hw.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "ar9003_phy.h"
  26. #include "debug.h"
  27. #include "ath9k.h"
  28. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  29. MODULE_AUTHOR("Atheros Communications");
  30. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  31. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  32. MODULE_LICENSE("Dual BSD/GPL");
  33. static int __init ath9k_init(void)
  34. {
  35. return 0;
  36. }
  37. module_init(ath9k_init);
  38. static void __exit ath9k_exit(void)
  39. {
  40. return;
  41. }
  42. module_exit(ath9k_exit);
  43. /* Private hardware callbacks */
  44. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  45. {
  46. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  47. }
  48. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  49. struct ath9k_channel *chan)
  50. {
  51. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  52. }
  53. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  54. {
  55. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  56. return;
  57. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  58. }
  59. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  60. {
  61. /* You will not have this callback if using the old ANI */
  62. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  63. return;
  64. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  65. }
  66. /********************/
  67. /* Helper Functions */
  68. /********************/
  69. #ifdef CONFIG_ATH9K_DEBUGFS
  70. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  71. {
  72. struct ath_softc *sc = common->priv;
  73. if (sync_cause)
  74. sc->debug.stats.istats.sync_cause_all++;
  75. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  76. sc->debug.stats.istats.sync_rtc_irq++;
  77. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  78. sc->debug.stats.istats.sync_mac_irq++;
  79. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  80. sc->debug.stats.istats.eeprom_illegal_access++;
  81. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  82. sc->debug.stats.istats.apb_timeout++;
  83. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  84. sc->debug.stats.istats.pci_mode_conflict++;
  85. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  86. sc->debug.stats.istats.host1_fatal++;
  87. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  88. sc->debug.stats.istats.host1_perr++;
  89. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  90. sc->debug.stats.istats.trcv_fifo_perr++;
  91. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  92. sc->debug.stats.istats.radm_cpl_ep++;
  93. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  94. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  95. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  96. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  97. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  98. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  99. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  100. sc->debug.stats.istats.radm_cpl_timeout++;
  101. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  102. sc->debug.stats.istats.local_timeout++;
  103. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  104. sc->debug.stats.istats.pm_access++;
  105. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  106. sc->debug.stats.istats.mac_awake++;
  107. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  108. sc->debug.stats.istats.mac_asleep++;
  109. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  110. sc->debug.stats.istats.mac_sleep_access++;
  111. }
  112. #endif
  113. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  114. {
  115. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  116. struct ath_common *common = ath9k_hw_common(ah);
  117. unsigned int clockrate;
  118. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  119. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  120. clockrate = 117;
  121. else if (!ah->curchan) /* should really check for CCK instead */
  122. clockrate = ATH9K_CLOCK_RATE_CCK;
  123. else if (conf->chandef.chan->band == IEEE80211_BAND_2GHZ)
  124. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  125. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  126. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  127. else
  128. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  129. if (conf_is_ht40(conf))
  130. clockrate *= 2;
  131. if (ah->curchan) {
  132. if (IS_CHAN_HALF_RATE(ah->curchan))
  133. clockrate /= 2;
  134. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  135. clockrate /= 4;
  136. }
  137. common->clockrate = clockrate;
  138. }
  139. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  140. {
  141. struct ath_common *common = ath9k_hw_common(ah);
  142. return usecs * common->clockrate;
  143. }
  144. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  145. {
  146. int i;
  147. BUG_ON(timeout < AH_TIME_QUANTUM);
  148. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  149. if ((REG_READ(ah, reg) & mask) == val)
  150. return true;
  151. udelay(AH_TIME_QUANTUM);
  152. }
  153. ath_dbg(ath9k_hw_common(ah), ANY,
  154. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  155. timeout, reg, REG_READ(ah, reg), mask, val);
  156. return false;
  157. }
  158. EXPORT_SYMBOL(ath9k_hw_wait);
  159. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  160. int hw_delay)
  161. {
  162. if (IS_CHAN_B(chan))
  163. hw_delay = (4 * hw_delay) / 22;
  164. else
  165. hw_delay /= 10;
  166. if (IS_CHAN_HALF_RATE(chan))
  167. hw_delay *= 2;
  168. else if (IS_CHAN_QUARTER_RATE(chan))
  169. hw_delay *= 4;
  170. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  171. }
  172. void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
  173. int column, unsigned int *writecnt)
  174. {
  175. int r;
  176. ENABLE_REGWRITE_BUFFER(ah);
  177. for (r = 0; r < array->ia_rows; r++) {
  178. REG_WRITE(ah, INI_RA(array, r, 0),
  179. INI_RA(array, r, column));
  180. DO_DELAY(*writecnt);
  181. }
  182. REGWRITE_BUFFER_FLUSH(ah);
  183. }
  184. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  185. {
  186. u32 retval;
  187. int i;
  188. for (i = 0, retval = 0; i < n; i++) {
  189. retval = (retval << 1) | (val & 1);
  190. val >>= 1;
  191. }
  192. return retval;
  193. }
  194. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  195. u8 phy, int kbps,
  196. u32 frameLen, u16 rateix,
  197. bool shortPreamble)
  198. {
  199. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  200. if (kbps == 0)
  201. return 0;
  202. switch (phy) {
  203. case WLAN_RC_PHY_CCK:
  204. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  205. if (shortPreamble)
  206. phyTime >>= 1;
  207. numBits = frameLen << 3;
  208. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  209. break;
  210. case WLAN_RC_PHY_OFDM:
  211. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  212. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  213. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  214. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  215. txTime = OFDM_SIFS_TIME_QUARTER
  216. + OFDM_PREAMBLE_TIME_QUARTER
  217. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  218. } else if (ah->curchan &&
  219. IS_CHAN_HALF_RATE(ah->curchan)) {
  220. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  221. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  222. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  223. txTime = OFDM_SIFS_TIME_HALF +
  224. OFDM_PREAMBLE_TIME_HALF
  225. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  226. } else {
  227. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  228. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  229. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  230. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  231. + (numSymbols * OFDM_SYMBOL_TIME);
  232. }
  233. break;
  234. default:
  235. ath_err(ath9k_hw_common(ah),
  236. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  237. txTime = 0;
  238. break;
  239. }
  240. return txTime;
  241. }
  242. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  243. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  244. struct ath9k_channel *chan,
  245. struct chan_centers *centers)
  246. {
  247. int8_t extoff;
  248. if (!IS_CHAN_HT40(chan)) {
  249. centers->ctl_center = centers->ext_center =
  250. centers->synth_center = chan->channel;
  251. return;
  252. }
  253. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  254. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  255. centers->synth_center =
  256. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  257. extoff = 1;
  258. } else {
  259. centers->synth_center =
  260. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  261. extoff = -1;
  262. }
  263. centers->ctl_center =
  264. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  265. /* 25 MHz spacing is supported by hw but not on upper layers */
  266. centers->ext_center =
  267. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  268. }
  269. /******************/
  270. /* Chip Revisions */
  271. /******************/
  272. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  273. {
  274. u32 val;
  275. switch (ah->hw_version.devid) {
  276. case AR5416_AR9100_DEVID:
  277. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  278. break;
  279. case AR9300_DEVID_AR9330:
  280. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  281. if (ah->get_mac_revision) {
  282. ah->hw_version.macRev = ah->get_mac_revision();
  283. } else {
  284. val = REG_READ(ah, AR_SREV);
  285. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  286. }
  287. return;
  288. case AR9300_DEVID_AR9340:
  289. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  290. val = REG_READ(ah, AR_SREV);
  291. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  292. return;
  293. case AR9300_DEVID_QCA955X:
  294. ah->hw_version.macVersion = AR_SREV_VERSION_9550;
  295. return;
  296. }
  297. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  298. if (val == 0xFF) {
  299. val = REG_READ(ah, AR_SREV);
  300. ah->hw_version.macVersion =
  301. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  302. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  303. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  304. ah->is_pciexpress = true;
  305. else
  306. ah->is_pciexpress = (val &
  307. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  308. } else {
  309. if (!AR_SREV_9100(ah))
  310. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  311. ah->hw_version.macRev = val & AR_SREV_REVISION;
  312. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  313. ah->is_pciexpress = true;
  314. }
  315. }
  316. /************************************/
  317. /* HW Attach, Detach, Init Routines */
  318. /************************************/
  319. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  320. {
  321. if (!AR_SREV_5416(ah))
  322. return;
  323. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  324. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  325. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  332. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  333. }
  334. /* This should work for all families including legacy */
  335. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  336. {
  337. struct ath_common *common = ath9k_hw_common(ah);
  338. u32 regAddr[2] = { AR_STA_ID0 };
  339. u32 regHold[2];
  340. static const u32 patternData[4] = {
  341. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  342. };
  343. int i, j, loop_max;
  344. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  345. loop_max = 2;
  346. regAddr[1] = AR_PHY_BASE + (8 << 2);
  347. } else
  348. loop_max = 1;
  349. for (i = 0; i < loop_max; i++) {
  350. u32 addr = regAddr[i];
  351. u32 wrData, rdData;
  352. regHold[i] = REG_READ(ah, addr);
  353. for (j = 0; j < 0x100; j++) {
  354. wrData = (j << 16) | j;
  355. REG_WRITE(ah, addr, wrData);
  356. rdData = REG_READ(ah, addr);
  357. if (rdData != wrData) {
  358. ath_err(common,
  359. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  360. addr, wrData, rdData);
  361. return false;
  362. }
  363. }
  364. for (j = 0; j < 4; j++) {
  365. wrData = patternData[j];
  366. REG_WRITE(ah, addr, wrData);
  367. rdData = REG_READ(ah, addr);
  368. if (wrData != rdData) {
  369. ath_err(common,
  370. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  371. addr, wrData, rdData);
  372. return false;
  373. }
  374. }
  375. REG_WRITE(ah, regAddr[i], regHold[i]);
  376. }
  377. udelay(100);
  378. return true;
  379. }
  380. static void ath9k_hw_init_config(struct ath_hw *ah)
  381. {
  382. int i;
  383. ah->config.dma_beacon_response_time = 1;
  384. ah->config.sw_beacon_response_time = 6;
  385. ah->config.additional_swba_backoff = 0;
  386. ah->config.ack_6mb = 0x0;
  387. ah->config.cwm_ignore_extcca = 0;
  388. ah->config.pcie_clock_req = 0;
  389. ah->config.pcie_waen = 0;
  390. ah->config.analog_shiftreg = 1;
  391. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  392. ah->config.spurchans[i][0] = AR_NO_SPUR;
  393. ah->config.spurchans[i][1] = AR_NO_SPUR;
  394. }
  395. ah->config.rx_intr_mitigation = true;
  396. ah->config.pcieSerDesWrite = true;
  397. /*
  398. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  399. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  400. * This means we use it for all AR5416 devices, and the few
  401. * minor PCI AR9280 devices out there.
