dma-mapping.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633
  1. /*
  2. * linux/arch/arm/mm/dma-mapping.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/gfp.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <asm/memory.h>
  21. #include <asm/highmem.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/tlbflush.h>
  24. #include <asm/sizes.h>
  25. static u64 get_coherent_dma_mask(struct device *dev)
  26. {
  27. u64 mask = ISA_DMA_THRESHOLD;
  28. if (dev) {
  29. mask = dev->coherent_dma_mask;
  30. /*
  31. * Sanity check the DMA mask - it must be non-zero, and
  32. * must be able to be satisfied by a DMA allocation.
  33. */
  34. if (mask == 0) {
  35. dev_warn(dev, "coherent DMA mask is unset\n");
  36. return 0;
  37. }
  38. if ((~mask) & ISA_DMA_THRESHOLD) {
  39. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  40. "than system GFP_DMA mask %#llx\n",
  41. mask, (unsigned long long)ISA_DMA_THRESHOLD);
  42. return 0;
  43. }
  44. }
  45. return mask;
  46. }
  47. /*
  48. * Allocate a DMA buffer for 'dev' of size 'size' using the
  49. * specified gfp mask. Note that 'size' must be page aligned.
  50. */
  51. static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  52. {
  53. unsigned long order = get_order(size);
  54. struct page *page, *p, *e;
  55. void *ptr;
  56. u64 mask = get_coherent_dma_mask(dev);
  57. #ifdef CONFIG_DMA_API_DEBUG
  58. u64 limit = (mask + 1) & ~mask;
  59. if (limit && size >= limit) {
  60. dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  61. size, mask);
  62. return NULL;
  63. }
  64. #endif
  65. if (!mask)
  66. return NULL;
  67. if (mask < 0xffffffffULL)
  68. gfp |= GFP_DMA;
  69. page = alloc_pages(gfp, order);
  70. if (!page)
  71. return NULL;
  72. /*
  73. * Now split the huge page and free the excess pages
  74. */
  75. split_page(page, order);
  76. for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  77. __free_page(p);
  78. /*
  79. * Ensure that the allocated pages are zeroed, and that any data
  80. * lurking in the kernel direct-mapped region is invalidated.
  81. */
  82. ptr = page_address(page);
  83. memset(ptr, 0, size);
  84. dmac_flush_range(ptr, ptr + size);
  85. outer_flush_range(__pa(ptr), __pa(ptr) + size);
  86. return page;
  87. }
  88. /*
  89. * Free a DMA buffer. 'size' must be page aligned.
  90. */
  91. static void __dma_free_buffer(struct page *page, size_t size)
  92. {
  93. struct page *e = page + (size >> PAGE_SHIFT);
  94. while (page < e) {
  95. __free_page(page);
  96. page++;
  97. }
  98. }
  99. #ifdef CONFIG_MMU
  100. /* Sanity check size */
  101. #if (CONSISTENT_DMA_SIZE % SZ_2M)
  102. #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
  103. #endif
  104. #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
  105. #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
  106. #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
  107. /*
  108. * These are the page tables (2MB each) covering uncached, DMA consistent allocations
  109. */
  110. static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
  111. #include "vmregion.h"
  112. static struct arm_vmregion_head consistent_head = {
  113. .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
  114. .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
  115. .vm_start = CONSISTENT_BASE,
  116. .vm_end = CONSISTENT_END,
  117. };
  118. #ifdef CONFIG_HUGETLB_PAGE
  119. #error ARM Coherent DMA allocator does not (yet) support huge TLB
  120. #endif
  121. /*
  122. * Initialise the consistent memory allocation.
  123. */
  124. static int __init consistent_init(void)
  125. {
  126. int ret = 0;
  127. pgd_t *pgd;
  128. pmd_t *pmd;
  129. pte_t *pte;
  130. int i = 0;
  131. u32 base = CONSISTENT_BASE;
  132. do {
  133. pgd = pgd_offset(&init_mm, base);
  134. pmd = pmd_alloc(&init_mm, pgd, base);
  135. if (!pmd) {
  136. printk(KERN_ERR "%s: no pmd tables\n", __func__);
  137. ret = -ENOMEM;
  138. break;
  139. }
  140. WARN_ON(!pmd_none(*pmd));
  141. pte = pte_alloc_kernel(pmd, base);
  142. if (!pte) {
  143. printk(KERN_ERR "%s: no pte tables\n", __func__);
  144. ret = -ENOMEM;
  145. break;
  146. }
  147. consistent_pte[i++] = pte;
  148. base += (1 << PGDIR_SHIFT);
  149. } while (base < CONSISTENT_END);
  150. return ret;
  151. }
  152. core_initcall(consistent_init);
  153. static void *
  154. __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
  155. {
  156. struct arm_vmregion *c;
  157. size_t align;
  158. int bit;
  159. if (!consistent_pte[0]) {
  160. printk(KERN_ERR "%s: not initialised\n", __func__);
  161. dump_stack();
  162. return NULL;
  163. }
  164. /*
  165. * Align the virtual region allocation - maximum alignment is
  166. * a section size, minimum is a page size. This helps reduce
  167. * fragmentation of the DMA space, and also prevents allocations
  168. * smaller than a section from crossing a section boundary.
