CPOLICY_BUFFERED 1
  42. #define CPOLICY_WRITETHROUGH 2
  43. #define CPOLICY_WRITEBACK 3
  44. #define CPOLICY_WRITEALLOC 4
  45. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  46. static unsigned int ecc_mask __initdata = 0;
  47. pgprot_t pgprot_user;
  48. pgprot_t pgprot_kernel;
  49. EXPORT_SYMBOL(pgprot_user);
  50. EXPORT_SYMBOL(pgprot_kernel);
  51. struct cachepolicy {
  52. const char policy[16];
  53. unsigned int cr_mask;
  54. unsigned int pmd;
  55. unsigned int pte;
  56. };
  57. static struct cachepolicy cache_policies[] __initdata = {
  58. {
  59. .policy = "uncached",
  60. .cr_mask = CR_W|CR_C,
  61. .pmd = PMD_SECT_UNCACHED,
  62. .pte = L_PTE_MT_UNCACHED,
  63. }, {
  64. .policy = "buffered",
  65. .cr_mask = CR_C,
  66. .pmd = PMD_SECT_BUFFERED,
  67. .pte = L_PTE_MT_BUFFERABLE,
  68. }, {
  69. .policy = "writethrough",
  70. .cr_mask = 0,
  71. .pmd = PMD_SECT_WT,
  72. .pte = L_PTE_MT_WRITETHROUGH,
  73. }, {
  74. .policy = "writeback",
  75. .cr_mask = 0,
  76. .pmd = PMD_SECT_WB,
  77. .pte = L_PTE_MT_WRITEBACK,
  78. }, {
  79. .policy = "writealloc",
  80. .cr_mask = 0,
  81. .pmd = PMD_SECT_WBWA,
  82. .pte = L_PTE_MT_WRITEALLOC,
  83. }
  84. };
  85. /*
  86. * These are useful for identifying cache coherency
  87. * problems by allowing the cache or the cache and
  88. * writebuffer to be turned off. (Note: the write
  89. * buffer should not be on and the cache off).
  90. */
  91. static int __init early_cachepolicy(char *p)
  92. {
  93. int i;
  94. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  95. int len = strlen(cache_policies[i].policy);
  96. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  97. cachepolicy = i;
  98. cr_alignment &= ~cache_policies[i].cr_mask;
  99. cr_no_alignment &= ~cache_policies[i].cr_mask;
  100. break;
  101. }
  102. }
  103. if (i == ARRAY_SIZE(cache_policies))
  104. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  105. /*
  106. * This restriction is partly to do with the way we boot; it is
  107. * unpredictable to have memory mapped using two different sets of
  108. * memory attributes (shared, type, and cache attribs). We can not
  109. * change these attributes once the initial assembly has setup the
  110. * page tables.