  402. *
  403. * Serialization is required because these devices do not handle
  404. * well the case of two concurrent reads/writes due to the latency
  405. * involved. During one read/write another read/write can be issued
  406. * on another CPU while the previous read/write may still be working
  407. * on our hardware, if we hit this case the hardware poops in a loop.
  408. * We prevent this by serializing reads and writes.
  409. *
  410. * This issue is not present on PCI-Express devices or pre-AR5416
  411. * devices (legacy, 802.11abg).
  412. */
  413. if (num_possible_cpus() > 1)
  414. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  415. }
  416. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  417. {
  418. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  419. regulatory->country_code = CTRY_DEFAULT;
  420. regulatory->power_limit = MAX_RATE_POWER;
  421. ah->hw_version.magic = AR5416_MAGIC;
  422. ah->hw_version.subvendorid = 0;
  423. ah->atim_window = 0;
  424. ah->sta_id1_defaults =
  425. AR_STA_ID1_CRPT_MIC_ENABLE |
  426. AR_STA_ID1_MCAST_KSRCH;
  427. if (AR_SREV_9100(ah))
  428. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  429. ah->slottime = ATH9K_SLOT_TIME_9;
  430. ah->globaltxtimeout = (u32) -1;
  431. ah->power_mode = ATH9K_PM_UNDEFINED;
  432. ah->htc_reset_init = true;
  433. }
  434. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  435. {
  436. struct ath_common *common = ath9k_hw_common(ah);
  437. u32 sum;
  438. int i;
  439. u16 eeval;
  440. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  441. sum = 0;
  442. for (i = 0; i < 3; i++) {
  443. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  444. sum += eeval;
  445. common->macaddr[2 * i] = eeval >> 8;
  446. common->macaddr[2 * i + 1] = eeval & 0xff;
  447. }
  448. if (sum == 0 || sum == 0xffff * 3)
  449. return -EADDRNOTAVAIL;
  450. return 0;
  451. }
  452. static int ath9k_hw_post_init(struct ath_hw *ah)
  453. {
  454. struct ath_common *common = ath9k_hw_common(ah);
  455. int ecode;
  456. if (common->bus_ops->ath_bus_type != ATH_USB) {
  457. if (!ath9k_hw_chip_test(ah))
  458. return -ENODEV;
  459. }
  460. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  461. ecode = ar9002_hw_rf_claim(ah);
  462. if (ecode != 0)
  463. return ecode;
  464. }
  465. ecode = ath9k_hw_eeprom_init(ah);
  466. if (ecode != 0)
  467. return ecode;
  468. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  469. ah->eep_ops->get_eeprom_ver(ah),
  470. ah->eep_ops->get_eeprom_rev(ah));
  471. ath9k_hw_ani_init(ah);
  472. return 0;
  473. }
  474. static int ath9k_hw_attach_ops(struct ath_hw *ah)
  475. {
  476. if (!AR_SREV_9300_20_OR_LATER(ah))
  477. return ar9002_hw_attach_ops(ah);
  478. ar9003_hw_attach_ops(ah);
  479. return 0;
  480. }
  481. /* Called for all hardware families */
  482. static int __ath9k_hw_init(struct ath_hw *ah)
  483. {
  484. struct ath_common *common = ath9k_hw_common(ah);
  485. int r = 0;
  486. ath9k_hw_read_revisions(ah);
  487. /*
  488. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  489. * We need to do this to avoid RMW of this register. We cannot
  490. * read the reg when chip is asleep.
  491. */
  492. ah->WARegVal = REG_READ(ah, AR_WA);
  493. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  494. AR_WA_ASPM_TIMER_BASED_DISABLE);
  495. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  496. ath_err(common, "Couldn't reset chip\n");
  497. return -EIO;
  498. }
  499. if (AR_SREV_9462(ah))
  500. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  501. if (AR_SREV_9565(ah)) {
  502. ah->WARegVal |= AR_WA_BIT22;
  503. REG_WRITE(ah, AR_WA, ah->WARegVal);
  504. }
  505. ath9k_hw_init_defaults(ah);
  506. ath9k_hw_init_config(ah);
  507. r = ath9k_hw_attach_ops(ah);
  508. if (r)
  509. return r;
  510. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  511. ath_err(common, "Couldn't wakeup chip\n");
  512. return -EIO;
  513. }
  514. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  515. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  516. ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
  517. !ah->is_pciexpress)) {
  518. ah->config.serialize_regmode =
  519. SER_REG_MODE_ON;
  520. } else {
  521. ah->config.serialize_regmode =
  522. SER_REG_MODE_OFF;
  523. }
  524. }
  525. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  526. ah->config.serialize_regmode);
  527. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  528. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  529. else
  530. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  531. switch (ah->hw_version.macVersion) {
  532. case AR_SREV_VERSION_5416_PCI:
  533. case AR_SREV_VERSION_5416_PCIE:
  534. case AR_SREV_VERSION_9160:
  535. case AR_SREV_VERSION_9100:
  536. case AR_SREV_VERSION_9280:
  537. case AR_SREV_VERSION_9285:
  538. case AR_SREV_VERSION_9287:
  539. case AR_SREV_VERSION_9271:
  540. case AR_SREV_VERSION_9300:
  541. case AR_SREV_VERSION_9330:
  542. case AR_SREV_VERSION_9485:
  543. case AR_SREV_VERSION_9340:
  544. case AR_SREV_VERSION_9462:
  545. case AR_SREV_VERSION_9550:
  546. case AR_SREV_VERSION_9565:
  547. break;
  548. default:
  549. ath_err(common,
  550. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  551. ah->hw_version.macVersion, ah->hw_version.macRev);
  552. return -EOPNOTSUPP;
  553. }
  554. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  555. AR_SREV_9330(ah) || AR_SREV_9550(ah))
  556. ah->is_pciexpress = false;
  557. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  558. ath9k_hw_init_cal_settings(ah);
  559. ah->ani_function = ATH9K_ANI_ALL;
  560. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  561. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  562. if (!AR_SREV_9300_20_OR_LATER(ah))
  563. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  564. if (!ah->is_pciexpress)
  565. ath9k_hw_disablepcie(ah);
  566. r = ath9k_hw_post_init(ah);
  567. if (r)
  568. return r;
  569. ath9k_hw_init_mode_gain_regs(ah);
  570. r = ath9k_hw_fill_cap_info(ah);
  571. if (r)
  572. return r;
  573. r = ath9k_hw_init_macaddr(ah);
  574. if (r) {
  575. ath_err(common, "Failed to initialize MAC address\n");
  576. return r;
  577. }
  578. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  579. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  580. else
  581. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  582. if (AR_SREV_9330(ah))
  583. ah->bb_watchdog_timeout_ms = 85;
  584. else
  585. ah->bb_watchdog_timeout_ms = 25;
  586. common->state = ATH_HW_INITIALIZED;
  587. return 0;
  588. }
  589. int ath9k_hw_init(struct ath_hw *ah)
  590. {
  591. int ret;
  592. struct ath_common *common = ath9k_hw_common(ah);
  593. /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
  594. switch (ah->hw_version.devid) {
  595. case AR5416_DEVID_PCI:
  596. case AR5416_DEVID_PCIE:
  597. case AR5416_AR9100_DEVID:
  598. case AR9160_DEVID_PCI:
  599. case AR9280_DEVID_PCI:
  600. case AR9280_DEVID_PCIE:
  601. case AR9285_DEVID_PCIE:
  602. case AR9287_DEVID_PCI:
  603. case AR9287_DEVID_PCIE:
  604. case AR2427_DEVID_PCIE:
  605. case AR9300_DEVID_PCIE:
  606. case AR9300_DEVID_AR9485_PCIE:
  607. case AR9300_DEVID_AR9330:
  608. case AR9300_DEVID_AR9340:
  609. case AR9300_DEVID_QCA955X:
  610. case AR9300_DEVID_AR9580:
  611. case AR9300_DEVID_AR9462:
  612. case AR9485_DEVID_AR1111:
  613. case AR9300_DEVID_AR9565:
  614. break;
  615. default:
  616. if (common->bus_ops->ath_bus_type == ATH_USB)
  617. break;
  618. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  619. ah->hw_version.devid);
  620. return -EOPNOTSUPP;
  621. }
  622. ret = __ath9k_hw_init(ah);
  623. if (ret) {
  624. ath_err(common,
  625. "Unable to initialize hardware; initialization status: %d\n",
  626. ret);
  627. return ret;
  628. }
  629. return 0;
  630. }
  631. EXPORT_SYMBOL(ath9k_hw_init);
  632. static void ath9k_hw_init_qos(struct ath_hw *ah)
  633. {
  634. ENABLE_REGWRITE_BUFFER(ah);
  635. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  636. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  637. REG_WRITE(ah, AR_QOS_NO_ACK,
  638. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  639. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  640. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  641. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  642. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  643. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  644. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  645. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  646. REGWRITE_BUFFER_FLUSH(ah);
  647. }
  648. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  649. {
  650. struct ath_common *common = ath9k_hw_common(ah);
  651. int i = 0;
  652. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  653. udelay(100);
  654. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  655. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
  656. udelay(100);
  657. if (WARN_ON_ONCE(i >= 100)) {
  658. ath_err(common, "PLL4 meaurement not done\n");
  659. break;
  660. }
  661. i++;
  662. }
  663. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  664. }
  665. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  666. static void ath9k_hw_init_pll(struct ath_hw *ah,
  667. struct ath9k_channel *chan)
  668. {
  669. u32 pll;
  670. if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  671. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  672. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  673. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  674. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  675. AR_CH0_DPLL2_KD, 0x40);
  676. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  677. AR_CH0_DPLL2_KI, 0x4);
  678. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  679. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  680. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  681. AR_CH0_BB_DPLL1_NINI, 0x58);
  682. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  683. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  684. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  685. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  686. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  687. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  688. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  689. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  690. /* program BB PLL phase_shift to 0x6 */
  691. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  692. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  693. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  694. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  695. udelay(1000);
  696. } else if (AR_SREV_9330(ah)) {
  697. u32 ddr_dpll2, pll_control2, kd;
  698. if (ah->is_clk_25mhz) {
  699. ddr_dpll2 = 0x18e82f01;
  700. pll_control2 = 0xe04a3d;
  701. kd = 0x1d;
  702. } else {
  703. ddr_dpll2 = 0x19e82f01;
  704. pll_control2 = 0x886666;
  705. kd = 0x3d;
  706. }
  707. /* program DDR PLL ki and kd value */
  708. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  709. /* program DDR PLL phase_shift */
  710. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  711. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  712. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  713. udelay(1000);
