dma.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592
  1. /*
  2. * EDMA3 support for DaVinci
  3. *
  4. * Copyright (C) 2006-2009 Texas Instruments.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/io.h>
  26. #include <linux/slab.h>
  27. #include <mach/edma.h>
  28. /* Offsets matching "struct edmacc_param" */
  29. #define PARM_OPT 0x00
  30. #define PARM_SRC 0x04
  31. #define PARM_A_B_CNT 0x08
  32. #define PARM_DST 0x0c
  33. #define PARM_SRC_DST_BIDX 0x10
  34. #define PARM_LINK_BCNTRLD 0x14
  35. #define PARM_SRC_DST_CIDX 0x18
  36. #define PARM_CCNT 0x1c
  37. #define PARM_SIZE 0x20
  38. /* Offsets for EDMA CC global channel registers and their shadows */
  39. #define SH_ER 0x00 /* 64 bits */
  40. #define SH_ECR 0x08 /* 64 bits */
  41. #define SH_ESR 0x10 /* 64 bits */
  42. #define SH_CER 0x18 /* 64 bits */
  43. #define SH_EER 0x20 /* 64 bits */
  44. #define SH_EECR 0x28 /* 64 bits */
  45. #define SH_EESR 0x30 /* 64 bits */
  46. #define SH_SER 0x38 /* 64 bits */
  47. #define SH_SECR 0x40 /* 64 bits */
  48. #define SH_IER 0x50 /* 64 bits */
  49. #define SH_IECR 0x58 /* 64 bits */
  50. #define SH_IESR 0x60 /* 64 bits */
  51. #define SH_IPR 0x68 /* 64 bits */
  52. #define SH_ICR 0x70 /* 64 bits */
  53. #define SH_IEVAL 0x78
  54. #define SH_QER 0x80
  55. #define SH_QEER 0x84
  56. #define SH_QEECR 0x88
  57. #define SH_QEESR 0x8c
  58. #define SH_QSER 0x90
  59. #define SH_QSECR 0x94
  60. #define SH_SIZE 0x200
  61. /* Offsets for EDMA CC global registers */
  62. #define EDMA_REV 0x0000
  63. #define EDMA_CCCFG 0x0004
  64. #define EDMA_QCHMAP 0x0200 /* 8 registers */
  65. #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
  66. #define EDMA_QDMAQNUM 0x0260
  67. #define EDMA_QUETCMAP 0x0280
  68. #define EDMA_QUEPRI 0x0284
  69. #define EDMA_EMR 0x0300 /* 64 bits */
  70. #define EDMA_EMCR 0x0308 /* 64 bits */
  71. #define EDMA_QEMR 0x0310
  72. #define EDMA_QEMCR 0x0314
  73. #define EDMA_CCERR 0x0318
  74. #define EDMA_CCERRCLR 0x031c
  75. #define EDMA_EEVAL 0x0320
  76. #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
  77. #define EDMA_QRAE 0x0380 /* 4 registers */
  78. #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
  79. #define EDMA_QSTAT 0x0600 /* 2 registers */
  80. #define EDMA_QWMTHRA 0x0620
  81. #define EDMA_QWMTHRB 0x0624
  82. #define EDMA_CCSTAT 0x0640
  83. #define EDMA_M 0x1000 /* global channel registers */
  84. #define EDMA_ECR 0x1008
  85. #define EDMA_ECRH 0x100C
  86. #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
  87. #define EDMA_PARM 0x4000 /* 128 param entries */
  88. #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
  89. #define EDMA_DCHMAP 0x0100 /* 64 registers */
  90. #define CHMAP_EXIST BIT(24)
  91. #define EDMA_MAX_DMACH 64
  92. #define EDMA_MAX_PARAMENTRY 512
  93. /*****************************************************************************/
  94. static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
  95. static inline unsigned int edma_read(unsigned ctlr, int offset)
  96. {
  97. return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
  98. }
  99. static inline void edma_write(unsigned ctlr, int offset, int val)
  100. {
  101. __raw_writel(val, edmacc_regs_base[ctlr] + offset);
  102. }
  103. static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
  104. unsigned or)
  105. {
  106. unsigned val = edma_read(ctlr, offset);
  107. val &= and;
  108. val |= or;
  109. edma_write(ctlr, offset, val);
  110. }
  111. static inline void edma_and(unsigned ctlr, int offset, unsigned and)
  112. {
  113. unsigned val = edma_read(ctlr, offset);
  114. val &= and;
  115. edma_write(ctlr, offset, val);
  116. }
  117. static inline void edma_or(unsigned ctlr, int offset, unsigned or)
  118. {
  119. unsigned val = edma_read(ctlr, offset);
  120. val |= or;
  121. edma_write(ctlr, offset, val);
  122. }
  123. static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
  124. {
  125. return edma_read(ctlr, offset + (i << 2));
  126. }
  127. static inline void edma_write_array(unsigned ctlr, int offset, int i,
  128. unsigned val)
  129. {
  130. edma_write(ctlr, offset + (i << 2), val);
  131. }
  132. static inline void edma_modify_array(unsigned ctlr, int offset, int i,
  133. unsigned and, unsigned or)
  134. {
  135. edma_modify(ctlr, offset + (i << 2), and, or);
  136. }
  137. static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
  138. {
  139. edma_or(ctlr, offset + (i << 2), or);
  140. }
  141. static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
  142. unsigned or)
  143. {
  144. edma_or(ctlr, offset + ((i*2 + j) << 2), or);
  145. }
  146. static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
  147. unsigned val)
  148. {
  149. edma_write(ctlr, offset + ((i*2 + j) << 2), val);
  150. }
  151. static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
  152. {
  153. return edma_read(ctlr, EDMA_SHADOW0 + offset);
  154. }
  155. static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
  156. int i)
  157. {
  158. return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
  159. }
  160. static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
  161. {
  162. edma_write(ctlr, EDMA_SHADOW0 + offset, val);
  163. }
  164. static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
  165. unsigned val)
  166. {
  167. edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
  168. }
  169. static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
  170. int param_no)
  171. {
  172. return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
  173. }
  174. static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
  175. unsigned val)
  176. {
  177. edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
  178. }
  179. static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
  180. unsigned and, unsigned or)
  181. {
  182. edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
  183. }
  184. static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
  185. unsigned and)
  186. {
  187. edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
  188. }
  189. static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
  190. unsigned or)
  191. {
  192. edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
  193. }
  194. static inline void set_bits(int offset, int len, unsigned long *p)
  195. {
  196. for (; len > 0; len--)
  197. set_bit(offset + (len - 1), p);
  198. }
  199. static inline void clear_bits(int offset, int len, unsigned long *p)
  200. {
  201. for (; len > 0; len--)
  202. clear_bit(offset + (len - 1), p);
  203. }
  204. /*****************************************************************************/
  205. /* actual number of DMA channels and slots on this silicon */
  206. struct edma {
  207. /* how many dma resources of each type */
  208. unsigned num_channels;
  209. unsigned num_region;
  210. unsigned num_slots;
  211. unsigned num_tc;
  212. unsigned num_cc;
  213. enum dma_event_q default_queue;
  214. /* list of channels with no even trigger; terminated by "-1" */
  215. const s8 *noevent;
  216. /* The edma_inuse bit for each PaRAM slot is clear unless the
  217. * channel is in use ... by ARM or DSP, for QDMA, or whatever.
