mm.h 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/bug.h>
  7. #include <linux/list.h>
  8. #include <linux/mmzone.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/atomic.h>
  11. #include <linux/debug_locks.h>
  12. #include <linux/mm_types.h>
  13. #include <linux/range.h>
  14. #include <linux/pfn.h>
  15. #include <linux/bit_spinlock.h>
  16. #include <linux/shrinker.h>
  17. struct mempolicy;
  18. struct anon_vma;
  19. struct anon_vma_chain;
  20. struct file_ra_state;
  21. struct user_struct;
  22. struct writeback_control;
  23. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  24. extern unsigned long max_mapnr;
  25. #endif
  26. extern unsigned long num_physpages;
  27. extern unsigned long totalram_pages;
  28. extern void * high_memory;
  29. extern int page_cluster;
  30. #ifdef CONFIG_SYSCTL
  31. extern int sysctl_legacy_va_layout;
  32. #else
  33. #define sysctl_legacy_va_layout 0
  34. #endif
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/processor.h>
  38. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  39. /* to align the pointer to the (next) page boundary */
  40. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  41. /*
  42. * Linux kernel virtual memory manager primitives.
  43. * The idea being to have a "virtual" mm in the same way
  44. * we have a virtual fs - giving a cleaner interface to the
  45. * mm details, and allowing different kinds of memory mappings
  46. * (from shared memory to executable loading to arbitrary
  47. * mmap() functions).
  48. */
  49. extern struct kmem_cache *vm_area_cachep;
  50. #ifndef CONFIG_MMU
  51. extern struct rb_root nommu_region_tree;
  52. extern struct rw_semaphore nommu_region_sem;
  53. extern unsigned int kobjsize(const void *objp);
  54. #endif
  55. /*
  56. * vm_flags in vm_area_struct, see mm_types.h.
  57. */
  58. #define VM_NONE 0x00000000
  59. #define VM_READ 0x00000001 /* currently active flags */
  60. #define VM_WRITE 0x00000002
  61. #define VM_EXEC 0x00000004
  62. #define VM_SHARED 0x00000008
  63. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  64. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  65. #define VM_MAYWRITE 0x00000020
  66. #define VM_MAYEXEC 0x00000040
  67. #define VM_MAYSHARE 0x00000080
  68. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  69. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  70. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  71. #define VM_LOCKED 0x00002000
  72. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  73. /* Used by sys_madvise() */
  74. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  75. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  76. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  77. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  78. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  79. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  80. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  81. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  82. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  83. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  84. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  85. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  86. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  87. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  88. #if defined(CONFIG_X86)
  89. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  90. #elif defined(CONFIG_PPC)
  91. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  92. #elif defined(CONFIG_PARISC)
  93. # define VM_GROWSUP VM_ARCH_1
  94. #elif defined(CONFIG_IA64)
  95. # define VM_GROWSUP VM_ARCH_1
  96. #elif !defined(CONFIG_MMU)
  97. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  98. #endif
  99. #ifndef VM_GROWSUP
  100. # define VM_GROWSUP VM_NONE
  101. #endif
  102. /* Bits set in the VMA until the stack is in its final location */
  103. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  104. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  105. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  106. #endif
  107. #ifdef CONFIG_STACK_GROWSUP
  108. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  109. #else
  110. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  111. #endif
  112. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  113. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  114. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  115. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  116. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  117. /*
  118. * Special vmas that are non-mergable, non-mlock()able.
  119. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  120. */
  121. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
  122. /*
  123. * mapping from the currently active vm_flags protection bits (the
  124. * low four bits) to a page protection mask..
  125. */
  126. extern pgprot_t protection_map[16];
  127. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  128. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  129. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  130. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  131. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  132. #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
  133. /*
  134. * vm_fault is filled by the the pagefault handler and passed to the vma's
  135. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  136. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  137. *
  138. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  139. * is used, one may implement ->remap_pages to get nonlinear mapping support.
  140. */
  141. struct vm_fault {
  142. unsigned int flags; /* FAULT_FLAG_xxx flags */
  143. pgoff_t pgoff; /* Logical page offset based on vma */
  144. void __user *virtual_address; /* Faulting virtual address */
  145. struct page *page; /* ->fault handlers should return a
  146. * page here, unless VM_FAULT_NOPAGE
  147. * is set (which is also implied by
  148. * VM_FAULT_ERROR).
  149. */
  150. };
  151. /*
  152. * These are the virtual MM functions - opening of an area, closing and
  153. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  154. * to the functions called when a no-page or a wp-page exception occurs.
  155. */
  156. struct vm_operations_struct {
  157. void (*open)(struct vm_area_struct * area);
  158. void (*close)(struct vm_area_struct * area);
  159. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  160. /* notification that a previously read-only page is about to become
  161. * writable, if an error is returned it will cause a SIGBUS */
  162. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  163. /* called by access_process_vm when get_user_pages() fails, typically
  164. * for use by special VMAs that can switch between memory and hardware
  165. */
  166. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  167. void *buf, int len, int write);
  168. #ifdef CONFIG_NUMA
  169. /*
  170. * set_policy() op must add a reference to any non-NULL @new mempolicy
  171. * to hold the policy upon return. Caller should pass NULL @new to
  172. * remove a policy and fall back to surrounding context--i.e. do not
  173. * install a MPOL_DEFAULT policy, nor the task or system default
  174. * mempolicy.
  175. */
  176. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  177. /*
  178. * get_policy() op must add reference [mpol_get()] to any policy at
  179. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  180. * in mm/mempolicy.c will do this automatically.
  181. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  182. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  183. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  184. * must return NULL--i.e., do not "fallback" to task or system default
  185. * policy.