  714. /* program refdiv, nint, frac to RTC register */
  715. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  716. /* program BB PLL kd and ki value */
  717. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  718. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  719. /* program BB PLL phase_shift */
  720. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  721. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  722. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  723. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  724. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  725. udelay(1000);
  726. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  727. udelay(100);
  728. if (ah->is_clk_25mhz) {
  729. pll2_divint = 0x54;
  730. pll2_divfrac = 0x1eb85;
  731. refdiv = 3;
  732. } else {
  733. if (AR_SREV_9340(ah)) {
  734. pll2_divint = 88;
  735. pll2_divfrac = 0;
  736. refdiv = 5;
  737. } else {
  738. pll2_divint = 0x11;
  739. pll2_divfrac = 0x26666;
  740. refdiv = 1;
  741. }
  742. }
  743. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  744. regval |= (0x1 << 16);
  745. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  746. udelay(100);
  747. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  748. (pll2_divint << 18) | pll2_divfrac);
  749. udelay(100);
  750. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  751. if (AR_SREV_9340(ah))
  752. regval = (regval & 0x80071fff) | (0x1 << 30) |
  753. (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
  754. else
  755. regval = (regval & 0x80071fff) | (0x3 << 30) |
  756. (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
  757. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  758. REG_WRITE(ah, AR_PHY_PLL_MODE,
  759. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  760. udelay(1000);
  761. }
  762. pll = ath9k_hw_compute_pll_control(ah, chan);
  763. if (AR_SREV_9565(ah))
  764. pll |= 0x40000;
  765. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  766. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  767. AR_SREV_9550(ah))
  768. udelay(1000);
  769. /* Switch the core clock for ar9271 to 117Mhz */
  770. if (AR_SREV_9271(ah)) {
  771. udelay(500);
  772. REG_WRITE(ah, 0x50040, 0x304);
  773. }
  774. udelay(RTC_PLL_SETTLE_DELAY);
  775. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  776. if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  777. if (ah->is_clk_25mhz) {
  778. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  779. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  780. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  781. } else {
  782. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  783. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  784. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  785. }
  786. udelay(100);
  787. }
  788. }
  789. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  790. enum nl80211_iftype opmode)
  791. {
  792. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  793. u32 imr_reg = AR_IMR_TXERR |
  794. AR_IMR_TXURN |
  795. AR_IMR_RXERR |
  796. AR_IMR_RXORN |
  797. AR_IMR_BCNMISC;
  798. if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
  799. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  800. if (AR_SREV_9300_20_OR_LATER(ah)) {
  801. imr_reg |= AR_IMR_RXOK_HP;
  802. if (ah->config.rx_intr_mitigation)
  803. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  804. else
  805. imr_reg |= AR_IMR_RXOK_LP;
  806. } else {
  807. if (ah->config.rx_intr_mitigation)
  808. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  809. else
  810. imr_reg |= AR_IMR_RXOK;
  811. }
  812. if (ah->config.tx_intr_mitigation)
  813. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  814. else
  815. imr_reg |= AR_IMR_TXOK;
  816. ENABLE_REGWRITE_BUFFER(ah);
  817. REG_WRITE(ah, AR_IMR, imr_reg);
  818. ah->imrs2_reg |= AR_IMR_S2_GTT;
  819. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  820. if (!AR_SREV_9100(ah)) {
  821. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  822. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  823. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  824. }
  825. REGWRITE_BUFFER_FLUSH(ah);
  826. if (AR_SREV_9300_20_OR_LATER(ah)) {
  827. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  828. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  829. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  830. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  831. }
  832. }
  833. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  834. {
  835. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  836. val = min(val, (u32) 0xFFFF);
  837. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  838. }
  839. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  840. {
  841. u32 val = ath9k_hw_mac_to_clks(ah, us);
  842. val = min(val, (u32) 0xFFFF);
  843. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  844. }
  845. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  846. {
  847. u32 val = ath9k_hw_mac_to_clks(ah, us);
  848. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  849. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  850. }
  851. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  852. {
  853. u32 val = ath9k_hw_mac_to_clks(ah, us);
  854. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  855. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  856. }
  857. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  858. {
  859. if (tu > 0xFFFF) {
  860. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  861. tu);
  862. ah->globaltxtimeout = (u32) -1;
  863. return false;
  864. } else {
  865. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  866. ah->globaltxtimeout = tu;
  867. return true;
  868. }
  869. }
  870. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  871. {
  872. struct ath_common *common = ath9k_hw_common(ah);
  873. struct ieee80211_conf *conf = &common->hw->conf;
  874. const struct ath9k_channel *chan = ah->curchan;
  875. int acktimeout, ctstimeout, ack_offset = 0;
  876. int slottime;
  877. int sifstime;
  878. int rx_lat = 0, tx_lat = 0, eifs = 0;
  879. u32 reg;
  880. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  881. ah->misc_mode);
  882. if (!chan)
  883. return;
  884. if (ah->misc_mode != 0)
  885. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  886. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  887. rx_lat = 41;
  888. else
  889. rx_lat = 37;
  890. tx_lat = 54;
  891. if (IS_CHAN_5GHZ(chan))
  892. sifstime = 16;
  893. else
  894. sifstime = 10;
  895. if (IS_CHAN_HALF_RATE(chan)) {
  896. eifs = 175;
  897. rx_lat *= 2;
  898. tx_lat *= 2;
  899. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  900. tx_lat += 11;
  901. sifstime *= 2;
  902. ack_offset = 16;
  903. slottime = 13;
  904. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  905. eifs = 340;
  906. rx_lat = (rx_lat * 4) - 1;
  907. tx_lat *= 4;
  908. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  909. tx_lat += 22;
  910. sifstime *= 4;
  911. ack_offset = 32;
  912. slottime = 21;
  913. } else {
  914. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  915. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  916. reg = AR_USEC_ASYNC_FIFO;
  917. } else {
  918. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  919. common->clockrate;
  920. reg = REG_READ(ah, AR_USEC);
  921. }
  922. rx_lat = MS(reg, AR_USEC_RX_LAT);
  923. tx_lat = MS(reg, AR_USEC_TX_LAT);
  924. slottime = ah->slottime;
  925. }
  926. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  927. slottime += 3 * ah->coverage_class;
  928. acktimeout = slottime + sifstime + ack_offset;
  929. ctstimeout = acktimeout;
  930. /*
  931. * Workaround for early ACK timeouts, add an offset to match the
  932. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  933. * This was initially only meant to work around an issue with delayed
  934. * BA frames in some implementations, but it has been found to fix ACK
  935. * timeout issues in other cases as well.
  936. */
  937. if (conf->chandef.chan &&
  938. conf->chandef.chan->band == IEEE80211_BAND_2GHZ &&
  939. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  940. acktimeout += 64 - sifstime - ah->slottime;
  941. ctstimeout += 48 - sifstime - ah->slottime;
  942. }
  943. ath9k_hw_set_sifs_time(ah, sifstime);
  944. ath9k_hw_setslottime(ah, slottime);
  945. ath9k_hw_set_ack_timeout(ah, acktimeout);
  946. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  947. if (ah->globaltxtimeout != (u32) -1)
  948. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  949. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  950. REG_RMW(ah, AR_USEC,
  951. (common->clockrate - 1) |
  952. SM(rx_lat, AR_USEC_RX_LAT) |
  953. SM(tx_lat, AR_USEC_TX_LAT),
  954. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  955. }
  956. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  957. void ath9k_hw_deinit(struct ath_hw *ah)
  958. {
  959. struct ath_common *common = ath9k_hw_common(ah);
  960. if (common->state < ATH_HW_INITIALIZED)
  961. return;
  962. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  963. }
  964. EXPORT_SYMBOL(ath9k_hw_deinit);
  965. /*******/
  966. /* INI */
  967. /*******/
  968. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  969. {
  970. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  971. if (IS_CHAN_B(chan))
  972. ctl |= CTL_11B;
  973. else if (IS_CHAN_G(chan))
  974. ctl |= CTL_11G;
  975. else
  976. ctl |= CTL_11A;
  977. return ctl;
  978. }
  979. /****************************************/
  980. /* Reset and Channel Switching Routines */
  981. /****************************************/
  982. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  983. {
  984. struct ath_common *common = ath9k_hw_common(ah);
  985. int txbuf_size;
  986. ENABLE_REGWRITE_BUFFER(ah);
  987. /*
  988. * set AHB_MODE not to do cacheline prefetches
  989. */
  990. if (!AR_SREV_9300_20_OR_LATER(ah))
  991. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  992. /*
  993. * let mac dma reads be in 128 byte chunks
  994. */
  995. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  996. REGWRITE_BUFFER_FLUSH(ah);
  997. /*
  998. * Restore TX Trigger Level to its pre-reset value.
  999. * The initial value depends on whether aggregation is enabled, and is
  1000. * adjusted whenever underruns are detected.
  1001. */
  1002. if (!AR_SREV_9300_20_OR_LATER(ah))
  1003. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1004. ENABLE_REGWRITE_BUFFER(ah);
  1005. /*
  1006. * let mac dma writes be in 128 byte chunks
  1007. */
  1008. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  1009. /*
  1010. * Setup receive FIFO threshold to hold off TX activities
  1011. */
  1012. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1013. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1014. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1015. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1016. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1017. ah->caps.rx_status_len);
  1018. }
  1019. /*
  1020. * reduce the number of usable entries in PCU TXBUF to avoid
  1021. * wrap around issues.
  1022. */
  1023. if (AR_SREV_9285(ah)) {
  1024. /* For AR9285 the number of Fifos are reduced to half.
