process.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <asm/cacheflush.h>
  32. #include <asm/leds.h>
  33. #include <asm/processor.h>
  34. #include <asm/system.h>
  35. #include <asm/thread_notify.h>
  36. #include <asm/stacktrace.h>
  37. #include <asm/mach/time.h>
  38. #ifdef CONFIG_CC_STACKPROTECTOR
  39. #include <linux/stackprotector.h>
  40. unsigned long __stack_chk_guard __read_mostly;
  41. EXPORT_SYMBOL(__stack_chk_guard);
  42. #endif
  43. static const char *processor_modes[] = {
  44. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  45. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  46. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  47. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  48. };
  49. static const char *isa_modes[] = {
  50. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  51. };
  52. extern void setup_mm_for_reboot(char mode);
  53. static volatile int hlt_counter;
  54. #include <mach/system.h>
  55. void disable_hlt(void)
  56. {
  57. hlt_counter++;
  58. }
  59. EXPORT_SYMBOL(disable_hlt);
  60. void enable_hlt(void)
  61. {
  62. hlt_counter--;
  63. }
  64. EXPORT_SYMBOL(enable_hlt);
  65. static int __init nohlt_setup(char *__unused)
  66. {
  67. hlt_counter = 1;
  68. return 1;
  69. }
  70. static int __init hlt_setup(char *__unused)
  71. {
  72. hlt_counter = 0;
  73. return 1;
  74. }
  75. __setup("nohlt", nohlt_setup);
  76. __setup("hlt", hlt_setup);
  77. void arm_machine_restart(char mode, const char *cmd)
  78. {
  79. /* Disable interrupts first */
  80. local_irq_disable();
  81. local_fiq_disable();
  82. /*
  83. * Tell the mm system that we are going to reboot -
  84. * we may need it to insert some 1:1 mappings so that
  85. * soft boot works.
  86. */
  87. setup_mm_for_reboot(mode);
  88. /* Clean and invalidate caches */
  89. flush_cache_all();
  90. /* Turn off caching */
  91. cpu_proc_fin();
  92. /* Push out any further dirty data, and ensure cache is empty */
  93. flush_cache_all();
  94. /*
  95. * Now call the architecture specific reboot code.
  96. */
  97. arch_reset(mode, cmd);
  98. /*
  99. * Whoops - the architecture was unable to reboot.
  100. * Tell the user!
  101. */
  102. mdelay(1000);
  103. printk("Reboot failed -- System halted\n");
  104. while (1);
  105. }
  106. /*
  107. * Function pointers to optional machine specific functions
  108. */
  109. void (*pm_power_off)(void);
  110. EXPORT_SYMBOL(pm_power_off);
  111. void (*arm_pm_restart)(char str, const char *cmd) = arm_machine_restart;
  112. EXPORT_SYMBOL_GPL(arm_pm_restart);
  113. /*
  114. * This is our default idle handler. We need to disable
  115. * interrupts here to ensure we don't miss a wakeup call.
  116. */
  117. static void default_idle(void)
  118. {
  119. if (!need_resched())
  120. arch_idle();
  121. local_irq_enable();
  122. }
  123. void (*pm_idle)(void) = default_idle;
  124. EXPORT_SYMBOL(pm_idle);
  125. /*
  126. * The idle thread, has rather strange semantics for calling pm_idle,
  127. * but this is what x86 does and we need to do the same, so that
  128. * things like cpuidle get called in the same way. The only difference
  129. * is that we always respect 'hlt_counter' to prevent low power idle.
  130. */
  131. void cpu_idle(void)
  132. {
  133. local_fiq_enable();
  134. /* endless idle loop with no priority at all */
  135. while (1) {
  136. tick_nohz_stop_sched_tick(1);
  137. leds_event(led_idle_start);
  138. while (!need_resched()) {
  139. #ifdef CONFIG_HOTPLUG_CPU
  140. if (cpu_is_offline(smp_processor_id()))
  141. cpu_die();
  142. #endif
  143. local_irq_disable();
  144. if (hlt_counter) {
  145. local_irq_enable();
  146. cpu_relax();
  147. } else {
  148. stop_critical_timings();
  149. pm_idle();
  150. start_critical_timings();
  151. /*
  152. * This will eventually be removed - pm_idle
  153. * functions should always return with IRQs
  154. * enabled.