  218. */
  219. DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
  220. /* The edma_unused bit for each channel is clear unless
  221. * it is not being used on this platform. It uses a bit
  222. * of SOC-specific initialization code.
  223. */
  224. DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
  225. unsigned irq_res_start;
  226. unsigned irq_res_end;
  227. struct dma_interrupt_data {
  228. void (*callback)(unsigned channel, unsigned short ch_status,
  229. void *data);
  230. void *data;
  231. } intr_data[EDMA_MAX_DMACH];
  232. };
  233. static struct edma *edma_cc[EDMA_MAX_CC];
  234. static int arch_num_cc;
  235. /* dummy param set used to (re)initialize parameter RAM slots */
  236. static const struct edmacc_param dummy_paramset = {
  237. .link_bcntrld = 0xffff,
  238. .ccnt = 1,
  239. };
  240. /*****************************************************************************/
  241. static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
  242. enum dma_event_q queue_no)
  243. {
  244. int bit = (ch_no & 0x7) * 4;
  245. /* default to low priority queue */
  246. if (queue_no == EVENTQ_DEFAULT)
  247. queue_no = edma_cc[ctlr]->default_queue;
  248. queue_no &= 7;
  249. edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
  250. ~(0x7 << bit), queue_no << bit);
  251. }
  252. static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
  253. {
  254. int bit = queue_no * 4;
  255. edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
  256. }
  257. static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
  258. int priority)
  259. {
  260. int bit = queue_no * 4;
  261. edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
  262. ((priority & 0x7) << bit));
  263. }
  264. /**
  265. * map_dmach_param - Maps channel number to param entry number
  266. *
  267. * This maps the dma channel number to param entry numberter. In
  268. * other words using the DMA channel mapping registers a param entry
  269. * can be mapped to any channel
  270. *
  271. * Callers are responsible for ensuring the channel mapping logic is
  272. * included in that particular EDMA variant (Eg : dm646x)
  273. *
  274. */
  275. static void __init map_dmach_param(unsigned ctlr)
  276. {
  277. int i;
  278. for (i = 0; i < EDMA_MAX_DMACH; i++)
  279. edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
  280. }
  281. static inline void
  282. setup_dma_interrupt(unsigned lch,
  283. void (*callback)(unsigned channel, u16 ch_status, void *data),
  284. void *data)
  285. {
  286. unsigned ctlr;
  287. ctlr = EDMA_CTLR(lch);
  288. lch = EDMA_CHAN_SLOT(lch);
  289. if (!callback)
  290. edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
  291. BIT(lch & 0x1f));
  292. edma_cc[ctlr]->intr_data[lch].callback = callback;
  293. edma_cc[ctlr]->intr_data[lch].data = data;
  294. if (callback) {
  295. edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
  296. BIT(lch & 0x1f));
  297. edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
  298. BIT(lch & 0x1f));
  299. }
  300. }
  301. static int irq2ctlr(int irq)
  302. {
  303. if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
  304. return 0;
  305. else if (irq >= edma_cc[1]->irq_res_start &&
  306. irq <= edma_cc[1]->irq_res_end)
  307. return 1;
  308. return -1;
  309. }
  310. /******************************************************************************
  311. *
  312. * DMA interrupt handler
  313. *
  314. *****************************************************************************/
  315. static irqreturn_t dma_irq_handler(int irq, void *data)
  316. {
  317. int i;
  318. unsigned ctlr;
  319. unsigned int cnt = 0;
  320. ctlr = irq2ctlr(irq);
  321. dev_dbg(data, "dma_irq_handler\n");
  322. if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0) &&
  323. (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
  324. return IRQ_NONE;
  325. while (1) {
  326. int j;
  327. if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
  328. edma_shadow0_read_array(ctlr, SH_IER, 0))
  329. j = 0;
  330. else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
  331. edma_shadow0_read_array(ctlr, SH_IER, 1))
  332. j = 1;
  333. else
  334. break;
  335. dev_dbg(data, "IPR%d %08x\n", j,
  336. edma_shadow0_read_array(ctlr, SH_IPR, j));
  337. for (i = 0; i < 32; i++) {
  338. int k = (j << 5) + i;
  339. if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
  340. && (edma_shadow0_read_array(ctlr,
  341. SH_IER, j) & BIT(i))) {
  342. /* Clear the corresponding IPR bits */
  343. edma_shadow0_write_array(ctlr, SH_ICR, j,
  344. BIT(i));
  345. if (edma_cc[ctlr]->intr_data[k].callback)
  346. edma_cc[ctlr]->intr_data[k].callback(
  347. k, DMA_COMPLETE,
  348. edma_cc[ctlr]->intr_data[k].
  349. data);
  350. }
  351. }
  352. cnt++;
  353. if (cnt > 10)
  354. break;
  355. }
  356. edma_shadow0_write(ctlr, SH_IEVAL, 1);
  357. return IRQ_HANDLED;
  358. }
  359. /******************************************************************************
  360. *
  361. * DMA error interrupt handler
  362. *
  363. *****************************************************************************/
  364. static irqreturn_t dma_ccerr_handler(int irq, void *data)
  365. {
  366. int i;
  367. unsigned ctlr;
  368. unsigned int cnt = 0;
  369. ctlr = irq2ctlr(irq);
  370. dev_dbg(data, "dma_ccerr_handler\n");
  371. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  372. (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  373. (edma_read(ctlr, EDMA_QEMR) == 0) &&
  374. (edma_read(ctlr, EDMA_CCERR) == 0))
  375. return IRQ_NONE;
  376. while (1) {
  377. int j = -1;
  378. if (edma_read_array(ctlr, EDMA_EMR, 0))
  379. j = 0;
  380. else if (edma_read_array(ctlr, EDMA_EMR, 1))
  381. j = 1;
  382. if (j >= 0) {
  383. dev_dbg(data, "EMR%d %08x\n", j,
  384. edma_read_array(ctlr, EDMA_EMR, j));
  385. for (i = 0; i < 32; i++) {
  386. int k = (j << 5) + i;
  387. if (edma_read_array(ctlr, EDMA_EMR, j) &
  388. BIT(i)) {
  389. /* Clear the corresponding EMR bits */
  390. edma_write_array(ctlr, EDMA_EMCR, j,
  391. BIT(i));
  392. /* Clear any SER */
  393. edma_shadow0_write_array(ctlr, SH_SECR,
  394. j, BIT(i));
  395. if (edma_cc[ctlr]->intr_data[k].
