udp.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480
  1. /*
  2. * UDP over IPv6
  3. * Linux INET6 implementation
  4. *
  5. * Authors:
  6. * Pedro Roque <roque@di.fc.ul.pt>
  7. *
  8. * Based on linux/ipv4/udp.c
  9. *
  10. * Fixes:
  11. * Hideaki YOSHIFUJI : sin6_scope_id support
  12. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
  13. * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
  14. * a single port at the same time.
  15. * Kazunori MIYAZAWA @USAGI: change process style to use ip6_append_data
  16. * YOSHIFUJI Hideaki @USAGI: convert /proc/net/udp6 to seq_file.
  17. *
  18. * This program is free software; you can redistribute it and/or
  19. * modify it under the terms of the GNU General Public License
  20. * as published by the Free Software Foundation; either version
  21. * 2 of the License, or (at your option) any later version.
  22. */
  23. #include <linux/errno.h>
  24. #include <linux/types.h>
  25. #include <linux/socket.h>
  26. #include <linux/sockios.h>
  27. #include <linux/net.h>
  28. #include <linux/in6.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/if_arp.h>
  31. #include <linux/ipv6.h>
  32. #include <linux/icmpv6.h>
  33. #include <linux/init.h>
  34. #include <linux/module.h>
  35. #include <linux/skbuff.h>
  36. #include <linux/slab.h>
  37. #include <asm/uaccess.h>
  38. #include <net/ndisc.h>
  39. #include <net/protocol.h>
  40. #include <net/transp_v6.h>
  41. #include <net/ip6_route.h>
  42. #include <net/raw.h>
  43. #include <net/tcp_states.h>
  44. #include <net/ip6_checksum.h>
  45. #include <net/xfrm.h>
  46. #include <linux/proc_fs.h>
  47. #include <linux/seq_file.h>
  48. #include "udp_impl.h"
  49. int ipv6_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2)
  50. {
  51. const struct in6_addr *sk_rcv_saddr6 = &inet6_sk(sk)->rcv_saddr;
  52. const struct in6_addr *sk2_rcv_saddr6 = inet6_rcv_saddr(sk2);
  53. __be32 sk1_rcv_saddr = inet_sk(sk)->inet_rcv_saddr;
  54. __be32 sk2_rcv_saddr = inet_rcv_saddr(sk2);
  55. int sk_ipv6only = ipv6_only_sock(sk);
  56. int sk2_ipv6only = inet_v6_ipv6only(sk2);
  57. int addr_type = ipv6_addr_type(sk_rcv_saddr6);
  58. int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
  59. /* if both are mapped, treat as IPv4 */
  60. if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED)
  61. return (!sk2_ipv6only &&
  62. (!sk1_rcv_saddr || !sk2_rcv_saddr ||
  63. sk1_rcv_saddr == sk2_rcv_saddr));
  64. if (addr_type2 == IPV6_ADDR_ANY &&
  65. !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
  66. return 1;
  67. if (addr_type == IPV6_ADDR_ANY &&
  68. !(sk_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
  69. return 1;
  70. if (sk2_rcv_saddr6 &&
  71. ipv6_addr_equal(sk_rcv_saddr6, sk2_rcv_saddr6))
  72. return 1;
  73. return 0;
  74. }
  75. static unsigned int udp6_portaddr_hash(struct net *net,
  76. const struct in6_addr *addr6,
  77. unsigned int port)
  78. {
  79. unsigned int hash, mix = net_hash_mix(net);
  80. if (ipv6_addr_any(addr6))
  81. hash = jhash_1word(0, mix);
  82. else if (ipv6_addr_v4mapped(addr6))
  83. hash = jhash_1word(addr6->s6_addr32[3], mix);
  84. else
  85. hash = jhash2(addr6->s6_addr32, 4, mix);
  86. return hash ^ port;
  87. }