  186. */
  187. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  188. unsigned long addr);
  189. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  190. const nodemask_t *to, unsigned long flags);
  191. #endif
  192. /* called by sys_remap_file_pages() to populate non-linear mapping */
  193. int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
  194. unsigned long size, pgoff_t pgoff);
  195. };
  196. struct mmu_gather;
  197. struct inode;
  198. #define page_private(page) ((page)->private)
  199. #define set_page_private(page, v) ((page)->private = (v))
  200. /*
  201. * FIXME: take this include out, include page-flags.h in
  202. * files which need it (119 of them)
  203. */
  204. #include <linux/page-flags.h>
  205. #include <linux/huge_mm.h>
  206. /*
  207. * Methods to modify the page usage count.
  208. *
  209. * What counts for a page usage:
  210. * - cache mapping (page->mapping)
  211. * - private data (page->private)
  212. * - page mapped in a task's page tables, each mapping
  213. * is counted separately
  214. *
  215. * Also, many kernel routines increase the page count before a critical
  216. * routine so they can be sure the page doesn't go away from under them.
  217. */
  218. /*
  219. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  220. */
  221. static inline int put_page_testzero(struct page *page)
  222. {
  223. VM_BUG_ON(atomic_read(&page->_count) == 0);
  224. return atomic_dec_and_test(&page->_count);
  225. }
  226. /*
  227. * Try to grab a ref unless the page has a refcount of zero, return false if
  228. * that is the case.
  229. */
  230. static inline int get_page_unless_zero(struct page *page)
  231. {
  232. return atomic_inc_not_zero(&page->_count);
  233. }
  234. extern int page_is_ram(unsigned long pfn);
  235. /* Support for virtually mapped pages */
  236. struct page *vmalloc_to_page(const void *addr);
  237. unsigned long vmalloc_to_pfn(const void *addr);
  238. /*
  239. * Determine if an address is within the vmalloc range
  240. *
  241. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  242. * is no special casing required.
  243. */
  244. static inline int is_vmalloc_addr(const void *x)
  245. {
  246. #ifdef CONFIG_MMU
  247. unsigned long addr = (unsigned long)x;
  248. return addr >= VMALLOC_START && addr < VMALLOC_END;
  249. #else
  250. return 0;
  251. #endif
  252. }
  253. #ifdef CONFIG_MMU
  254. extern int is_vmalloc_or_module_addr(const void *x);
  255. #else
  256. static inline int is_vmalloc_or_module_addr(const void *x)
  257. {
  258. return 0;
  259. }
  260. #endif
  261. static inline void compound_lock(struct page *page)
  262. {
  263. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  264. VM_BUG_ON(PageSlab(page));
  265. bit_spin_lock(PG_compound_lock, &page->flags);
  266. #endif
  267. }
  268. static inline void compound_unlock(struct page *page)
  269. {
  270. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  271. VM_BUG_ON(PageSlab(page));
  272. bit_spin_unlock(PG_compound_lock, &page->flags);
  273. #endif
  274. }
  275. static inline unsigned long compound_lock_irqsave(struct page *page)
  276. {
  277. unsigned long uninitialized_var(flags);
  278. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  279. local_irq_save(flags);
  280. compound_lock(page);
  281. #endif
  282. return flags;
  283. }
  284. static inline void compound_unlock_irqrestore(struct page *page,
  285. unsigned long flags)
  286. {
  287. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  288. compound_unlock(page);
  289. local_irq_restore(flags);
  290. #endif
  291. }
  292. static inline struct page *compound_head(struct page *page)
  293. {
  294. if (unlikely(PageTail(page)))
  295. return page->first_page;
  296. return page;
  297. }
  298. /*
  299. * The atomic page->_mapcount, starts from -1: so that transitions
  300. * both from it and to it can be tracked, using atomic_inc_and_test
  301. * and atomic_add_negative(-1).
  302. */
  303. static inline void reset_page_mapcount(struct page *page)
  304. {
  305. atomic_set(&(page)->_mapcount, -1);
  306. }
  307. static inline int page_mapcount(struct page *page)
  308. {
  309. return atomic_read(&(page)->_mapcount) + 1;
  310. }
  311. static inline int page_count(struct page *page)
  312. {
  313. return atomic_read(&compound_head(page)->_count);
  314. }
  315. static inline void get_huge_page_tail(struct page *page)
  316. {
  317. /*
  318. * __split_huge_page_refcount() cannot run
  319. * from under us.
  320. */
  321. VM_BUG_ON(page_mapcount(page) < 0);
  322. VM_BUG_ON(atomic_read(&page->_count) != 0);
  323. atomic_inc(&page->_mapcount);
  324. }
  325. extern bool __get_page_tail(struct page *page);
  326. static inline void get_page(struct page *page)
  327. {
  328. if (unlikely(PageTail(page)))
  329. if (likely(__get_page_tail(page)))
  330. return;
  331. /*
  332. * Getting a normal page or the head of a compound page
  333. * requires to already have an elevated page->_count.
  334. */
  335. VM_BUG_ON(atomic_read(&page->_count) <= 0);
  336. atomic_inc(&page->_count);
  337. }
  338. static inline struct page *virt_to_head_page(const void *x)
  339. {
  340. struct page *page = virt_to_page(x);
  341. return compound_head(page);
  342. }
  343. /*
  344. * Setup the page count before being freed into the page allocator for
  345. * the first time (boot or memory hotplug)
  346. */
  347. static inline void init_page_count(struct page *page)
  348. {
  349. atomic_set(&page->_count, 1);
  350. }
  351. /*
  352. * PageBuddy() indicate that the page is free and in the buddy system
  353. * (see mm/page_alloc.c).
  354. *
  355. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  356. * -2 so that an underflow of the page_mapcount() won't be mistaken
  357. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  358. * efficiently by most CPU architectures.
  359. */
  360. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  361. static inline int PageBuddy(struct page *page)
  362. {
  363. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  364. }
  365. static inline void __SetPageBuddy(struct page *page)
  366. {
  367. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  368. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  369. }
  370. static inline void __ClearPageBuddy(struct page *page)
  371. {
  372. VM_BUG_ON(!PageBuddy(page));
  373. atomic_set(&page->_mapcount, -1);
  374. }
  375. void put_page(struct page *page);
  376. void put_pages_list(struct list_head *pages);
  377. void split_page(struct page *page, unsigned int order);
  378. int split_free_page(struct page *page);
  379. int capture_free_page(struct page *page, int alloc_order, int migratetype);
  380. /*
  381. * Compound pages have a destructor function. Provide a
  382. * prototype for that function and accessor functions.