  111. */
  112. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  113. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  114. cachepolicy = CPOLICY_WRITEBACK;
  115. }
  116. flush_cache_all();
  117. set_cr(cr_alignment);
  118. return 0;
  119. }
  120. early_param("cachepolicy", early_cachepolicy);
  121. static int __init early_nocache(char *__unused)
  122. {
  123. char *p = "buffered";
  124. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  125. early_cachepolicy(p);
  126. return 0;
  127. }
  128. early_param("nocache", early_nocache);
  129. static int __init early_nowrite(char *__unused)
  130. {
  131. char *p = "uncached";
  132. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  133. early_cachepolicy(p);
  134. return 0;
  135. }
  136. early_param("nowb", early_nowrite);
  137. static int __init early_ecc(char *p)
  138. {
  139. if (memcmp(p, "on", 2) == 0)
  140. ecc_mask = PMD_PROTECTION;
  141. else if (memcmp(p, "off", 3) == 0)
  142. ecc_mask = 0;
  143. return 0;
  144. }
  145. early_param("ecc", early_ecc);
  146. static int __init noalign_setup(char *__unused)
  147. {
  148. cr_alignment &= ~CR_A;
  149. cr_no_alignment &= ~CR_A;
  150. set_cr(cr_alignment);
  151. return 1;
  152. }
  153. __setup("noalign", noalign_setup);
  154. #ifndef CONFIG_SMP
  155. void adjust_cr(unsigned long mask, unsigned long set)
  156. {
  157. unsigned long flags;
  158. mask &= ~CR_A;
  159. set &= mask;
  160. local_irq_save(flags);
  161. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  162. cr_alignment = (cr_alignment & ~mask) | set;
  163. set_cr((get_cr() & ~mask) | set);
  164. local_irq_restore(flags);
  165. }
  166. #endif
  167. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  168. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  169. static struct mem_type mem_types[] = {
  170. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  171. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  172. L_PTE_SHARED,
  173. .prot_l1 = PMD_TYPE_TABLE,
  174. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  175. .domain = DOMAIN_IO,
  176. },
  177. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  178. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  179. .prot_l1 = PMD_TYPE_TABLE,
  180. .prot_sect = PROT_SECT_DEVICE,
  181. .domain = DOMAIN_IO,
  182. },
  183. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  184. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  185. .prot_l1 = PMD_TYPE_TABLE,
  186. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  187. .domain = DOMAIN_IO,
  188. },
  189. [MT_DEVICE_WC] = { /* ioremap_wc */
  190. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  191. .prot_l1 = PMD_TYPE_TABLE,
  192. .prot_sect = PROT_SECT_DEVICE,
  193. .domain = DOMAIN_IO,
  194. },
  195. [MT_UNCACHED] = {
  196. .prot_pte = PROT_PTE_DEVICE,
  197. .prot_l1 = PMD_TYPE_TABLE,
  198. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  199. .domain = DOMAIN_IO,
  200. },
  201. [MT_CACHECLEAN] = {
  202. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  203. .domain = DOMAIN_KERNEL,
  204. },
  205. [MT_MINICLEAN] = {
  206. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  207. .domain = DOMAIN_KERNEL,
  208. },
  209. [MT_LOW_VECTORS] = {
  210. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  211. L_PTE_EXEC,
  212. .prot_l1 = PMD_TYPE_TABLE,
  213. .domain = DOMAIN_USER,
  214. },
  215. [MT_HIGH_VECTORS] = {
  216. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  217. L_PTE_USER | L_PTE_EXEC,
  218. .prot_l1 = PMD_TYPE_TABLE,
  219. .domain = DOMAIN_USER,
  220. },
  221. [MT_MEMORY] = {
  222. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  223. .domain = DOMAIN_KERNEL,
  224. },
  225. [MT_ROM] = {
  226. .prot_sect = PMD_TYPE_SECT,
  227. .domain = DOMAIN_KERNEL,
  228. },
  229. [MT_MEMORY_NONCACHED] = {
  230. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  231. .domain = DOMAIN_KERNEL,
  232. },
  233. [MT_MEMORY_DTCM] = {
  234. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG |
  235. L_PTE_DIRTY | L_PTE_WRITE,
  236. .prot_l1 = PMD_TYPE_TABLE,
  237. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  238. .domain = DOMAIN_KERNEL,
  239. },
  240. [MT_MEMORY_ITCM] = {
  241. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  242. L_PTE_USER | L_PTE_EXEC,
  243. .prot_l1 = PMD_TYPE_TABLE,
  244. .domain = DOMAIN_IO,
  245. },
  246. };
  247. const struct mem_type *get_mem_type(unsigned int type)
  248. {
  249. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  250. }
  251. EXPORT_SYMBOL(get_mem_type);
  252. /*
  253. * Adjust the PMD section entries according to the CPU in use.
