kprobes-decode.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530
  1. /*
  2. * arch/arm/kernel/kprobes-decode.c
  3. *
  4. * Copyright (C) 2006, 2007 Motorola Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. */
  15. /*
  16. * We do not have hardware single-stepping on ARM, This
  17. * effort is further complicated by the ARM not having a
  18. * "next PC" register. Instructions that change the PC
  19. * can't be safely single-stepped in a MP environment, so
  20. * we have a lot of work to do:
  21. *
  22. * In the prepare phase:
  23. * *) If it is an instruction that does anything
  24. * with the CPU mode, we reject it for a kprobe.
  25. * (This is out of laziness rather than need. The
  26. * instructions could be simulated.)
  27. *
  28. * *) Otherwise, decode the instruction rewriting its
  29. * registers to take fixed, ordered registers and
  30. * setting a handler for it to run the instruction.
  31. *
  32. * In the execution phase by an instruction's handler:
  33. *
  34. * *) If the PC is written to by the instruction, the
  35. * instruction must be fully simulated in software.
  36. * If it is a conditional instruction, the handler
  37. * will use insn[0] to copy its condition code to
  38. * set r0 to 1 and insn[1] to "mov pc, lr" to return.
  39. *
  40. * *) Otherwise, a modified form of the instruction is
  41. * directly executed. Its handler calls the
  42. * instruction in insn[0]. In insn[1] is a
  43. * "mov pc, lr" to return.
  44. *
  45. * Before calling, load up the reordered registers
  46. * from the original instruction's registers. If one
  47. * of the original input registers is the PC, compute
  48. * and adjust the appropriate input register.
  49. *
  50. * After call completes, copy the output registers to
  51. * the original instruction's original registers.
  52. *
  53. * We don't use a real breakpoint instruction since that
  54. * would have us in the kernel go from SVC mode to SVC
  55. * mode losing the link register. Instead we use an
  56. * undefined instruction. To simplify processing, the
  57. * undefined instruction used for kprobes must be reserved
  58. * exclusively for kprobes use.
  59. *
  60. * TODO: ifdef out some instruction decoding based on architecture.
  61. */
  62. #include <linux/kernel.h>
  63. #include <linux/kprobes.h>
  64. #define sign_extend(x, signbit) ((x) | (0 - ((x) & (1 << (signbit)))))
  65. #define branch_displacement(insn) sign_extend(((insn) & 0xffffff) << 2, 25)
  66. #define PSR_fs (PSR_f|PSR_s)
  67. #define KPROBE_RETURN_INSTRUCTION 0xe1a0f00e /* mov pc, lr */
  68. #define SET_R0_TRUE_INSTRUCTION 0xe3a00001 /* mov r0, #1 */
  69. #define truecc_insn(insn) (((insn) & 0xf0000000) | \
  70. (SET_R0_TRUE_INSTRUCTION & 0x0fffffff))
  71. typedef long (insn_0arg_fn_t)(void);
  72. typedef long (insn_1arg_fn_t)(long);
  73. typedef long (insn_2arg_fn_t)(long, long);
  74. typedef long (insn_3arg_fn_t)(long, long, long);
  75. typedef long (insn_4arg_fn_t)(long, long, long, long);
  76. typedef long long (insn_llret_0arg_fn_t)(void);
  77. typedef long long (insn_llret_3arg_fn_t)(long, long, long);
  78. typedef long long (insn_llret_4arg_fn_t)(long, long, long, long);
  79. union reg_pair {
  80. long long dr;
  81. #ifdef __LITTLE_ENDIAN
  82. struct { long r0, r1; };
  83. #else
  84. struct { long r1, r0; };
  85. #endif
  86. };
  87. /*
  88. * For STR and STM instructions, an ARM core may choose to use either
  89. * a +8 or a +12 displacement from the current instruction's address.
  90. * Whichever value is chosen for a given core, it must be the same for
  91. * both instructions and may not change. This function measures it.
  92. */
  93. static int str_pc_offset;
  94. static void __init find_str_pc_offset(void)
  95. {
  96. int addr, scratch, ret;
  97. __asm__ (
  98. "sub %[ret], pc, #4 \n\t"
  99. "str pc, %[addr] \n\t"
  100. "ldr %[scr], %[addr] \n\t"
  101. "sub %[ret], %[scr], %[ret] \n\t"
  102. : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
  103. str_pc_offset = ret;
  104. }
  105. /*
  106. * The insnslot_?arg_r[w]flags() functions below are to keep the
  107. * msr -> *fn -> mrs instruction sequences indivisible so that
  108. * the state of the CPSR flags aren't inadvertently modified
  109. * just before or just after the call.
  110. */
  111. static inline long __kprobes
  112. insnslot_0arg_rflags(long cpsr, insn_0arg_fn_t *fn)
  113. {
  114. register long ret asm("r0");
  115. __asm__ __volatile__ (
  116. "msr cpsr_fs, %[cpsr] \n\t"
  117. "mov lr, pc \n\t"
  118. "mov pc, %[fn] \n\t"
  119. : "=r" (ret)
  120. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  121. : "lr", "cc"
  122. );
  123. return ret;
  124. }
  125. static inline long long __kprobes
  126. insnslot_llret_0arg_rflags(long cpsr, insn_llret_0arg_fn_t *fn)
  127. {
  128. register long ret0 asm("r0");
  129. register long ret1 asm("r1");
  130. union reg_pair fnr;
  131. __asm__ __volatile__ (
  132. "msr cpsr_fs, %[cpsr] \n\t"
  133. "mov lr, pc \n\t"
  134. "mov pc, %[fn] \n\t"
  135. : "=r" (ret0), "=r" (ret1)
  136. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  137. : "lr", "cc"
  138. );
  139. fnr.r0 = ret0;
  140. fnr.r1 = ret1;
  141. return fnr.dr;
  142. }
  143. static inline long __kprobes
  144. insnslot_1arg_rflags(long r0, long cpsr, insn_1arg_fn_t *fn)
  145. {
  146. register long rr0 asm("r0") = r0;
  147. register long ret asm("r0");
  148. __asm__ __volatile__ (
  149. "msr cpsr_fs, %[cpsr] \n\t"
  150. "mov lr, pc \n\t"
  151. "mov pc, %[fn] \n\t"
  152. : "=r" (ret)
  153. : "0" (rr0), [cpsr] "r" (cpsr), [fn] "r" (fn)
  154. : "lr", "cc"
  155. );
  156. return ret;
  157. }
  158. static inline long __kprobes
  159. insnslot_2arg_rflags(long r0, long r1, long cpsr, insn_2arg_fn_t *fn)
  160. {
  161. register long rr0 asm("r0") = r0;
  162. register long rr1 asm("r1") = r1;
  163. register long ret asm("r0");
  164. __asm__ __volatile__ (
  165. "msr cpsr_fs, %[cpsr] \n\t"
  166. "mov lr, pc \n\t"
  167. "mov pc, %[fn] \n\t"
  168. : "=r" (ret)
  169. : "0" (rr0), "r" (rr1),
  170. [cpsr] "r" (cpsr), [fn] "r" (fn)
  171. : "lr", "cc"
  172. );
  173. return ret;
  174. }
  175. static inline long __kprobes
  176. insnslot_3arg_rflags(long r0, long r1, long r2, long cpsr, insn_3arg_fn_t *fn)
  177. {
  178. register long rr0 asm("r0") = r0;
  179. register long rr1 asm("r1") = r1;
  180. register long rr2 asm("r2") = r2;
  181. register long ret asm("r0");
  182. __asm__ __volatile__ (
  183. "msr cpsr_fs, %[cpsr] \n\t"
  184. "mov lr, pc \n\t"
  185. "mov pc, %[fn] \n\t"
  186. : "=r" (ret)
  187. : "0" (rr0), "r" (rr1), "r" (rr2),
  188. [cpsr] "r" (cpsr), [fn] "r" (fn)
  189. : "lr", "cc"
  190. );
  191. return ret;
  192. }
  193. static inline long long __kprobes
  194. insnslot_llret_3arg_rflags(long r0, long r1, long r2, long cpsr,