  1025. * So set the usable tx buf size also to half to
  1026. * avoid data/delimiter underruns
  1027. */
  1028. txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
  1029. } else if (AR_SREV_9340_13_OR_LATER(ah)) {
  1030. /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
  1031. txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
  1032. } else {
  1033. txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
  1034. }
  1035. if (!AR_SREV_9271(ah))
  1036. REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
  1037. REGWRITE_BUFFER_FLUSH(ah);
  1038. if (AR_SREV_9300_20_OR_LATER(ah))
  1039. ath9k_hw_reset_txstatus_ring(ah);
  1040. }
  1041. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1042. {
  1043. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1044. u32 set = AR_STA_ID1_KSRCH_MODE;
  1045. switch (opmode) {
  1046. case NL80211_IFTYPE_ADHOC:
  1047. set |= AR_STA_ID1_ADHOC;
  1048. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1049. break;
  1050. case NL80211_IFTYPE_MESH_POINT:
  1051. case NL80211_IFTYPE_AP:
  1052. set |= AR_STA_ID1_STA_AP;
  1053. /* fall through */
  1054. case NL80211_IFTYPE_STATION:
  1055. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1056. break;
  1057. default:
  1058. if (!ah->is_monitoring)
  1059. set = 0;
  1060. break;
  1061. }
  1062. REG_RMW(ah, AR_STA_ID1, set, mask);
  1063. }
  1064. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1065. u32 *coef_mantissa, u32 *coef_exponent)
  1066. {
  1067. u32 coef_exp, coef_man;
  1068. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1069. if ((coef_scaled >> coef_exp) & 0x1)
  1070. break;
  1071. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1072. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1073. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1074. *coef_exponent = coef_exp - 16;
  1075. }
  1076. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1077. {
  1078. u32 rst_flags;
  1079. u32 tmpReg;
  1080. if (AR_SREV_9100(ah)) {
  1081. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1082. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1083. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1084. }
  1085. ENABLE_REGWRITE_BUFFER(ah);
  1086. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1087. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1088. udelay(10);
  1089. }
  1090. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1091. AR_RTC_FORCE_WAKE_ON_INT);
  1092. if (AR_SREV_9100(ah)) {
  1093. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1094. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1095. } else {
  1096. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1097. if (AR_SREV_9340(ah))
  1098. tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
  1099. else
  1100. tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
  1101. AR_INTR_SYNC_RADM_CPL_TIMEOUT;
  1102. if (tmpReg) {
  1103. u32 val;
  1104. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1105. val = AR_RC_HOSTIF;
  1106. if (!AR_SREV_9300_20_OR_LATER(ah))
  1107. val |= AR_RC_AHB;
  1108. REG_WRITE(ah, AR_RC, val);
  1109. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1110. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1111. rst_flags = AR_RTC_RC_MAC_WARM;
  1112. if (type == ATH9K_RESET_COLD)
  1113. rst_flags |= AR_RTC_RC_MAC_COLD;
  1114. }
  1115. if (AR_SREV_9330(ah)) {
  1116. int npend = 0;
  1117. int i;
  1118. /* AR9330 WAR:
  1119. * call external reset function to reset WMAC if:
  1120. * - doing a cold reset
  1121. * - we have pending frames in the TX queues
  1122. */
  1123. for (i = 0; i < AR_NUM_QCU; i++) {
  1124. npend = ath9k_hw_numtxpending(ah, i);
  1125. if (npend)
  1126. break;
  1127. }
  1128. if (ah->external_reset &&
  1129. (npend || type == ATH9K_RESET_COLD)) {
  1130. int reset_err = 0;
  1131. ath_dbg(ath9k_hw_common(ah), RESET,
  1132. "reset MAC via external reset\n");
  1133. reset_err = ah->external_reset();
  1134. if (reset_err) {
  1135. ath_err(ath9k_hw_common(ah),
  1136. "External reset failed, err=%d\n",
  1137. reset_err);
  1138. return false;
  1139. }
  1140. REG_WRITE(ah, AR_RTC_RESET, 1);
  1141. }
  1142. }
  1143. if (ath9k_hw_mci_is_enabled(ah))
  1144. ar9003_mci_check_gpm_offset(ah);
  1145. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1146. REGWRITE_BUFFER_FLUSH(ah);
  1147. udelay(50);
  1148. REG_WRITE(ah, AR_RTC_RC, 0);
  1149. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1150. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1151. return false;
  1152. }
  1153. if (!AR_SREV_9100(ah))
  1154. REG_WRITE(ah, AR_RC, 0);
  1155. if (AR_SREV_9100(ah))
  1156. udelay(50);
  1157. return true;
  1158. }
  1159. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1160. {
  1161. ENABLE_REGWRITE_BUFFER(ah);
  1162. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1163. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1164. udelay(10);
  1165. }
  1166. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1167. AR_RTC_FORCE_WAKE_ON_INT);
  1168. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1169. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1170. REG_WRITE(ah, AR_RTC_RESET, 0);
  1171. REGWRITE_BUFFER_FLUSH(ah);
  1172. if (!AR_SREV_9300_20_OR_LATER(ah))
  1173. udelay(2);
  1174. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1175. REG_WRITE(ah, AR_RC, 0);
  1176. REG_WRITE(ah, AR_RTC_RESET, 1);
  1177. if (!ath9k_hw_wait(ah,
  1178. AR_RTC_STATUS,
  1179. AR_RTC_STATUS_M,
  1180. AR_RTC_STATUS_ON,
  1181. AH_WAIT_TIMEOUT)) {
  1182. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1183. return false;
  1184. }
  1185. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1186. }
  1187. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1188. {
  1189. bool ret = false;
  1190. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1191. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1192. udelay(10);
  1193. }
  1194. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1195. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1196. if (!ah->reset_power_on)
  1197. type = ATH9K_RESET_POWER_ON;
  1198. switch (type) {
  1199. case ATH9K_RESET_POWER_ON:
  1200. ret = ath9k_hw_set_reset_power_on(ah);
  1201. if (ret)
  1202. ah->reset_power_on = true;
  1203. break;
  1204. case ATH9K_RESET_WARM:
  1205. case ATH9K_RESET_COLD:
  1206. ret = ath9k_hw_set_reset(ah, type);
  1207. break;
  1208. default:
  1209. break;
  1210. }
  1211. return ret;
  1212. }
  1213. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1214. struct ath9k_channel *chan)
  1215. {
  1216. int reset_type = ATH9K_RESET_WARM;
  1217. if (AR_SREV_9280(ah)) {
  1218. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1219. reset_type = ATH9K_RESET_POWER_ON;
  1220. else
  1221. reset_type = ATH9K_RESET_COLD;
  1222. } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
  1223. (REG_READ(ah, AR_CR) & AR_CR_RXE))
  1224. reset_type = ATH9K_RESET_COLD;
  1225. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1226. return false;
  1227. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1228. return false;
  1229. ah->chip_fullsleep = false;
  1230. if (AR_SREV_9330(ah))
  1231. ar9003_hw_internal_regulator_apply(ah);
  1232. ath9k_hw_init_pll(ah, chan);
  1233. ath9k_hw_set_rfmode(ah, chan);
  1234. return true;
  1235. }
  1236. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1237. struct ath9k_channel *chan)
  1238. {
  1239. struct ath_common *common = ath9k_hw_common(ah);
  1240. u32 qnum;
  1241. int r;
  1242. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1243. bool band_switch, mode_diff;
  1244. u8 ini_reloaded;
  1245. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1246. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1247. CHANNEL_5GHZ));
  1248. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1249. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1250. if (ath9k_hw_numtxpending(ah, qnum)) {
  1251. ath_dbg(common, QUEUE,
  1252. "Transmit frames pending on queue %d\n", qnum);
  1253. return false;
  1254. }
  1255. }
  1256. if (!ath9k_hw_rfbus_req(ah)) {
  1257. ath_err(common, "Could not kill baseband RX\n");
  1258. return false;
  1259. }
  1260. if (edma && (band_switch || mode_diff)) {
  1261. ath9k_hw_mark_phy_inactive(ah);
  1262. udelay(5);
  1263. ath9k_hw_init_pll(ah, NULL);
  1264. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1265. ath_err(common, "Failed to do fast channel change\n");
  1266. return false;
  1267. }
  1268. }
  1269. ath9k_hw_set_channel_regs(ah, chan);
  1270. r = ath9k_hw_rf_set_freq(ah, chan);
  1271. if (r) {
  1272. ath_err(common, "Failed to set channel\n");
  1273. return false;
  1274. }
  1275. ath9k_hw_set_clockrate(ah);
  1276. ath9k_hw_apply_txpower(ah, chan, false);
  1277. ath9k_hw_rfbus_done(ah);
  1278. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1279. ath9k_hw_set_delta_slope(ah, chan);
  1280. ath9k_hw_spur_mitigate_freq(ah, chan);
  1281. if (edma && (band_switch || mode_diff)) {
  1282. ah->ah_flags |= AH_FASTCC;
  1283. if (band_switch || ini_reloaded)
  1284. ah->eep_ops->set_board_values(ah, chan);
  1285. ath9k_hw_init_bb(ah, chan);
  1286. if (band_switch || ini_reloaded)
  1287. ath9k_hw_init_cal(ah, chan);
  1288. ah->ah_flags &= ~AH_FASTCC;
  1289. }
  1290. return true;
  1291. }
  1292. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1293. {
  1294. u32 gpio_mask = ah->gpio_mask;
  1295. int i;
  1296. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1297. if (!(gpio_mask & 1))
  1298. continue;
  1299. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1300. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1301. }
  1302. }
  1303. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1304. int *hang_state, int *hang_pos)
  1305. {
  1306. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1307. u32 chain_state, dcs_pos, i;
  1308. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1309. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1310. for (i = 0; i < 3; i++) {
  1311. if (chain_state == dcu_chain_state[i]) {
  1312. *hang_state = chain_state;
  1313. *hang_pos = dcs_pos;
  1314. return true;
  1315. }
  1316. }
  1317. }
  1318. return false;
  1319. }
  1320. #define DCU_COMPLETE_STATE 1
  1321. #define DCU_COMPLETE_STATE_MASK 0x3
  1322. #define NUM_STATUS_READS 50
  1323. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1324. {
  1325. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1326. u32 i, hang_pos, hang_state, num_state = 6;
  1327. comp_state = REG_READ(ah, AR_DMADBG_6);
  1328. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1329. ath_dbg(ath9k_hw_common(ah), RESET,
  1330. "MAC Hang signature not found at DCU complete\n");
  1331. return false;
  1332. }
  1333. chain_state = REG_READ(ah, dcs_reg);
  1334. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1335. goto hang_check_iter;
  1336. dcs_reg = AR_DMADBG_5;
  1337. num_state = 4;
  1338. chain_state = REG_READ(ah, dcs_reg);
  1339. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1340. goto hang_check_iter;
  1341. ath_dbg(ath9k_hw_common(ah), RESET,
  1342. "MAC Hang signature 1 not found\n");
  1343. return false;
  1344. hang_check_iter:
  1345. ath_dbg(ath9k_hw_common(ah), RESET,
  1346. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1347. chain_state, comp_state, hang_state, hang_pos);
  1348. for (i = 0; i < NUM_STATUS_READS; i++) {
  1349. chain_state = REG_READ(ah, dcs_reg);
  1350. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1351. comp_state = REG_READ(ah, AR_DMADBG_6);
  1352. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1353. DCU_COMPLETE_STATE) ||
  1354. (chain_state != hang_state))
  1355. return false;
  1356. }
  1357. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1358. return true;
  1359. }
  1360. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1361. {