  169. */
  170. bit = fls(size - 1) + 1;
  171. if (bit > SECTION_SHIFT)
  172. bit = SECTION_SHIFT;
  173. align = 1 << bit;
  174. /*
  175. * Allocate a virtual address in the consistent mapping region.
  176. */
  177. c = arm_vmregion_alloc(&consistent_head, align, size,
  178. gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
  179. if (c) {
  180. pte_t *pte;
  181. int idx = CONSISTENT_PTE_INDEX(c->vm_start);
  182. u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
  183. pte = consistent_pte[idx] + off;
  184. c->vm_pages = page;
  185. do {
  186. BUG_ON(!pte_none(*pte));
  187. set_pte_ext(pte, mk_pte(page, prot), 0);
  188. page++;
  189. pte++;
  190. off++;
  191. if (off >= PTRS_PER_PTE) {
  192. off = 0;
  193. pte = consistent_pte[++idx];
  194. }
  195. } while (size -= PAGE_SIZE);
  196. dsb();
  197. return (void *)c->vm_start;
  198. }
  199. return NULL;
  200. }
  201. static void __dma_free_remap(void *cpu_addr, size_t size)
  202. {
  203. struct arm_vmregion *c;
  204. unsigned long addr;
  205. pte_t *ptep;
  206. int idx;
  207. u32 off;
  208. c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
  209. if (!c) {
  210. printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
  211. __func__, cpu_addr);
  212. dump_stack();
  213. return;
  214. }
  215. if ((c->vm_end - c->vm_start) != size) {
  216. printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
  217. __func__, c->vm_end - c->vm_start, size);
  218. dump_stack();
  219. size = c->vm_end - c->vm_start;
  220. }
  221. idx = CONSISTENT_PTE_INDEX(c->vm_start);
  222. off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
  223. ptep = consistent_pte[idx] + off;
  224. addr = c->vm_start;
  225. do {
  226. pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
  227. ptep++;
  228. addr += PAGE_SIZE;
  229. off++;
  230. if (off >= PTRS_PER_PTE) {
  231. off = 0;
  232. ptep = consistent_pte[++idx];
  233. }
  234. if (pte_none(pte) || !pte_present(pte))
  235. printk(KERN_CRIT "%s: bad page in kernel page table\n",
  236. __func__);
  237. } while (size -= PAGE_SIZE);
  238. flush_tlb_kernel_range(c->vm_start, c->vm_end);
  239. arm_vmregion_free(&consistent_head, c);
  240. }
  241. #else /* !CONFIG_MMU */
  242. #define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
  243. #define __dma_free_remap(addr, size) do { } while (0)
  244. #endif /* CONFIG_MMU */
  245. static void *
  246. __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
  247. pgprot_t prot)
  248. {
  249. struct page *page;
  250. void *addr;
  251. *handle = ~0;
  252. size = PAGE_ALIGN(size);
  253. page = __dma_alloc_buffer(dev, size, gfp);
  254. if (!page)
  255. return NULL;
  256. if (!arch_is_coherent())
  257. addr = __dma_alloc_remap(page, size, gfp, prot);
  258. else
  259. addr = page_address(page);
  260. if (addr)
  261. *handle = page_to_dma(dev, page);
  262. return addr;
  263. }
  264. /*
  265. * Allocate DMA-coherent memory space and return both the kernel remapped
  266. * virtual and bus address for that space.
  267. */
  268. void *
  269. dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
  270. {
  271. void *memory;
  272. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  273. return memory;
  274. return __dma_alloc(dev, size, handle, gfp,
  275. pgprot_dmacoherent(pgprot_kernel));
  276. }
  277. EXPORT_SYMBOL(dma_alloc_coherent);
  278. /*
  279. * Allocate a writecombining region, in much the same way as
  280. * dma_alloc_coherent above.