  195. insn_llret_3arg_fn_t *fn)
  196. {
  197. register long rr0 asm("r0") = r0;
  198. register long rr1 asm("r1") = r1;
  199. register long rr2 asm("r2") = r2;
  200. register long ret0 asm("r0");
  201. register long ret1 asm("r1");
  202. union reg_pair fnr;
  203. __asm__ __volatile__ (
  204. "msr cpsr_fs, %[cpsr] \n\t"
  205. "mov lr, pc \n\t"
  206. "mov pc, %[fn] \n\t"
  207. : "=r" (ret0), "=r" (ret1)
  208. : "0" (rr0), "r" (rr1), "r" (rr2),
  209. [cpsr] "r" (cpsr), [fn] "r" (fn)
  210. : "lr", "cc"
  211. );
  212. fnr.r0 = ret0;
  213. fnr.r1 = ret1;
  214. return fnr.dr;
  215. }
  216. static inline long __kprobes
  217. insnslot_4arg_rflags(long r0, long r1, long r2, long r3, long cpsr,
  218. insn_4arg_fn_t *fn)
  219. {
  220. register long rr0 asm("r0") = r0;
  221. register long rr1 asm("r1") = r1;
  222. register long rr2 asm("r2") = r2;
  223. register long rr3 asm("r3") = r3;
  224. register long ret asm("r0");
  225. __asm__ __volatile__ (
  226. "msr cpsr_fs, %[cpsr] \n\t"
  227. "mov lr, pc \n\t"
  228. "mov pc, %[fn] \n\t"
  229. : "=r" (ret)
  230. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  231. [cpsr] "r" (cpsr), [fn] "r" (fn)
  232. : "lr", "cc"
  233. );
  234. return ret;
  235. }
  236. static inline long __kprobes
  237. insnslot_1arg_rwflags(long r0, long *cpsr, insn_1arg_fn_t *fn)
  238. {
  239. register long rr0 asm("r0") = r0;
  240. register long ret asm("r0");
  241. long oldcpsr = *cpsr;
  242. long newcpsr;
  243. __asm__ __volatile__ (
  244. "msr cpsr_fs, %[oldcpsr] \n\t"
  245. "mov lr, pc \n\t"
  246. "mov pc, %[fn] \n\t"
  247. "mrs %[newcpsr], cpsr \n\t"
  248. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  249. : "0" (rr0), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  250. : "lr", "cc"
  251. );
  252. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  253. return ret;
  254. }
  255. static inline long __kprobes
  256. insnslot_2arg_rwflags(long r0, long r1, long *cpsr, insn_2arg_fn_t *fn)
  257. {
  258. register long rr0 asm("r0") = r0;
  259. register long rr1 asm("r1") = r1;
  260. register long ret asm("r0");
  261. long oldcpsr = *cpsr;
  262. long newcpsr;
  263. __asm__ __volatile__ (
  264. "msr cpsr_fs, %[oldcpsr] \n\t"
  265. "mov lr, pc \n\t"
  266. "mov pc, %[fn] \n\t"
  267. "mrs %[newcpsr], cpsr \n\t"
  268. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  269. : "0" (rr0), "r" (rr1), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  270. : "lr", "cc"
  271. );
  272. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  273. return ret;
  274. }
  275. static inline long __kprobes
  276. insnslot_3arg_rwflags(long r0, long r1, long r2, long *cpsr,
  277. insn_3arg_fn_t *fn)
  278. {
  279. register long rr0 asm("r0") = r0;
  280. register long rr1 asm("r1") = r1;
  281. register long rr2 asm("r2") = r2;
  282. register long ret asm("r0");
  283. long oldcpsr = *cpsr;
  284. long newcpsr;
  285. __asm__ __volatile__ (
  286. "msr cpsr_fs, %[oldcpsr] \n\t"
  287. "mov lr, pc \n\t"
  288. "mov pc, %[fn] \n\t"
  289. "mrs %[newcpsr], cpsr \n\t"
  290. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  291. : "0" (rr0), "r" (rr1), "r" (rr2),
  292. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  293. : "lr", "cc"
  294. );
  295. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  296. return ret;
  297. }
  298. static inline long __kprobes
  299. insnslot_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  300. insn_4arg_fn_t *fn)
  301. {
  302. register long rr0 asm("r0") = r0;
  303. register long rr1 asm("r1") = r1;
  304. register long rr2 asm("r2") = r2;
  305. register long rr3 asm("r3") = r3;
  306. register long ret asm("r0");
  307. long oldcpsr = *cpsr;
  308. long newcpsr;
  309. __asm__ __volatile__ (
  310. "msr cpsr_fs, %[oldcpsr] \n\t"
  311. "mov lr, pc \n\t"
  312. "mov pc, %[fn] \n\t"
  313. "mrs %[newcpsr], cpsr \n\t"
  314. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  315. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  316. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  317. : "lr", "cc"
  318. );
  319. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  320. return ret;
  321. }
  322. static inline long long __kprobes
  323. insnslot_llret_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  324. insn_llret_4arg_fn_t *fn)
  325. {
  326. register long rr0 asm("r0") = r0;
  327. register long rr1 asm("r1") = r1;
  328. register long rr2 asm("r2") = r2;
  329. register long rr3 asm("r3") = r3;
  330. register long ret0 asm("r0");
  331. register long ret1 asm("r1");
  332. long oldcpsr = *cpsr;
  333. long newcpsr;
  334. union reg_pair fnr;
  335. __asm__ __volatile__ (
  336. "msr cpsr_fs, %[oldcpsr] \n\t"
  337. "mov lr, pc \n\t"
  338. "mov pc, %[fn] \n\t"
  339. "mrs %[newcpsr], cpsr \n\t"
  340. : "=r" (ret0), "=r" (ret1), [newcpsr] "=r" (newcpsr)
  341. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  342. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  343. : "lr", "cc"
  344. );
  345. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  346. fnr.r0 = ret0;
  347. fnr.r1 = ret1;
  348. return fnr.dr;
  349. }
  350. /*
  351. * To avoid the complications of mimicing single-stepping on a
  352. * processor without a Next-PC or a single-step mode, and to
  353. * avoid having to deal with the side-effects of boosting, we
  354. * simulate or emulate (almost) all ARM instructions.
  355. *
  356. * "Simulation" is where the instruction's behavior is duplicated in
  357. * C code. "Emulation" is where the original instruction is rewritten
  358. * and executed, often by altering its registers.
  359. *
  360. * By having all behavior of the kprobe'd instruction completed before
  361. * returning from the kprobe_handler(), all locks (scheduler and
  362. * interrupt) can safely be released. There is no need for secondary
  363. * breakpoints, no race with MP or preemptable kernels, nor having to
  364. * clean up resources counts at a later time impacting overall system
  365. * performance. By rewriting the instruction, only the minimum registers
  366. * need to be loaded and saved back optimizing performance.
  367. *
  368. * Calling the insnslot_*_rwflags version of a function doesn't hurt
  369. * anything even when the CPSR flags aren't updated by the
  370. * instruction. It's just a little slower in return for saving
  371. * a little space by not having a duplicate function that doesn't
  372. * update the flags. (The same optimization can be said for
  373. * instructions that do or don't perform register writeback)
  374. * Also, instructions can either read the flags, only write the
  375. * flags, or read and write the flags. To save combinations
  376. * rather than for sheer performance, flag functions just assume
  377. * read and write of flags.