  155. */
  156. WARN_ON(irqs_disabled());
  157. local_irq_enable();
  158. }
  159. }
  160. leds_event(led_idle_end);
  161. tick_nohz_restart_sched_tick();
  162. preempt_enable_no_resched();
  163. schedule();
  164. preempt_disable();
  165. }
  166. }
  167. static char reboot_mode = 'h';
  168. int __init reboot_setup(char *str)
  169. {
  170. reboot_mode = str[0];
  171. return 1;
  172. }
  173. __setup("reboot=", reboot_setup);
  174. void machine_shutdown(void)
  175. {
  176. #ifdef CONFIG_SMP
  177. smp_send_stop();
  178. #endif
  179. }
  180. void machine_halt(void)
  181. {
  182. machine_shutdown();
  183. while (1);
  184. }
  185. void machine_power_off(void)
  186. {
  187. machine_shutdown();
  188. if (pm_power_off)
  189. pm_power_off();
  190. }
  191. void machine_restart(char *cmd)
  192. {
  193. machine_shutdown();
  194. arm_pm_restart(reboot_mode, cmd);
  195. }
  196. void __show_regs(struct pt_regs *regs)
  197. {
  198. unsigned long flags;
  199. char buf[64];
  200. printk("CPU: %d %s (%s %.*s)\n",
  201. raw_smp_processor_id(), print_tainted(),
  202. init_utsname()->release,
  203. (int)strcspn(init_utsname()->version, " "),
  204. init_utsname()->version);
  205. print_symbol("PC is at %s\n", instruction_pointer(regs));
  206. print_symbol("LR is at %s\n", regs->ARM_lr);
  207. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  208. "sp : %08lx ip : %08lx fp : %08lx\n",
  209. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  210. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  211. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  212. regs->ARM_r10, regs->ARM_r9,
  213. regs->ARM_r8);
  214. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  215. regs->ARM_r7, regs->ARM_r6,
  216. regs->ARM_r5, regs->ARM_r4);
  217. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  218. regs->ARM_r3, regs->ARM_r2,
  219. regs->ARM_r1, regs->ARM_r0);
  220. flags = regs->ARM_cpsr;
  221. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  222. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  223. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  224. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  225. buf[4] = '\0';
  226. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  227. buf, interrupts_enabled(regs) ? "n" : "ff",
  228. fast_interrupts_enabled(regs) ? "n" : "ff",
  229. processor_modes[processor_mode(regs)],
  230. isa_modes[isa_mode(regs)],
  231. get_fs() == get_ds() ? "kernel" : "user");
  232. #ifdef CONFIG_CPU_CP15
  233. {
  234. unsigned int ctrl;
  235. buf[0] = '\0';
  236. #ifdef CONFIG_CPU_CP15_MMU
  237. {
  238. unsigned int transbase, dac;
  239. asm("mrc p15, 0, %0, c2, c0\n\t"
  240. "mrc p15, 0, %1, c3, c0\n"
  241. : "=r" (transbase), "=r" (dac));
  242. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  243. transbase, dac);
  244. }
  245. #endif
  246. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  247. printk("Control: %08x%s\n", ctrl, buf);
  248. }
  249. #endif
  250. }
  251. void show_regs(struct pt_regs * regs)
  252. {
  253. printk("\n");
  254. printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
  255. __show_regs(regs);
  256. __backtrace();
  257. }
  258. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  259. EXPORT_SYMBOL_GPL(thread_notify_head);
  260. /*
  261. * Free current thread data structures etc..