  254. */
  255. static void __init build_mem_type_table(void)
  256. {
  257. struct cachepolicy *cp;
  258. unsigned int cr = get_cr();
  259. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  260. int cpu_arch = cpu_architecture();
  261. int i;
  262. if (cpu_arch < CPU_ARCH_ARMv6) {
  263. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  264. if (cachepolicy > CPOLICY_BUFFERED)
  265. cachepolicy = CPOLICY_BUFFERED;
  266. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  267. if (cachepolicy > CPOLICY_WRITETHROUGH)
  268. cachepolicy = CPOLICY_WRITETHROUGH;
  269. #endif
  270. }
  271. if (cpu_arch < CPU_ARCH_ARMv5) {
  272. if (cachepolicy >= CPOLICY_WRITEALLOC)
  273. cachepolicy = CPOLICY_WRITEBACK;
  274. ecc_mask = 0;
  275. }
  276. #ifdef CONFIG_SMP
  277. cachepolicy = CPOLICY_WRITEALLOC;
  278. #endif
  279. /*
  280. * Strip out features not present on earlier architectures.
  281. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  282. * without extended page tables don't have the 'Shared' bit.
  283. */
  284. if (cpu_arch < CPU_ARCH_ARMv5)
  285. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  286. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  287. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  288. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  289. mem_types[i].prot_sect &= ~PMD_SECT_S;
  290. /*
  291. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  292. * "update-able on write" bit on ARM610). However, Xscale and
  293. * Xscale3 require this bit to be cleared.
  294. */
  295. if (cpu_is_xscale() || cpu_is_xsc3()) {
  296. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  297. mem_types[i].prot_sect &= ~PMD_BIT4;
  298. mem_types[i].prot_l1 &= ~PMD_BIT4;
  299. }
  300. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  301. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  302. if (mem_types[i].prot_l1)
  303. mem_types[i].prot_l1 |= PMD_BIT4;
  304. if (mem_types[i].prot_sect)
  305. mem_types[i].prot_sect |= PMD_BIT4;
  306. }
  307. }
  308. /*
  309. * Mark the device areas according to the CPU/architecture.
  310. */
  311. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  312. if (!cpu_is_xsc3()) {
  313. /*
  314. * Mark device regions on ARMv6+ as execute-never
  315. * to prevent speculative instruction fetches.
  316. */
  317. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  318. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  319. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  320. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  321. }
  322. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  323. /*
  324. * For ARMv7 with TEX remapping,
  325. * - shared device is SXCB=1100
  326. * - nonshared device is SXCB=0100
  327. * - write combine device mem is SXCB=0001
  328. * (Uncached Normal memory)
  329. */
  330. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  331. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  332. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  333. } else if (cpu_is_xsc3()) {
  334. /*
  335. * For Xscale3,
  336. * - shared device is TEXCB=00101
  337. * - nonshared device is TEXCB=01000
  338. * - write combine device mem is TEXCB=00100
  339. * (Inner/Outer Uncacheable in xsc3 parlance)
  340. */
  341. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  342. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  343. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  344. } else {
  345. /*
  346. * For ARMv6 and ARMv7 without TEX remapping,
  347. * - shared device is TEXCB=00001
  348. * - nonshared device is TEXCB=01000
  349. * - write combine device mem is TEXCB=00100
  350. * (Uncached Normal in ARMv6 parlance).
  351. */
  352. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  353. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  354. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  355. }
  356. } else {
  357. /*
  358. * On others, write combining is "Uncached/Buffered"
  359. */
  360. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  361. }
  362. /*
  363. * Now deal with the memory-type mappings
  364. */
  365. cp = &cache_policies[cachepolicy];
  366. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  367. #ifndef CONFIG_SMP
  368. /*
  369. * Only use write-through for non-SMP systems
  370. */
  371. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  372. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  373. #endif
  374. /*
  375. * Enable CPU-specific coherency if supported.
  376. * (Only available on XSC3 at the moment.)