  378. */
  379. static void __kprobes simulate_bbl(struct kprobe *p, struct pt_regs *regs)
  380. {
  381. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  382. kprobe_opcode_t insn = p->opcode;
  383. long iaddr = (long)p->addr;
  384. int disp = branch_displacement(insn);
  385. if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
  386. return;
  387. if (insn & (1 << 24))
  388. regs->ARM_lr = iaddr + 4;
  389. regs->ARM_pc = iaddr + 8 + disp;
  390. }
  391. static void __kprobes simulate_blx1(struct kprobe *p, struct pt_regs *regs)
  392. {
  393. kprobe_opcode_t insn = p->opcode;
  394. long iaddr = (long)p->addr;
  395. int disp = branch_displacement(insn);
  396. regs->ARM_lr = iaddr + 4;
  397. regs->ARM_pc = iaddr + 8 + disp + ((insn >> 23) & 0x2);
  398. regs->ARM_cpsr |= PSR_T_BIT;
  399. }
  400. static void __kprobes simulate_blx2bx(struct kprobe *p, struct pt_regs *regs)
  401. {
  402. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  403. kprobe_opcode_t insn = p->opcode;
  404. int rm = insn & 0xf;
  405. long rmv = regs->uregs[rm];
  406. if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
  407. return;
  408. if (insn & (1 << 5))
  409. regs->ARM_lr = (long)p->addr + 4;
  410. regs->ARM_pc = rmv & ~0x1;
  411. regs->ARM_cpsr &= ~PSR_T_BIT;
  412. if (rmv & 0x1)
  413. regs->ARM_cpsr |= PSR_T_BIT;
  414. }
  415. static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs)
  416. {
  417. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  418. kprobe_opcode_t insn = p->opcode;
  419. int rn = (insn >> 16) & 0xf;
  420. int lbit = insn & (1 << 20);
  421. int wbit = insn & (1 << 21);
  422. int ubit = insn & (1 << 23);
  423. int pbit = insn & (1 << 24);
  424. long *addr = (long *)regs->uregs[rn];
  425. int reg_bit_vector;
  426. int reg_count;
  427. if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
  428. return;
  429. reg_count = 0;
  430. reg_bit_vector = insn & 0xffff;
  431. while (reg_bit_vector) {
  432. reg_bit_vector &= (reg_bit_vector - 1);
  433. ++reg_count;
  434. }
  435. if (!ubit)
  436. addr -= reg_count;
  437. addr += (!pbit == !ubit);
  438. reg_bit_vector = insn & 0xffff;
  439. while (reg_bit_vector) {
  440. int reg = __ffs(reg_bit_vector);
  441. reg_bit_vector &= (reg_bit_vector - 1);
  442. if (lbit)
  443. regs->uregs[reg] = *addr++;
  444. else
  445. *addr++ = regs->uregs[reg];
  446. }
  447. if (wbit) {
  448. if (!ubit)
  449. addr -= reg_count;
  450. addr -= (!pbit == !ubit);
  451. regs->uregs[rn] = (long)addr;
  452. }
  453. }
  454. static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs)
  455. {
  456. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  457. if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
  458. return;
  459. regs->ARM_pc = (long)p->addr + str_pc_offset;
  460. simulate_ldm1stm1(p, regs);
  461. regs->ARM_pc = (long)p->addr + 4;
  462. }
  463. static void __kprobes simulate_mov_ipsp(struct kprobe *p, struct pt_regs *regs)
  464. {
  465. regs->uregs[12] = regs->uregs[13];
  466. }
  467. static void __kprobes emulate_ldcstc(struct kprobe *p, struct pt_regs *regs)
  468. {
  469. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  470. kprobe_opcode_t insn = p->opcode;
  471. int rn = (insn >> 16) & 0xf;
  472. long rnv = regs->uregs[rn];
  473. /* Save Rn in case of writeback. */
  474. regs->uregs[rn] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  475. }
  476. static void __kprobes emulate_ldrd(struct kprobe *p, struct pt_regs *regs)
  477. {
  478. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  479. kprobe_opcode_t insn = p->opcode;
  480. int rd = (insn >> 12) & 0xf;
  481. int rn = (insn >> 16) & 0xf;
  482. int rm = insn & 0xf; /* rm may be invalid, don't care. */
  483. /* Not following the C calling convention here, so need asm(). */
  484. __asm__ __volatile__ (
  485. "ldr r0, %[rn] \n\t"
  486. "ldr r1, %[rm] \n\t"
  487. "msr cpsr_fs, %[cpsr]\n\t"
  488. "mov lr, pc \n\t"
  489. "mov pc, %[i_fn] \n\t"
  490. "str r0, %[rn] \n\t" /* in case of writeback */
  491. "str r2, %[rd0] \n\t"
  492. "str r3, %[rd1] \n\t"
  493. : [rn] "+m" (regs->uregs[rn]),
  494. [rd0] "=m" (regs->uregs[rd]),
  495. [rd1] "=m" (regs->uregs[rd+1])
  496. : [rm] "m" (regs->uregs[rm]),
  497. [cpsr] "r" (regs->ARM_cpsr),
  498. [i_fn] "r" (i_fn)
  499. : "r0", "r1", "r2", "r3", "lr", "cc"
  500. );
  501. }
  502. static void __kprobes emulate_strd(struct kprobe *p, struct pt_regs *regs)
  503. {
  504. insn_4arg_fn_t *i_fn = (insn_4arg_fn_t *)&p->ainsn.insn[0];
  505. kprobe_opcode_t insn = p->opcode;
  506. int rd = (insn >> 12) & 0xf;
  507. int rn = (insn >> 16) & 0xf;
  508. int rm = insn & 0xf;
  509. long rnv = regs->uregs[rn];
  510. long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
  511. regs->uregs[rn] = insnslot_4arg_rflags(rnv, rmv, regs->uregs[rd],
  512. regs->uregs[rd+1],
  513. regs->ARM_cpsr, i_fn);
  514. }
  515. static void __kprobes emulate_ldr(struct kprobe *p, struct pt_regs *regs)
  516. {
  517. insn_llret_3arg_fn_t *i_fn = (insn_llret_3arg_fn_t *)&p->ainsn.insn[0];
  518. kprobe_opcode_t insn = p->opcode;
  519. long ppc = (long)p->addr + 8;
  520. union reg_pair fnr;
  521. int rd = (insn >> 12) & 0xf;
  522. int rn = (insn >> 16) & 0xf;
  523. int rm = insn & 0xf;
  524. long rdv;
  525. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  526. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  527. long cpsr = regs->ARM_cpsr;
  528. fnr.dr = insnslot_llret_3arg_rflags(rnv, 0, rmv, cpsr, i_fn);
  529. regs->uregs[rn] = fnr.r0; /* Save Rn in case of writeback. */
  530. rdv = fnr.r1;
  531. if (rd == 15) {
  532. #if __LINUX_ARM_ARCH__ >= 5
  533. cpsr &= ~PSR_T_BIT;
  534. if (rdv & 0x1)
  535. cpsr |= PSR_T_BIT;
  536. regs->ARM_cpsr = cpsr;
  537. rdv &= ~0x1;
  538. #else
  539. rdv &= ~0x2;
  540. #endif
  541. }
  542. regs->uregs[rd] = rdv;
  543. }
  544. static void __kprobes emulate_str(struct kprobe *p, struct pt_regs *regs)
  545. {
  546. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  547. kprobe_opcode_t insn = p->opcode;
  548. long iaddr = (long)p->addr;
  549. int rd = (insn >> 12) & 0xf;
  550. int rn = (insn >> 16) & 0xf;
  551. int rm = insn & 0xf;
  552. long rdv = (rd == 15) ? iaddr + str_pc_offset : regs->uregs[rd];
  553. long rnv = (rn == 15) ? iaddr + 8 : regs->uregs[rn];
  554. long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
  555. /* Save Rn in case of writeback. */
  556. regs->uregs[rn] =
  557. insnslot_3arg_rflags(rnv, rdv, rmv, regs->ARM_cpsr, i_fn);
  558. }
  559. static void __kprobes emulate_mrrc(struct kprobe *p, struct pt_regs *regs)
  560. {
  561. insn_llret_0arg_fn_t *i_fn = (insn_llret_0arg_fn_t *)&p->ainsn.insn[0];
  562. kprobe_opcode_t insn = p->opcode;
  563. union reg_pair fnr;
  564. int rd = (insn >> 12) & 0xf;
  565. int rn = (insn >> 16) & 0xf;
  566. fnr.dr = insnslot_llret_0arg_rflags(regs->ARM_cpsr, i_fn);
  567. regs->uregs[rn] = fnr.r0;
  568. regs->uregs[rd] = fnr.r1;
  569. }
  570. static void __kprobes emulate_mcrr(struct kprobe *p, struct pt_regs *regs)
  571. {
  572. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  573. kprobe_opcode_t insn = p->opcode;
  574. int rd = (insn >> 12) & 0xf;
  575. int rn = (insn >> 16) & 0xf;
  576. long rnv = regs->uregs[rn];
  577. long rdv = regs->uregs[rd];
  578. insnslot_2arg_rflags(rnv, rdv, regs->ARM_cpsr, i_fn);
  579. }
  580. static void __kprobes emulate_sat(struct kprobe *p, struct pt_regs *regs)
  581. {
  582. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  583. kprobe_opcode_t insn = p->opcode;
  584. int rd = (insn >> 12) & 0xf;
  585. int rm = insn & 0xf;
  586. long rmv = regs->uregs[rm];
  587. /* Writes Q flag */
  588. regs->uregs[rd] = insnslot_1arg_rwflags(rmv, &regs->ARM_cpsr, i_fn);
  589. }
  590. static void __kprobes emulate_sel(struct kprobe *p, struct pt_regs *regs)
  591. {
  592. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  593. kprobe_opcode_t insn = p->opcode;
  594. int rd = (insn >> 12) & 0xf;
  595. int rn = (insn >> 16) & 0xf;
  596. int rm = insn & 0xf;
  597. long rnv = regs->uregs[rn];
  598. long rmv = regs->uregs[rm];
  599. /* Reads GE bits */
  600. regs->uregs[rd] = insnslot_2arg_rflags(rnv, rmv, regs->ARM_cpsr, i_fn);
  601. }
  602. static void __kprobes emulate_none(struct kprobe *p, struct pt_regs *regs)
  603. {
  604. insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
  605. insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
  606. }
  607. static void __kprobes emulate_rd12(struct kprobe *p, struct pt_regs *regs)
  608. {