  383. * These are _only_ valid on the head of a PG_compound page.
  384. */
  385. typedef void compound_page_dtor(struct page *);
  386. static inline void set_compound_page_dtor(struct page *page,
  387. compound_page_dtor *dtor)
  388. {
  389. page[1].lru.next = (void *)dtor;
  390. }
  391. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  392. {
  393. return (compound_page_dtor *)page[1].lru.next;
  394. }
  395. static inline int compound_order(struct page *page)
  396. {
  397. if (!PageHead(page))
  398. return 0;
  399. return (unsigned long)page[1].lru.prev;
  400. }
  401. static inline int compound_trans_order(struct page *page)
  402. {
  403. int order;
  404. unsigned long flags;
  405. if (!PageHead(page))
  406. return 0;
  407. flags = compound_lock_irqsave(page);
  408. order = compound_order(page);
  409. compound_unlock_irqrestore(page, flags);
  410. return order;
  411. }
  412. static inline void set_compound_order(struct page *page, unsigned long order)
  413. {
  414. page[1].lru.prev = (void *)order;
  415. }
  416. #ifdef CONFIG_MMU
  417. /*
  418. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  419. * servicing faults for write access. In the normal case, do always want
  420. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  421. * that do not have writing enabled, when used by access_process_vm.
  422. */
  423. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  424. {
  425. if (likely(vma->vm_flags & VM_WRITE))
  426. pte = pte_mkwrite(pte);
  427. return pte;
  428. }
  429. #endif
  430. /*
  431. * Multiple processes may "see" the same page. E.g. for untouched
  432. * mappings of /dev/null, all processes see the same page full of
  433. * zeroes, and text pages of executables and shared libraries have
  434. * only one copy in memory, at most, normally.
  435. *
  436. * For the non-reserved pages, page_count(page) denotes a reference count.
  437. * page_count() == 0 means the page is free. page->lru is then used for
  438. * freelist management in the buddy allocator.
  439. * page_count() > 0 means the page has been allocated.
  440. *
  441. * Pages are allocated by the slab allocator in order to provide memory
  442. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  443. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  444. * unless a particular usage is carefully commented. (the responsibility of
  445. * freeing the kmalloc memory is the caller's, of course).
  446. *
  447. * A page may be used by anyone else who does a __get_free_page().
  448. * In this case, page_count still tracks the references, and should only
  449. * be used through the normal accessor functions. The top bits of page->flags
  450. * and page->virtual store page management information, but all other fields
  451. * are unused and could be used privately, carefully. The management of this
  452. * page is the responsibility of the one who allocated it, and those who have
  453. * subsequently been given references to it.
  454. *
  455. * The other pages (we may call them "pagecache pages") are completely
  456. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  457. * The following discussion applies only to them.
  458. *
  459. * A pagecache page contains an opaque `private' member, which belongs to the
  460. * page's address_space. Usually, this is the address of a circular list of
  461. * the page's disk buffers. PG_private must be set to tell the VM to call
  462. * into the filesystem to release these pages.
  463. *
  464. * A page may belong to an inode's memory mapping. In this case, page->mapping
  465. * is the pointer to the inode, and page->index is the file offset of the page,
  466. * in units of PAGE_CACHE_SIZE.
  467. *
  468. * If pagecache pages are not associated with an inode, they are said to be
  469. * anonymous pages. These may become associated with the swapcache, and in that
  470. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  471. *
  472. * In either case (swapcache or inode backed), the pagecache itself holds one
  473. * reference to the page. Setting PG_private should also increment the
  474. * refcount. The each user mapping also has a reference to the page.
  475. *
  476. * The pagecache pages are stored in a per-mapping radix tree, which is
  477. * rooted at mapping->page_tree, and indexed by offset.
  478. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  479. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  480. *
  481. * All pagecache pages may be subject to I/O:
  482. * - inode pages may need to be read from disk,
  483. * - inode pages which have been modified and are MAP_SHARED may need
  484. * to be written back to the inode on disk,
  485. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  486. * modified may need to be swapped out to swap space and (later) to be read
  487. * back into memory.
  488. */
  489. /*
  490. * The zone field is never updated after free_area_init_core()
  491. * sets it, so none of the operations on it need to be atomic.
  492. */
  493. /*
  494. * page->flags layout:
  495. *
  496. * There are three possibilities for how page->flags get
  497. * laid out. The first is for the normal case, without
  498. * sparsemem. The second is for sparsemem when there is
  499. * plenty of space for node and section. The last is when
  500. * we have run out of space and have to fall back to an
  501. * alternate (slower) way of determining the node.
  502. *
  503. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  504. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  505. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  506. */
  507. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  508. #define SECTIONS_WIDTH SECTIONS_SHIFT
  509. #else
  510. #define SECTIONS_WIDTH 0
  511. #endif
  512. #define ZONES_WIDTH ZONES_SHIFT
  513. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  514. #define NODES_WIDTH NODES_SHIFT
  515. #else
  516. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  517. #error "Vmemmap: No space for nodes field in page flags"
  518. #endif
  519. #define NODES_WIDTH 0
  520. #endif
  521. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  522. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  523. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  524. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  525. /*
  526. * We are going to use the flags for the page to node mapping if its in
  527. * there. This includes the case where there is no node, so it is implicit.
  528. */
  529. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  530. #define NODE_NOT_IN_PAGE_FLAGS
  531. #endif
  532. /*
  533. * Define the bit shifts to access each section. For non-existent
  534. * sections we define the shift as 0; that plus a 0 mask ensures
  535. * the compiler will optimise away reference to them.