  377. */
  378. if (arch_is_coherent() && cpu_is_xsc3())
  379. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  380. /*
  381. * ARMv6 and above have extended page tables.
  382. */
  383. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  384. /*
  385. * Mark cache clean areas and XIP ROM read only
  386. * from SVC mode and no access from userspace.
  387. */
  388. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  389. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  390. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  391. #ifdef CONFIG_SMP
  392. /*
  393. * Mark memory with the "shared" attribute for SMP systems
  394. */
  395. user_pgprot |= L_PTE_SHARED;
  396. kern_pgprot |= L_PTE_SHARED;
  397. vecs_pgprot |= L_PTE_SHARED;
  398. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  399. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  400. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  401. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  402. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  403. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  404. #endif
  405. }
  406. /*
  407. * Non-cacheable Normal - intended for memory areas that must
  408. * not cause dirty cache line writebacks when used
  409. */
  410. if (cpu_arch >= CPU_ARCH_ARMv6) {
  411. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  412. /* Non-cacheable Normal is XCB = 001 */
  413. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  414. PMD_SECT_BUFFERED;
  415. } else {
  416. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  417. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  418. PMD_SECT_TEX(1);
  419. }
  420. } else {
  421. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  422. }
  423. for (i = 0; i < 16; i++) {
  424. unsigned long v = pgprot_val(protection_map[i]);
  425. protection_map[i] = __pgprot(v | user_pgprot);
  426. }
  427. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  428. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  429. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  430. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  431. L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
  432. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  433. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  434. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  435. mem_types[MT_ROM].prot_sect |= cp->pmd;
  436. switch (cp->pmd) {
  437. case PMD_SECT_WT:
  438. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  439. break;
  440. case PMD_SECT_WB:
  441. case PMD_SECT_WBWA:
  442. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  443. break;
  444. }
  445. printk("Memory policy: ECC %sabled, Data cache %s\n",
  446. ecc_mask ? "en" : "dis", cp->policy);
  447. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  448. struct mem_type *t = &mem_types[i];
  449. if (t->prot_l1)
  450. t->prot_l1 |= PMD_DOMAIN(t->domain);
  451. if (t->prot_sect)
  452. t->prot_sect |= PMD_DOMAIN(t->domain);
  453. }
  454. }
  455. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  456. static void __init *early_alloc(unsigned long sz)
  457. {
  458. void *ptr = __va(memblock_alloc(sz, sz));
  459. memset(ptr, 0, sz);
  460. return ptr;
  461. }
  462. static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
  463. {
  464. if (pmd_none(*pmd)) {
  465. pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
  466. __pmd_populate(pmd, __pa(pte) | prot);
  467. }
  468. BUG_ON(pmd_bad(*pmd));
  469. return pte_offset_kernel(pmd, addr);
  470. }
  471. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  472. unsigned long end, unsigned long pfn,
  473. const struct mem_type *type)
  474. {
  475. pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
  476. do {
  477. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  478. pfn++;
  479. } while (pte++, addr += PAGE_SIZE, addr != end);
  480. }
  481. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  482. unsigned long end, unsigned long phys,
  483. const struct mem_type *type)
  484. {
  485. pmd_t *pmd = pmd_offset(pgd, addr);
  486. /*
  487. * Try a section mapping - end, addr and phys must all be aligned
  488. * to a section boundary. Note that PMDs refer to the individual
  489. * L1 entries, whereas PGDs refer to a group of L1 entries making
  490. * up one logical pointer to an L2 table.
  491. */
  492. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  493. pmd_t *p = pmd;
  494. if (addr & SECTION_SIZE)
  495. pmd++;
  496. do {
  497. *pmd = __pmd(phys | type->prot_sect);
  498. phys += SECTION_SIZE;
  499. } while (pmd++, addr += SECTION_SIZE, addr != end);
  500. flush_pmd_entry(p);
  501. } else {
  502. /*
  503. * No need to loop; pte's aren't interested in the
  504. * individual L1 entries.