  609. insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
  610. kprobe_opcode_t insn = p->opcode;
  611. int rd = (insn >> 12) & 0xf;
  612. regs->uregs[rd] = insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
  613. }
  614. static void __kprobes emulate_ird12(struct kprobe *p, struct pt_regs *regs)
  615. {
  616. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  617. kprobe_opcode_t insn = p->opcode;
  618. int ird = (insn >> 12) & 0xf;
  619. insnslot_1arg_rflags(regs->uregs[ird], regs->ARM_cpsr, i_fn);
  620. }
  621. static void __kprobes emulate_rn16(struct kprobe *p, struct pt_regs *regs)
  622. {
  623. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  624. kprobe_opcode_t insn = p->opcode;
  625. int rn = (insn >> 16) & 0xf;
  626. long rnv = regs->uregs[rn];
  627. insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  628. }
  629. static void __kprobes emulate_rd12rm0(struct kprobe *p, struct pt_regs *regs)
  630. {
  631. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  632. kprobe_opcode_t insn = p->opcode;
  633. int rd = (insn >> 12) & 0xf;
  634. int rm = insn & 0xf;
  635. long rmv = regs->uregs[rm];
  636. regs->uregs[rd] = insnslot_1arg_rflags(rmv, regs->ARM_cpsr, i_fn);
  637. }
  638. static void __kprobes
  639. emulate_rd12rn16rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  640. {
  641. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  642. kprobe_opcode_t insn = p->opcode;
  643. int rd = (insn >> 12) & 0xf;
  644. int rn = (insn >> 16) & 0xf;
  645. int rm = insn & 0xf;
  646. long rnv = regs->uregs[rn];
  647. long rmv = regs->uregs[rm];
  648. regs->uregs[rd] =
  649. insnslot_2arg_rwflags(rnv, rmv, &regs->ARM_cpsr, i_fn);
  650. }
  651. static void __kprobes
  652. emulate_rd16rn12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  653. {
  654. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  655. kprobe_opcode_t insn = p->opcode;
  656. int rd = (insn >> 16) & 0xf;
  657. int rn = (insn >> 12) & 0xf;
  658. int rs = (insn >> 8) & 0xf;
  659. int rm = insn & 0xf;
  660. long rnv = regs->uregs[rn];
  661. long rsv = regs->uregs[rs];
  662. long rmv = regs->uregs[rm];
  663. regs->uregs[rd] =
  664. insnslot_3arg_rwflags(rnv, rsv, rmv, &regs->ARM_cpsr, i_fn);
  665. }
  666. static void __kprobes
  667. emulate_rd16rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  668. {
  669. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  670. kprobe_opcode_t insn = p->opcode;
  671. int rd = (insn >> 16) & 0xf;
  672. int rs = (insn >> 8) & 0xf;
  673. int rm = insn & 0xf;
  674. long rsv = regs->uregs[rs];
  675. long rmv = regs->uregs[rm];
  676. regs->uregs[rd] =
  677. insnslot_2arg_rwflags(rsv, rmv, &regs->ARM_cpsr, i_fn);
  678. }
  679. static void __kprobes
  680. emulate_rdhi16rdlo12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  681. {
  682. insn_llret_4arg_fn_t *i_fn = (insn_llret_4arg_fn_t *)&p->ainsn.insn[0];
  683. kprobe_opcode_t insn = p->opcode;
  684. union reg_pair fnr;
  685. int rdhi = (insn >> 16) & 0xf;
  686. int rdlo = (insn >> 12) & 0xf;
  687. int rs = (insn >> 8) & 0xf;
  688. int rm = insn & 0xf;
  689. long rsv = regs->uregs[rs];
  690. long rmv = regs->uregs[rm];
  691. fnr.dr = insnslot_llret_4arg_rwflags(regs->uregs[rdhi],
  692. regs->uregs[rdlo], rsv, rmv,
  693. &regs->ARM_cpsr, i_fn);
  694. regs->uregs[rdhi] = fnr.r0;
  695. regs->uregs[rdlo] = fnr.r1;
  696. }
  697. static void __kprobes
  698. emulate_alu_imm_rflags(struct kprobe *p, struct pt_regs *regs)
  699. {
  700. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  701. kprobe_opcode_t insn = p->opcode;
  702. int rd = (insn >> 12) & 0xf;
  703. int rn = (insn >> 16) & 0xf;
  704. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  705. regs->uregs[rd] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  706. }
  707. static void __kprobes
  708. emulate_alu_imm_rwflags(struct kprobe *p, struct pt_regs *regs)
  709. {
  710. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  711. kprobe_opcode_t insn = p->opcode;
  712. int rd = (insn >> 12) & 0xf;
  713. int rn = (insn >> 16) & 0xf;
  714. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  715. regs->uregs[rd] = insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
  716. }
  717. static void __kprobes
  718. emulate_alu_rflags(struct kprobe *p, struct pt_regs *regs)
  719. {
  720. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  721. kprobe_opcode_t insn = p->opcode;
  722. long ppc = (long)p->addr + 8;
  723. int rd = (insn >> 12) & 0xf;
  724. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  725. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  726. int rm = insn & 0xf;
  727. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  728. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  729. long rsv = regs->uregs[rs];
  730. regs->uregs[rd] =
  731. insnslot_3arg_rflags(rnv, rmv, rsv, regs->ARM_cpsr, i_fn);
  732. }
  733. static void __kprobes
  734. emulate_alu_rwflags(struct kprobe *p, struct pt_regs *regs)
  735. {
  736. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  737. kprobe_opcode_t insn = p->opcode;
  738. long ppc = (long)p->addr + 8;
  739. int rd = (insn >> 12) & 0xf;
  740. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  741. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  742. int rm = insn & 0xf;
  743. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  744. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  745. long rsv = regs->uregs[rs];
  746. regs->uregs[rd] =
  747. insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
  748. }
  749. static enum kprobe_insn __kprobes
  750. prep_emulate_ldr_str(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  751. {
  752. int ibit = (insn & (1 << 26)) ? 25 : 22;
  753. insn &= 0xfff00fff;
  754. insn |= 0x00001000; /* Rn = r0, Rd = r1 */
  755. if (insn & (1 << ibit)) {
  756. insn &= ~0xf;
  757. insn |= 2; /* Rm = r2 */
  758. }
  759. asi->insn[0] = insn;
  760. asi->insn_handler = (insn & (1 << 20)) ? emulate_ldr : emulate_str;
  761. return INSN_GOOD;
  762. }
  763. static enum kprobe_insn __kprobes
  764. prep_emulate_rd12rm0(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  765. {
  766. insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
  767. asi->insn[0] = insn;
  768. asi->insn_handler = emulate_rd12rm0;
  769. return INSN_GOOD;
  770. }
  771. static enum kprobe_insn __kprobes
  772. prep_emulate_rd12(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  773. {
  774. insn &= 0xffff0fff; /* Rd = r0 */
  775. asi->insn[0] = insn;
  776. asi->insn_handler = emulate_rd12;
  777. return INSN_GOOD;
  778. }
  779. static enum kprobe_insn __kprobes
  780. prep_emulate_rd12rn16rm0_wflags(kprobe_opcode_t insn,
  781. struct arch_specific_insn *asi)
  782. {
  783. insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
  784. insn |= 0x00000001; /* Rm = r1 */
  785. asi->insn[0] = insn;
  786. asi->insn_handler = emulate_rd12rn16rm0_rwflags;
  787. return INSN_GOOD;
  788. }
  789. static enum kprobe_insn __kprobes
  790. prep_emulate_rd16rs8rm0_wflags(kprobe_opcode_t insn,
  791. struct arch_specific_insn *asi)
  792. {
  793. insn &= 0xfff0f0f0; /* Rd = r0, Rs = r0 */
  794. insn |= 0x00000001; /* Rm = r1 */
  795. asi->insn[0] = insn;
  796. asi->insn_handler = emulate_rd16rs8rm0_rwflags;
  797. return INSN_GOOD;
  798. }
  799. static enum kprobe_insn __kprobes
  800. prep_emulate_rd16rn12rs8rm0_wflags(kprobe_opcode_t insn,
  801. struct arch_specific_insn *asi)
  802. {
  803. insn &= 0xfff000f0; /* Rd = r0, Rn = r0 */
  804. insn |= 0x00000102; /* Rs = r1, Rm = r2 */
  805. asi->insn[0] = insn;
  806. asi->insn_handler = emulate_rd16rn12rs8rm0_rwflags;
  807. return INSN_GOOD;
  808. }
  809. static enum kprobe_insn __kprobes
  810. prep_emulate_rdhi16rdlo12rs8rm0_wflags(kprobe_opcode_t insn,
  811. struct arch_specific_insn *asi)
  812. {
  813. insn &= 0xfff000f0; /* RdHi = r0, RdLo = r1 */
  814. insn |= 0x00001203; /* Rs = r2, Rm = r3 */
  815. asi->insn[0] = insn;
  816. asi->insn_handler = emulate_rdhi16rdlo12rs8rm0_rwflags;
  817. return INSN_GOOD;
  818. }
  819. /*
  820. * For the instruction masking and comparisons in all the "space_*"
  821. * functions below, Do _not_ rearrange the order of tests unless
  822. * you're very, very sure of what you are doing. For the sake of
  823. * efficiency, the masks for some tests sometimes assume other test
  824. * have been done prior to them so the number of patterns to test
  825. * for an instruction set can be as broad as possible to reduce the
  826. * number of tests needed.