  1362. int count = 50;
  1363. u32 reg;
  1364. if (AR_SREV_9300(ah))
  1365. return !ath9k_hw_detect_mac_hang(ah);
  1366. if (AR_SREV_9285_12_OR_LATER(ah))
  1367. return true;
  1368. do {
  1369. reg = REG_READ(ah, AR_OBS_BUS_1);
  1370. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1371. continue;
  1372. switch (reg & 0x7E000B00) {
  1373. case 0x1E000000:
  1374. case 0x52000B00:
  1375. case 0x18000B00:
  1376. continue;
  1377. default:
  1378. return true;
  1379. }
  1380. } while (count-- > 0);
  1381. return false;
  1382. }
  1383. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1384. static void ath9k_hw_init_mfp(struct ath_hw *ah)
  1385. {
  1386. /* Setup MFP options for CCMP */
  1387. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1388. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1389. * frames when constructing CCMP AAD. */
  1390. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1391. 0xc7ff);
  1392. ah->sw_mgmt_crypto = false;
  1393. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1394. /* Disable hardware crypto for management frames */
  1395. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1396. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1397. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1398. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1399. ah->sw_mgmt_crypto = true;
  1400. } else {
  1401. ah->sw_mgmt_crypto = true;
  1402. }
  1403. }
  1404. static void ath9k_hw_reset_opmode(struct ath_hw *ah,
  1405. u32 macStaId1, u32 saveDefAntenna)
  1406. {
  1407. struct ath_common *common = ath9k_hw_common(ah);
  1408. ENABLE_REGWRITE_BUFFER(ah);
  1409. REG_RMW(ah, AR_STA_ID1, macStaId1
  1410. | AR_STA_ID1_RTS_USE_DEF
  1411. | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1412. | ah->sta_id1_defaults,
  1413. ~AR_STA_ID1_SADH_MASK);
  1414. ath_hw_setbssidmask(common);
  1415. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1416. ath9k_hw_write_associd(ah);
  1417. REG_WRITE(ah, AR_ISR, ~0);
  1418. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1419. REGWRITE_BUFFER_FLUSH(ah);
  1420. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1421. }
  1422. static void ath9k_hw_init_queues(struct ath_hw *ah)
  1423. {
  1424. int i;
  1425. ENABLE_REGWRITE_BUFFER(ah);
  1426. for (i = 0; i < AR_NUM_DCU; i++)
  1427. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1428. REGWRITE_BUFFER_FLUSH(ah);
  1429. ah->intr_txqs = 0;
  1430. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1431. ath9k_hw_resettxqueue(ah, i);
  1432. }
  1433. /*
  1434. * For big endian systems turn on swapping for descriptors
  1435. */
  1436. static void ath9k_hw_init_desc(struct ath_hw *ah)
  1437. {
  1438. struct ath_common *common = ath9k_hw_common(ah);
  1439. if (AR_SREV_9100(ah)) {
  1440. u32 mask;
  1441. mask = REG_READ(ah, AR_CFG);
  1442. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1443. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1444. mask);
  1445. } else {
  1446. mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1447. REG_WRITE(ah, AR_CFG, mask);
  1448. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1449. REG_READ(ah, AR_CFG));
  1450. }
  1451. } else {
  1452. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1453. /* Configure AR9271 target WLAN */
  1454. if (AR_SREV_9271(ah))
  1455. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1456. else
  1457. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1458. }
  1459. #ifdef __BIG_ENDIAN
  1460. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
  1461. AR_SREV_9550(ah))
  1462. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1463. else
  1464. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1465. #endif
  1466. }
  1467. }
  1468. /*
  1469. * Fast channel change:
  1470. * (Change synthesizer based on channel freq without resetting chip)
  1471. *
  1472. * Don't do FCC when
  1473. * - Flag is not set
  1474. * - Chip is just coming out of full sleep
  1475. * - Channel to be set is same as current channel
  1476. * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
  1477. */
  1478. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1479. {
  1480. struct ath_common *common = ath9k_hw_common(ah);
  1481. int ret;
  1482. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1483. goto fail;
  1484. if (ah->chip_fullsleep)
  1485. goto fail;
  1486. if (!ah->curchan)
  1487. goto fail;
  1488. if (chan->channel == ah->curchan->channel)
  1489. goto fail;
  1490. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1491. (CHANNEL_HALF | CHANNEL_QUARTER))
  1492. goto fail;
  1493. if ((chan->channelFlags & CHANNEL_ALL) !=
  1494. (ah->curchan->channelFlags & CHANNEL_ALL))
  1495. goto fail;
  1496. if (!ath9k_hw_check_alive(ah))
  1497. goto fail;
  1498. /*
  1499. * For AR9462, make sure that calibration data for
  1500. * re-using are present.
  1501. */
  1502. if (AR_SREV_9462(ah) && (ah->caldata &&
  1503. (!ah->caldata->done_txiqcal_once ||
  1504. !ah->caldata->done_txclcal_once ||
  1505. !ah->caldata->rtt_done)))
  1506. goto fail;
  1507. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1508. ah->curchan->channel, chan->channel);
  1509. ret = ath9k_hw_channel_change(ah, chan);
  1510. if (!ret)
  1511. goto fail;
  1512. if (ath9k_hw_mci_is_enabled(ah))
  1513. ar9003_mci_2g5g_switch(ah, false);
  1514. ath9k_hw_loadnf(ah, ah->curchan);
  1515. ath9k_hw_start_nfcal(ah, true);
  1516. if (AR_SREV_9271(ah))
  1517. ar9002_hw_load_ani_reg(ah, chan);
  1518. return 0;
  1519. fail:
  1520. return -EINVAL;
  1521. }
  1522. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1523. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1524. {
  1525. struct ath_common *common = ath9k_hw_common(ah);
  1526. u32 saveLedState;
  1527. u32 saveDefAntenna;
  1528. u32 macStaId1;
  1529. u64 tsf = 0;
  1530. int r;
  1531. bool start_mci_reset = false;
  1532. bool save_fullsleep = ah->chip_fullsleep;
  1533. if (ath9k_hw_mci_is_enabled(ah)) {
  1534. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1535. if (start_mci_reset)
  1536. return 0;
  1537. }
  1538. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1539. return -EIO;
  1540. if (ah->curchan && !ah->chip_fullsleep)
  1541. ath9k_hw_getnf(ah, ah->curchan);
  1542. ah->caldata = caldata;
  1543. if (caldata && (chan->channel != caldata->channel ||
  1544. chan->channelFlags != caldata->channelFlags)) {
  1545. /* Operating channel changed, reset channel calibration data */
  1546. memset(caldata, 0, sizeof(*caldata));
  1547. ath9k_init_nfcal_hist_buffer(ah, chan);
  1548. } else if (caldata) {
  1549. caldata->paprd_packet_sent = false;
  1550. }
  1551. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1552. if (fastcc) {
  1553. r = ath9k_hw_do_fastcc(ah, chan);
  1554. if (!r)
  1555. return r;
  1556. }
  1557. if (ath9k_hw_mci_is_enabled(ah))
  1558. ar9003_mci_stop_bt(ah, save_fullsleep);
  1559. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1560. if (saveDefAntenna == 0)
  1561. saveDefAntenna = 1;
  1562. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1563. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1564. if (AR_SREV_9100(ah) ||
  1565. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1566. tsf = ath9k_hw_gettsf64(ah);
  1567. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1568. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1569. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1570. ath9k_hw_mark_phy_inactive(ah);
  1571. ah->paprd_table_write_done = false;
  1572. /* Only required on the first reset */
  1573. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1574. REG_WRITE(ah,
  1575. AR9271_RESET_POWER_DOWN_CONTROL,
  1576. AR9271_RADIO_RF_RST);
  1577. udelay(50);
  1578. }
  1579. if (!ath9k_hw_chip_reset(ah, chan)) {
  1580. ath_err(common, "Chip reset failed\n");
  1581. return -EINVAL;
  1582. }
  1583. /* Only required on the first reset */
  1584. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1585. ah->htc_reset_init = false;
  1586. REG_WRITE(ah,
  1587. AR9271_RESET_POWER_DOWN_CONTROL,
  1588. AR9271_GATE_MAC_CTL);
  1589. udelay(50);
  1590. }
  1591. /* Restore TSF */
  1592. if (tsf)
  1593. ath9k_hw_settsf64(ah, tsf);
  1594. if (AR_SREV_9280_20_OR_LATER(ah))
  1595. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1596. if (!AR_SREV_9300_20_OR_LATER(ah))
  1597. ar9002_hw_enable_async_fifo(ah);
  1598. r = ath9k_hw_process_ini(ah, chan);
  1599. if (r)
  1600. return r;
  1601. if (ath9k_hw_mci_is_enabled(ah))
  1602. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1603. /*
  1604. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1605. * right after the chip reset. When that happens, write a new
  1606. * value after the initvals have been applied, with an offset
  1607. * based on measured time difference
  1608. */
  1609. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1610. tsf += 1500;
  1611. ath9k_hw_settsf64(ah, tsf);
  1612. }
  1613. ath9k_hw_init_mfp(ah);
  1614. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1615. ath9k_hw_set_delta_slope(ah, chan);
  1616. ath9k_hw_spur_mitigate_freq(ah, chan);
  1617. ah->eep_ops->set_board_values(ah, chan);
  1618. ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
  1619. r = ath9k_hw_rf_set_freq(ah, chan);
  1620. if (r)
  1621. return r;
  1622. ath9k_hw_set_clockrate(ah);
  1623. ath9k_hw_init_queues(ah);
  1624. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1625. ath9k_hw_ani_cache_ini_regs(ah);
  1626. ath9k_hw_init_qos(ah);
  1627. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1628. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1629. ath9k_hw_init_global_settings(ah);
  1630. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1631. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1632. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1633. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1634. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1635. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1636. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1637. }
  1638. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1639. ath9k_hw_set_dma(ah);
  1640. if (!ath9k_hw_mci_is_enabled(ah))
  1641. REG_WRITE(ah, AR_OBS, 8);
  1642. if (ah->config.rx_intr_mitigation) {
  1643. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1644. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1645. }
  1646. if (ah->config.tx_intr_mitigation) {
  1647. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1648. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1649. }
  1650. ath9k_hw_init_bb(ah, chan);
  1651. if (caldata) {
  1652. caldata->done_txiqcal_once = false;
  1653. caldata->done_txclcal_once = false;
  1654. }
  1655. if (!ath9k_hw_init_cal(ah, chan))
  1656. return -EIO;
  1657. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1658. return -EIO;
  1659. ENABLE_REGWRITE_BUFFER(ah);
  1660. ath9k_hw_restore_chainmask(ah);
  1661. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1662. REGWRITE_BUFFER_FLUSH(ah);
  1663. ath9k_hw_init_desc(ah);
  1664. if (ath9k_hw_btcoex_is_enabled(ah))
  1665. ath9k_hw_btcoex_enable(ah);
  1666. if (ath9k_hw_mci_is_enabled(ah))
  1667. ar9003_mci_check_bt(ah);
  1668. ath9k_hw_loadnf(ah, chan);
  1669. ath9k_hw_start_nfcal(ah, true);
  1670. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1671. ar9003_hw_bb_watchdog_config(ah);
  1672. ar9003_hw_disable_phy_restart(ah);
  1673. }
  1674. ath9k_hw_apply_gpio_override(ah);
  1675. if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv)
  1676. REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1677. return 0;
  1678. }
  1679. EXPORT_SYMBOL(ath9k_hw_reset);
  1680. /******************************/
  1681. /* Power Management (Chipset) */
  1682. /******************************/
  1683. /*
  1684. * Notify Power Mgt is disabled in self-generated frames.