  281. */
  282. void *
  283. dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
  284. {
  285. return __dma_alloc(dev, size, handle, gfp,
  286. pgprot_writecombine(pgprot_kernel));
  287. }
  288. EXPORT_SYMBOL(dma_alloc_writecombine);
  289. static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
  290. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  291. {
  292. int ret = -ENXIO;
  293. #ifdef CONFIG_MMU
  294. unsigned long user_size, kern_size;
  295. struct arm_vmregion *c;
  296. user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  297. c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
  298. if (c) {
  299. unsigned long off = vma->vm_pgoff;
  300. kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
  301. if (off < kern_size &&
  302. user_size <= (kern_size - off)) {
  303. ret = remap_pfn_range(vma, vma->vm_start,
  304. page_to_pfn(c->vm_pages) + off,
  305. user_size << PAGE_SHIFT,
  306. vma->vm_page_prot);
  307. }
  308. }
  309. #endif /* CONFIG_MMU */
  310. return ret;
  311. }
  312. int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
  313. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  314. {
  315. vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
  316. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  317. }
  318. EXPORT_SYMBOL(dma_mmap_coherent);
  319. int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
  320. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  321. {
  322. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  323. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  324. }
  325. EXPORT_SYMBOL(dma_mmap_writecombine);
  326. /*
  327. * free a page as defined by the above mapping.
  328. * Must not be called with IRQs disabled.
  329. */
  330. void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
  331. {
  332. WARN_ON(irqs_disabled());
  333. if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  334. return;
  335. size = PAGE_ALIGN(size);
  336. if (!arch_is_coherent())
  337. __dma_free_remap(cpu_addr, size);
  338. __dma_free_buffer(dma_to_page(dev, handle), size);
  339. }
  340. EXPORT_SYMBOL(dma_free_coherent);
  341. /*
  342. * Make an area consistent for devices.
  343. * Note: Drivers should NOT use this function directly, as it will break
  344. * platforms with CONFIG_DMABOUNCE.
  345. * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
  346. */
  347. void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
  348. enum dma_data_direction dir)
  349. {
  350. unsigned long paddr;
  351. BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
  352. dmac_map_area(kaddr, size, dir);
  353. paddr = __pa(kaddr);
  354. if (dir == DMA_FROM_DEVICE) {
  355. outer_inv_range(paddr, paddr + size);
  356. } else {
  357. outer_clean_range(paddr, paddr + size);
  358. }
  359. /* FIXME: non-speculating: flush on bidirectional mappings? */
  360. }
  361. EXPORT_SYMBOL(___dma_single_cpu_to_dev);
  362. void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
  363. enum dma_data_direction dir)
  364. {
  365. BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
  366. /* FIXME: non-speculating: not required */
  367. /* don't bother invalidating if DMA to device */
  368. if (dir != DMA_TO_DEVICE) {
  369. unsigned long paddr = __pa(kaddr);
  370. outer_inv_range(paddr, paddr + size);
  371. }
  372. dmac_unmap_area(kaddr, size, dir);
  373. }
  374. EXPORT_SYMBOL(___dma_single_dev_to_cpu);
  375. static void dma_cache_maint_page(struct page *page, unsigned long offset,
  376. size_t size, enum dma_data_direction dir,
  377. void (*op)(const void *, size_t, int))
  378. {
  379. /*
  380. * A single sg entry may refer to multiple physically contiguous
  381. * pages. But we still need to process highmem pages individually.
  382. * If highmem is not configured then the bulk of this loop gets
  383. * optimized out.