  827. */
  828. static enum kprobe_insn __kprobes
  829. space_1111(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  830. {
  831. /* CPS mmod == 1 : 1111 0001 0000 xx10 xxxx xxxx xx0x xxxx */
  832. /* RFE : 1111 100x x0x1 xxxx xxxx 1010 xxxx xxxx */
  833. /* SRS : 1111 100x x1x0 1101 xxxx 0101 xxxx xxxx */
  834. if ((insn & 0xfff30020) == 0xf1020000 ||
  835. (insn & 0xfe500f00) == 0xf8100a00 ||
  836. (insn & 0xfe5f0f00) == 0xf84d0500)
  837. return INSN_REJECTED;
  838. /* PLD : 1111 01x1 x101 xxxx xxxx xxxx xxxx xxxx : */
  839. if ((insn & 0xfd700000) == 0xf4500000) {
  840. insn &= 0xfff0ffff; /* Rn = r0 */
  841. asi->insn[0] = insn;
  842. asi->insn_handler = emulate_rn16;
  843. return INSN_GOOD;
  844. }
  845. /* BLX(1) : 1111 101x xxxx xxxx xxxx xxxx xxxx xxxx : */
  846. if ((insn & 0xfe000000) == 0xfa000000) {
  847. asi->insn_handler = simulate_blx1;
  848. return INSN_GOOD_NO_SLOT;
  849. }
  850. /* SETEND : 1111 0001 0000 0001 xxxx xxxx 0000 xxxx */
  851. /* CDP2 : 1111 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  852. if ((insn & 0xffff00f0) == 0xf1010000 ||
  853. (insn & 0xff000010) == 0xfe000000) {
  854. asi->insn[0] = insn;
  855. asi->insn_handler = emulate_none;
  856. return INSN_GOOD;
  857. }
  858. /* MCRR2 : 1111 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
  859. /* MRRC2 : 1111 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
  860. if ((insn & 0xffe00000) == 0xfc400000) {
  861. insn &= 0xfff00fff; /* Rn = r0 */
  862. insn |= 0x00001000; /* Rd = r1 */
  863. asi->insn[0] = insn;
  864. asi->insn_handler =
  865. (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
  866. return INSN_GOOD;
  867. }
  868. /* LDC2 : 1111 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  869. /* STC2 : 1111 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  870. if ((insn & 0xfe000000) == 0xfc000000) {
  871. insn &= 0xfff0ffff; /* Rn = r0 */
  872. asi->insn[0] = insn;
  873. asi->insn_handler = emulate_ldcstc;
  874. return INSN_GOOD;
  875. }
  876. /* MCR2 : 1111 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  877. /* MRC2 : 1111 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  878. insn &= 0xffff0fff; /* Rd = r0 */
  879. asi->insn[0] = insn;
  880. asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
  881. return INSN_GOOD;
  882. }
  883. static enum kprobe_insn __kprobes
  884. space_cccc_000x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  885. {
  886. /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx xxx0 xxxx */
  887. if ((insn & 0x0f900010) == 0x01000000) {
  888. /* BXJ : cccc 0001 0010 xxxx xxxx xxxx 0010 xxxx */
  889. /* MSR : cccc 0001 0x10 xxxx xxxx xxxx 0000 xxxx */
  890. if ((insn & 0x0ff000f0) == 0x01200020 ||
  891. (insn & 0x0fb000f0) == 0x01200000)
  892. return INSN_REJECTED;
  893. /* MRS : cccc 0001 0x00 xxxx xxxx xxxx 0000 xxxx */
  894. if ((insn & 0x0fb00010) == 0x01000000)
  895. return prep_emulate_rd12(insn, asi);
  896. /* SMLALxy : cccc 0001 0100 xxxx xxxx xxxx 1xx0 xxxx */
  897. if ((insn & 0x0ff00090) == 0x01400080)
  898. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  899. /* SMULWy : cccc 0001 0010 xxxx xxxx xxxx 1x10 xxxx */
  900. /* SMULxy : cccc 0001 0110 xxxx xxxx xxxx 1xx0 xxxx */
  901. if ((insn & 0x0ff000b0) == 0x012000a0 ||
  902. (insn & 0x0ff00090) == 0x01600080)
  903. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  904. /* SMLAxy : cccc 0001 0000 xxxx xxxx xxxx 1xx0 xxxx : Q */
  905. /* SMLAWy : cccc 0001 0010 xxxx xxxx xxxx 0x00 xxxx : Q */
  906. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  907. }
  908. /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx 0xx1 xxxx */
  909. else if ((insn & 0x0f900090) == 0x01000010) {
  910. /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
  911. if ((insn & 0xfff000f0) == 0xe1200070)
  912. return INSN_REJECTED;
  913. /* BLX(2) : cccc 0001 0010 xxxx xxxx xxxx 0011 xxxx */
  914. /* BX : cccc 0001 0010 xxxx xxxx xxxx 0001 xxxx */
  915. if ((insn & 0x0ff000d0) == 0x01200010) {
  916. asi->insn[0] = truecc_insn(insn);
  917. asi->insn_handler = simulate_blx2bx;
  918. return INSN_GOOD;
  919. }
  920. /* CLZ : cccc 0001 0110 xxxx xxxx xxxx 0001 xxxx */
  921. if ((insn & 0x0ff000f0) == 0x01600010)
  922. return prep_emulate_rd12rm0(insn, asi);
  923. /* QADD : cccc 0001 0000 xxxx xxxx xxxx 0101 xxxx :Q */
  924. /* QSUB : cccc 0001 0010 xxxx xxxx xxxx 0101 xxxx :Q */
  925. /* QDADD : cccc 0001 0100 xxxx xxxx xxxx 0101 xxxx :Q */
  926. /* QDSUB : cccc 0001 0110 xxxx xxxx xxxx 0101 xxxx :Q */
  927. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  928. }
  929. /* cccc 0000 xxxx xxxx xxxx xxxx xxxx 1001 xxxx */
  930. else if ((insn & 0x0f000090) == 0x00000090) {
  931. /* MUL : cccc 0000 0000 xxxx xxxx xxxx 1001 xxxx : */
  932. /* MULS : cccc 0000 0001 xxxx xxxx xxxx 1001 xxxx :cc */
  933. /* MLA : cccc 0000 0010 xxxx xxxx xxxx 1001 xxxx : */
  934. /* MLAS : cccc 0000 0011 xxxx xxxx xxxx 1001 xxxx :cc */
  935. /* UMAAL : cccc 0000 0100 xxxx xxxx xxxx 1001 xxxx : */
  936. /* UMULL : cccc 0000 1000 xxxx xxxx xxxx 1001 xxxx : */
  937. /* UMULLS : cccc 0000 1001 xxxx xxxx xxxx 1001 xxxx :cc */
  938. /* UMLAL : cccc 0000 1010 xxxx xxxx xxxx 1001 xxxx : */
  939. /* UMLALS : cccc 0000 1011 xxxx xxxx xxxx 1001 xxxx :cc */
  940. /* SMULL : cccc 0000 1100 xxxx xxxx xxxx 1001 xxxx : */
  941. /* SMULLS : cccc 0000 1101 xxxx xxxx xxxx 1001 xxxx :cc */
  942. /* SMLAL : cccc 0000 1110 xxxx xxxx xxxx 1001 xxxx : */
  943. /* SMLALS : cccc 0000 1111 xxxx xxxx xxxx 1001 xxxx :cc */
  944. if ((insn & 0x0fe000f0) == 0x00000090) {
  945. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  946. } else if ((insn & 0x0fe000f0) == 0x00200090) {
  947. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  948. } else {
  949. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  950. }
  951. }
  952. /* cccc 000x xxxx xxxx xxxx xxxx xxxx 1xx1 xxxx */
  953. else if ((insn & 0x0e000090) == 0x00000090) {
  954. /* SWP : cccc 0001 0000 xxxx xxxx xxxx 1001 xxxx */
  955. /* SWPB : cccc 0001 0100 xxxx xxxx xxxx 1001 xxxx */
  956. /* LDRD : cccc 000x xxx0 xxxx xxxx xxxx 1101 xxxx */
  957. /* STRD : cccc 000x xxx0 xxxx xxxx xxxx 1111 xxxx */
  958. /* STREX : cccc 0001 1000 xxxx xxxx xxxx 1001 xxxx */
  959. /* LDREX : cccc 0001 1001 xxxx xxxx xxxx 1001 xxxx */
  960. /* LDRH : cccc 000x xxx1 xxxx xxxx xxxx 1011 xxxx */
  961. /* STRH : cccc 000x xxx0 xxxx xxxx xxxx 1011 xxxx */
  962. /* LDRSB : cccc 000x xxx1 xxxx xxxx xxxx 1101 xxxx */
  963. /* LDRSH : cccc 000x xxx1 xxxx xxxx xxxx 1111 xxxx */
  964. if ((insn & 0x0fb000f0) == 0x01000090) {
  965. /* SWP/SWPB */
  966. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  967. } else if ((insn & 0x0e1000d0) == 0x00000d0) {
  968. /* STRD/LDRD */
  969. insn &= 0xfff00fff;
  970. insn |= 0x00002000; /* Rn = r0, Rd = r2 */
  971. if (insn & (1 << 22)) {
  972. /* I bit */
  973. insn &= ~0xf;
  974. insn |= 1; /* Rm = r1 */
  975. }
  976. asi->insn[0] = insn;
  977. asi->insn_handler =
  978. (insn & (1 << 5)) ? emulate_strd : emulate_ldrd;
  979. return INSN_GOOD;
  980. }
  981. return prep_emulate_ldr_str(insn, asi);
  982. }
  983. /* cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx xxxx */
  984. /*
  985. * ALU op with S bit and Rd == 15 :
  986. * cccc 000x xxx1 xxxx 1111 xxxx xxxx xxxx
  987. */
  988. if ((insn & 0x0e10f000) == 0x0010f000)
  989. return INSN_REJECTED;
  990. /*
  991. * "mov ip, sp" is the most common kprobe'd instruction by far.