  1685. * If requested, force chip to sleep.
  1686. */
  1687. static void ath9k_set_power_sleep(struct ath_hw *ah)
  1688. {
  1689. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1690. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  1691. REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
  1692. REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
  1693. REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
  1694. /* xxx Required for WLAN only case ? */
  1695. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1696. udelay(100);
  1697. }
  1698. /*
  1699. * Clear the RTC force wake bit to allow the
  1700. * mac to go to sleep.
  1701. */
  1702. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1703. if (ath9k_hw_mci_is_enabled(ah))
  1704. udelay(100);
  1705. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1706. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1707. /* Shutdown chip. Active low */
  1708. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1709. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1710. udelay(2);
  1711. }
  1712. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1713. if (AR_SREV_9300_20_OR_LATER(ah))
  1714. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1715. }
  1716. /*
  1717. * Notify Power Management is enabled in self-generating
  1718. * frames. If request, set power mode of chip to
  1719. * auto/normal. Duration in units of 128us (1/8 TU).
  1720. */
  1721. static void ath9k_set_power_network_sleep(struct ath_hw *ah)
  1722. {
  1723. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1724. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1725. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1726. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1727. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1728. AR_RTC_FORCE_WAKE_ON_INT);
  1729. } else {
  1730. /* When chip goes into network sleep, it could be waken
  1731. * up by MCI_INT interrupt caused by BT's HW messages
  1732. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1733. * rate (~100us). This will cause chip to leave and
  1734. * re-enter network sleep mode frequently, which in
  1735. * consequence will have WLAN MCI HW to generate lots of
  1736. * SYS_WAKING and SYS_SLEEPING messages which will make
  1737. * BT CPU to busy to process.
  1738. */
  1739. if (ath9k_hw_mci_is_enabled(ah))
  1740. REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  1741. AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
  1742. /*
  1743. * Clear the RTC force wake bit to allow the
  1744. * mac to go to sleep.
  1745. */
  1746. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1747. if (ath9k_hw_mci_is_enabled(ah))
  1748. udelay(30);
  1749. }
  1750. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1751. if (AR_SREV_9300_20_OR_LATER(ah))
  1752. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1753. }
  1754. static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
  1755. {
  1756. u32 val;
  1757. int i;
  1758. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1759. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1760. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1761. udelay(10);
  1762. }
  1763. if ((REG_READ(ah, AR_RTC_STATUS) &
  1764. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1765. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1766. return false;
  1767. }
  1768. if (!AR_SREV_9300_20_OR_LATER(ah))
  1769. ath9k_hw_init_pll(ah, NULL);
  1770. }
  1771. if (AR_SREV_9100(ah))
  1772. REG_SET_BIT(ah, AR_RTC_RESET,
  1773. AR_RTC_RESET_EN);
  1774. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1775. AR_RTC_FORCE_WAKE_EN);
  1776. udelay(50);
  1777. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1778. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1779. if (val == AR_RTC_STATUS_ON)
  1780. break;
  1781. udelay(50);
  1782. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1783. AR_RTC_FORCE_WAKE_EN);
  1784. }
  1785. if (i == 0) {
  1786. ath_err(ath9k_hw_common(ah),
  1787. "Failed to wakeup in %uus\n",
  1788. POWER_UP_TIME / 20);
  1789. return false;
  1790. }
  1791. if (ath9k_hw_mci_is_enabled(ah))
  1792. ar9003_mci_set_power_awake(ah);
  1793. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1794. return true;
  1795. }
  1796. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1797. {
  1798. struct ath_common *common = ath9k_hw_common(ah);
  1799. int status = true;
  1800. static const char *modes[] = {
  1801. "AWAKE",
  1802. "FULL-SLEEP",
  1803. "NETWORK SLEEP",
  1804. "UNDEFINED"
  1805. };
  1806. if (ah->power_mode == mode)
  1807. return status;
  1808. ath_dbg(common, RESET, "%s -> %s\n",
  1809. modes[ah->power_mode], modes[mode]);
  1810. switch (mode) {
  1811. case ATH9K_PM_AWAKE:
  1812. status = ath9k_hw_set_power_awake(ah);
  1813. break;
  1814. case ATH9K_PM_FULL_SLEEP:
  1815. if (ath9k_hw_mci_is_enabled(ah))
  1816. ar9003_mci_set_full_sleep(ah);
  1817. ath9k_set_power_sleep(ah);
  1818. ah->chip_fullsleep = true;
  1819. break;
  1820. case ATH9K_PM_NETWORK_SLEEP:
  1821. ath9k_set_power_network_sleep(ah);
  1822. break;
  1823. default:
  1824. ath_err(common, "Unknown power mode %u\n", mode);
  1825. return false;
  1826. }
  1827. ah->power_mode = mode;
  1828. /*
  1829. * XXX: If this warning never comes up after a while then
  1830. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1831. * ath9k_hw_setpower() return type void.
  1832. */
  1833. if (!(ah->ah_flags & AH_UNPLUGGED))
  1834. ATH_DBG_WARN_ON_ONCE(!status);
  1835. return status;
  1836. }
  1837. EXPORT_SYMBOL(ath9k_hw_setpower);
  1838. /*******************/
  1839. /* Beacon Handling */
  1840. /*******************/
  1841. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1842. {
  1843. int flags = 0;
  1844. ENABLE_REGWRITE_BUFFER(ah);
  1845. switch (ah->opmode) {
  1846. case NL80211_IFTYPE_ADHOC:
  1847. REG_SET_BIT(ah, AR_TXCFG,
  1848. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1849. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1850. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1851. flags |= AR_NDP_TIMER_EN;
  1852. case NL80211_IFTYPE_MESH_POINT:
  1853. case NL80211_IFTYPE_AP:
  1854. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1855. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1856. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1857. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1858. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1859. flags |=
  1860. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1861. break;
  1862. default:
  1863. ath_dbg(ath9k_hw_common(ah), BEACON,
  1864. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1865. return;
  1866. break;
  1867. }
  1868. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1869. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1870. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1871. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1872. REGWRITE_BUFFER_FLUSH(ah);
  1873. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1874. }
  1875. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1876. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1877. const struct ath9k_beacon_state *bs)
  1878. {
  1879. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1880. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1881. struct ath_common *common = ath9k_hw_common(ah);
  1882. ENABLE_REGWRITE_BUFFER(ah);
  1883. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1884. REG_WRITE(ah, AR_BEACON_PERIOD,
  1885. TU_TO_USEC(bs->bs_intval));
  1886. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1887. TU_TO_USEC(bs->bs_intval));
  1888. REGWRITE_BUFFER_FLUSH(ah);
  1889. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1890. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1891. beaconintval = bs->bs_intval;
  1892. if (bs->bs_sleepduration > beaconintval)
  1893. beaconintval = bs->bs_sleepduration;
  1894. dtimperiod = bs->bs_dtimperiod;
  1895. if (bs->bs_sleepduration > dtimperiod)
  1896. dtimperiod = bs->bs_sleepduration;
  1897. if (beaconintval == dtimperiod)
  1898. nextTbtt = bs->bs_nextdtim;
  1899. else
  1900. nextTbtt = bs->bs_nexttbtt;
  1901. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1902. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1903. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1904. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1905. ENABLE_REGWRITE_BUFFER(ah);
  1906. REG_WRITE(ah, AR_NEXT_DTIM,
  1907. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1908. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1909. REG_WRITE(ah, AR_SLEEP1,
  1910. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1911. | AR_SLEEP1_ASSUME_DTIM);
  1912. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1913. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1914. else
  1915. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1916. REG_WRITE(ah, AR_SLEEP2,
  1917. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1918. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1919. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1920. REGWRITE_BUFFER_FLUSH(ah);
  1921. REG_SET_BIT(ah, AR_TIMER_MODE,
  1922. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1923. AR_DTIM_TIMER_EN);
  1924. /* TSF Out of Range Threshold */
  1925. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1926. }
  1927. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1928. /*******************/
  1929. /* HW Capabilities */
  1930. /*******************/
  1931. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1932. {
  1933. eeprom_chainmask &= chip_chainmask;
  1934. if (eeprom_chainmask)
  1935. return eeprom_chainmask;
  1936. else
  1937. return chip_chainmask;
  1938. }
  1939. /**
  1940. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1941. * @ah: the atheros hardware data structure
  1942. *
  1943. * We enable DFS support upstream on chipsets which have passed a series
  1944. * of tests. The testing requirements are going to be documented. Desired
  1945. * test requirements are documented at:
  1946. *
  1947. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1948. *
  1949. * Once a new chipset gets properly tested an individual commit can be used
  1950. * to document the testing for DFS for that chipset.