  536. */
  537. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  538. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  539. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  540. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  541. #ifdef NODE_NOT_IN_PAGE_FLAGS
  542. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  543. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  544. SECTIONS_PGOFF : ZONES_PGOFF)
  545. #else
  546. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  547. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  548. NODES_PGOFF : ZONES_PGOFF)
  549. #endif
  550. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  551. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  552. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  553. #endif
  554. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  555. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  556. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  557. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  558. static inline enum zone_type page_zonenum(const struct page *page)
  559. {
  560. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  561. }
  562. /*
  563. * The identification function is only used by the buddy allocator for
  564. * determining if two pages could be buddies. We are not really
  565. * identifying a zone since we could be using a the section number
  566. * id if we have not node id available in page flags.
  567. * We guarantee only that it will return the same value for two
  568. * combinable pages in a zone.
  569. */
  570. static inline int page_zone_id(struct page *page)
  571. {
  572. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  573. }
  574. static inline int zone_to_nid(struct zone *zone)
  575. {
  576. #ifdef CONFIG_NUMA
  577. return zone->node;
  578. #else
  579. return 0;
  580. #endif
  581. }
  582. #ifdef NODE_NOT_IN_PAGE_FLAGS
  583. extern int page_to_nid(const struct page *page);
  584. #else
  585. static inline int page_to_nid(const struct page *page)
  586. {
  587. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  588. }
  589. #endif
  590. static inline struct zone *page_zone(const struct page *page)
  591. {
  592. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  593. }
  594. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  595. static inline void set_page_section(struct page *page, unsigned long section)
  596. {
  597. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  598. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  599. }
  600. static inline unsigned long page_to_section(const struct page *page)
  601. {
  602. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  603. }
  604. #endif
  605. static inline void set_page_zone(struct page *page, enum zone_type zone)
  606. {
  607. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  608. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  609. }
  610. static inline void set_page_node(struct page *page, unsigned long node)
  611. {
  612. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  613. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  614. }
  615. static inline void set_page_links(struct page *page, enum zone_type zone,
  616. unsigned long node, unsigned long pfn)
  617. {
  618. set_page_zone(page, zone);
  619. set_page_node(page, node);
  620. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  621. set_page_section(page, pfn_to_section_nr(pfn));
  622. #endif
  623. }
  624. /*
  625. * Some inline functions in vmstat.h depend on page_zone()
  626. */
  627. #include <linux/vmstat.h>
  628. static __always_inline void *lowmem_page_address(const struct page *page)
  629. {
  630. return __va(PFN_PHYS(page_to_pfn(page)));
  631. }
  632. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  633. #define HASHED_PAGE_VIRTUAL
  634. #endif
  635. #if defined(WANT_PAGE_VIRTUAL)
  636. #define page_address(page) ((page)->virtual)
  637. #define set_page_address(page, address) \
  638. do { \
  639. (page)->virtual = (address); \
  640. } while(0)
  641. #define page_address_init() do { } while(0)
  642. #endif
  643. #if defined(HASHED_PAGE_VIRTUAL)
  644. void *page_address(const struct page *page);
  645. void set_page_address(struct page *page, void *virtual);
  646. void page_address_init(void);
  647. #endif
  648. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  649. #define page_address(page) lowmem_page_address(page)
  650. #define set_page_address(page, address) do { } while(0)
  651. #define page_address_init() do { } while(0)
  652. #endif
  653. /*
  654. * On an anonymous page mapped into a user virtual memory area,
  655. * page->mapping points to its anon_vma, not to a struct address_space;
  656. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  657. *
  658. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  659. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  660. * and then page->mapping points, not to an anon_vma, but to a private
  661. * structure which KSM associates with that merged page. See ksm.h.
  662. *
  663. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  664. *
  665. * Please note that, confusingly, "page_mapping" refers to the inode
  666. * address_space which maps the page from disk; whereas "page_mapped"
  667. * refers to user virtual address space into which the page is mapped.
  668. */
  669. #define PAGE_MAPPING_ANON 1
  670. #define PAGE_MAPPING_KSM 2
  671. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  672. extern struct address_space swapper_space;
  673. static inline struct address_space *page_mapping(struct page *page)
  674. {
  675. struct address_space *mapping = page->mapping;
  676. VM_BUG_ON(PageSlab(page));
  677. if (unlikely(PageSwapCache(page)))
  678. mapping = &swapper_space;
  679. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  680. mapping = NULL;
  681. return mapping;
  682. }
  683. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  684. static inline void *page_rmapping(struct page *page)
  685. {
  686. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  687. }
  688. extern struct address_space *__page_file_mapping(struct page *);
  689. static inline
  690. struct address_space *page_file_mapping(struct page *page)
  691. {
  692. if (unlikely(PageSwapCache(page)))
  693. return __page_file_mapping(page);
  694. return page->mapping;
  695. }
  696. static inline int PageAnon(struct page *page)
  697. {
  698. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  699. }
  700. /*
  701. * Return the pagecache index of the passed page. Regular pagecache pages
  702. * use ->index whereas swapcache pages use ->private
  703. */
  704. static inline pgoff_t page_index(struct page *page)
  705. {
  706. if (unlikely(PageSwapCache(page)))
  707. return page_private(page);
  708. return page->index;
  709. }
  710. extern pgoff_t __page_file_index(struct page *page);
  711. /*
  712. * Return the file index of the page. Regular pagecache pages use ->index
  713. * whereas swapcache pages use swp_offset(->private)
  714. */
  715. static inline pgoff_t page_file_index(struct page *page)
  716. {
  717. if (unlikely(PageSwapCache(page)))
  718. return __page_file_index(page);
  719. return page->index;
  720. }
  721. /*
  722. * Return true if this page is mapped into pagetables.
  723. */
  724. static inline int page_mapped(struct page *page)
  725. {
  726. return atomic_read(&(page)->_mapcount) >= 0;
  727. }
  728. /*
  729. * Different kinds of faults, as returned by handle_mm_fault().
  730. * Used to decide whether a process gets delivered SIGBUS or
  731. * just gets major/minor fault counters bumped up.