  992. * Check and optimize for it explicitly.
  993. */
  994. if (insn == 0xe1a0c00d) {
  995. asi->insn_handler = simulate_mov_ipsp;
  996. return INSN_GOOD_NO_SLOT;
  997. }
  998. /*
  999. * Data processing: Immediate-shift / Register-shift
  1000. * ALU op : cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx
  1001. * CPY : cccc 0001 1010 xxxx xxxx 0000 0000 xxxx
  1002. * MOV : cccc 0001 101x xxxx xxxx xxxx xxxx xxxx
  1003. * *S (bit 20) updates condition codes
  1004. * ADC/SBC/RSC reads the C flag
  1005. */
  1006. insn &= 0xfff00ff0; /* Rn = r0, Rd = r0 */
  1007. insn |= 0x00000001; /* Rm = r1 */
  1008. if (insn & 0x010) {
  1009. insn &= 0xfffff0ff; /* register shift */
  1010. insn |= 0x00000200; /* Rs = r2 */
  1011. }
  1012. asi->insn[0] = insn;
  1013. asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
  1014. emulate_alu_rwflags : emulate_alu_rflags;
  1015. return INSN_GOOD;
  1016. }
  1017. static enum kprobe_insn __kprobes
  1018. space_cccc_001x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1019. {
  1020. /*
  1021. * MSR : cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx
  1022. * Undef : cccc 0011 0x00 xxxx xxxx xxxx xxxx xxxx
  1023. * ALU op with S bit and Rd == 15 :
  1024. * cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx
  1025. */
  1026. if ((insn & 0x0f900000) == 0x03200000 || /* MSR & Undef */
  1027. (insn & 0x0e10f000) == 0x0210f000) /* ALU s-bit, R15 */
  1028. return INSN_REJECTED;
  1029. /*
  1030. * Data processing: 32-bit Immediate
  1031. * ALU op : cccc 001x xxxx xxxx xxxx xxxx xxxx xxxx
  1032. * MOV : cccc 0011 101x xxxx xxxx xxxx xxxx xxxx
  1033. * *S (bit 20) updates condition codes
  1034. * ADC/SBC/RSC reads the C flag
  1035. */
  1036. insn &= 0xfff00fff; /* Rn = r0, Rd = r0 */
  1037. asi->insn[0] = insn;
  1038. asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
  1039. emulate_alu_imm_rwflags : emulate_alu_imm_rflags;
  1040. return INSN_GOOD;
  1041. }
  1042. static enum kprobe_insn __kprobes
  1043. space_cccc_0110__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1044. {
  1045. /* SEL : cccc 0110 1000 xxxx xxxx xxxx 1011 xxxx GE: !!! */
  1046. if ((insn & 0x0ff000f0) == 0x068000b0) {
  1047. insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
  1048. insn |= 0x00000001; /* Rm = r1 */
  1049. asi->insn[0] = insn;
  1050. asi->insn_handler = emulate_sel;
  1051. return INSN_GOOD;
  1052. }
  1053. /* SSAT : cccc 0110 101x xxxx xxxx xxxx xx01 xxxx :Q */
  1054. /* USAT : cccc 0110 111x xxxx xxxx xxxx xx01 xxxx :Q */
  1055. /* SSAT16 : cccc 0110 1010 xxxx xxxx xxxx 0011 xxxx :Q */
  1056. /* USAT16 : cccc 0110 1110 xxxx xxxx xxxx 0011 xxxx :Q */
  1057. if ((insn & 0x0fa00030) == 0x06a00010 ||
  1058. (insn & 0x0fb000f0) == 0x06a00030) {
  1059. insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
  1060. asi->insn[0] = insn;
  1061. asi->insn_handler = emulate_sat;
  1062. return INSN_GOOD;
  1063. }
  1064. /* REV : cccc 0110 1011 xxxx xxxx xxxx 0011 xxxx */
  1065. /* REV16 : cccc 0110 1011 xxxx xxxx xxxx 1011 xxxx */
  1066. /* REVSH : cccc 0110 1111 xxxx xxxx xxxx 1011 xxxx */
  1067. if ((insn & 0x0ff00070) == 0x06b00030 ||
  1068. (insn & 0x0ff000f0) == 0x06f000b0)
  1069. return prep_emulate_rd12rm0(insn, asi);
  1070. /* SADD16 : cccc 0110 0001 xxxx xxxx xxxx 0001 xxxx :GE */
  1071. /* SADDSUBX : cccc 0110 0001 xxxx xxxx xxxx 0011 xxxx :GE */
  1072. /* SSUBADDX : cccc 0110 0001 xxxx xxxx xxxx 0101 xxxx :GE */
  1073. /* SSUB16 : cccc 0110 0001 xxxx xxxx xxxx 0111 xxxx :GE */
  1074. /* SADD8 : cccc 0110 0001 xxxx xxxx xxxx 1001 xxxx :GE */
  1075. /* SSUB8 : cccc 0110 0001 xxxx xxxx xxxx 1111 xxxx :GE */
  1076. /* QADD16 : cccc 0110 0010 xxxx xxxx xxxx 0001 xxxx : */
  1077. /* QADDSUBX : cccc 0110 0010 xxxx xxxx xxxx 0011 xxxx : */
  1078. /* QSUBADDX : cccc 0110 0010 xxxx xxxx xxxx 0101 xxxx : */
  1079. /* QSUB16 : cccc 0110 0010 xxxx xxxx xxxx 0111 xxxx : */
  1080. /* QADD8 : cccc 0110 0010 xxxx xxxx xxxx 1001 xxxx : */
  1081. /* QSUB8 : cccc 0110 0010 xxxx xxxx xxxx 1111 xxxx : */
  1082. /* SHADD16 : cccc 0110 0011 xxxx xxxx xxxx 0001 xxxx : */
  1083. /* SHADDSUBX : cccc 0110 0011 xxxx xxxx xxxx 0011 xxxx : */
  1084. /* SHSUBADDX : cccc 0110 0011 xxxx xxxx xxxx 0101 xxxx : */
  1085. /* SHSUB16 : cccc 0110 0011 xxxx xxxx xxxx 0111 xxxx : */
  1086. /* SHADD8 : cccc 0110 0011 xxxx xxxx xxxx 1001 xxxx : */
  1087. /* SHSUB8 : cccc 0110 0011 xxxx xxxx xxxx 1111 xxxx : */
  1088. /* UADD16 : cccc 0110 0101 xxxx xxxx xxxx 0001 xxxx :GE */
  1089. /* UADDSUBX : cccc 0110 0101 xxxx xxxx xxxx 0011 xxxx :GE */
  1090. /* USUBADDX : cccc 0110 0101 xxxx xxxx xxxx 0101 xxxx :GE */
  1091. /* USUB16 : cccc 0110 0101 xxxx xxxx xxxx 0111 xxxx :GE */
  1092. /* UADD8 : cccc 0110 0101 xxxx xxxx xxxx 1001 xxxx :GE */
  1093. /* USUB8 : cccc 0110 0101 xxxx xxxx xxxx 1111 xxxx :GE */
  1094. /* UQADD16 : cccc 0110 0110 xxxx xxxx xxxx 0001 xxxx : */
  1095. /* UQADDSUBX : cccc 0110 0110 xxxx xxxx xxxx 0011 xxxx : */
  1096. /* UQSUBADDX : cccc 0110 0110 xxxx xxxx xxxx 0101 xxxx : */
  1097. /* UQSUB16 : cccc 0110 0110 xxxx xxxx xxxx 0111 xxxx : */
  1098. /* UQADD8 : cccc 0110 0110 xxxx xxxx xxxx 1001 xxxx : */
  1099. /* UQSUB8 : cccc 0110 0110 xxxx xxxx xxxx 1111 xxxx : */
  1100. /* UHADD16 : cccc 0110 0111 xxxx xxxx xxxx 0001 xxxx : */
  1101. /* UHADDSUBX : cccc 0110 0111 xxxx xxxx xxxx 0011 xxxx : */
  1102. /* UHSUBADDX : cccc 0110 0111 xxxx xxxx xxxx 0101 xxxx : */
  1103. /* UHSUB16 : cccc 0110 0111 xxxx xxxx xxxx 0111 xxxx : */
  1104. /* UHADD8 : cccc 0110 0111 xxxx xxxx xxxx 1001 xxxx : */
  1105. /* UHSUB8 : cccc 0110 0111 xxxx xxxx xxxx 1111 xxxx : */
  1106. /* PKHBT : cccc 0110 1000 xxxx xxxx xxxx x001 xxxx : */
  1107. /* PKHTB : cccc 0110 1000 xxxx xxxx xxxx x101 xxxx : */