  384. */
  385. size_t left = size;
  386. do {
  387. size_t len = left;
  388. void *vaddr;
  389. if (PageHighMem(page)) {
  390. if (len + offset > PAGE_SIZE) {
  391. if (offset >= PAGE_SIZE) {
  392. page += offset / PAGE_SIZE;
  393. offset %= PAGE_SIZE;
  394. }
  395. len = PAGE_SIZE - offset;
  396. }
  397. vaddr = kmap_high_get(page);
  398. if (vaddr) {
  399. vaddr += offset;
  400. op(vaddr, len, dir);
  401. kunmap_high(page);
  402. } else if (cache_is_vipt()) {
  403. pte_t saved_pte;
  404. vaddr = kmap_high_l1_vipt(page, &saved_pte);
  405. op(vaddr + offset, len, dir);
  406. kunmap_high_l1_vipt(page, saved_pte);
  407. }
  408. } else {
  409. vaddr = page_address(page) + offset;
  410. op(vaddr, len, dir);
  411. }
  412. offset = 0;
  413. page++;
  414. left -= len;
  415. } while (left);
  416. }
  417. void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
  418. size_t size, enum dma_data_direction dir)
  419. {
  420. unsigned long paddr;
  421. dma_cache_maint_page(page, off, size, dir, dmac_map_area);
  422. paddr = page_to_phys(page) + off;
  423. if (dir == DMA_FROM_DEVICE) {
  424. outer_inv_range(paddr, paddr + size);
  425. } else {
  426. outer_clean_range(paddr, paddr + size);
  427. }
  428. /* FIXME: non-speculating: flush on bidirectional mappings? */
  429. }
  430. EXPORT_SYMBOL(___dma_page_cpu_to_dev);
  431. void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
  432. size_t size, enum dma_data_direction dir)
  433. {
  434. unsigned long paddr = page_to_phys(page) + off;
  435. /* FIXME: non-speculating: not required */
  436. /* don't bother invalidating if DMA to device */
  437. if (dir != DMA_TO_DEVICE)
  438. outer_inv_range(paddr, paddr + size);
  439. dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
  440. }
  441. EXPORT_SYMBOL(___dma_page_dev_to_cpu);
  442. /**
  443. * dma_map_sg - map a set of SG buffers for streaming mode DMA
  444. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  445. * @sg: list of buffers
  446. * @nents: number of buffers to map
  447. * @dir: DMA transfer direction
  448. *
  449. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  450. * This is the scatter-gather version of the dma_map_single interface.
  451. * Here the scatter gather list elements are each tagged with the
  452. * appropriate dma address and length. They are obtained via
  453. * sg_dma_{address,length}.
  454. *
  455. * Device ownership issues as mentioned for dma_map_single are the same
  456. * here.
  457. */
  458. int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  459. enum dma_data_direction dir)
  460. {
  461. struct scatterlist *s;
  462. int i, j;
  463. for_each_sg(sg, s, nents, i) {
  464. s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
  465. s->length, dir);
  466. if (dma_mapping_error(dev, s->dma_address))
  467. goto bad_mapping;
  468. }
  469. return nents;
  470. bad_mapping:
  471. for_each_sg(sg, s, i, j)
  472. dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
  473. return 0;
  474. }
  475. EXPORT_SYMBOL(dma_map_sg);
  476. /**
  477. * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  478. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  479. * @sg: list of buffers
  480. * @nents: number of buffers to unmap (returned from dma_map_sg)
  481. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  482. *
  483. * Unmap a set of streaming mode DMA translations. Again, CPU access
  484. * rules concerning calls here are the same as for dma_unmap_single().
  485. */
  486. void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  487. enum dma_data_direction dir)
  488. {
  489. struct scatterlist *s;
  490. int i;
  491. for_each_sg(sg, s, nents, i)
  492. dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
  493. }
  494. EXPORT_SYMBOL(dma_unmap_sg);
  495. /**
  496. * dma_sync_sg_for_cpu
  497. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  498. * @sg: list of buffers
  499. * @nents: number of buffers to map (returned from dma_map_sg)
  500. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  501. */
  502. void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  503. int nents, enum dma_data_direction dir)
  504. {
  505. struct scatterlist *s;
  506. int i;
  507. for_each_sg(sg, s, nents, i) {
  508. if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
  509. sg_dma_len(s), dir))
  510. continue;
  511. __dma_page_dev_to_cpu(sg_page(s), s->offset,
  512. s->length, dir);
  513. }
  514. }
  515. EXPORT_SYMBOL(dma_sync_sg_for_cpu);
  516. /**
  517. * dma_sync_sg_for_device
  518. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  519. * @sg: list of buffers
  520. * @nents: number of buffers to map (returned from dma_map_sg)
  521. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  522. */
  523. void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  524. int nents, enum dma_data_direction dir)
  525. {
  526. struct scatterlist *s;
  527. int i;
  528. for_each_sg(sg, s, nents, i) {
  529. if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
  530. sg_dma_len(s), dir))
  531. continue;
  532. __dma_page_cpu_to_dev(sg_page(s), s->offset,
  533. s->length, dir);
  534. }
  535. }
  536. EXPORT_SYMBOL(dma_sync_sg_for_device);