  396. callback) {
  397. edma_cc[ctlr]->intr_data[k].
  398. callback(k,
  399. DMA_CC_ERROR,
  400. edma_cc[ctlr]->intr_data
  401. [k].data);
  402. }
  403. }
  404. }
  405. } else if (edma_read(ctlr, EDMA_QEMR)) {
  406. dev_dbg(data, "QEMR %02x\n",
  407. edma_read(ctlr, EDMA_QEMR));
  408. for (i = 0; i < 8; i++) {
  409. if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
  410. /* Clear the corresponding IPR bits */
  411. edma_write(ctlr, EDMA_QEMCR, BIT(i));
  412. edma_shadow0_write(ctlr, SH_QSECR,
  413. BIT(i));
  414. /* NOTE: not reported!! */
  415. }
  416. }
  417. } else if (edma_read(ctlr, EDMA_CCERR)) {
  418. dev_dbg(data, "CCERR %08x\n",
  419. edma_read(ctlr, EDMA_CCERR));
  420. /* FIXME: CCERR.BIT(16) ignored! much better
  421. * to just write CCERRCLR with CCERR value...
  422. */
  423. for (i = 0; i < 8; i++) {
  424. if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
  425. /* Clear the corresponding IPR bits */
  426. edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
  427. /* NOTE: not reported!! */
  428. }
  429. }
  430. }
  431. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  432. (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  433. (edma_read(ctlr, EDMA_QEMR) == 0) &&
  434. (edma_read(ctlr, EDMA_CCERR) == 0))
  435. break;
  436. cnt++;
  437. if (cnt > 10)
  438. break;
  439. }
  440. edma_write(ctlr, EDMA_EEVAL, 1);
  441. return IRQ_HANDLED;
  442. }
  443. /******************************************************************************
  444. *
  445. * Transfer controller error interrupt handlers
  446. *
  447. *****************************************************************************/
  448. #define tc_errs_handled false /* disabled as long as they're NOPs */
  449. static irqreturn_t dma_tc0err_handler(int irq, void *data)
  450. {
  451. dev_dbg(data, "dma_tc0err_handler\n");
  452. return IRQ_HANDLED;
  453. }
  454. static irqreturn_t dma_tc1err_handler(int irq, void *data)
  455. {
  456. dev_dbg(data, "dma_tc1err_handler\n");
  457. return IRQ_HANDLED;
  458. }
  459. static int reserve_contiguous_slots(int ctlr, unsigned int id,
  460. unsigned int num_slots,
  461. unsigned int start_slot)
  462. {
  463. int i, j;
  464. unsigned int count = num_slots;
  465. int stop_slot = start_slot;
  466. DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
  467. for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
  468. j = EDMA_CHAN_SLOT(i);
  469. if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
  470. /* Record our current beginning slot */
  471. if (count == num_slots)
  472. stop_slot = i;
  473. count--;
  474. set_bit(j, tmp_inuse);
  475. if (count == 0)
  476. break;
  477. } else {
  478. clear_bit(j, tmp_inuse);
  479. if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
  480. stop_slot = i;
  481. break;
  482. } else {
  483. count = num_slots;
  484. }
  485. }
  486. }
  487. /*
  488. * We have to clear any bits that we set
  489. * if we run out parameter RAM slots, i.e we do find a set
  490. * of contiguous parameter RAM slots but do not find the exact number
  491. * requested as we may reach the total number of parameter RAM slots
  492. */
  493. if (i == edma_cc[ctlr]->num_slots)
  494. stop_slot = i;
  495. for (j = start_slot; j < stop_slot; j++)
  496. if (test_bit(j, tmp_inuse))
  497. clear_bit(j, edma_cc[ctlr]->edma_inuse);
  498. if (count)
  499. return -EBUSY;
  500. for (j = i - num_slots + 1; j <= i; ++j)
  501. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
  502. &dummy_paramset, PARM_SIZE);
  503. return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
  504. }
  505. static int prepare_unused_channel_list(struct device *dev, void *data)
  506. {
  507. struct platform_device *pdev = to_platform_device(dev);
  508. int i, ctlr;
  509. for (i = 0; i < pdev->num_resources; i++) {
  510. if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
  511. (int)pdev->resource[i].start >= 0) {
  512. ctlr = EDMA_CTLR(pdev->resource[i].start);
  513. clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
  514. edma_cc[ctlr]->edma_unused);
  515. }
  516. }
  517. return 0;
  518. }
  519. /*-----------------------------------------------------------------------*/
  520. static bool unused_chan_list_done;
  521. /* Resource alloc/free: dma channels, parameter RAM slots */
  522. /**
  523. * edma_alloc_channel - allocate DMA channel and paired parameter RAM
  524. * @channel: specific channel to allocate; negative for "any unmapped channel"
  525. * @callback: optional; to be issued on DMA completion or errors
  526. * @data: passed to callback
  527. * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
  528. * Controller (TC) executes requests using this channel. Use
  529. * EVENTQ_DEFAULT unless you really need a high priority queue.
  530. *
  531. * This allocates a DMA channel and its associated parameter RAM slot.
  532. * The parameter RAM is initialized to hold a dummy transfer.
  533. *
  534. * Normal use is to pass a specific channel number as @channel, to make
  535. * use of hardware events mapped to that channel. When the channel will
  536. * be used only for software triggering or event chaining, channels not
  537. * mapped to hardware events (or mapped to unused events) are preferable.
  538. *
  539. * DMA transfers start from a channel using edma_start(), or by
  540. * chaining. When the transfer described in that channel's parameter RAM
  541. * slot completes, that slot's data may be reloaded through a link.
  542. *
  543. * DMA errors are only reported to the @callback associated with the
  544. * channel driving that transfer, but transfer completion callbacks can
  545. * be sent to another channel under control of the TCC field in
  546. * the option word of the transfer's parameter RAM set. Drivers must not
  547. * use DMA transfer completion callbacks for channels they did not allocate.
  548. * (The same applies to TCC codes used in transfer chaining.)
  549. *
  550. * Returns the number of the channel, else negative errno.