  732. */
  733. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  734. #define VM_FAULT_OOM 0x0001
  735. #define VM_FAULT_SIGBUS 0x0002
  736. #define VM_FAULT_MAJOR 0x0004
  737. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  738. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  739. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  740. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  741. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  742. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  743. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  744. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  745. VM_FAULT_HWPOISON_LARGE)
  746. /* Encode hstate index for a hwpoisoned large page */
  747. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  748. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  749. /*
  750. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  751. */
  752. extern void pagefault_out_of_memory(void);
  753. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  754. /*
  755. * Flags passed to show_mem() and show_free_areas() to suppress output in
  756. * various contexts.
  757. */
  758. #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
  759. extern void show_free_areas(unsigned int flags);
  760. extern bool skip_free_areas_node(unsigned int flags, int nid);
  761. int shmem_zero_setup(struct vm_area_struct *);
  762. extern int can_do_mlock(void);
  763. extern int user_shm_lock(size_t, struct user_struct *);
  764. extern void user_shm_unlock(size_t, struct user_struct *);
  765. /*
  766. * Parameter block passed down to zap_pte_range in exceptional cases.
  767. */
  768. struct zap_details {
  769. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  770. struct address_space *check_mapping; /* Check page->mapping if set */
  771. pgoff_t first_index; /* Lowest page->index to unmap */
  772. pgoff_t last_index; /* Highest page->index to unmap */
  773. };
  774. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  775. pte_t pte);
  776. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  777. unsigned long size);
  778. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  779. unsigned long size, struct zap_details *);
  780. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  781. unsigned long start, unsigned long end);
  782. /**
  783. * mm_walk - callbacks for walk_page_range
  784. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  785. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  786. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  787. * this handler is required to be able to handle
  788. * pmd_trans_huge() pmds. They may simply choose to
  789. * split_huge_page() instead of handling it explicitly.
  790. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  791. * @pte_hole: if set, called for each hole at all levels
  792. * @hugetlb_entry: if set, called for each hugetlb entry
  793. * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
  794. * is used.
  795. *
  796. * (see walk_page_range for more details)
  797. */
  798. struct mm_walk {
  799. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  800. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  801. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  802. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  803. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  804. int (*hugetlb_entry)(pte_t *, unsigned long,
  805. unsigned long, unsigned long, struct mm_walk *);
  806. struct mm_struct *mm;
  807. void *private;
  808. };
  809. int walk_page_range(unsigned long addr, unsigned long end,
  810. struct mm_walk *walk);
  811. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  812. unsigned long end, unsigned long floor, unsigned long ceiling);
  813. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  814. struct vm_area_struct *vma);
  815. void unmap_mapping_range(struct address_space *mapping,
  816. loff_t const holebegin, loff_t const holelen, int even_cows);
  817. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  818. unsigned long *pfn);
  819. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  820. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  821. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  822. void *buf, int len, int write);
  823. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  824. loff_t const holebegin, loff_t const holelen)
  825. {
  826. unmap_mapping_range(mapping, holebegin, holelen, 0);
  827. }
  828. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  829. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  830. extern int vmtruncate(struct inode *inode, loff_t offset);
  831. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  832. int truncate_inode_page(struct address_space *mapping, struct page *page);
  833. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  834. int invalidate_inode_page(struct page *page);
  835. #ifdef CONFIG_MMU
  836. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  837. unsigned long address, unsigned int flags);
  838. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  839. unsigned long address, unsigned int fault_flags);
  840. #else
  841. static inline int handle_mm_fault(struct mm_struct *mm,
  842. struct vm_area_struct *vma, unsigned long address,
  843. unsigned int flags)
  844. {
  845. /* should never happen if there's no MMU */
  846. BUG();
  847. return VM_FAULT_SIGBUS;
  848. }
  849. static inline int fixup_user_fault(struct task_struct *tsk,
  850. struct mm_struct *mm, unsigned long address,
  851. unsigned int fault_flags)
  852. {
  853. /* should never happen if there's no MMU */
  854. BUG();
  855. return -EFAULT;
  856. }
  857. #endif
  858. extern int make_pages_present(unsigned long addr, unsigned long end);
  859. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  860. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  861. void *buf, int len, int write);
  862. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  863. unsigned long start, int len, unsigned int foll_flags,
  864. struct page **pages, struct vm_area_struct **vmas,
  865. int *nonblocking);
  866. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  867. unsigned long start, int nr_pages, int write, int force,
  868. struct page **pages, struct vm_area_struct **vmas);
  869. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  870. struct page **pages);
  871. struct kvec;
  872. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  873. struct page **pages);
  874. int get_kernel_page(unsigned long start, int write, struct page **pages);
  875. struct page *get_dump_page(unsigned long addr);
  876. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  877. extern void do_invalidatepage(struct page *page, unsigned long offset);
  878. int __set_page_dirty_nobuffers(struct page *page);
  879. int __set_page_dirty_no_writeback(struct page *page);
  880. int redirty_page_for_writepage(struct writeback_control *wbc,
  881. struct page *page);
  882. void account_page_dirtied(struct page *page, struct address_space *mapping);
  883. void account_page_writeback(struct page *page);
  884. int set_page_dirty(struct page *page);
  885. int set_page_dirty_lock(struct page *page);
  886. int clear_page_dirty_for_io(struct page *page);
  887. /* Is the vma a continuation of the stack vma above it? */
  888. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  889. {
  890. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  891. }
  892. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  893. unsigned long addr)
  894. {
  895. return (vma->vm_flags & VM_GROWSDOWN) &&
  896. (vma->vm_start == addr) &&
  897. !vma_growsdown(vma->vm_prev, addr);
  898. }
  899. /* Is the vma a continuation of the stack vma below it? */
  900. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  901. {
  902. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  903. }
  904. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  905. unsigned long addr)
  906. {
  907. return (vma->vm_flags & VM_GROWSUP) &&
  908. (vma->vm_end == addr) &&
  909. !vma_growsup(vma->vm_next, addr);
  910. }
  911. extern pid_t
  912. vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
  913. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  914. unsigned long old_addr, struct vm_area_struct *new_vma,
  915. unsigned long new_addr, unsigned long len,
  916. bool need_rmap_locks);
  917. extern unsigned long do_mremap(unsigned long addr,
  918. unsigned long old_len, unsigned long new_len,
  919. unsigned long flags, unsigned long new_addr);
  920. extern int mprotect_fixup(struct vm_area_struct *vma,
  921. struct vm_area_struct **pprev, unsigned long start,
  922. unsigned long end, unsigned long newflags);
  923. /*
  924. * doesn't attempt to fault and will return short.