  505. */
  506. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  507. }
  508. }
  509. static void __init create_36bit_mapping(struct map_desc *md,
  510. const struct mem_type *type)
  511. {
  512. unsigned long phys, addr, length, end;
  513. pgd_t *pgd;
  514. addr = md->virtual;
  515. phys = (unsigned long)__pfn_to_phys(md->pfn);
  516. length = PAGE_ALIGN(md->length);
  517. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  518. printk(KERN_ERR "MM: CPU does not support supersection "
  519. "mapping for 0x%08llx at 0x%08lx\n",
  520. __pfn_to_phys((u64)md->pfn), addr);
  521. return;
  522. }
  523. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  524. * Since domain assignments can in fact be arbitrary, the
  525. * 'domain == 0' check below is required to insure that ARMv6
  526. * supersections are only allocated for domain 0 regardless
  527. * of the actual domain assignments in use.
  528. */
  529. if (type->domain) {
  530. printk(KERN_ERR "MM: invalid domain in supersection "
  531. "mapping for 0x%08llx at 0x%08lx\n",
  532. __pfn_to_phys((u64)md->pfn), addr);
  533. return;
  534. }
  535. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  536. printk(KERN_ERR "MM: cannot create mapping for "
  537. "0x%08llx at 0x%08lx invalid alignment\n",
  538. __pfn_to_phys((u64)md->pfn), addr);
  539. return;
  540. }
  541. /*
  542. * Shift bits [35:32] of address into bits [23:20] of PMD
  543. * (See ARMv6 spec).
  544. */
  545. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  546. pgd = pgd_offset_k(addr);
  547. end = addr + length;
  548. do {
  549. pmd_t *pmd = pmd_offset(pgd, addr);
  550. int i;
  551. for (i = 0; i < 16; i++)
  552. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  553. addr += SUPERSECTION_SIZE;
  554. phys += SUPERSECTION_SIZE;
  555. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  556. } while (addr != end);
  557. }
  558. /*
  559. * Create the page directory entries and any necessary
  560. * page tables for the mapping specified by `md'. We
  561. * are able to cope here with varying sizes and address
  562. * offsets, and we take full advantage of sections and
  563. * supersections.
  564. */
  565. static void __init create_mapping(struct map_desc *md)
  566. {
  567. unsigned long phys, addr, length, end;
  568. const struct mem_type *type;
  569. pgd_t *pgd;
  570. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  571. printk(KERN_WARNING "BUG: not creating mapping for "
  572. "0x%08llx at 0x%08lx in user region\n",
  573. __pfn_to_phys((u64)md->pfn), md->virtual);
  574. return;
  575. }
  576. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  577. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  578. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  579. "overlaps vmalloc space\n",
  580. __pfn_to_phys((u64)md->pfn), md->virtual);
  581. }
  582. type = &mem_types[md->type];
  583. /*
  584. * Catch 36-bit addresses
  585. */
  586. if (md->pfn >= 0x100000) {
  587. create_36bit_mapping(md, type);
  588. return;
  589. }
  590. addr = md->virtual & PAGE_MASK;
  591. phys = (unsigned long)__pfn_to_phys(md->pfn);
  592. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  593. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  594. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  595. "be mapped using pages, ignoring.\n",
  596. __pfn_to_phys(md->pfn), addr);
  597. return;
  598. }
  599. pgd = pgd_offset_k(addr);
  600. end = addr + length;
  601. do {
  602. unsigned long next = pgd_addr_end(addr, end);
  603. alloc_init_section(pgd, addr, next, phys, type);
  604. phys += next - addr;
  605. addr = next;
  606. } while (pgd++, addr != end);
  607. }
  608. /*
  609. * Create the architecture specific mappings
  610. */
  611. void __init iotable_init(struct map_desc *io_desc, int nr)
  612. {
  613. int i;
  614. for (i = 0; i < nr; i++)
  615. create_mapping(io_desc + i);
  616. }
  617. static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
  618. /*
  619. * vmalloc=size forces the vmalloc area to be exactly 'size'
  620. * bytes. This can be used to increase (or decrease) the vmalloc
  621. * area - the default is 128m.