  551. */
  552. int edma_alloc_channel(int channel,
  553. void (*callback)(unsigned channel, u16 ch_status, void *data),
  554. void *data,
  555. enum dma_event_q eventq_no)
  556. {
  557. unsigned i, done = 0, ctlr = 0;
  558. int ret = 0;
  559. if (!unused_chan_list_done) {
  560. /*
  561. * Scan all the platform devices to find out the EDMA channels
  562. * used and clear them in the unused list, making the rest
  563. * available for ARM usage.
  564. */
  565. ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
  566. prepare_unused_channel_list);
  567. if (ret < 0)
  568. return ret;
  569. unused_chan_list_done = true;
  570. }
  571. if (channel >= 0) {
  572. ctlr = EDMA_CTLR(channel);
  573. channel = EDMA_CHAN_SLOT(channel);
  574. }
  575. if (channel < 0) {
  576. for (i = 0; i < arch_num_cc; i++) {
  577. channel = 0;
  578. for (;;) {
  579. channel = find_next_bit(edma_cc[i]->edma_unused,
  580. edma_cc[i]->num_channels,
  581. channel);
  582. if (channel == edma_cc[i]->num_channels)
  583. break;
  584. if (!test_and_set_bit(channel,
  585. edma_cc[i]->edma_inuse)) {
  586. done = 1;
  587. ctlr = i;
  588. break;
  589. }
  590. channel++;
  591. }
  592. if (done)
  593. break;
  594. }
  595. if (!done)
  596. return -ENOMEM;
  597. } else if (channel >= edma_cc[ctlr]->num_channels) {
  598. return -EINVAL;
  599. } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
  600. return -EBUSY;
  601. }
  602. /* ensure access through shadow region 0 */
  603. edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
  604. /* ensure no events are pending */
  605. edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
  606. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  607. &dummy_paramset, PARM_SIZE);
  608. if (callback)
  609. setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
  610. callback, data);
  611. map_dmach_queue(ctlr, channel, eventq_no);
  612. return EDMA_CTLR_CHAN(ctlr, channel);
  613. }
  614. EXPORT_SYMBOL(edma_alloc_channel);
  615. /**
  616. * edma_free_channel - deallocate DMA channel
  617. * @channel: dma channel returned from edma_alloc_channel()
  618. *
  619. * This deallocates the DMA channel and associated parameter RAM slot
  620. * allocated by edma_alloc_channel().
  621. *
  622. * Callers are responsible for ensuring the channel is inactive, and
  623. * will not be reactivated by linking, chaining, or software calls to
  624. * edma_start().
  625. */
  626. void edma_free_channel(unsigned channel)
  627. {
  628. unsigned ctlr;
  629. ctlr = EDMA_CTLR(channel);
  630. channel = EDMA_CHAN_SLOT(channel);
  631. if (channel >= edma_cc[ctlr]->num_channels)
  632. return;
  633. setup_dma_interrupt(channel, NULL, NULL);
  634. /* REVISIT should probably take out of shadow region 0 */
  635. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  636. &dummy_paramset, PARM_SIZE);
  637. clear_bit(channel, edma_cc[ctlr]->edma_inuse);
  638. }
  639. EXPORT_SYMBOL(edma_free_channel);
  640. /**
  641. * edma_alloc_slot - allocate DMA parameter RAM
  642. * @slot: specific slot to allocate; negative for "any unused slot"
  643. *
  644. * This allocates a parameter RAM slot, initializing it to hold a
  645. * dummy transfer. Slots allocated using this routine have not been
  646. * mapped to a hardware DMA channel, and will normally be used by
  647. * linking to them from a slot associated with a DMA channel.
  648. *
  649. * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
  650. * slots may be allocated on behalf of DSP firmware.
  651. *
  652. * Returns the number of the slot, else negative errno.
  653. */
  654. int edma_alloc_slot(unsigned ctlr, int slot)
  655. {
  656. if (slot >= 0)
  657. slot = EDMA_CHAN_SLOT(slot);
  658. if (slot < 0) {
  659. slot = edma_cc[ctlr]->num_channels;
  660. for (;;) {
  661. slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
  662. edma_cc[ctlr]->num_slots, slot);
  663. if (slot == edma_cc[ctlr]->num_slots)
  664. return -ENOMEM;
  665. if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
  666. break;
  667. }
  668. } else if (slot < edma_cc[ctlr]->num_channels ||
  669. slot >= edma_cc[ctlr]->num_slots) {
  670. return -EINVAL;
  671. } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
  672. return -EBUSY;
  673. }
  674. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  675. &dummy_paramset, PARM_SIZE);
  676. return EDMA_CTLR_CHAN(ctlr, slot);
  677. }
  678. EXPORT_SYMBOL(edma_alloc_slot);
  679. /**
  680. * edma_free_slot - deallocate DMA parameter RAM
  681. * @slot: parameter RAM slot returned from edma_alloc_slot()
  682. *
  683. * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
  684. * Callers are responsible for ensuring the slot is inactive, and will
  685. * not be activated.
  686. */
  687. void edma_free_slot(unsigned slot)
  688. {
  689. unsigned ctlr;
  690. ctlr = EDMA_CTLR(slot);
  691. slot = EDMA_CHAN_SLOT(slot);
  692. if (slot < edma_cc[ctlr]->num_channels ||
  693. slot >= edma_cc[ctlr]->num_slots)
  694. return;
  695. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  696. &dummy_paramset, PARM_SIZE);
  697. clear_bit(slot, edma_cc[ctlr]->edma_inuse);
  698. }
  699. EXPORT_SYMBOL(edma_free_slot);
  700. /**
  701. * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
  702. * The API will return the starting point of a set of
  703. * contiguous parameter RAM slots that have been requested
  704. *
  705. * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
  706. * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  707. * @count: number of contiguous Paramter RAM slots
  708. * @slot - the start value of Parameter RAM slot that should be passed if id
  709. * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  710. *
  711. * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
  712. * contiguous Parameter RAM slots from parameter RAM 64 in the case of
  713. * DaVinci SOCs and 32 in the case of DA8xx SOCs.
  714. *
  715. * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
  716. * set of contiguous parameter RAM slots from the "slot" that is passed as an
  717. * argument to the API.