  925. */
  926. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  927. struct page **pages);
  928. /*
  929. * per-process(per-mm_struct) statistics.
  930. */
  931. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  932. {
  933. long val = atomic_long_read(&mm->rss_stat.count[member]);
  934. #ifdef SPLIT_RSS_COUNTING
  935. /*
  936. * counter is updated in asynchronous manner and may go to minus.
  937. * But it's never be expected number for users.
  938. */
  939. if (val < 0)
  940. val = 0;
  941. #endif
  942. return (unsigned long)val;
  943. }
  944. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  945. {
  946. atomic_long_add(value, &mm->rss_stat.count[member]);
  947. }
  948. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  949. {
  950. atomic_long_inc(&mm->rss_stat.count[member]);
  951. }
  952. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  953. {
  954. atomic_long_dec(&mm->rss_stat.count[member]);
  955. }
  956. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  957. {
  958. return get_mm_counter(mm, MM_FILEPAGES) +
  959. get_mm_counter(mm, MM_ANONPAGES);
  960. }
  961. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  962. {
  963. return max(mm->hiwater_rss, get_mm_rss(mm));
  964. }
  965. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  966. {
  967. return max(mm->hiwater_vm, mm->total_vm);
  968. }
  969. static inline void update_hiwater_rss(struct mm_struct *mm)
  970. {
  971. unsigned long _rss = get_mm_rss(mm);
  972. if ((mm)->hiwater_rss < _rss)
  973. (mm)->hiwater_rss = _rss;
  974. }
  975. static inline void update_hiwater_vm(struct mm_struct *mm)
  976. {
  977. if (mm->hiwater_vm < mm->total_vm)
  978. mm->hiwater_vm = mm->total_vm;
  979. }
  980. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  981. struct mm_struct *mm)
  982. {
  983. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  984. if (*maxrss < hiwater_rss)
  985. *maxrss = hiwater_rss;
  986. }
  987. #if defined(SPLIT_RSS_COUNTING)
  988. void sync_mm_rss(struct mm_struct *mm);
  989. #else
  990. static inline void sync_mm_rss(struct mm_struct *mm)
  991. {
  992. }
  993. #endif
  994. int vma_wants_writenotify(struct vm_area_struct *vma);
  995. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  996. spinlock_t **ptl);
  997. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  998. spinlock_t **ptl)
  999. {
  1000. pte_t *ptep;
  1001. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1002. return ptep;
  1003. }
  1004. #ifdef __PAGETABLE_PUD_FOLDED
  1005. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1006. unsigned long address)
  1007. {
  1008. return 0;
  1009. }
  1010. #else
  1011. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1012. #endif
  1013. #ifdef __PAGETABLE_PMD_FOLDED
  1014. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1015. unsigned long address)
  1016. {
  1017. return 0;
  1018. }
  1019. #else
  1020. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1021. #endif
  1022. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1023. pmd_t *pmd, unsigned long address);
  1024. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1025. /*
  1026. * The following ifdef needed to get the 4level-fixup.h header to work.
  1027. * Remove it when 4level-fixup.h has been removed.
  1028. */
  1029. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1030. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1031. {
  1032. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1033. NULL: pud_offset(pgd, address);
  1034. }
  1035. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1036. {
  1037. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1038. NULL: pmd_offset(pud, address);
  1039. }
  1040. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1041. #if USE_SPLIT_PTLOCKS
  1042. /*
  1043. * We tuck a spinlock to guard each pagetable page into its struct page,
  1044. * at page->private, with BUILD_BUG_ON to make sure that this will not
  1045. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1046. * When freeing, reset page->mapping so free_pages_check won't complain.
  1047. */
  1048. #define __pte_lockptr(page) &((page)->ptl)
  1049. #define pte_lock_init(_page) do { \
  1050. spin_lock_init(__pte_lockptr(_page)); \
  1051. } while (0)
  1052. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1053. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1054. #else /* !USE_SPLIT_PTLOCKS */
  1055. /*
  1056. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1057. */
  1058. #define pte_lock_init(page) do {} while (0)
  1059. #define pte_lock_deinit(page) do {} while (0)
  1060. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1061. #endif /* USE_SPLIT_PTLOCKS */
  1062. static inline void pgtable_page_ctor(struct page *page)
  1063. {
  1064. pte_lock_init(page);
  1065. inc_zone_page_state(page, NR_PAGETABLE);
  1066. }
  1067. static inline void pgtable_page_dtor(struct page *page)
  1068. {
  1069. pte_lock_deinit(page);
  1070. dec_zone_page_state(page, NR_PAGETABLE);
  1071. }
  1072. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1073. ({ \
  1074. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1075. pte_t *__pte = pte_offset_map(pmd, address); \
  1076. *(ptlp) = __ptl; \
  1077. spin_lock(__ptl); \
  1078. __pte; \
  1079. })
  1080. #define pte_unmap_unlock(pte, ptl) do { \
  1081. spin_unlock(ptl); \
  1082. pte_unmap(pte); \
  1083. } while (0)
  1084. #define pte_alloc_map(mm, vma, pmd, address) \
  1085. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1086. pmd, address))? \
  1087. NULL: pte_offset_map(pmd, address))
  1088. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1089. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1090. pmd, address))? \
  1091. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1092. #define pte_alloc_kernel(pmd, address) \
  1093. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1094. NULL: pte_offset_kernel(pmd, address))
  1095. extern void free_area_init(unsigned long * zones_size);
  1096. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1097. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1098. extern void free_initmem(void);
  1099. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1100. /*
  1101. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1102. * zones, allocate the backing mem_map and account for memory holes in a more
  1103. * architecture independent manner. This is a substitute for creating the
  1104. * zone_sizes[] and zholes_size[] arrays and passing them to
  1105. * free_area_init_node()
  1106. *
  1107. * An architecture is expected to register range of page frames backed by
  1108. * physical memory with memblock_add[_node]() before calling
  1109. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1110. * usage, an architecture is expected to do something like
  1111. *
  1112. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1113. * max_highmem_pfn};
  1114. * for_each_valid_physical_page_range()
  1115. * memblock_add_node(base, size, nid)
  1116. * free_area_init_nodes(max_zone_pfns);
  1117. *
  1118. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1119. * registered physical page range. Similarly
  1120. * sparse_memory_present_with_active_regions() calls memory_present() for
  1121. * each range when SPARSEMEM is enabled.