  1108. /* SXTAB16 : cccc 0110 1000 xxxx xxxx xxxx 0111 xxxx : */
  1109. /* SXTB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
  1110. /* SXTAB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
  1111. /* SXTAH : cccc 0110 1011 xxxx xxxx xxxx 0111 xxxx : */
  1112. /* UXTAB16 : cccc 0110 1100 xxxx xxxx xxxx 0111 xxxx : */
  1113. /* UXTAB : cccc 0110 1110 xxxx xxxx xxxx 0111 xxxx : */
  1114. /* UXTAH : cccc 0110 1111 xxxx xxxx xxxx 0111 xxxx : */
  1115. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  1116. }
  1117. static enum kprobe_insn __kprobes
  1118. space_cccc_0111__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1119. {
  1120. /* Undef : cccc 0111 1111 xxxx xxxx xxxx 1111 xxxx */
  1121. if ((insn & 0x0ff000f0) == 0x03f000f0)
  1122. return INSN_REJECTED;
  1123. /* USADA8 : cccc 0111 1000 xxxx xxxx xxxx 0001 xxxx */
  1124. /* USAD8 : cccc 0111 1000 xxxx 1111 xxxx 0001 xxxx */
  1125. if ((insn & 0x0ff000f0) == 0x07800010)
  1126. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  1127. /* SMLALD : cccc 0111 0100 xxxx xxxx xxxx 00x1 xxxx */
  1128. /* SMLSLD : cccc 0111 0100 xxxx xxxx xxxx 01x1 xxxx */
  1129. if ((insn & 0x0ff00090) == 0x07400010)
  1130. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  1131. /* SMLAD : cccc 0111 0000 xxxx xxxx xxxx 00x1 xxxx :Q */
  1132. /* SMLSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx :Q */
  1133. /* SMMLA : cccc 0111 0101 xxxx xxxx xxxx 00x1 xxxx : */
  1134. /* SMMLS : cccc 0111 0101 xxxx xxxx xxxx 11x1 xxxx : */
  1135. if ((insn & 0x0ff00090) == 0x07000010 ||
  1136. (insn & 0x0ff000d0) == 0x07500010 ||
  1137. (insn & 0x0ff000d0) == 0x075000d0)
  1138. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  1139. /* SMUSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx : */
  1140. /* SMUAD : cccc 0111 0000 xxxx 1111 xxxx 00x1 xxxx :Q */
  1141. /* SMMUL : cccc 0111 0101 xxxx 1111 xxxx 00x1 xxxx : */
  1142. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  1143. }
  1144. static enum kprobe_insn __kprobes
  1145. space_cccc_01xx(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1146. {
  1147. /* LDR : cccc 01xx x0x1 xxxx xxxx xxxx xxxx xxxx */
  1148. /* LDRB : cccc 01xx x1x1 xxxx xxxx xxxx xxxx xxxx */
  1149. /* LDRBT : cccc 01x0 x111 xxxx xxxx xxxx xxxx xxxx */
  1150. /* LDRT : cccc 01x0 x011 xxxx xxxx xxxx xxxx xxxx */
  1151. /* STR : cccc 01xx x0x0 xxxx xxxx xxxx xxxx xxxx */
  1152. /* STRB : cccc 01xx x1x0 xxxx xxxx xxxx xxxx xxxx */
  1153. /* STRBT : cccc 01x0 x110 xxxx xxxx xxxx xxxx xxxx */
  1154. /* STRT : cccc 01x0 x010 xxxx xxxx xxxx xxxx xxxx */
  1155. return prep_emulate_ldr_str(insn, asi);
  1156. }
  1157. static enum kprobe_insn __kprobes
  1158. space_cccc_100x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1159. {
  1160. /* LDM(2) : cccc 100x x101 xxxx 0xxx xxxx xxxx xxxx */
  1161. /* LDM(3) : cccc 100x x1x1 xxxx 1xxx xxxx xxxx xxxx */
  1162. if ((insn & 0x0e708000) == 0x85000000 ||
  1163. (insn & 0x0e508000) == 0x85010000)
  1164. return INSN_REJECTED;
  1165. /* LDM(1) : cccc 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
  1166. /* STM(1) : cccc 100x x0x0 xxxx xxxx xxxx xxxx xxxx */
  1167. asi->insn[0] = truecc_insn(insn);
  1168. asi->insn_handler = ((insn & 0x108000) == 0x008000) ? /* STM & R15 */
  1169. simulate_stm1_pc : simulate_ldm1stm1;
  1170. return INSN_GOOD;
  1171. }
  1172. static enum kprobe_insn __kprobes
  1173. space_cccc_101x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1174. {
  1175. /* B : cccc 1010 xxxx xxxx xxxx xxxx xxxx xxxx */
  1176. /* BL : cccc 1011 xxxx xxxx xxxx xxxx xxxx xxxx */
  1177. asi->insn[0] = truecc_insn(insn);
  1178. asi->insn_handler = simulate_bbl;
  1179. return INSN_GOOD;
  1180. }
  1181. static enum kprobe_insn __kprobes
  1182. space_cccc_1100_010x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1183. {
  1184. /* MCRR : cccc 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1185. /* MRRC : cccc 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1186. insn &= 0xfff00fff;
  1187. insn |= 0x00001000; /* Rn = r0, Rd = r1 */
  1188. asi->insn[0] = insn;
  1189. asi->insn_handler = (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
  1190. return INSN_GOOD;
  1191. }
  1192. static enum kprobe_insn __kprobes
  1193. space_cccc_110x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1194. {
  1195. /* LDC : cccc 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  1196. /* STC : cccc 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  1197. insn &= 0xfff0ffff; /* Rn = r0 */
  1198. asi->insn[0] = insn;
  1199. asi->insn_handler = emulate_ldcstc;
  1200. return INSN_GOOD;
  1201. }
  1202. static enum kprobe_insn __kprobes
  1203. space_cccc_111x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1204. {
  1205. /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
  1206. /* SWI : cccc 1111 xxxx xxxx xxxx xxxx xxxx xxxx */
  1207. if ((insn & 0xfff000f0) == 0xe1200070 ||
  1208. (insn & 0x0f000000) == 0x0f000000)
  1209. return INSN_REJECTED;
  1210. /* CDP : cccc 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  1211. if ((insn & 0x0f000010) == 0x0e000000) {
  1212. asi->insn[0] = insn;
  1213. asi->insn_handler = emulate_none;
  1214. return INSN_GOOD;
  1215. }
  1216. /* MCR : cccc 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  1217. /* MRC : cccc 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  1218. insn &= 0xffff0fff; /* Rd = r0 */
  1219. asi->insn[0] = insn;
  1220. asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
  1221. return INSN_GOOD;
  1222. }
  1223. /* Return:
  1224. * INSN_REJECTED If instruction is one not allowed to kprobe,
  1225. * INSN_GOOD If instruction is supported and uses instruction slot,
  1226. * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot.