  718. *
  719. * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
  720. * starts looking for a set of contiguous parameter RAMs from the "slot"
  721. * that is passed as an argument to the API. On failure the API will try to
  722. * find a set of contiguous Parameter RAM slots from the remaining Parameter
  723. * RAM slots
  724. */
  725. int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
  726. {
  727. /*
  728. * The start slot requested should be greater than
  729. * the number of channels and lesser than the total number
  730. * of slots
  731. */
  732. if ((id != EDMA_CONT_PARAMS_ANY) &&
  733. (slot < edma_cc[ctlr]->num_channels ||
  734. slot >= edma_cc[ctlr]->num_slots))
  735. return -EINVAL;
  736. /*
  737. * The number of parameter RAM slots requested cannot be less than 1
  738. * and cannot be more than the number of slots minus the number of
  739. * channels
  740. */
  741. if (count < 1 || count >
  742. (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
  743. return -EINVAL;
  744. switch (id) {
  745. case EDMA_CONT_PARAMS_ANY:
  746. return reserve_contiguous_slots(ctlr, id, count,
  747. edma_cc[ctlr]->num_channels);
  748. case EDMA_CONT_PARAMS_FIXED_EXACT:
  749. case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
  750. return reserve_contiguous_slots(ctlr, id, count, slot);
  751. default:
  752. return -EINVAL;
  753. }
  754. }
  755. EXPORT_SYMBOL(edma_alloc_cont_slots);
  756. /**
  757. * edma_free_cont_slots - deallocate DMA parameter RAM slots
  758. * @slot: first parameter RAM of a set of parameter RAM slots to be freed
  759. * @count: the number of contiguous parameter RAM slots to be freed
  760. *
  761. * This deallocates the parameter RAM slots allocated by
  762. * edma_alloc_cont_slots.
  763. * Callers/applications need to keep track of sets of contiguous
  764. * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
  765. * API.
  766. * Callers are responsible for ensuring the slots are inactive, and will
  767. * not be activated.
  768. */
  769. int edma_free_cont_slots(unsigned slot, int count)
  770. {
  771. unsigned ctlr, slot_to_free;
  772. int i;
  773. ctlr = EDMA_CTLR(slot);
  774. slot = EDMA_CHAN_SLOT(slot);
  775. if (slot < edma_cc[ctlr]->num_channels ||
  776. slot >= edma_cc[ctlr]->num_slots ||
  777. count < 1)
  778. return -EINVAL;
  779. for (i = slot; i < slot + count; ++i) {
  780. ctlr = EDMA_CTLR(i);
  781. slot_to_free = EDMA_CHAN_SLOT(i);
  782. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
  783. &dummy_paramset, PARM_SIZE);
  784. clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
  785. }
  786. return 0;
  787. }
  788. EXPORT_SYMBOL(edma_free_cont_slots);
  789. /*-----------------------------------------------------------------------*/
  790. /* Parameter RAM operations (i) -- read/write partial slots */
  791. /**
  792. * edma_set_src - set initial DMA source address in parameter RAM slot
  793. * @slot: parameter RAM slot being configured
  794. * @src_port: physical address of source (memory, controller FIFO, etc)
  795. * @addressMode: INCR, except in very rare cases
  796. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  797. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  798. *
  799. * Note that the source address is modified during the DMA transfer
  800. * according to edma_set_src_index().
  801. */
  802. void edma_set_src(unsigned slot, dma_addr_t src_port,
  803. enum address_mode mode, enum fifo_width width)
  804. {
  805. unsigned ctlr;
  806. ctlr = EDMA_CTLR(slot);
  807. slot = EDMA_CHAN_SLOT(slot);
  808. if (slot < edma_cc[ctlr]->num_slots) {
  809. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  810. if (mode) {
  811. /* set SAM and program FWID */
  812. i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
  813. } else {
  814. /* clear SAM */
  815. i &= ~SAM;
  816. }
  817. edma_parm_write(ctlr, PARM_OPT, slot, i);
  818. /* set the source port address
  819. in source register of param structure */
  820. edma_parm_write(ctlr, PARM_SRC, slot, src_port);
  821. }
  822. }
  823. EXPORT_SYMBOL(edma_set_src);
  824. /**
  825. * edma_set_dest - set initial DMA destination address in parameter RAM slot
  826. * @slot: parameter RAM slot being configured
  827. * @dest_port: physical address of destination (memory, controller FIFO, etc)
  828. * @addressMode: INCR, except in very rare cases
  829. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  830. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  831. *
  832. * Note that the destination address is modified during the DMA transfer
  833. * according to edma_set_dest_index().
  834. */
  835. void edma_set_dest(unsigned slot, dma_addr_t dest_port,
  836. enum address_mode mode, enum fifo_width width)
  837. {
  838. unsigned ctlr;
  839. ctlr = EDMA_CTLR(slot);
  840. slot = EDMA_CHAN_SLOT(slot);
  841. if (slot < edma_cc[ctlr]->num_slots) {
  842. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  843. if (mode) {
  844. /* set DAM and program FWID */
  845. i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
  846. } else {
  847. /* clear DAM */
  848. i &= ~DAM;
  849. }
  850. edma_parm_write(ctlr, PARM_OPT, slot, i);
  851. /* set the destination port address
  852. in dest register of param structure */
  853. edma_parm_write(ctlr, PARM_DST, slot, dest_port);
  854. }
  855. }
  856. EXPORT_SYMBOL(edma_set_dest);
  857. /**
  858. * edma_get_position - returns the current transfer points
  859. * @slot: parameter RAM slot being examined
  860. * @src: pointer to source port position
  861. * @dst: pointer to destination port position
  862. *
  863. * Returns current source and destination addresses for a particular
  864. * parameter RAM slot. Its channel should not be active when this is called.
  865. */
  866. void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
  867. {
  868. struct edmacc_param temp;
  869. unsigned ctlr;
  870. ctlr = EDMA_CTLR(slot);
  871. slot = EDMA_CHAN_SLOT(slot);
  872. edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
  873. if (src != NULL)
  874. *src = temp.src;
  875. if (dst != NULL)
  876. *dst = temp.dst;
  877. }
  878. EXPORT_SYMBOL(edma_get_position);
  879. /**
  880. * edma_set_src_index - configure DMA source address indexing
  881. * @slot: parameter RAM slot being configured
  882. * @src_bidx: byte offset between source arrays in a frame
  883. * @src_cidx: byte offset between source frames in a block
  884. *
  885. * Offsets are specified to support either contiguous or discontiguous
  886. * memory transfers, or repeated access to a hardware register, as needed.
  887. * When accessing hardware registers, both offsets are normally zero.
  888. */
  889. void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
  890. {
  891. unsigned ctlr;
  892. ctlr = EDMA_CTLR(slot);
  893. slot = EDMA_CHAN_SLOT(slot);
  894. if (slot < edma_cc[ctlr]->num_slots) {
  895. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  896. 0xffff0000, src_bidx);
  897. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  898. 0xffff0000, src_cidx);
  899. }
  900. }
  901. EXPORT_SYMBOL(edma_set_src_index);
  902. /**
  903. * edma_set_dest_index - configure DMA destination address indexing
  904. * @slot: parameter RAM slot being configured
  905. * @dest_bidx: byte offset between destination arrays in a frame
  906. * @dest_cidx: byte offset between destination frames in a block
  907. *
  908. * Offsets are specified to support either contiguous or discontiguous
  909. * memory transfers, or repeated access to a hardware register, as needed.