  622. */
  623. static int __init early_vmalloc(char *arg)
  624. {
  625. unsigned long vmalloc_reserve = memparse(arg, NULL);
  626. if (vmalloc_reserve < SZ_16M) {
  627. vmalloc_reserve = SZ_16M;
  628. printk(KERN_WARNING
  629. "vmalloc area too small, limiting to %luMB\n",
  630. vmalloc_reserve >> 20);
  631. }
  632. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  633. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  634. printk(KERN_WARNING
  635. "vmalloc area is too big, limiting to %luMB\n",
  636. vmalloc_reserve >> 20);
  637. }
  638. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  639. return 0;
  640. }
  641. early_param("vmalloc", early_vmalloc);
  642. phys_addr_t lowmem_end_addr;
  643. static void __init sanity_check_meminfo(void)
  644. {
  645. int i, j, highmem = 0;
  646. lowmem_end_addr = __pa(vmalloc_min - 1) + 1;
  647. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  648. struct membank *bank = &meminfo.bank[j];
  649. *bank = meminfo.bank[i];
  650. #ifdef CONFIG_HIGHMEM
  651. if (__va(bank->start) > vmalloc_min ||
  652. __va(bank->start) < (void *)PAGE_OFFSET)
  653. highmem = 1;
  654. bank->highmem = highmem;
  655. /*
  656. * Split those memory banks which are partially overlapping
  657. * the vmalloc area greatly simplifying things later.
  658. */
  659. if (__va(bank->start) < vmalloc_min &&
  660. bank->size > vmalloc_min - __va(bank->start)) {
  661. if (meminfo.nr_banks >= NR_BANKS) {
  662. printk(KERN_CRIT "NR_BANKS too low, "
  663. "ignoring high memory\n");
  664. } else {
  665. memmove(bank + 1, bank,
  666. (meminfo.nr_banks - i) * sizeof(*bank));
  667. meminfo.nr_banks++;
  668. i++;
  669. bank[1].size -= vmalloc_min - __va(bank->start);
  670. bank[1].start = __pa(vmalloc_min - 1) + 1;
  671. bank[1].highmem = highmem = 1;
  672. j++;
  673. }
  674. bank->size = vmalloc_min - __va(bank->start);
  675. }
  676. #else
  677. bank->highmem = highmem;
  678. /*
  679. * Check whether this memory bank would entirely overlap
  680. * the vmalloc area.
  681. */
  682. if (__va(bank->start) >= vmalloc_min ||
  683. __va(bank->start) < (void *)PAGE_OFFSET) {
  684. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  685. "(vmalloc region overlap).\n",
  686. bank->start, bank->start + bank->size - 1);
  687. continue;
  688. }
  689. /*
  690. * Check whether this memory bank would partially overlap
  691. * the vmalloc area.
  692. */
  693. if (__va(bank->start + bank->size) > vmalloc_min ||
  694. __va(bank->start + bank->size) < __va(bank->start)) {
  695. unsigned long newsize = vmalloc_min - __va(bank->start);
  696. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  697. "to -%.8lx (vmalloc region overlap).\n",
  698. bank->start, bank->start + bank->size - 1,
  699. bank->start + newsize - 1);
  700. bank->size = newsize;
  701. }
  702. #endif
  703. j++;
  704. }
  705. #ifdef CONFIG_HIGHMEM
  706. if (highmem) {
  707. const char *reason = NULL;
  708. if (cache_is_vipt_aliasing()) {
  709. /*
  710. * Interactions between kmap and other mappings
  711. * make highmem support with aliasing VIPT caches
  712. * rather difficult.