  88. int udp_v6_get_port(struct sock *sk, unsigned short snum)
  89. {
  90. unsigned int hash2_nulladdr =
  91. udp6_portaddr_hash(sock_net(sk), &in6addr_any, snum);
  92. unsigned int hash2_partial =
  93. udp6_portaddr_hash(sock_net(sk), &inet6_sk(sk)->rcv_saddr, 0);
  94. /* precompute partial secondary hash */
  95. udp_sk(sk)->udp_portaddr_hash = hash2_partial;
  96. return udp_lib_get_port(sk, snum, ipv6_rcv_saddr_equal, hash2_nulladdr);
  97. }
  98. static inline int compute_score(struct sock *sk, struct net *net,
  99. unsigned short hnum,
  100. struct in6_addr *saddr, __be16 sport,
  101. struct in6_addr *daddr, __be16 dport,
  102. int dif)
  103. {
  104. int score = -1;
  105. if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
  106. sk->sk_family == PF_INET6) {
  107. struct ipv6_pinfo *np = inet6_sk(sk);
  108. struct inet_sock *inet = inet_sk(sk);
  109. score = 0;
  110. if (inet->inet_dport) {
  111. if (inet->inet_dport != sport)
  112. return -1;
  113. score++;
  114. }
  115. if (!ipv6_addr_any(&np->rcv_saddr)) {
  116. if (!ipv6_addr_equal(&np->rcv_saddr, daddr))
  117. return -1;
  118. score++;
  119. }
  120. if (!ipv6_addr_any(&np->daddr)) {
  121. if (!ipv6_addr_equal(&np->daddr, saddr))
  122. return -1;
  123. score++;
  124. }
  125. if (sk->sk_bound_dev_if) {
  126. if (sk->sk_bound_dev_if != dif)
  127. return -1;
  128. score++;
  129. }
  130. }
  131. return score;
  132. }
  133. #define SCORE2_MAX (1 + 1 + 1)
  134. static inline int compute_score2(struct sock *sk, struct net *net,
  135. const struct in6_addr *saddr, __be16 sport,
  136. const struct in6_addr *daddr, unsigned short hnum,
  137. int dif)
  138. {
  139. int score = -1;
  140. if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
  141. sk->sk_family == PF_INET6) {
  142. struct ipv6_pinfo *np = inet6_sk(sk);
  143. struct inet_sock *inet = inet_sk(sk);
  144. if (!ipv6_addr_equal(&np->rcv_saddr, daddr))
  145. return -1;
  146. score = 0;
  147. if (inet->inet_dport) {
  148. if (inet->inet_dport != sport)
  149. return -1;
  150. score++;
  151. }
  152. if (!ipv6_addr_any(&np->daddr)) {
  153. if (!ipv6_addr_equal(&np->daddr, saddr))
  154. return -1;
  155. score++;
  156. }
  157. if (sk->sk_bound_dev_if) {
  158. if (sk->sk_bound_dev_if != dif)
  159. return -1;
  160. score++;
  161. }
  162. }
  163. return score;
  164. }
  165. /* called with read_rcu_lock() */
  166. static struct sock *udp6_lib_lookup2(struct net *net,
  167. const struct in6_addr *saddr, __be16 sport,
  168. const struct in6_addr *daddr, unsigned int hnum, int dif,
  169. struct udp_hslot *hslot2, unsigned int slot2)
  170. {
  171. struct sock *sk, *result;
  172. struct hlist_nulls_node *node;
  173. int score, badness;
  174. begin:
  175. result = NULL;
  176. badness = -1;
  177. udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
  178. score = compute_score2(sk, net, saddr, sport,
  179. daddr, hnum, dif);
  180. if (score > badness) {
  181. result = sk;
  182. badness = score;
  183. if (score == SCORE2_MAX)
  184. goto exact_match;
  185. }
  186. }
  187. /*
  188. * if the nulls value we got at the end of this lookup is
  189. * not the expected one, we must restart lookup.
  190. * We probably met an item that was moved to another chain.
