flush.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. /*
  2. * linux/arch/arm/mm/flush.c
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/mm.h>
  12. #include <linux/pagemap.h>
  13. #include <asm/cacheflush.h>
  14. #include <asm/cachetype.h>
  15. #include <asm/highmem.h>
  16. #include <asm/smp_plat.h>
  17. #include <asm/system.h>
  18. #include <asm/tlbflush.h>
  19. #include "mm.h"
  20. #ifdef CONFIG_CPU_CACHE_VIPT
  21. #define ALIAS_FLUSH_START 0xffff4000
  22. static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
  23. {
  24. unsigned long to = ALIAS_FLUSH_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
  25. const int zero = 0;
  26. set_pte_ext(TOP_PTE(to), pfn_pte(pfn, PAGE_KERNEL), 0);
  27. flush_tlb_kernel_page(to);
  28. asm( "mcrr p15, 0, %1, %0, c14\n"
  29. " mcr p15, 0, %2, c7, c10, 4"
  30. :
  31. : "r" (to), "r" (to + PAGE_SIZE - L1_CACHE_BYTES), "r" (zero)
  32. : "cc");
  33. }
  34. void flush_cache_mm(struct mm_struct *mm)
  35. {
  36. if (cache_is_vivt()) {
  37. vivt_flush_cache_mm(mm);
  38. return;
  39. }
  40. if (cache_is_vipt_aliasing()) {
  41. asm( "mcr p15, 0, %0, c7, c14, 0\n"
  42. " mcr p15, 0, %0, c7, c10, 4"
  43. :
  44. : "r" (0)
  45. : "cc");
  46. }
  47. }
  48. void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  49. {
  50. if (cache_is_vivt()) {
  51. vivt_flush_cache_range(vma, start, end);
  52. return;
  53. }
  54. if (cache_is_vipt_aliasing()) {
  55. asm( "mcr p15, 0, %0, c7, c14, 0\n"
  56. " mcr p15, 0, %0, c7, c10, 4"
  57. :
  58. : "r" (0)
  59. : "cc");
  60. }
  61. if (vma->vm_flags & VM_EXEC)
  62. __flush_icache_all();
  63. }
  64. void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
  65. {
  66. if (cache_is_vivt()) {
  67. vivt_flush_cache_page(vma, user_addr, pfn);
  68. return;
  69. }
  70. if (cache_is_vipt_aliasing()) {
  71. flush_pfn_alias(pfn, user_addr);
  72. __flush_icache_all();
  73. }
  74. if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
  75. __flush_icache_all();
  76. }
  77. #else
  78. #define flush_pfn_alias(pfn,vaddr) do { } while (0)
  79. #endif
  80. #ifdef CONFIG_SMP
  81. static void flush_ptrace_access_other(void *args)
  82. {
  83. __flush_icache_all();
  84. }
  85. #endif
  86. static
  87. void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
  88. unsigned long uaddr, void *kaddr, unsigned long len)
  89. {
  90. if (cache_is_vivt()) {
  91. if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
  92. unsigned long addr = (unsigned long)kaddr;
  93. __cpuc_coherent_kern_range(addr, addr + len);
  94. }
  95. return;
  96. }
  97. if (cache_is_vipt_aliasing()) {
  98. flush_pfn_alias(page_to_pfn(page), uaddr);
  99. __flush_icache_all();
  100. return;
  101. }
  102. /* VIPT non-aliasing cache */
  103. if (vma->vm_flags & VM_EXEC) {
  104. unsigned long addr = (unsigned long)kaddr;
  105. __cpuc_coherent_kern_range(addr, addr + len);
  106. #ifdef CONFIG_SMP
  107. if (cache_ops_need_broadcast())
  108. smp_call_function(flush_ptrace_access_other,
  109. NULL, 1);
  110. #endif
  111. }
  112. }
  113. /*
  114. * Copy user data from/to a page which is mapped into a different
  115. * processes address space. Really, we want to allow our "user
  116. * space" model to handle this.
  117. *
  118. * Note that this code needs to run on the current CPU.
  119. */
  120. void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
  121. unsigned long uaddr, void *dst, const void *src,
  122. unsigned long len)
  123. {
  124. #ifdef CONFIG_SMP
  125. preempt_disable();
  126. #endif
  127. memcpy(dst, src, len);
  128. flush_ptrace_access(vma, page, uaddr, dst, len);
  129. #ifdef CONFIG_SMP
  130. preempt_enable();
  131. #endif
  132. }
  133. void __flush_dcache_page(struct address_space *mapping, struct page *page)
  134. {
  135. /*
  136. * Writeback any data associated with the kernel mapping of this
  137. * page. This ensures that data in the physical page is mutually
  138. * coherent with the kernels mapping.