  910. * When accessing hardware registers, both offsets are normally zero.
  911. */
  912. void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
  913. {
  914. unsigned ctlr;
  915. ctlr = EDMA_CTLR(slot);
  916. slot = EDMA_CHAN_SLOT(slot);
  917. if (slot < edma_cc[ctlr]->num_slots) {
  918. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  919. 0x0000ffff, dest_bidx << 16);
  920. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  921. 0x0000ffff, dest_cidx << 16);
  922. }
  923. }
  924. EXPORT_SYMBOL(edma_set_dest_index);
  925. /**
  926. * edma_set_transfer_params - configure DMA transfer parameters
  927. * @slot: parameter RAM slot being configured
  928. * @acnt: how many bytes per array (at least one)
  929. * @bcnt: how many arrays per frame (at least one)
  930. * @ccnt: how many frames per block (at least one)
  931. * @bcnt_rld: used only for A-Synchronized transfers; this specifies
  932. * the value to reload into bcnt when it decrements to zero
  933. * @sync_mode: ASYNC or ABSYNC
  934. *
  935. * See the EDMA3 documentation to understand how to configure and link
  936. * transfers using the fields in PaRAM slots. If you are not doing it
  937. * all at once with edma_write_slot(), you will use this routine
  938. * plus two calls each for source and destination, setting the initial
  939. * address and saying how to index that address.
  940. *
  941. * An example of an A-Synchronized transfer is a serial link using a
  942. * single word shift register. In that case, @acnt would be equal to
  943. * that word size; the serial controller issues a DMA synchronization
  944. * event to transfer each word, and memory access by the DMA transfer
  945. * controller will be word-at-a-time.
  946. *
  947. * An example of an AB-Synchronized transfer is a device using a FIFO.
  948. * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
  949. * The controller with the FIFO issues DMA synchronization events when
  950. * the FIFO threshold is reached, and the DMA transfer controller will
  951. * transfer one frame to (or from) the FIFO. It will probably use
  952. * efficient burst modes to access memory.
  953. */
  954. void edma_set_transfer_params(unsigned slot,
  955. u16 acnt, u16 bcnt, u16 ccnt,
  956. u16 bcnt_rld, enum sync_dimension sync_mode)
  957. {
  958. unsigned ctlr;
  959. ctlr = EDMA_CTLR(slot);
  960. slot = EDMA_CHAN_SLOT(slot);
  961. if (slot < edma_cc[ctlr]->num_slots) {
  962. edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
  963. 0x0000ffff, bcnt_rld << 16);
  964. if (sync_mode == ASYNC)
  965. edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
  966. else
  967. edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
  968. /* Set the acount, bcount, ccount registers */
  969. edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
  970. edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
  971. }
  972. }
  973. EXPORT_SYMBOL(edma_set_transfer_params);
  974. /**
  975. * edma_link - link one parameter RAM slot to another
  976. * @from: parameter RAM slot originating the link
  977. * @to: parameter RAM slot which is the link target
  978. *
  979. * The originating slot should not be part of any active DMA transfer.
  980. */
  981. void edma_link(unsigned from, unsigned to)
  982. {
  983. unsigned ctlr_from, ctlr_to;
  984. ctlr_from = EDMA_CTLR(from);
  985. from = EDMA_CHAN_SLOT(from);
  986. ctlr_to = EDMA_CTLR(to);
  987. to = EDMA_CHAN_SLOT(to);
  988. if (from >= edma_cc[ctlr_from]->num_slots)
  989. return;
  990. if (to >= edma_cc[ctlr_to]->num_slots)
  991. return;
  992. edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
  993. PARM_OFFSET(to));
  994. }
  995. EXPORT_SYMBOL(edma_link);
  996. /**
  997. * edma_unlink - cut link from one parameter RAM slot
  998. * @from: parameter RAM slot originating the link
  999. *
  1000. * The originating slot should not be part of any active DMA transfer.
  1001. * Its link is set to 0xffff.
  1002. */
  1003. void edma_unlink(unsigned from)
  1004. {
  1005. unsigned ctlr;
  1006. ctlr = EDMA_CTLR(from);
  1007. from = EDMA_CHAN_SLOT(from);
  1008. if (from >= edma_cc[ctlr]->num_slots)
  1009. return;
  1010. edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
  1011. }
  1012. EXPORT_SYMBOL(edma_unlink);
  1013. /*-----------------------------------------------------------------------*/
  1014. /* Parameter RAM operations (ii) -- read/write whole parameter sets */
  1015. /**
  1016. * edma_write_slot - write parameter RAM data for slot
  1017. * @slot: number of parameter RAM slot being modified
  1018. * @param: data to be written into parameter RAM slot
  1019. *
  1020. * Use this to assign all parameters of a transfer at once. This
  1021. * allows more efficient setup of transfers than issuing multiple
  1022. * calls to set up those parameters in small pieces, and provides
  1023. * complete control over all transfer options.
  1024. */
  1025. void edma_write_slot(unsigned slot, const struct edmacc_param *param)
  1026. {
  1027. unsigned ctlr;
  1028. ctlr = EDMA_CTLR(slot);
  1029. slot = EDMA_CHAN_SLOT(slot);
  1030. if (slot >= edma_cc[ctlr]->num_slots)
  1031. return;
  1032. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
  1033. PARM_SIZE);
  1034. }
  1035. EXPORT_SYMBOL(edma_write_slot);
  1036. /**
  1037. * edma_read_slot - read parameter RAM data from slot
  1038. * @slot: number of parameter RAM slot being copied
  1039. * @param: where to store copy of parameter RAM data
  1040. *
  1041. * Use this to read data from a parameter RAM slot, perhaps to
  1042. * save them as a template for later reuse.
  1043. */
  1044. void edma_read_slot(unsigned slot, struct edmacc_param *param)
  1045. {
  1046. unsigned ctlr;
  1047. ctlr = EDMA_CTLR(slot);
  1048. slot = EDMA_CHAN_SLOT(slot);
  1049. if (slot >= edma_cc[ctlr]->num_slots)
  1050. return;
  1051. memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  1052. PARM_SIZE);
  1053. }
  1054. EXPORT_SYMBOL(edma_read_slot);
  1055. /*-----------------------------------------------------------------------*/
  1056. /* Various EDMA channel control operations */
  1057. /**
  1058. * edma_pause - pause dma on a channel
  1059. * @channel: on which edma_start() has been called
  1060. *
  1061. * This temporarily disables EDMA hardware events on the specified channel,
  1062. * preventing them from triggering new transfers on its behalf
  1063. */
  1064. void edma_pause(unsigned channel)
  1065. {
  1066. unsigned ctlr;
  1067. ctlr = EDMA_CTLR(channel);
  1068. channel = EDMA_CHAN_SLOT(channel);
  1069. if (channel < edma_cc[ctlr]->num_channels) {
  1070. unsigned int mask = BIT(channel & 0x1f);
  1071. edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
  1072. }
  1073. }
  1074. EXPORT_SYMBOL(edma_pause);
  1075. /**
  1076. * edma_resume - resumes dma on a paused channel
  1077. * @channel: on which edma_pause() has been called
  1078. *
  1079. * This re-enables EDMA hardware events on the specified channel.