  1122. *
  1123. * See mm/page_alloc.c for more information on each function exposed by
  1124. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1125. */
  1126. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1127. unsigned long node_map_pfn_alignment(void);
  1128. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1129. unsigned long end_pfn);
  1130. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1131. unsigned long end_pfn);
  1132. extern void get_pfn_range_for_nid(unsigned int nid,
  1133. unsigned long *start_pfn, unsigned long *end_pfn);
  1134. extern unsigned long find_min_pfn_with_active_regions(void);
  1135. extern void free_bootmem_with_active_regions(int nid,
  1136. unsigned long max_low_pfn);
  1137. extern void sparse_memory_present_with_active_regions(int nid);
  1138. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1139. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1140. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1141. static inline int __early_pfn_to_nid(unsigned long pfn)
  1142. {
  1143. return 0;
  1144. }
  1145. #else
  1146. /* please see mm/page_alloc.c */
  1147. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1148. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1149. /* there is a per-arch backend function. */
  1150. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1151. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1152. #endif
  1153. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1154. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1155. unsigned long, enum memmap_context);
  1156. extern void setup_per_zone_wmarks(void);
  1157. extern int __meminit init_per_zone_wmark_min(void);
  1158. extern void mem_init(void);
  1159. extern void __init mmap_init(void);
  1160. extern void show_mem(unsigned int flags);
  1161. extern void si_meminfo(struct sysinfo * val);
  1162. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1163. extern int after_bootmem;
  1164. extern __printf(3, 4)
  1165. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1166. extern void setup_per_cpu_pageset(void);
  1167. extern void zone_pcp_update(struct zone *zone);
  1168. extern void zone_pcp_reset(struct zone *zone);
  1169. /* nommu.c */
  1170. extern atomic_long_t mmap_pages_allocated;
  1171. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1172. /* interval_tree.c */
  1173. void vma_interval_tree_insert(struct vm_area_struct *node,
  1174. struct rb_root *root);
  1175. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1176. struct vm_area_struct *prev,
  1177. struct rb_root *root);
  1178. void vma_interval_tree_remove(struct vm_area_struct *node,
  1179. struct rb_root *root);
  1180. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1181. unsigned long start, unsigned long last);
  1182. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1183. unsigned long start, unsigned long last);
  1184. #define vma_interval_tree_foreach(vma, root, start, last) \
  1185. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1186. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1187. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1188. struct list_head *list)
  1189. {
  1190. list_add_tail(&vma->shared.nonlinear, list);
  1191. }
  1192. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1193. struct rb_root *root);
  1194. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1195. struct rb_root *root);
  1196. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1197. struct rb_root *root, unsigned long start, unsigned long last);
  1198. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1199. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1200. #ifdef CONFIG_DEBUG_VM_RB
  1201. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1202. #endif
  1203. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1204. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1205. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1206. /* mmap.c */
  1207. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1208. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1209. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1210. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1211. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1212. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1213. struct mempolicy *);
  1214. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1215. extern int split_vma(struct mm_struct *,
  1216. struct vm_area_struct *, unsigned long addr, int new_below);
  1217. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1218. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1219. struct rb_node **, struct rb_node *);
  1220. extern void unlink_file_vma(struct vm_area_struct *);
  1221. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1222. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1223. bool *need_rmap_locks);
  1224. extern void exit_mmap(struct mm_struct *);
  1225. extern int mm_take_all_locks(struct mm_struct *mm);
  1226. extern void mm_drop_all_locks(struct mm_struct *mm);
  1227. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1228. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1229. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1230. extern int install_special_mapping(struct mm_struct *mm,
  1231. unsigned long addr, unsigned long len,
  1232. unsigned long flags, struct page **pages);
  1233. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1234. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1235. unsigned long len, unsigned long flags,
  1236. vm_flags_t vm_flags, unsigned long pgoff);
  1237. extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
  1238. unsigned long, unsigned long,
  1239. unsigned long, unsigned long);
  1240. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1241. /* These take the mm semaphore themselves */
  1242. extern unsigned long vm_brk(unsigned long, unsigned long);
  1243. extern int vm_munmap(unsigned long, size_t);
  1244. extern unsigned long vm_mmap(struct file *, unsigned long,
  1245. unsigned long, unsigned long,
  1246. unsigned long, unsigned long);
  1247. /* truncate.c */
  1248. extern void truncate_inode_pages(struct address_space *, loff_t);
  1249. extern void truncate_inode_pages_range(struct address_space *,
  1250. loff_t lstart, loff_t lend);
  1251. /* generic vm_area_ops exported for stackable file systems */
  1252. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1253. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1254. /* mm/page-writeback.c */
  1255. int write_one_page(struct page *page, int wait);
  1256. void task_dirty_inc(struct task_struct *tsk);
  1257. /* readahead.c */
  1258. #define VM_MAX_READAHEAD 128 /* kbytes */
  1259. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1260. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1261. pgoff_t offset, unsigned long nr_to_read);
  1262. void page_cache_sync_readahead(struct address_space *mapping,
  1263. struct file_ra_state *ra,
  1264. struct file *filp,
  1265. pgoff_t offset,
  1266. unsigned long size);
  1267. void page_cache_async_readahead(struct address_space *mapping,
  1268. struct file_ra_state *ra,
  1269. struct file *filp,
  1270. struct page *pg,
  1271. pgoff_t offset,
  1272. unsigned long size);