  139. */
  140. if (!PageHighMem(page)) {
  141. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  142. } else {
  143. void *addr = kmap_high_get(page);
  144. if (addr) {
  145. __cpuc_flush_dcache_area(addr, PAGE_SIZE);
  146. kunmap_high(page);
  147. } else if (cache_is_vipt()) {
  148. pte_t saved_pte;
  149. addr = kmap_high_l1_vipt(page, &saved_pte);
  150. __cpuc_flush_dcache_area(addr, PAGE_SIZE);
  151. kunmap_high_l1_vipt(page, saved_pte);
  152. }
  153. }
  154. /*
  155. * If this is a page cache page, and we have an aliasing VIPT cache,
  156. * we only need to do one flush - which would be at the relevant
  157. * userspace colour, which is congruent with page->index.
  158. */
  159. if (mapping && cache_is_vipt_aliasing())
  160. flush_pfn_alias(page_to_pfn(page),
  161. page->index << PAGE_CACHE_SHIFT);
  162. }
  163. static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
  164. {
  165. struct mm_struct *mm = current->active_mm;
  166. struct vm_area_struct *mpnt;
  167. struct prio_tree_iter iter;
  168. pgoff_t pgoff;
  169. /*
  170. * There are possible user space mappings of this page:
  171. * - VIVT cache: we need to also write back and invalidate all user
  172. * data in the current VM view associated with this page.
  173. * - aliasing VIPT: we only need to find one mapping of this page.
  174. */
  175. pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  176. flush_dcache_mmap_lock(mapping);
  177. vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
  178. unsigned long offset;
  179. /*
  180. * If this VMA is not in our MM, we can ignore it.
  181. */
  182. if (mpnt->vm_mm != mm)
  183. continue;
  184. if (!(mpnt->vm_flags & VM_MAYSHARE))
  185. continue;
  186. offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
  187. flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
  188. }
  189. flush_dcache_mmap_unlock(mapping);
  190. }
  191. /*
  192. * Ensure cache coherency between kernel mapping and userspace mapping
  193. * of this page.
  194. *
  195. * We have three cases to consider:
  196. * - VIPT non-aliasing cache: fully coherent so nothing required.
  197. * - VIVT: fully aliasing, so we need to handle every alias in our
  198. * current VM view.
  199. * - VIPT aliasing: need to handle one alias in our current VM view.
  200. *
  201. * If we need to handle aliasing:
  202. * If the page only exists in the page cache and there are no user
  203. * space mappings, we can be lazy and remember that we may have dirty
  204. * kernel cache lines for later. Otherwise, we assume we have
  205. * aliasing mappings.
  206. *
  207. * Note that we disable the lazy flush for SMP.
  208. */
  209. void flush_dcache_page(struct page *page)
  210. {
  211. struct address_space *mapping;
  212. /*
  213. * The zero page is never written to, so never has any dirty
  214. * cache lines, and therefore never needs to be flushed.
  215. */
  216. if (page == ZERO_PAGE(0))
  217. return;
  218. mapping = page_mapping(page);
  219. #ifndef CONFIG_SMP
  220. if (!PageHighMem(page) && mapping && !mapping_mapped(mapping))
  221. set_bit(PG_dcache_dirty, &page->flags);
  222. else
  223. #endif
  224. {
  225. __flush_dcache_page(mapping, page);
  226. if (mapping && cache_is_vivt())
  227. __flush_dcache_aliases(mapping, page);
  228. else if (mapping)
  229. __flush_icache_all();
  230. }
  231. }
  232. EXPORT_SYMBOL(flush_dcache_page);
  233. /*
  234. * Flush an anonymous page so that users of get_user_pages()
  235. * can safely access the data. The expected sequence is:
  236. *
  237. * get_user_pages()
  238. * -> flush_anon_page
  239. * memcpy() to/from page
  240. * if written to page, flush_dcache_page()
  241. */
  242. void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
  243. {
  244. unsigned long pfn;
  245. /* VIPT non-aliasing caches need do nothing */
  246. if (cache_is_vipt_nonaliasing())
  247. return;
  248. /*
  249. * Write back and invalidate userspace mapping.
  250. */
  251. pfn = page_to_pfn(page);
  252. if (cache_is_vivt()) {
  253. flush_cache_page(vma, vmaddr, pfn);
  254. } else {
  255. /*
  256. * For aliasing VIPT, we can flush an alias of the
  257. * userspace address only.
  258. */
  259. flush_pfn_alias(pfn, vmaddr);
  260. __flush_icache_all();
  261. }
  262. /*
  263. * Invalidate kernel mapping. No data should be contained
  264. * in this mapping of the page. FIXME: this is overkill
  265. * since we actually ask for a write-back and invalidate.
  266. */
  267. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  268. }