  191. */
  192. if (get_nulls_value(node) != slot2)
  193. goto begin;
  194. if (result) {
  195. exact_match:
  196. if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
  197. result = NULL;
  198. else if (unlikely(compute_score2(result, net, saddr, sport,
  199. daddr, hnum, dif) < badness)) {
  200. sock_put(result);
  201. goto begin;
  202. }
  203. }
  204. return result;
  205. }
  206. static struct sock *__udp6_lib_lookup(struct net *net,
  207. struct in6_addr *saddr, __be16 sport,
  208. struct in6_addr *daddr, __be16 dport,
  209. int dif, struct udp_table *udptable)
  210. {
  211. struct sock *sk, *result;
  212. struct hlist_nulls_node *node;
  213. unsigned short hnum = ntohs(dport);
  214. unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
  215. struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
  216. int score, badness;
  217. rcu_read_lock();
  218. if (hslot->count > 10) {
  219. hash2 = udp6_portaddr_hash(net, daddr, hnum);
  220. slot2 = hash2 & udptable->mask;
  221. hslot2 = &udptable->hash2[slot2];
  222. if (hslot->count < hslot2->count)
  223. goto begin;
  224. result = udp6_lib_lookup2(net, saddr, sport,
  225. daddr, hnum, dif,
  226. hslot2, slot2);
  227. if (!result) {
  228. hash2 = udp6_portaddr_hash(net, &in6addr_any, hnum);
  229. slot2 = hash2 & udptable->mask;
  230. hslot2 = &udptable->hash2[slot2];
  231. if (hslot->count < hslot2->count)
  232. goto begin;
  233. result = udp6_lib_lookup2(net, saddr, sport,
  234. &in6addr_any, hnum, dif,
  235. hslot2, slot2);
  236. }
  237. rcu_read_unlock();
  238. return result;
  239. }
  240. begin:
  241. result = NULL;
  242. badness = -1;
  243. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  244. score = compute_score(sk, net, hnum, saddr, sport, daddr, dport, dif);
  245. if (score > badness) {
  246. result = sk;
  247. badness = score;
  248. }
  249. }
  250. /*
  251. * if the nulls value we got at the end of this lookup is
  252. * not the expected one, we must restart lookup.
  253. * We probably met an item that was moved to another chain.
  254. */
  255. if (get_nulls_value(node) != slot)
  256. goto begin;
  257. if (result) {
  258. if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
  259. result = NULL;
  260. else if (unlikely(compute_score(result, net, hnum, saddr, sport,
  261. daddr, dport, dif) < badness)) {
  262. sock_put(result);
  263. goto begin;
  264. }
  265. }
  266. rcu_read_unlock();
  267. return result;
  268. }
  269. static struct sock *__udp6_lib_lookup_skb(struct sk_buff *skb,
  270. __be16 sport, __be16 dport,
  271. struct udp_table *udptable)
  272. {
  273. struct sock *sk;
  274. struct ipv6hdr *iph = ipv6_hdr(skb);
  275. if (unlikely(sk = skb_steal_sock(skb)))
  276. return sk;
  277. return __udp6_lib_lookup(dev_net(skb_dst(skb)->dev), &iph->saddr, sport,
  278. &iph->daddr, dport, inet6_iif(skb),
  279. udptable);
  280. }
  281. /*
  282. * This should be easy, if there is something there we
  283. * return it, otherwise we block.
  284. */
  285. int udpv6_recvmsg(struct kiocb *iocb, struct sock *sk,
  286. struct msghdr *msg, size_t len,
  287. int noblock, int flags, int *addr_len)
  288. {
  289. struct ipv6_pinfo *np = inet6_sk(sk);
  290. struct inet_sock *inet = inet_sk(sk);
  291. struct sk_buff *skb;
  292. unsigned int ulen;
  293. int peeked;
  294. int err;
  295. int is_udplite = IS_UDPLITE(sk);
  296. int is_udp4;
  297. if (addr_len)
  298. *addr_len=sizeof(struct sockaddr_in6);
  299. if (flags & MSG_ERRQUEUE)
  300. return ipv6_recv_error(sk, msg, len);
  301. try_again:
  302. skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
  303. &peeked, &err);
  304. if (!skb)
  305. goto out;
  306. ulen = skb->len - sizeof(struct udphdr);
  307. if (len > ulen)
  308. len = ulen;
  309. else if (len < ulen)
  310. msg->msg_flags |= MSG_TRUNC;
  311. is_udp4 = (skb->protocol == htons(ETH_P_IP));
  312. /*
  313. * If checksum is needed at all, try to do it while copying the
  314. * data. If the data is truncated, or if we only want a partial
  315. * coverage checksum (UDP-Lite), do it before the copy.