  713. */
  714. reason = "with VIPT aliasing cache";
  715. #ifdef CONFIG_SMP
  716. } else if (tlb_ops_need_broadcast()) {
  717. /*
  718. * kmap_high needs to occasionally flush TLB entries,
  719. * however, if the TLB entries need to be broadcast
  720. * we may deadlock:
  721. * kmap_high(irqs off)->flush_all_zero_pkmaps->
  722. * flush_tlb_kernel_range->smp_call_function_many
  723. * (must not be called with irqs off)
  724. */
  725. reason = "without hardware TLB ops broadcasting";
  726. #endif
  727. }
  728. if (reason) {
  729. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  730. reason);
  731. while (j > 0 && meminfo.bank[j - 1].highmem)
  732. j--;
  733. }
  734. }
  735. #endif
  736. meminfo.nr_banks = j;
  737. }
  738. static inline void prepare_page_table(void)
  739. {
  740. unsigned long addr;
  741. /*
  742. * Clear out all the mappings below the kernel image.
  743. */
  744. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  745. pmd_clear(pmd_off_k(addr));
  746. #ifdef CONFIG_XIP_KERNEL
  747. /* The XIP kernel is mapped in the module area -- skip over it */
  748. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  749. #endif
  750. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  751. pmd_clear(pmd_off_k(addr));
  752. /*
  753. * Clear out all the kernel space mappings, except for the first
  754. * memory bank, up to the end of the vmalloc region.
  755. */
  756. for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
  757. addr < VMALLOC_END; addr += PGDIR_SIZE)
  758. pmd_clear(pmd_off_k(addr));
  759. }
  760. /*
  761. * Reserve the special regions of memory
  762. */
  763. void __init arm_mm_memblock_reserve(void)
  764. {
  765. /*
  766. * Reserve the page tables. These are already in use,
  767. * and can only be in node 0.
  768. */
  769. memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
  770. #ifdef CONFIG_SA1111
  771. /*
  772. * Because of the SA1111 DMA bug, we want to preserve our
  773. * precious DMA-able memory...
  774. */
  775. memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
  776. #endif
  777. }
  778. /*
  779. * Set up device the mappings. Since we clear out the page tables for all
  780. * mappings above VMALLOC_END, we will remove any debug device mappings.
  781. * This means you have to be careful how you debug this function, or any
  782. * called function. This means you can't use any function or debugging
  783. * method which may touch any device, otherwise the kernel _will_ crash.
  784. */
  785. static void __init devicemaps_init(struct machine_desc *mdesc)
  786. {
  787. struct map_desc map;
  788. unsigned long addr;
  789. void *vectors;
  790. /*
  791. * Allocate the vector page early.
  792. */
  793. vectors = early_alloc(PAGE_SIZE);
  794. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  795. pmd_clear(pmd_off_k(addr));
  796. /*
  797. * Map the kernel if it is XIP.
  798. * It is always first in the modulearea.
  799. */
  800. #ifdef CONFIG_XIP_KERNEL
  801. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  802. map.virtual = MODULES_VADDR;
  803. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  804. map.type = MT_ROM;
  805. create_mapping(&map);
  806. #endif
  807. /*
  808. * Map the cache flushing regions.
  809. */
  810. #ifdef FLUSH_BASE
  811. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  812. map.virtual = FLUSH_BASE;
  813. map.length = SZ_1M;
  814. map.type = MT_CACHECLEAN;
  815. create_mapping(&map);
  816. #endif
  817. #ifdef FLUSH_BASE_MINICACHE
  818. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  819. map.virtual = FLUSH_BASE_MINICACHE;
  820. map.length = SZ_1M;
  821. map.type = MT_MINICLEAN;
  822. create_mapping(&map);
  823. #endif
  824. /*
  825. * Create a mapping for the machine vectors at the high-vectors
  826. * location (0xffff0000). If we aren't using high-vectors, also
  827. * create a mapping at the low-vectors virtual address.
