mmu_audit.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. /*
  2. * mmu_audit.c:
  3. *
  4. * Audit code for KVM MMU
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  8. *
  9. * Authors:
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. * Avi Kivity <avi@qumranet.com>
  12. * Marcelo Tosatti <mtosatti@redhat.com>
  13. * Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include <linux/ratelimit.h>
  20. static int audit_point;
  21. #define audit_printk(fmt, args...) \
  22. printk(KERN_ERR "audit: (%s) error: " \
  23. fmt, audit_point_name[audit_point], ##args)
  24. typedef void (*inspect_spte_fn) (struct kvm_vcpu *vcpu, u64 *sptep, int level);
  25. static void __mmu_spte_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  26. inspect_spte_fn fn, int level)
  27. {
  28. int i;
  29. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  30. u64 *ent = sp->spt;
  31. fn(vcpu, ent + i, level);
  32. if (is_shadow_present_pte(ent[i]) &&
  33. !is_last_spte(ent[i], level)) {
  34. struct kvm_mmu_page *child;
  35. child = page_header(ent[i] & PT64_BASE_ADDR_MASK);
  36. __mmu_spte_walk(vcpu, child, fn, level - 1);
  37. }
  38. }
  39. }
  40. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  41. {
  42. int i;
  43. struct kvm_mmu_page *sp;
  44. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  45. return;
  46. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  47. hpa_t root = vcpu->arch.mmu.root_hpa;
  48. sp = page_header(root);
  49. __mmu_spte_walk(vcpu, sp, fn, PT64_ROOT_LEVEL);
  50. return;
  51. }
  52. for (i = 0; i < 4; ++i) {
  53. hpa_t root = vcpu->arch.mmu.pae_root[i];
  54. if (root && VALID_PAGE(root)) {
  55. root &= PT64_BASE_ADDR_MASK;
  56. sp = page_header(root);
  57. __mmu_spte_walk(vcpu, sp, fn, 2);
  58. }
  59. }
  60. return;
  61. }
  62. typedef void (*sp_handler) (struct kvm *kvm, struct kvm_mmu_page *sp);
  63. static void walk_all_active_sps(struct kvm *kvm, sp_handler fn)
  64. {
  65. struct kvm_mmu_page *sp;
  66. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link)
  67. fn(kvm, sp);
  68. }
  69. static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level)
  70. {
  71. struct kvm_mmu_page *sp;
  72. gfn_t gfn;
  73. pfn_t pfn;
  74. hpa_t hpa;
  75. sp = page_header(__pa(sptep));
  76. if (sp->unsync) {
  77. if (level != PT_PAGE_TABLE_LEVEL) {
  78. audit_printk("unsync sp: %p level = %d\n", sp, level);
  79. return;
  80. }
  81. if (*sptep == shadow_notrap_nonpresent_pte) {
  82. audit_printk("notrap spte in unsync sp: %p\n", sp);
  83. return;
  84. }
  85. }
  86. if (sp->role.direct && *sptep == shadow_notrap_nonpresent_pte) {
  87. audit_printk("notrap spte in direct sp: %p\n", sp);
  88. return;
  89. }
  90. if (!is_shadow_present_pte(*sptep) || !is_last_spte(*sptep, level))
  91. return;
  92. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  93. pfn = gfn_to_pfn_atomic(vcpu->kvm, gfn);
  94. if (is_error_pfn(pfn)) {
  95. kvm_release_pfn_clean(pfn);
  96. return;
  97. }
  98. hpa = pfn << PAGE_SHIFT;
  99. if ((*sptep & PT64_BASE_ADDR_MASK) != hpa)
  100. audit_printk("levels %d pfn %llx hpa %llx ent %llxn",
  101. vcpu->arch.mmu.root_level, pfn, hpa, *sptep);
  102. }
  103. static void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  104. {
  105. unsigned long *rmapp;
  106. struct kvm_mmu_page *rev_sp;
  107. gfn_t gfn;
  108. rev_sp = page_header(__pa(sptep));
  109. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  110. if (!gfn_to_memslot(kvm, gfn)) {
  111. if (!printk_ratelimit())
  112. return;
  113. audit_printk("no memslot for gfn %llx\n", gfn);