  1227. *
  1228. * For instructions we don't want to kprobe (INSN_REJECTED return result):
  1229. * These are generally ones that modify the processor state making
  1230. * them "hard" to simulate such as switches processor modes or
  1231. * make accesses in alternate modes. Any of these could be simulated
  1232. * if the work was put into it, but low return considering they
  1233. * should also be very rare.
  1234. */
  1235. enum kprobe_insn __kprobes
  1236. arm_kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1237. {
  1238. asi->insn[1] = KPROBE_RETURN_INSTRUCTION;
  1239. if ((insn & 0xf0000000) == 0xf0000000) {
  1240. return space_1111(insn, asi);
  1241. } else if ((insn & 0x0e000000) == 0x00000000) {
  1242. return space_cccc_000x(insn, asi);
  1243. } else if ((insn & 0x0e000000) == 0x02000000) {
  1244. return space_cccc_001x(insn, asi);
  1245. } else if ((insn & 0x0f000010) == 0x06000010) {
  1246. return space_cccc_0110__1(insn, asi);
  1247. } else if ((insn & 0x0f000010) == 0x07000010) {
  1248. return space_cccc_0111__1(insn, asi);
  1249. } else if ((insn & 0x0c000000) == 0x04000000) {
  1250. return space_cccc_01xx(insn, asi);
  1251. } else if ((insn & 0x0e000000) == 0x08000000) {
  1252. return space_cccc_100x(insn, asi);
  1253. } else if ((insn & 0x0e000000) == 0x0a000000) {
  1254. return space_cccc_101x(insn, asi);
  1255. } else if ((insn & 0x0fe00000) == 0x0c400000) {
  1256. return space_cccc_1100_010x(insn, asi);
  1257. } else if ((insn & 0x0e000000) == 0x0c400000) {
  1258. return space_cccc_110x(insn, asi);
  1259. }
  1260. return space_cccc_111x(insn, asi);
  1261. }
  1262. void __init arm_kprobe_decode_init(void)
  1263. {
  1264. find_str_pc_offset();
  1265. }
  1266. /*
  1267. * All ARM instructions listed below.
  1268. *
  1269. * Instructions and their general purpose registers are given.
  1270. * If a particular register may not use R15, it is prefixed with a "!".
  1271. * If marked with a "*" means the value returned by reading R15
  1272. * is implementation defined.
  1273. *
  1274. * ADC/ADD/AND/BIC/CMN/CMP/EOR/MOV/MVN/ORR/RSB/RSC/SBC/SUB/TEQ
  1275. * TST: Rd, Rn, Rm, !Rs
  1276. * BX: Rm
  1277. * BLX(2): !Rm
  1278. * BX: Rm (R15 legal, but discouraged)
  1279. * BXJ: !Rm,
  1280. * CLZ: !Rd, !Rm
  1281. * CPY: Rd, Rm
  1282. * LDC/2,STC/2 immediate offset & unindex: Rn
  1283. * LDC/2,STC/2 immediate pre/post-indexed: !Rn
  1284. * LDM(1/3): !Rn, register_list
  1285. * LDM(2): !Rn, !register_list
  1286. * LDR,STR,PLD immediate offset: Rd, Rn
  1287. * LDR,STR,PLD register offset: Rd, Rn, !Rm
  1288. * LDR,STR,PLD scaled register offset: Rd, !Rn, !Rm
  1289. * LDR,STR immediate pre/post-indexed: Rd, !Rn
  1290. * LDR,STR register pre/post-indexed: Rd, !Rn, !Rm
  1291. * LDR,STR scaled register pre/post-indexed: Rd, !Rn, !Rm
  1292. * LDRB,STRB immediate offset: !Rd, Rn
  1293. * LDRB,STRB register offset: !Rd, Rn, !Rm
  1294. * LDRB,STRB scaled register offset: !Rd, !Rn, !Rm
  1295. * LDRB,STRB immediate pre/post-indexed: !Rd, !Rn
  1296. * LDRB,STRB register pre/post-indexed: !Rd, !Rn, !Rm
  1297. * LDRB,STRB scaled register pre/post-indexed: !Rd, !Rn, !Rm
  1298. * LDRT,LDRBT,STRBT immediate pre/post-indexed: !Rd, !Rn
  1299. * LDRT,LDRBT,STRBT register pre/post-indexed: !Rd, !Rn, !Rm
  1300. * LDRT,LDRBT,STRBT scaled register pre/post-indexed: !Rd, !Rn, !Rm
  1301. * LDRH/SH/SB/D,STRH/SH/SB/D immediate offset: !Rd, Rn
  1302. * LDRH/SH/SB/D,STRH/SH/SB/D register offset: !Rd, Rn, !Rm
  1303. * LDRH/SH/SB/D,STRH/SH/SB/D immediate pre/post-indexed: !Rd, !Rn
  1304. * LDRH/SH/SB/D,STRH/SH/SB/D register pre/post-indexed: !Rd, !Rn, !Rm
  1305. * LDREX: !Rd, !Rn
  1306. * MCR/2: !Rd
  1307. * MCRR/2,MRRC/2: !Rd, !Rn
  1308. * MLA: !Rd, !Rn, !Rm, !Rs
  1309. * MOV: Rd
  1310. * MRC/2: !Rd (if Rd==15, only changes cond codes, not the register)
  1311. * MRS,MSR: !Rd
  1312. * MUL: !Rd, !Rm, !Rs
  1313. * PKH{BT,TB}: !Rd, !Rn, !Rm
  1314. * QDADD,[U]QADD/16/8/SUBX: !Rd, !Rm, !Rn
  1315. * QDSUB,[U]QSUB/16/8/ADDX: !Rd, !Rm, !Rn
  1316. * REV/16/SH: !Rd, !Rm
  1317. * RFE: !Rn
  1318. * {S,U}[H]ADD{16,8,SUBX},{S,U}[H]SUB{16,8,ADDX}: !Rd, !Rn, !Rm
  1319. * SEL: !Rd, !Rn, !Rm
  1320. * SMLA<x><y>,SMLA{D,W<y>},SMLSD,SMML{A,S}: !Rd, !Rn, !Rm, !Rs
  1321. * SMLAL<x><y>,SMLA{D,LD},SMLSLD,SMMULL,SMULW<y>: !RdHi, !RdLo, !Rm, !Rs
  1322. * SMMUL,SMUAD,SMUL<x><y>,SMUSD: !Rd, !Rm, !Rs
  1323. * SSAT/16: !Rd, !Rm
  1324. * STM(1/2): !Rn, register_list* (R15 in reg list not recommended)
  1325. * STRT immediate pre/post-indexed: Rd*, !Rn
  1326. * STRT register pre/post-indexed: Rd*, !Rn, !Rm
  1327. * STRT scaled register pre/post-indexed: Rd*, !Rn, !Rm
  1328. * STREX: !Rd, !Rn, !Rm
  1329. * SWP/B: !Rd, !Rn, !Rm
  1330. * {S,U}XTA{B,B16,H}: !Rd, !Rn, !Rm
  1331. * {S,U}XT{B,B16,H}: !Rd, !Rm
  1332. * UM{AA,LA,UL}L: !RdHi, !RdLo, !Rm, !Rs
  1333. * USA{D8,A8,T,T16}: !Rd, !Rm, !Rs
  1334. *
  1335. * May transfer control by writing R15 (possible mode changes or alternate
  1336. * mode accesses marked by "*"):
  1337. * ALU op (* with s-bit), B, BL, BKPT, BLX(1/2), BX, BXJ, CPS*, CPY,
  1338. * LDM(1), LDM(2/3)*, LDR, MOV, RFE*, SWI*
  1339. *
  1340. * Instructions that do not take general registers, nor transfer control:
  1341. * CDP/2, SETEND, SRS*
  1342. */