  828. */
  829. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  830. map.virtual = 0xffff0000;
  831. map.length = PAGE_SIZE;
  832. map.type = MT_HIGH_VECTORS;
  833. create_mapping(&map);
  834. if (!vectors_high()) {
  835. map.virtual = 0;
  836. map.type = MT_LOW_VECTORS;
  837. create_mapping(&map);
  838. }
  839. /*
  840. * Ask the machine support to map in the statically mapped devices.
  841. */
  842. if (mdesc->map_io)
  843. mdesc->map_io();
  844. /*
  845. * Finally flush the caches and tlb to ensure that we're in a
  846. * consistent state wrt the writebuffer. This also ensures that
  847. * any write-allocated cache lines in the vector page are written
  848. * back. After this point, we can start to touch devices again.
  849. */
  850. local_flush_tlb_all();
  851. flush_cache_all();
  852. }
  853. static void __init kmap_init(void)
  854. {
  855. #ifdef CONFIG_HIGHMEM
  856. pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
  857. PKMAP_BASE, _PAGE_KERNEL_TABLE);
  858. #endif
  859. }
  860. static inline void map_memory_bank(struct membank *bank)
  861. {
  862. struct map_desc map;
  863. map.pfn = bank_pfn_start(bank);
  864. map.virtual = __phys_to_virt(bank_phys_start(bank));
  865. map.length = bank_phys_size(bank);
  866. map.type = MT_MEMORY;
  867. create_mapping(&map);
  868. }
  869. static void __init map_lowmem(void)
  870. {
  871. struct meminfo *mi = &meminfo;
  872. int i;
  873. /* Map all the lowmem memory banks. */
  874. for (i = 0; i < mi->nr_banks; i++) {
  875. struct membank *bank = &mi->bank[i];
  876. if (!bank->highmem)
  877. map_memory_bank(bank);
  878. }
  879. }
  880. static int __init meminfo_cmp(const void *_a, const void *_b)
  881. {
  882. const struct membank *a = _a, *b = _b;
  883. long cmp = bank_pfn_start(a) - bank_pfn_start(b);
  884. return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
  885. }
  886. /*
  887. * paging_init() sets up the page tables, initialises the zone memory
  888. * maps, and sets up the zero page, bad page and bad page tables.
  889. */
  890. void __init paging_init(struct machine_desc *mdesc)
  891. {
  892. void *zero_page;
  893. sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
  894. build_mem_type_table();
  895. sanity_check_meminfo();
  896. prepare_page_table();
  897. map_lowmem();
  898. devicemaps_init(mdesc);
  899. kmap_init();
  900. top_pmd = pmd_off_k(0xffff0000);
  901. /* allocate the zero page. */
  902. zero_page = early_alloc(PAGE_SIZE);
  903. bootmem_init();
  904. empty_zero_page = virt_to_page(zero_page);
  905. __flush_dcache_page(NULL, empty_zero_page);
  906. }
  907. /*
  908. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  909. * the user-mode pages. This will then ensure that we have predictable
  910. * results when turning the mmu off
  911. */
  912. void setup_mm_for_reboot(char mode)
  913. {
  914. unsigned long base_pmdval;
  915. pgd_t *pgd;
  916. int i;
  917. /*
  918. * We need to access to user-mode page tables here. For kernel threads
  919. * we don't have any user-mode mappings so we use the context that we
  920. * "borrowed".
  921. */
  922. pgd = current->active_mm->pgd;
  923. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  924. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  925. base_pmdval |= PMD_BIT4;
  926. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  927. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  928. pmd_t *pmd;
  929. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  930. pmd[0] = __pmd(pmdval);
  931. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  932. flush_pmd_entry(pmd);
  933. }
  934. local_flush_tlb_all();
  935. }