  316. */
  317. if (len < ulen || UDP_SKB_CB(skb)->partial_cov) {
  318. if (udp_lib_checksum_complete(skb))
  319. goto csum_copy_err;
  320. }
  321. if (skb_csum_unnecessary(skb))
  322. err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
  323. msg->msg_iov,len);
  324. else {
  325. err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
  326. if (err == -EINVAL)
  327. goto csum_copy_err;
  328. }
  329. if (err)
  330. goto out_free;
  331. if (!peeked) {
  332. if (is_udp4)
  333. UDP_INC_STATS_USER(sock_net(sk),
  334. UDP_MIB_INDATAGRAMS, is_udplite);
  335. else
  336. UDP6_INC_STATS_USER(sock_net(sk),
  337. UDP_MIB_INDATAGRAMS, is_udplite);
  338. }
  339. sock_recv_ts_and_drops(msg, sk, skb);
  340. /* Copy the address. */
  341. if (msg->msg_name) {
  342. struct sockaddr_in6 *sin6;
  343. sin6 = (struct sockaddr_in6 *) msg->msg_name;
  344. sin6->sin6_family = AF_INET6;
  345. sin6->sin6_port = udp_hdr(skb)->source;
  346. sin6->sin6_flowinfo = 0;
  347. sin6->sin6_scope_id = 0;
  348. if (is_udp4)
  349. ipv6_addr_set_v4mapped(ip_hdr(skb)->saddr,
  350. &sin6->sin6_addr);
  351. else {
  352. ipv6_addr_copy(&sin6->sin6_addr,
  353. &ipv6_hdr(skb)->saddr);
  354. if (ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
  355. sin6->sin6_scope_id = IP6CB(skb)->iif;
  356. }
  357. }
  358. if (is_udp4) {
  359. if (inet->cmsg_flags)
  360. ip_cmsg_recv(msg, skb);
  361. } else {
  362. if (np->rxopt.all)
  363. datagram_recv_ctl(sk, msg, skb);
  364. }
  365. err = len;
  366. if (flags & MSG_TRUNC)
  367. err = ulen;
  368. out_free:
  369. skb_free_datagram_locked(sk, skb);
  370. out:
  371. return err;
  372. csum_copy_err:
  373. lock_sock(sk);
  374. if (!skb_kill_datagram(sk, skb, flags)) {
  375. if (is_udp4)
  376. UDP_INC_STATS_USER(sock_net(sk),
  377. UDP_MIB_INERRORS, is_udplite);
  378. else
  379. UDP6_INC_STATS_USER(sock_net(sk),
  380. UDP_MIB_INERRORS, is_udplite);
  381. }
  382. release_sock(sk);
  383. if (flags & MSG_DONTWAIT)
  384. return -EAGAIN;
  385. goto try_again;
  386. }
  387. void __udp6_lib_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
  388. u8 type, u8 code, int offset, __be32 info,
  389. struct udp_table *udptable)
  390. {
  391. struct ipv6_pinfo *np;
  392. struct ipv6hdr *hdr = (struct ipv6hdr*)skb->data;
  393. struct in6_addr *saddr = &hdr->saddr;
  394. struct in6_addr *daddr = &hdr->daddr;
  395. struct udphdr *uh = (struct udphdr*)(skb->data+offset);
  396. struct sock *sk;
  397. int err;
  398. sk = __udp6_lib_lookup(dev_net(skb->dev), daddr, uh->dest,
  399. saddr, uh->source, inet6_iif(skb), udptable);
  400. if (sk == NULL)
  401. return;
  402. np = inet6_sk(sk);
  403. if (!icmpv6_err_convert(type, code, &err) && !np->recverr)
  404. goto out;
  405. if (sk->sk_state != TCP_ESTABLISHED && !np->recverr)
  406. goto out;
  407. if (np->recverr)
  408. ipv6_icmp_error(sk, skb, err, uh->dest, ntohl(info), (u8 *)(uh+1));
  409. sk->sk_err = err;
  410. sk->sk_error_report(sk);
  411. out:
  412. sock_put(sk);
  413. }
  414. static __inline__ void udpv6_err(struct sk_buff *skb,
  415. struct inet6_skb_parm *opt, u8 type,
  416. u8 code, int offset, __be32 info )
  417. {
  418. __udp6_lib_err(skb, opt, type, code, offset, info, &udp_table);
  419. }
  420. int udpv6_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
  421. {
  422. struct udp_sock *up = udp_sk(sk);
  423. int rc;
  424. int is_udplite = IS_UDPLITE(sk);
  425. if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb))
  426. goto drop;
  427. /*
  428. * UDP-Lite specific tests, ignored on UDP sockets (see net/ipv4/udp.c).