  1951. */
  1952. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1953. {
  1954. switch (ah->hw_version.macVersion) {
  1955. /* for temporary testing DFS with 9280 */
  1956. case AR_SREV_VERSION_9280:
  1957. /* AR9580 will likely be our first target to get testing on */
  1958. case AR_SREV_VERSION_9580:
  1959. return true;
  1960. default:
  1961. return false;
  1962. }
  1963. }
  1964. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1965. {
  1966. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1967. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1968. struct ath_common *common = ath9k_hw_common(ah);
  1969. unsigned int chip_chainmask;
  1970. u16 eeval;
  1971. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1972. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1973. regulatory->current_rd = eeval;
  1974. if (ah->opmode != NL80211_IFTYPE_AP &&
  1975. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1976. if (regulatory->current_rd == 0x64 ||
  1977. regulatory->current_rd == 0x65)
  1978. regulatory->current_rd += 5;
  1979. else if (regulatory->current_rd == 0x41)
  1980. regulatory->current_rd = 0x43;
  1981. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1982. regulatory->current_rd);
  1983. }
  1984. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1985. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1986. ath_err(common,
  1987. "no band has been marked as supported in EEPROM\n");
  1988. return -EINVAL;
  1989. }
  1990. if (eeval & AR5416_OPFLAGS_11A)
  1991. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1992. if (eeval & AR5416_OPFLAGS_11G)
  1993. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1994. if (AR_SREV_9485(ah) ||
  1995. AR_SREV_9285(ah) ||
  1996. AR_SREV_9330(ah) ||
  1997. AR_SREV_9565(ah))
  1998. chip_chainmask = 1;
  1999. else if (AR_SREV_9462(ah))
  2000. chip_chainmask = 3;
  2001. else if (!AR_SREV_9280_20_OR_LATER(ah))
  2002. chip_chainmask = 7;
  2003. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  2004. chip_chainmask = 3;
  2005. else
  2006. chip_chainmask = 7;
  2007. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  2008. /*
  2009. * For AR9271 we will temporarilly uses the rx chainmax as read from
  2010. * the EEPROM.
  2011. */
  2012. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  2013. !(eeval & AR5416_OPFLAGS_11A) &&
  2014. !(AR_SREV_9271(ah)))
  2015. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  2016. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  2017. else if (AR_SREV_9100(ah))
  2018. pCap->rx_chainmask = 0x7;
  2019. else
  2020. /* Use rx_chainmask from EEPROM. */
  2021. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  2022. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  2023. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  2024. ah->txchainmask = pCap->tx_chainmask;
  2025. ah->rxchainmask = pCap->rx_chainmask;
  2026. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2027. /* enable key search for every frame in an aggregate */
  2028. if (AR_SREV_9300_20_OR_LATER(ah))
  2029. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  2030. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  2031. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  2032. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2033. else
  2034. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2035. if (AR_SREV_9271(ah))
  2036. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2037. else if (AR_DEVID_7010(ah))
  2038. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  2039. else if (AR_SREV_9300_20_OR_LATER(ah))
  2040. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  2041. else if (AR_SREV_9287_11_OR_LATER(ah))
  2042. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  2043. else if (AR_SREV_9285_12_OR_LATER(ah))
  2044. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2045. else if (AR_SREV_9280_20_OR_LATER(ah))
  2046. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2047. else
  2048. pCap->num_gpio_pins = AR_NUM_GPIO;
  2049. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2050. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2051. else
  2052. pCap->rts_aggr_limit = (8 * 1024);
  2053. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2054. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2055. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2056. ah->rfkill_gpio =
  2057. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2058. ah->rfkill_polarity =
  2059. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2060. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2061. }
  2062. #endif
  2063. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2064. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2065. else
  2066. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2067. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2068. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2069. else
  2070. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2071. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2072. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2073. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
  2074. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2075. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2076. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2077. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2078. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2079. pCap->txs_len = sizeof(struct ar9003_txs);
  2080. } else {
  2081. pCap->tx_desc_len = sizeof(struct ath_desc);
  2082. if (AR_SREV_9280_20(ah))
  2083. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2084. }
  2085. if (AR_SREV_9300_20_OR_LATER(ah))
  2086. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2087. if (AR_SREV_9300_20_OR_LATER(ah))
  2088. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2089. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2090. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2091. if (AR_SREV_9285(ah))
  2092. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2093. ant_div_ctl1 =
  2094. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2095. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2096. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2097. }
  2098. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2099. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2100. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2101. }
  2102. if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  2103. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2104. /*
  2105. * enable the diversity-combining algorithm only when
  2106. * both enable_lna_div and enable_fast_div are set
  2107. * Table for Diversity
  2108. * ant_div_alt_lnaconf bit 0-1
  2109. * ant_div_main_lnaconf bit 2-3
  2110. * ant_div_alt_gaintb bit 4
  2111. * ant_div_main_gaintb bit 5
  2112. * enable_ant_div_lnadiv bit 6
  2113. * enable_ant_fast_div bit 7
  2114. */
  2115. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2116. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2117. }
  2118. if (ath9k_hw_dfs_tested(ah))
  2119. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2120. tx_chainmask = pCap->tx_chainmask;
  2121. rx_chainmask = pCap->rx_chainmask;
  2122. while (tx_chainmask || rx_chainmask) {
  2123. if (tx_chainmask & BIT(0))
  2124. pCap->max_txchains++;
  2125. if (rx_chainmask & BIT(0))
  2126. pCap->max_rxchains++;
  2127. tx_chainmask >>= 1;
  2128. rx_chainmask >>= 1;
  2129. }
  2130. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2131. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2132. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2133. if (AR_SREV_9462_20(ah))
  2134. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2135. }
  2136. if (AR_SREV_9462(ah))
  2137. pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
  2138. if (AR_SREV_9300_20_OR_LATER(ah) &&
  2139. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2140. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2141. return 0;
  2142. }
  2143. /****************************/
  2144. /* GPIO / RFKILL / Antennae */
  2145. /****************************/
  2146. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2147. u32 gpio, u32 type)
  2148. {
  2149. int addr;
  2150. u32 gpio_shift, tmp;
  2151. if (gpio > 11)
  2152. addr = AR_GPIO_OUTPUT_MUX3;
  2153. else if (gpio > 5)
  2154. addr = AR_GPIO_OUTPUT_MUX2;
  2155. else
  2156. addr = AR_GPIO_OUTPUT_MUX1;
  2157. gpio_shift = (gpio % 6) * 5;
  2158. if (AR_SREV_9280_20_OR_LATER(ah)
  2159. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2160. REG_RMW(ah, addr, (type << gpio_shift),
  2161. (0x1f << gpio_shift));
  2162. } else {
  2163. tmp = REG_READ(ah, addr);
  2164. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2165. tmp &= ~(0x1f << gpio_shift);
  2166. tmp |= (type << gpio_shift);
  2167. REG_WRITE(ah, addr, tmp);
  2168. }
  2169. }
  2170. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2171. {
  2172. u32 gpio_shift;
  2173. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2174. if (AR_DEVID_7010(ah)) {
  2175. gpio_shift = gpio;
  2176. REG_RMW(ah, AR7010_GPIO_OE,
  2177. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2178. (AR7010_GPIO_OE_MASK << gpio_shift));
  2179. return;
  2180. }
  2181. gpio_shift = gpio << 1;
  2182. REG_RMW(ah,
  2183. AR_GPIO_OE_OUT,
  2184. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2185. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2186. }
  2187. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2188. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2189. {
  2190. #define MS_REG_READ(x, y) \
  2191. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2192. if (gpio >= ah->caps.num_gpio_pins)
  2193. return 0xffffffff;
  2194. if (AR_DEVID_7010(ah)) {
  2195. u32 val;
  2196. val = REG_READ(ah, AR7010_GPIO_IN);
  2197. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2198. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2199. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2200. AR_GPIO_BIT(gpio)) != 0;
  2201. else if (AR_SREV_9271(ah))
  2202. return MS_REG_READ(AR9271, gpio) != 0;
  2203. else if (AR_SREV_9287_11_OR_LATER(ah))
  2204. return MS_REG_READ(AR9287, gpio) != 0;
  2205. else if (AR_SREV_9285_12_OR_LATER(ah))
  2206. return MS_REG_READ(AR9285, gpio) != 0;
  2207. else if (AR_SREV_9280_20_OR_LATER(ah))
  2208. return MS_REG_READ(AR928X, gpio) != 0;
  2209. else
  2210. return MS_REG_READ(AR, gpio) != 0;
  2211. }
  2212. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2213. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2214. u32 ah_signal_type)
  2215. {
  2216. u32 gpio_shift;
  2217. if (AR_DEVID_7010(ah)) {
  2218. gpio_shift = gpio;
  2219. REG_RMW(ah, AR7010_GPIO_OE,
  2220. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2221. (AR7010_GPIO_OE_MASK << gpio_shift));
  2222. return;
  2223. }
  2224. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2225. gpio_shift = 2 * gpio;
  2226. REG_RMW(ah,
  2227. AR_GPIO_OE_OUT,
  2228. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2229. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2230. }
  2231. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2232. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2233. {
  2234. if (AR_DEVID_7010(ah)) {
  2235. val = val ? 0 : 1;
  2236. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2237. AR_GPIO_BIT(gpio));
  2238. return;
  2239. }
  2240. if (AR_SREV_9271(ah))
  2241. val = ~val;
  2242. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2243. AR_GPIO_BIT(gpio));
  2244. }
  2245. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2246. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2247. {
  2248. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2249. }
  2250. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2251. /*********************/
  2252. /* General Operation */
  2253. /*********************/
  2254. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2255. {
  2256. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2257. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2258. if (phybits & AR_PHY_ERR_RADAR)
  2259. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2260. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2261. bits |= ATH9K_RX_FILTER_PHYERR;
  2262. return bits;
  2263. }
  2264. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2265. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2266. {
  2267. u32 phybits;
  2268. ENABLE_REGWRITE_BUFFER(ah);
  2269. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2270. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2271. REG_WRITE(ah, AR_RX_FILTER, bits);
  2272. phybits = 0;
  2273. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2274. phybits |= AR_PHY_ERR_RADAR;
  2275. if (bits & ATH9K_RX_FILTER_PHYERR)
  2276. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2277. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2278. if (phybits)
  2279. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2280. else
  2281. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2282. REGWRITE_BUFFER_FLUSH(ah);
  2283. }
  2284. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2285. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2286. {
  2287. if (ath9k_hw_mci_is_enabled(ah))
  2288. ar9003_mci_bt_gain_ctrl(ah);
  2289. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2290. return false;
  2291. ath9k_hw_init_pll(ah, NULL);
  2292. ah->htc_reset_init = true;
  2293. return true;
  2294. }
  2295. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2296. bool ath9k_hw_disable(struct ath_hw *ah)
  2297. {
  2298. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2299. return false;
  2300. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2301. return false;
  2302. ath9k_hw_init_pll(ah, NULL);
  2303. return true;
  2304. }