  114. audit_printk("index %ld of sp (gfn=%llx)\n",
  115. (long int)(sptep - rev_sp->spt), rev_sp->gfn);
  116. dump_stack();
  117. return;
  118. }
  119. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  120. if (!*rmapp) {
  121. if (!printk_ratelimit())
  122. return;
  123. audit_printk("no rmap for writable spte %llx\n", *sptep);
  124. dump_stack();
  125. }
  126. }
  127. static void audit_sptes_have_rmaps(struct kvm_vcpu *vcpu, u64 *sptep, int level)
  128. {
  129. if (is_shadow_present_pte(*sptep) && is_last_spte(*sptep, level))
  130. inspect_spte_has_rmap(vcpu->kvm, sptep);
  131. }
  132. static void check_mappings_rmap(struct kvm *kvm, struct kvm_mmu_page *sp)
  133. {
  134. int i;
  135. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  136. return;
  137. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  138. if (!is_rmap_spte(sp->spt[i]))
  139. continue;
  140. inspect_spte_has_rmap(kvm, sp->spt + i);
  141. }
  142. }
  143. void audit_write_protection(struct kvm *kvm, struct kvm_mmu_page *sp)
  144. {
  145. struct kvm_memory_slot *slot;
  146. unsigned long *rmapp;
  147. u64 *spte;
  148. if (sp->role.direct || sp->unsync || sp->role.invalid)
  149. return;
  150. slot = gfn_to_memslot(kvm, sp->gfn);
  151. rmapp = &slot->rmap[sp->gfn - slot->base_gfn];
  152. spte = rmap_next(kvm, rmapp, NULL);
  153. while (spte) {
  154. if (is_writable_pte(*spte))
  155. audit_printk("shadow page has writable mappings: gfn "
  156. "%llx role %x\n", sp->gfn, sp->role.word);
  157. spte = rmap_next(kvm, rmapp, spte);
  158. }
  159. }
  160. static void audit_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  161. {
  162. check_mappings_rmap(kvm, sp);
  163. audit_write_protection(kvm, sp);
  164. }
  165. static void audit_all_active_sps(struct kvm *kvm)
  166. {
  167. walk_all_active_sps(kvm, audit_sp);
  168. }
  169. static void audit_spte(struct kvm_vcpu *vcpu, u64 *sptep, int level)
  170. {
  171. audit_sptes_have_rmaps(vcpu, sptep, level);
  172. audit_mappings(vcpu, sptep, level);
  173. }
  174. static void audit_vcpu_spte(struct kvm_vcpu *vcpu)
  175. {
  176. mmu_spte_walk(vcpu, audit_spte);
  177. }
  178. static void kvm_mmu_audit(void *ignore, struct kvm_vcpu *vcpu, int point)
  179. {
  180. static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
  181. if (!__ratelimit(&ratelimit_state))
  182. return;
  183. audit_point = point;
  184. audit_all_active_sps(vcpu->kvm);
  185. audit_vcpu_spte(vcpu);
  186. }
  187. static bool mmu_audit;
  188. static void mmu_audit_enable(void)
  189. {
  190. int ret;
  191. if (mmu_audit)
  192. return;
  193. ret = register_trace_kvm_mmu_audit(kvm_mmu_audit, NULL);
  194. WARN_ON(ret);
  195. mmu_audit = true;
  196. }
  197. static void mmu_audit_disable(void)
  198. {
  199. if (!mmu_audit)
  200. return;
  201. unregister_trace_kvm_mmu_audit(kvm_mmu_audit, NULL);
  202. tracepoint_synchronize_unregister();
  203. mmu_audit = false;
  204. }
  205. static int mmu_audit_set(const char *val, const struct kernel_param *kp)
  206. {
  207. int ret;
  208. unsigned long enable;
  209. ret = strict_strtoul(val, 10, &enable);
  210. if (ret < 0)
  211. return -EINVAL;
  212. switch (enable) {
  213. case 0:
  214. mmu_audit_disable();
  215. break;
  216. case 1:
  217. mmu_audit_enable();
  218. break;
  219. default:
  220. return -EINVAL;
  221. }
  222. return 0;
  223. }
  224. static struct kernel_param_ops audit_param_ops = {
  225. .set = mmu_audit_set,
  226. .get = param_get_bool,
  227. };
  228. module_param_cb(mmu_audit, &audit_param_ops, &mmu_audit, 0644);