  1080. */
  1081. void edma_resume(unsigned channel)
  1082. {
  1083. unsigned ctlr;
  1084. ctlr = EDMA_CTLR(channel);
  1085. channel = EDMA_CHAN_SLOT(channel);
  1086. if (channel < edma_cc[ctlr]->num_channels) {
  1087. unsigned int mask = BIT(channel & 0x1f);
  1088. edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
  1089. }
  1090. }
  1091. EXPORT_SYMBOL(edma_resume);
  1092. /**
  1093. * edma_start - start dma on a channel
  1094. * @channel: channel being activated
  1095. *
  1096. * Channels with event associations will be triggered by their hardware
  1097. * events, and channels without such associations will be triggered by
  1098. * software. (At this writing there is no interface for using software
  1099. * triggers except with channels that don't support hardware triggers.)
  1100. *
  1101. * Returns zero on success, else negative errno.
  1102. */
  1103. int edma_start(unsigned channel)
  1104. {
  1105. unsigned ctlr;
  1106. ctlr = EDMA_CTLR(channel);
  1107. channel = EDMA_CHAN_SLOT(channel);
  1108. if (channel < edma_cc[ctlr]->num_channels) {
  1109. int j = channel >> 5;
  1110. unsigned int mask = BIT(channel & 0x1f);
  1111. /* EDMA channels without event association */
  1112. if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
  1113. pr_debug("EDMA: ESR%d %08x\n", j,
  1114. edma_shadow0_read_array(ctlr, SH_ESR, j));
  1115. edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
  1116. return 0;
  1117. }
  1118. /* EDMA channel with event association */
  1119. pr_debug("EDMA: ER%d %08x\n", j,
  1120. edma_shadow0_read_array(ctlr, SH_ER, j));
  1121. /* Clear any pending event or error */
  1122. edma_write_array(ctlr, EDMA_ECR, j, mask);
  1123. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1124. /* Clear any SER */
  1125. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1126. edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
  1127. pr_debug("EDMA: EER%d %08x\n", j,
  1128. edma_shadow0_read_array(ctlr, SH_EER, j));
  1129. return 0;
  1130. }
  1131. return -EINVAL;
  1132. }
  1133. EXPORT_SYMBOL(edma_start);
  1134. /**
  1135. * edma_stop - stops dma on the channel passed
  1136. * @channel: channel being deactivated
  1137. *
  1138. * When @lch is a channel, any active transfer is paused and
  1139. * all pending hardware events are cleared. The current transfer
  1140. * may not be resumed, and the channel's Parameter RAM should be
  1141. * reinitialized before being reused.
  1142. */
  1143. void edma_stop(unsigned channel)
  1144. {
  1145. unsigned ctlr;
  1146. ctlr = EDMA_CTLR(channel);
  1147. channel = EDMA_CHAN_SLOT(channel);
  1148. if (channel < edma_cc[ctlr]->num_channels) {
  1149. int j = channel >> 5;
  1150. unsigned int mask = BIT(channel & 0x1f);
  1151. edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
  1152. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1153. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1154. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1155. pr_debug("EDMA: EER%d %08x\n", j,
  1156. edma_shadow0_read_array(ctlr, SH_EER, j));
  1157. /* REVISIT: consider guarding against inappropriate event
  1158. * chaining by overwriting with dummy_paramset.
  1159. */
  1160. }
  1161. }
  1162. EXPORT_SYMBOL(edma_stop);
  1163. /******************************************************************************
  1164. *
  1165. * It cleans ParamEntry qand bring back EDMA to initial state if media has
  1166. * been removed before EDMA has finished.It is usedful for removable media.
  1167. * Arguments:
  1168. * ch_no - channel no
  1169. *
  1170. * Return: zero on success, or corresponding error no on failure
  1171. *
  1172. * FIXME this should not be needed ... edma_stop() should suffice.
  1173. *
  1174. *****************************************************************************/
  1175. void edma_clean_channel(unsigned channel)
  1176. {
  1177. unsigned ctlr;
  1178. ctlr = EDMA_CTLR(channel);
  1179. channel = EDMA_CHAN_SLOT(channel);
  1180. if (channel < edma_cc[ctlr]->num_channels) {
  1181. int j = (channel >> 5);
  1182. unsigned int mask = BIT(channel & 0x1f);
  1183. pr_debug("EDMA: EMR%d %08x\n", j,
  1184. edma_read_array(ctlr, EDMA_EMR, j));
  1185. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1186. /* Clear the corresponding EMR bits */
  1187. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1188. /* Clear any SER */
  1189. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1190. edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
  1191. }
  1192. }
  1193. EXPORT_SYMBOL(edma_clean_channel);
  1194. /*
  1195. * edma_clear_event - clear an outstanding event on the DMA channel
  1196. * Arguments:
  1197. * channel - channel number
  1198. */
  1199. void edma_clear_event(unsigned channel)
  1200. {
  1201. unsigned ctlr;
  1202. ctlr = EDMA_CTLR(channel);
  1203. channel = EDMA_CHAN_SLOT(channel);
  1204. if (channel >= edma_cc[ctlr]->num_channels)
  1205. return;
  1206. if (channel < 32)
  1207. edma_write(ctlr, EDMA_ECR, BIT(channel));
  1208. else
  1209. edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
  1210. }
  1211. EXPORT_SYMBOL(edma_clear_event);
  1212. /*-----------------------------------------------------------------------*/
  1213. static int __init edma_probe(struct platform_device *pdev)
  1214. {
  1215. struct edma_soc_info **info = pdev->dev.platform_data;
  1216. const s8 (*queue_priority_mapping)[2];
  1217. const s8 (*queue_tc_mapping)[2];
  1218. int i, j, off, ln, found = 0;
  1219. int status = -1;
  1220. const s16 (*rsv_chans)[2];
  1221. const s16 (*rsv_slots)[2];
  1222. int irq[EDMA_MAX_CC] = {0, 0};
  1223. int err_irq[EDMA_MAX_CC] = {0, 0};
  1224. struct resource *r[EDMA_MAX_CC] = {NULL};