  2305. EXPORT_SYMBOL(ath9k_hw_disable);
  2306. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2307. {
  2308. enum eeprom_param gain_param;
  2309. if (IS_CHAN_2GHZ(chan))
  2310. gain_param = EEP_ANTENNA_GAIN_2G;
  2311. else
  2312. gain_param = EEP_ANTENNA_GAIN_5G;
  2313. return ah->eep_ops->get_eeprom(ah, gain_param);
  2314. }
  2315. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2316. bool test)
  2317. {
  2318. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2319. struct ieee80211_channel *channel;
  2320. int chan_pwr, new_pwr, max_gain;
  2321. int ant_gain, ant_reduction = 0;
  2322. if (!chan)
  2323. return;
  2324. channel = chan->chan;
  2325. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2326. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2327. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2328. ant_gain = get_antenna_gain(ah, chan);
  2329. if (ant_gain > max_gain)
  2330. ant_reduction = ant_gain - max_gain;
  2331. ah->eep_ops->set_txpower(ah, chan,
  2332. ath9k_regd_get_ctl(reg, chan),
  2333. ant_reduction, new_pwr, test);
  2334. }
  2335. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2336. {
  2337. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2338. struct ath9k_channel *chan = ah->curchan;
  2339. struct ieee80211_channel *channel = chan->chan;
  2340. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2341. if (test)
  2342. channel->max_power = MAX_RATE_POWER / 2;
  2343. ath9k_hw_apply_txpower(ah, chan, test);
  2344. if (test)
  2345. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2346. }
  2347. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2348. void ath9k_hw_setopmode(struct ath_hw *ah)
  2349. {
  2350. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2351. }
  2352. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2353. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2354. {
  2355. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2356. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2357. }
  2358. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2359. void ath9k_hw_write_associd(struct ath_hw *ah)
  2360. {
  2361. struct ath_common *common = ath9k_hw_common(ah);
  2362. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2363. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2364. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2365. }
  2366. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2367. #define ATH9K_MAX_TSF_READ 10
  2368. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2369. {
  2370. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2371. int i;
  2372. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2373. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2374. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2375. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2376. if (tsf_upper2 == tsf_upper1)
  2377. break;
  2378. tsf_upper1 = tsf_upper2;
  2379. }
  2380. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2381. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2382. }
  2383. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2384. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2385. {
  2386. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2387. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2388. }
  2389. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2390. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2391. {
  2392. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2393. AH_TSF_WRITE_TIMEOUT))
  2394. ath_dbg(ath9k_hw_common(ah), RESET,
  2395. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2396. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2397. }
  2398. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2399. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
  2400. {
  2401. if (set)
  2402. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2403. else
  2404. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2405. }
  2406. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2407. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2408. {
  2409. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2410. u32 macmode;
  2411. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2412. macmode = AR_2040_JOINED_RX_CLEAR;
  2413. else
  2414. macmode = 0;
  2415. REG_WRITE(ah, AR_2040_MODE, macmode);
  2416. }
  2417. /* HW Generic timers configuration */
  2418. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2419. {
  2420. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2421. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2422. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2423. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2424. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2425. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2426. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2427. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2428. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2429. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2430. AR_NDP2_TIMER_MODE, 0x0002},
  2431. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2432. AR_NDP2_TIMER_MODE, 0x0004},
  2433. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2434. AR_NDP2_TIMER_MODE, 0x0008},
  2435. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2436. AR_NDP2_TIMER_MODE, 0x0010},
  2437. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2438. AR_NDP2_TIMER_MODE, 0x0020},
  2439. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2440. AR_NDP2_TIMER_MODE, 0x0040},
  2441. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2442. AR_NDP2_TIMER_MODE, 0x0080}
  2443. };
  2444. /* HW generic timer primitives */
  2445. /* compute and clear index of rightmost 1 */
  2446. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2447. {
  2448. u32 b;
  2449. b = *mask;
  2450. b &= (0-b);
  2451. *mask &= ~b;
  2452. b *= debruijn32;
  2453. b >>= 27;
  2454. return timer_table->gen_timer_index[b];
  2455. }
  2456. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2457. {
  2458. return REG_READ(ah, AR_TSF_L32);
  2459. }
  2460. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2461. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2462. void (*trigger)(void *),
  2463. void (*overflow)(void *),
  2464. void *arg,
  2465. u8 timer_index)
  2466. {
  2467. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2468. struct ath_gen_timer *timer;
  2469. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2470. if (timer == NULL)
  2471. return NULL;
  2472. /* allocate a hardware generic timer slot */
  2473. timer_table->timers[timer_index] = timer;
  2474. timer->index = timer_index;
  2475. timer->trigger = trigger;
  2476. timer->overflow = overflow;
  2477. timer->arg = arg;
  2478. return timer;
  2479. }
  2480. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2481. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2482. struct ath_gen_timer *timer,
  2483. u32 trig_timeout,
  2484. u32 timer_period)
  2485. {
  2486. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2487. u32 tsf, timer_next;
  2488. BUG_ON(!timer_period);
  2489. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2490. tsf = ath9k_hw_gettsf32(ah);
  2491. timer_next = tsf + trig_timeout;
  2492. ath_dbg(ath9k_hw_common(ah), HWTIMER,
  2493. "current tsf %x period %x timer_next %x\n",
  2494. tsf, timer_period, timer_next);
  2495. /*
  2496. * Program generic timer registers
  2497. */
  2498. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2499. timer_next);
  2500. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2501. timer_period);
  2502. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2503. gen_tmr_configuration[timer->index].mode_mask);
  2504. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2505. /*
  2506. * Starting from AR9462, each generic timer can select which tsf
  2507. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2508. * 8 - 15 use tsf2.
  2509. */
  2510. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2511. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2512. (1 << timer->index));
  2513. else
  2514. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2515. (1 << timer->index));
  2516. }
  2517. /* Enable both trigger and thresh interrupt masks */
  2518. REG_SET_BIT(ah, AR_IMR_S5,
  2519. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2520. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2521. }
  2522. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2523. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2524. {
  2525. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2526. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2527. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2528. return;
  2529. }
  2530. /* Clear generic timer enable bits. */
  2531. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2532. gen_tmr_configuration[timer->index].mode_mask);
  2533. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2534. /*
  2535. * Need to switch back to TSF if it was using TSF2.
  2536. */
  2537. if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
  2538. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2539. (1 << timer->index));
  2540. }
  2541. }
  2542. /* Disable both trigger and thresh interrupt masks */
  2543. REG_CLR_BIT(ah, AR_IMR_S5,
  2544. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2545. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2546. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2547. }
  2548. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2549. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2550. {
  2551. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2552. /* free the hardware generic timer slot */
  2553. timer_table->timers[timer->index] = NULL;
  2554. kfree(timer);
  2555. }
  2556. EXPORT_SYMBOL(ath_gen_timer_free);
  2557. /*
  2558. * Generic Timer Interrupts handling
  2559. */
  2560. void ath_gen_timer_isr(struct ath_hw *ah)
  2561. {
  2562. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2563. struct ath_gen_timer *timer;
  2564. struct ath_common *common = ath9k_hw_common(ah);
  2565. u32 trigger_mask, thresh_mask, index;
  2566. /* get hardware generic timer interrupt status */
  2567. trigger_mask = ah->intr_gen_timer_trigger;
  2568. thresh_mask = ah->intr_gen_timer_thresh;
  2569. trigger_mask &= timer_table->timer_mask.val;
  2570. thresh_mask &= timer_table->timer_mask.val;
  2571. trigger_mask &= ~thresh_mask;
  2572. while (thresh_mask) {
  2573. index = rightmost_index(timer_table, &thresh_mask);
  2574. timer = timer_table->timers[index];
  2575. BUG_ON(!timer);
  2576. ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
  2577. index);
  2578. timer->overflow(timer->arg);
  2579. }
  2580. while (trigger_mask) {
  2581. index = rightmost_index(timer_table, &trigger_mask);
  2582. timer = timer_table->timers[index];
  2583. BUG_ON(!timer);
  2584. ath_dbg(common, HWTIMER,
  2585. "Gen timer[%d] trigger\n", index);
  2586. timer->trigger(timer->arg);
  2587. }
  2588. }
  2589. EXPORT_SYMBOL(ath_gen_timer_isr);
  2590. /********/
  2591. /* HTC */
  2592. /********/
  2593. static struct {
  2594. u32 version;
  2595. const char * name;
  2596. } ath_mac_bb_names[] = {
  2597. /* Devices with external radios */
  2598. { AR_SREV_VERSION_5416_PCI, "5416" },
  2599. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2600. { AR_SREV_VERSION_9100, "9100" },
  2601. { AR_SREV_VERSION_9160, "9160" },
  2602. /* Single-chip solutions */
  2603. { AR_SREV_VERSION_9280, "9280" },
  2604. { AR_SREV_VERSION_9285, "9285" },
  2605. { AR_SREV_VERSION_9287, "9287" },
  2606. { AR_SREV_VERSION_9271, "9271" },
  2607. { AR_SREV_VERSION_9300, "9300" },
  2608. { AR_SREV_VERSION_9330, "9330" },
  2609. { AR_SREV_VERSION_9340, "9340" },
  2610. { AR_SREV_VERSION_9485, "9485" },
  2611. { AR_SREV_VERSION_9462, "9462" },
  2612. { AR_SREV_VERSION_9550, "9550" },
  2613. { AR_SREV_VERSION_9565, "9565" },
  2614. };
  2615. /* For devices with external radios */
  2616. static struct {
  2617. u16 version;
  2618. const char * name;
  2619. } ath_rf_names[] = {
  2620. { 0, "5133" },
  2621. { AR_RAD5133_SREV_MAJOR, "5133" },
  2622. { AR_RAD5122_SREV_MAJOR, "5122" },
  2623. { AR_RAD2133_SREV_MAJOR, "2133" },
  2624. { AR_RAD2122_SREV_MAJOR, "2122" }
  2625. };
  2626. /*
  2627. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2628. */
  2629. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2630. {
  2631. int i;
  2632. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2633. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2634. return ath_mac_bb_names[i].name;
  2635. }
  2636. }
  2637. return "????";
  2638. }
  2639. /*
  2640. * Return the RF name. "????" is returned if the RF is unknown.
  2641. * Used for devices with external radios.
  2642. */
  2643. static const char *ath9k_hw_rf_name(u16 rf_version)
  2644. {
  2645. int i;
  2646. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2647. if (ath_rf_names[i].version == rf_version) {
  2648. return ath_rf_names[i].name;
  2649. }
  2650. }
  2651. return "????";
  2652. }
  2653. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2654. {
  2655. int used;
  2656. /* chipsets >= AR9280 are single-chip */
  2657. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2658. used = snprintf(hw_name, len,
  2659. "Atheros AR%s Rev:%x",
  2660. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2661. ah->hw_version.macRev);
  2662. }
  2663. else {
  2664. used = snprintf(hw_name, len,
  2665. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2666. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2667. ah->hw_version.macRev,
  2668. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2669. AR_RADIO_SREV_MAJOR)),
  2670. ah->hw_version.phyRev);
  2671. }
  2672. hw_name[used] = '\0';
  2673. }
  2674. EXPORT_SYMBOL(ath9k_hw_name);