  429. */
  430. if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
  431. if (up->pcrlen == 0) { /* full coverage was set */
  432. LIMIT_NETDEBUG(KERN_WARNING "UDPLITE6: partial coverage"
  433. " %d while full coverage %d requested\n",
  434. UDP_SKB_CB(skb)->cscov, skb->len);
  435. goto drop;
  436. }
  437. if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
  438. LIMIT_NETDEBUG(KERN_WARNING "UDPLITE6: coverage %d "
  439. "too small, need min %d\n",
  440. UDP_SKB_CB(skb)->cscov, up->pcrlen);
  441. goto drop;
  442. }
  443. }
  444. if (sk->sk_filter) {
  445. if (udp_lib_checksum_complete(skb))
  446. goto drop;
  447. }
  448. if ((rc = sock_queue_rcv_skb(sk, skb)) < 0) {
  449. /* Note that an ENOMEM error is charged twice */
  450. if (rc == -ENOMEM)
  451. UDP6_INC_STATS_BH(sock_net(sk),
  452. UDP_MIB_RCVBUFERRORS, is_udplite);
  453. goto drop_no_sk_drops_inc;
  454. }
  455. return 0;
  456. drop:
  457. atomic_inc(&sk->sk_drops);
  458. drop_no_sk_drops_inc:
  459. UDP6_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  460. kfree_skb(skb);
  461. return -1;
  462. }
  463. static struct sock *udp_v6_mcast_next(struct net *net, struct sock *sk,
  464. __be16 loc_port, struct in6_addr *loc_addr,
  465. __be16 rmt_port, struct in6_addr *rmt_addr,
  466. int dif)
  467. {
  468. struct hlist_nulls_node *node;
  469. struct sock *s = sk;
  470. unsigned short num = ntohs(loc_port);
  471. sk_nulls_for_each_from(s, node) {
  472. struct inet_sock *inet = inet_sk(s);
  473. if (!net_eq(sock_net(s), net))
  474. continue;
  475. if (udp_sk(s)->udp_port_hash == num &&
  476. s->sk_family == PF_INET6) {
  477. struct ipv6_pinfo *np = inet6_sk(s);
  478. if (inet->inet_dport) {
  479. if (inet->inet_dport != rmt_port)
  480. continue;
  481. }
  482. if (!ipv6_addr_any(&np->daddr) &&
  483. !ipv6_addr_equal(&np->daddr, rmt_addr))
  484. continue;
  485. if (s->sk_bound_dev_if && s->sk_bound_dev_if != dif)
  486. continue;
  487. if (!ipv6_addr_any(&np->rcv_saddr)) {
  488. if (!ipv6_addr_equal(&np->rcv_saddr, loc_addr))
  489. continue;
  490. }
  491. if (!inet6_mc_check(s, loc_addr, rmt_addr))
  492. continue;
  493. return s;
  494. }
  495. }
  496. return NULL;
  497. }
  498. static void flush_stack(struct sock **stack, unsigned int count,
  499. struct sk_buff *skb, unsigned int final)
  500. {
  501. unsigned int i;
  502. struct sock *sk;
  503. struct sk_buff *skb1;
  504. for (i = 0; i < count; i++) {
  505. skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
  506. sk = stack[i];
  507. if (skb1) {
  508. bh_lock_sock(sk);
  509. if (!sock_owned_by_user(sk))
  510. udpv6_queue_rcv_skb(sk, skb1);
  511. else if (sk_add_backlog(sk, skb1)) {
  512. kfree_skb(skb1);
  513. bh_unlock_sock(sk);
  514. goto drop;
  515. }
  516. bh_unlock_sock(sk);
  517. continue;
  518. }
  519. drop:
  520. atomic_inc(&sk->sk_drops);
  521. UDP6_INC_STATS_BH(sock_net(sk),
  522. UDP_MIB_RCVBUFERRORS, IS_UDPLITE(sk));
  523. UDP6_INC_STATS_BH(sock_net(sk),
  524. UDP_MIB_INERRORS, IS_UDPLITE(sk));
  525. }
  526. }
  527. /*
  528. * Note: called only from the BH handler context,
  529. * so we don't need to lock the hashes.