  1225. resource_size_t len[EDMA_MAX_CC];
  1226. char res_name[10];
  1227. char irq_name[10];
  1228. if (!info)
  1229. return -ENODEV;
  1230. for (j = 0; j < EDMA_MAX_CC; j++) {
  1231. sprintf(res_name, "edma_cc%d", j);
  1232. r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  1233. res_name);
  1234. if (!r[j] || !info[j]) {
  1235. if (found)
  1236. break;
  1237. else
  1238. return -ENODEV;
  1239. } else {
  1240. found = 1;
  1241. }
  1242. len[j] = resource_size(r[j]);
  1243. r[j] = request_mem_region(r[j]->start, len[j],
  1244. dev_name(&pdev->dev));
  1245. if (!r[j]) {
  1246. status = -EBUSY;
  1247. goto fail1;
  1248. }
  1249. edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
  1250. if (!edmacc_regs_base[j]) {
  1251. status = -EBUSY;
  1252. goto fail1;
  1253. }
  1254. edma_cc[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
  1255. if (!edma_cc[j]) {
  1256. status = -ENOMEM;
  1257. goto fail1;
  1258. }
  1259. memset(edma_cc[j], 0, sizeof(struct edma));
  1260. edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
  1261. EDMA_MAX_DMACH);
  1262. edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
  1263. EDMA_MAX_PARAMENTRY);
  1264. edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
  1265. EDMA_MAX_CC);
  1266. edma_cc[j]->default_queue = info[j]->default_queue;
  1267. if (!edma_cc[j]->default_queue)
  1268. edma_cc[j]->default_queue = EVENTQ_1;
  1269. dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
  1270. edmacc_regs_base[j]);
  1271. for (i = 0; i < edma_cc[j]->num_slots; i++)
  1272. memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
  1273. &dummy_paramset, PARM_SIZE);
  1274. /* Mark all channels as unused */
  1275. memset(edma_cc[j]->edma_unused, 0xff,
  1276. sizeof(edma_cc[j]->edma_unused));
  1277. if (info[j]->rsv) {
  1278. /* Clear the reserved channels in unused list */
  1279. rsv_chans = info[j]->rsv->rsv_chans;
  1280. if (rsv_chans) {
  1281. for (i = 0; rsv_chans[i][0] != -1; i++) {
  1282. off = rsv_chans[i][0];
  1283. ln = rsv_chans[i][1];
  1284. clear_bits(off, ln,
  1285. edma_cc[j]->edma_unused);
  1286. }
  1287. }
  1288. /* Set the reserved slots in inuse list */
  1289. rsv_slots = info[j]->rsv->rsv_slots;
  1290. if (rsv_slots) {
  1291. for (i = 0; rsv_slots[i][0] != -1; i++) {
  1292. off = rsv_slots[i][0];
  1293. ln = rsv_slots[i][1];
  1294. set_bits(off, ln,
  1295. edma_cc[j]->edma_inuse);
  1296. }
  1297. }
  1298. }
  1299. sprintf(irq_name, "edma%d", j);
  1300. irq[j] = platform_get_irq_byname(pdev, irq_name);
  1301. edma_cc[j]->irq_res_start = irq[j];
  1302. status = request_irq(irq[j], dma_irq_handler, 0, "edma",
  1303. &pdev->dev);
  1304. if (status < 0) {
  1305. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1306. irq[j], status);
  1307. goto fail;
  1308. }
  1309. sprintf(irq_name, "edma%d_err", j);
  1310. err_irq[j] = platform_get_irq_byname(pdev, irq_name);
  1311. edma_cc[j]->irq_res_end = err_irq[j];
  1312. status = request_irq(err_irq[j], dma_ccerr_handler, 0,
  1313. "edma_error", &pdev->dev);
  1314. if (status < 0) {
  1315. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1316. err_irq[j], status);
  1317. goto fail;
  1318. }
  1319. /* Everything lives on transfer controller 1 until otherwise
  1320. * specified. This way, long transfers on the low priority queue
  1321. * started by the codec engine will not cause audio defects.
  1322. */
  1323. for (i = 0; i < edma_cc[j]->num_channels; i++)
  1324. map_dmach_queue(j, i, EVENTQ_1);
  1325. queue_tc_mapping = info[j]->queue_tc_mapping;
  1326. queue_priority_mapping = info[j]->queue_priority_mapping;
  1327. /* Event queue to TC mapping */
  1328. for (i = 0; queue_tc_mapping[i][0] != -1; i++)
  1329. map_queue_tc(j, queue_tc_mapping[i][0],
  1330. queue_tc_mapping[i][1]);
  1331. /* Event queue priority mapping */
  1332. for (i = 0; queue_priority_mapping[i][0] != -1; i++)
  1333. assign_priority_to_queue(j,
  1334. queue_priority_mapping[i][0],
  1335. queue_priority_mapping[i][1]);
  1336. /* Map the channel to param entry if channel mapping logic
  1337. * exist
  1338. */
  1339. if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
  1340. map_dmach_param(j);
  1341. for (i = 0; i < info[j]->n_region; i++) {
  1342. edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
  1343. edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
  1344. edma_write_array(j, EDMA_QRAE, i, 0x0);
  1345. }
  1346. arch_num_cc++;
  1347. }
  1348. if (tc_errs_handled) {
  1349. status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
  1350. "edma_tc0", &pdev->dev);
  1351. if (status < 0) {
  1352. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1353. IRQ_TCERRINT0, status);
  1354. return status;
  1355. }
  1356. status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
  1357. "edma_tc1", &pdev->dev);
  1358. if (status < 0) {
  1359. dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
  1360. IRQ_TCERRINT, status);
  1361. return status;
  1362. }
  1363. }
  1364. return 0;
  1365. fail:
  1366. for (i = 0; i < EDMA_MAX_CC; i++) {
  1367. if (err_irq[i])
  1368. free_irq(err_irq[i], &pdev->dev);
  1369. if (irq[i])
  1370. free_irq(irq[i], &pdev->dev);
  1371. }
  1372. fail1:
  1373. for (i = 0; i < EDMA_MAX_CC; i++) {
  1374. if (r[i])
  1375. release_mem_region(r[i]->start, len[i]);
  1376. if (edmacc_regs_base[i])
  1377. iounmap(edmacc_regs_base[i]);
  1378. kfree(edma_cc[i]);
  1379. }
  1380. return status;
  1381. }
  1382. static struct platform_driver edma_driver = {
  1383. .driver.name = "edma",
  1384. };
  1385. static int __init edma_init(void)
  1386. {
  1387. return platform_driver_probe(&edma_driver, edma_probe);
  1388. }
  1389. arch_initcall(edma_init);