  1273. unsigned long max_sane_readahead(unsigned long nr);
  1274. unsigned long ra_submit(struct file_ra_state *ra,
  1275. struct address_space *mapping,
  1276. struct file *filp);
  1277. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1278. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1279. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1280. extern int expand_downwards(struct vm_area_struct *vma,
  1281. unsigned long address);
  1282. #if VM_GROWSUP
  1283. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1284. #else
  1285. #define expand_upwards(vma, address) do { } while (0)
  1286. #endif
  1287. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1288. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1289. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1290. struct vm_area_struct **pprev);
  1291. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1292. NULL if none. Assume start_addr < end_addr. */
  1293. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1294. {
  1295. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1296. if (vma && end_addr <= vma->vm_start)
  1297. vma = NULL;
  1298. return vma;
  1299. }
  1300. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1301. {
  1302. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1303. }
  1304. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1305. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1306. unsigned long vm_start, unsigned long vm_end)
  1307. {
  1308. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1309. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1310. vma = NULL;
  1311. return vma;
  1312. }
  1313. #ifdef CONFIG_MMU
  1314. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1315. #else
  1316. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1317. {
  1318. return __pgprot(0);
  1319. }
  1320. #endif
  1321. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1322. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1323. unsigned long pfn, unsigned long size, pgprot_t);
  1324. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1325. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1326. unsigned long pfn);
  1327. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1328. unsigned long pfn);
  1329. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1330. unsigned int foll_flags);
  1331. #define FOLL_WRITE 0x01 /* check pte is writable */
  1332. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1333. #define FOLL_GET 0x04 /* do get_page on page */
  1334. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1335. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1336. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1337. * and return without waiting upon it */
  1338. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1339. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1340. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1341. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1342. void *data);
  1343. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1344. unsigned long size, pte_fn_t fn, void *data);
  1345. #ifdef CONFIG_PROC_FS
  1346. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1347. #else
  1348. static inline void vm_stat_account(struct mm_struct *mm,
  1349. unsigned long flags, struct file *file, long pages)
  1350. {
  1351. mm->total_vm += pages;
  1352. }
  1353. #endif /* CONFIG_PROC_FS */
  1354. #ifdef CONFIG_DEBUG_PAGEALLOC
  1355. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1356. #ifdef CONFIG_HIBERNATION
  1357. extern bool kernel_page_present(struct page *page);
  1358. #endif /* CONFIG_HIBERNATION */
  1359. #else
  1360. static inline void
  1361. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1362. #ifdef CONFIG_HIBERNATION
  1363. static inline bool kernel_page_present(struct page *page) { return true; }
  1364. #endif /* CONFIG_HIBERNATION */
  1365. #endif
  1366. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1367. #ifdef __HAVE_ARCH_GATE_AREA
  1368. int in_gate_area_no_mm(unsigned long addr);
  1369. int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1370. #else
  1371. int in_gate_area_no_mm(unsigned long addr);
  1372. #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
  1373. #endif /* __HAVE_ARCH_GATE_AREA */
  1374. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1375. void __user *, size_t *, loff_t *);
  1376. unsigned long shrink_slab(struct shrink_control *shrink,
  1377. unsigned long nr_pages_scanned,
  1378. unsigned long lru_pages);
  1379. #ifndef CONFIG_MMU
  1380. #define randomize_va_space 0
  1381. #else
  1382. extern int randomize_va_space;
  1383. #endif
  1384. const char * arch_vma_name(struct vm_area_struct *vma);
  1385. void print_vma_addr(char *prefix, unsigned long rip);
  1386. void sparse_mem_maps_populate_node(struct page **map_map,
  1387. unsigned long pnum_begin,
  1388. unsigned long pnum_end,
  1389. unsigned long map_count,
  1390. int nodeid);
  1391. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1392. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1393. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1394. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1395. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1396. void *vmemmap_alloc_block(unsigned long size, int node);
  1397. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1398. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1399. int vmemmap_populate_basepages(struct page *start_page,
  1400. unsigned long pages, int node);
  1401. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1402. void vmemmap_populate_print_last(void);
  1403. enum mf_flags {
  1404. MF_COUNT_INCREASED = 1 << 0,
  1405. MF_ACTION_REQUIRED = 1 << 1,
  1406. MF_MUST_KILL = 1 << 2,
  1407. };
  1408. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1409. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1410. extern int unpoison_memory(unsigned long pfn);
  1411. extern int sysctl_memory_failure_early_kill;
  1412. extern int sysctl_memory_failure_recovery;
  1413. extern void shake_page(struct page *p, int access);
  1414. extern atomic_long_t mce_bad_pages;
  1415. extern int soft_offline_page(struct page *page, int flags);
  1416. extern void dump_page(struct page *page);
  1417. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1418. extern void clear_huge_page(struct page *page,
  1419. unsigned long addr,
  1420. unsigned int pages_per_huge_page);
  1421. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1422. unsigned long addr, struct vm_area_struct *vma,
  1423. unsigned int pages_per_huge_page);
  1424. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1425. #ifdef CONFIG_DEBUG_PAGEALLOC
  1426. extern unsigned int _debug_guardpage_minorder;
  1427. static inline unsigned int debug_guardpage_minorder(void)
  1428. {
  1429. return _debug_guardpage_minorder;
  1430. }
  1431. static inline bool page_is_guard(struct page *page)
  1432. {
  1433. return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  1434. }
  1435. #else
  1436. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1437. static inline bool page_is_guard(struct page *page) { return false; }
  1438. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1439. #endif /* __KERNEL__ */
  1440. #endif /* _LINUX_MM_H */