  262. */
  263. void exit_thread(void)
  264. {
  265. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  266. }
  267. void flush_thread(void)
  268. {
  269. struct thread_info *thread = current_thread_info();
  270. struct task_struct *tsk = current;
  271. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  272. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  273. memset(&thread->fpstate, 0, sizeof(union fp_state));
  274. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  275. }
  276. void release_thread(struct task_struct *dead_task)
  277. {
  278. }
  279. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  280. int
  281. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  282. unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
  283. {
  284. struct thread_info *thread = task_thread_info(p);
  285. struct pt_regs *childregs = task_pt_regs(p);
  286. *childregs = *regs;
  287. childregs->ARM_r0 = 0;
  288. childregs->ARM_sp = stack_start;
  289. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  290. thread->cpu_context.sp = (unsigned long)childregs;
  291. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  292. if (clone_flags & CLONE_SETTLS)
  293. thread->tp_value = regs->ARM_r3;
  294. return 0;
  295. }
  296. /*
  297. * Fill in the task's elfregs structure for a core dump.
  298. */
  299. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  300. {
  301. elf_core_copy_regs(elfregs, task_pt_regs(t));
  302. return 1;
  303. }
  304. /*
  305. * fill in the fpe structure for a core dump...
  306. */
  307. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  308. {
  309. struct thread_info *thread = current_thread_info();
  310. int used_math = thread->used_cp[1] | thread->used_cp[2];
  311. if (used_math)
  312. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  313. return used_math != 0;
  314. }
  315. EXPORT_SYMBOL(dump_fpu);
  316. /*
  317. * Shuffle the argument into the correct register before calling the
  318. * thread function. r4 is the thread argument, r5 is the pointer to
  319. * the thread function, and r6 points to the exit function.
  320. */
  321. extern void kernel_thread_helper(void);
  322. asm( ".pushsection .text\n"
  323. " .align\n"
  324. " .type kernel_thread_helper, #function\n"
  325. "kernel_thread_helper:\n"
  326. #ifdef CONFIG_TRACE_IRQFLAGS
  327. " bl trace_hardirqs_on\n"
  328. #endif
  329. " msr cpsr_c, r7\n"
  330. " mov r0, r4\n"
  331. " mov lr, r6\n"
  332. " mov pc, r5\n"
  333. " .size kernel_thread_helper, . - kernel_thread_helper\n"
  334. " .popsection");
  335. #ifdef CONFIG_ARM_UNWIND
  336. extern void kernel_thread_exit(long code);
  337. asm( ".pushsection .text\n"
  338. " .align\n"
  339. " .type kernel_thread_exit, #function\n"
  340. "kernel_thread_exit:\n"
  341. " .fnstart\n"
  342. " .cantunwind\n"
  343. " bl do_exit\n"
  344. " nop\n"
  345. " .fnend\n"
  346. " .size kernel_thread_exit, . - kernel_thread_exit\n"
  347. " .popsection");
  348. #else
  349. #define kernel_thread_exit do_exit
  350. #endif
  351. /*
  352. * Create a kernel thread.
  353. */
  354. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  355. {
  356. struct pt_regs regs;
  357. memset(&regs, 0, sizeof(regs));
  358. regs.ARM_r4 = (unsigned long)arg;
  359. regs.ARM_r5 = (unsigned long)fn;
  360. regs.ARM_r6 = (unsigned long)kernel_thread_exit;
  361. regs.ARM_r7 = SVC_MODE | PSR_ENDSTATE | PSR_ISETSTATE;
  362. regs.ARM_pc = (unsigned long)kernel_thread_helper;
  363. regs.ARM_cpsr = regs.ARM_r7 | PSR_I_BIT;
  364. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  365. }
  366. EXPORT_SYMBOL(kernel_thread);
  367. unsigned long get_wchan(struct task_struct *p)
  368. {
  369. struct stackframe frame;
  370. int count = 0;
  371. if (!p || p == current || p->state == TASK_RUNNING)
  372. return 0;
  373. frame.fp = thread_saved_fp(p);
  374. frame.sp = thread_saved_sp(p);
  375. frame.lr = 0; /* recovered from the stack */
  376. frame.pc = thread_saved_pc(p);
  377. do {
  378. int ret = unwind_frame(&frame);
  379. if (ret < 0)
  380. return 0;
  381. if (!in_sched_functions(frame.pc))
  382. return frame.pc;
  383. } while (count ++ < 16);
  384. return 0;
  385. }
  386. unsigned long arch_randomize_brk(struct mm_struct *mm)
  387. {
  388. unsigned long range_end = mm->brk + 0x02000000;
  389. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  390. }