  530. */
  531. static int __udp6_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
  532. struct in6_addr *saddr, struct in6_addr *daddr,
  533. struct udp_table *udptable)
  534. {
  535. struct sock *sk, *stack[256 / sizeof(struct sock *)];
  536. const struct udphdr *uh = udp_hdr(skb);
  537. struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
  538. int dif;
  539. unsigned int i, count = 0;
  540. spin_lock(&hslot->lock);
  541. sk = sk_nulls_head(&hslot->head);
  542. dif = inet6_iif(skb);
  543. sk = udp_v6_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
  544. while (sk) {
  545. stack[count++] = sk;
  546. sk = udp_v6_mcast_next(net, sk_nulls_next(sk), uh->dest, daddr,
  547. uh->source, saddr, dif);
  548. if (unlikely(count == ARRAY_SIZE(stack))) {
  549. if (!sk)
  550. break;
  551. flush_stack(stack, count, skb, ~0);
  552. count = 0;
  553. }
  554. }
  555. /*
  556. * before releasing the lock, we must take reference on sockets
  557. */
  558. for (i = 0; i < count; i++)
  559. sock_hold(stack[i]);
  560. spin_unlock(&hslot->lock);
  561. if (count) {
  562. flush_stack(stack, count, skb, count - 1);
  563. for (i = 0; i < count; i++)
  564. sock_put(stack[i]);
  565. } else {
  566. kfree_skb(skb);
  567. }
  568. return 0;
  569. }
  570. static inline int udp6_csum_init(struct sk_buff *skb, struct udphdr *uh,
  571. int proto)
  572. {
  573. int err;
  574. UDP_SKB_CB(skb)->partial_cov = 0;
  575. UDP_SKB_CB(skb)->cscov = skb->len;
  576. if (proto == IPPROTO_UDPLITE) {
  577. err = udplite_checksum_init(skb, uh);
  578. if (err)
  579. return err;
  580. }
  581. if (uh->check == 0) {
  582. /* RFC 2460 section 8.1 says that we SHOULD log
  583. this error. Well, it is reasonable.
  584. */
  585. LIMIT_NETDEBUG(KERN_INFO "IPv6: udp checksum is 0\n");
  586. return 1;
  587. }
  588. if (skb->ip_summed == CHECKSUM_COMPLETE &&
  589. !csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr,
  590. skb->len, proto, skb->csum))
  591. skb->ip_summed = CHECKSUM_UNNECESSARY;
  592. if (!skb_csum_unnecessary(skb))
  593. skb->csum = ~csum_unfold(csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  594. &ipv6_hdr(skb)->daddr,
  595. skb->len, proto, 0));
  596. return 0;
  597. }
  598. int __udp6_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
  599. int proto)
  600. {
  601. struct net *net = dev_net(skb->dev);
  602. struct sock *sk;
  603. struct udphdr *uh;
  604. struct in6_addr *saddr, *daddr;
  605. u32 ulen = 0;
  606. if (!pskb_may_pull(skb, sizeof(struct udphdr)))
  607. goto short_packet;
  608. saddr = &ipv6_hdr(skb)->saddr;
  609. daddr = &ipv6_hdr(skb)->daddr;
  610. uh = udp_hdr(skb);
  611. ulen = ntohs(uh->len);
  612. if (ulen > skb->len)
  613. goto short_packet;
  614. if (proto == IPPROTO_UDP) {
  615. /* UDP validates ulen. */
  616. /* Check for jumbo payload */
  617. if (ulen == 0)
  618. ulen = skb->len;
  619. if (ulen < sizeof(*uh))
  620. goto short_packet;
  621. if (ulen < skb->len) {
  622. if (pskb_trim_rcsum(skb, ulen))
  623. goto short_packet;
  624. saddr = &ipv6_hdr(skb)->saddr;
  625. daddr = &ipv6_hdr(skb)->daddr;
  626. uh = udp_hdr(skb);
  627. }
  628. }
  629. if (udp6_csum_init(skb, uh, proto))
  630. goto discard;
  631. /*
  632. * Multicast receive code
  633. */
  634. if (ipv6_addr_is_multicast(daddr))
  635. return __udp6_lib_mcast_deliver(net, skb,
  636. saddr, daddr, udptable);
  637. /* Unicast */
  638. /*
  639. * check socket cache ... must talk to Alan about his plans
  640. * for sock caches... i'll skip this for now.
  641. */
  642. sk = __udp6_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
  643. if (sk == NULL) {
  644. if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb))
  645. goto discard;
  646. if (udp_lib_checksum_complete(skb))
  647. goto discard;
  648. UDP6_INC_STATS_BH(net, UDP_MIB_NOPORTS,
  649. proto == IPPROTO_UDPLITE);
  650. icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0);
  651. kfree_skb(skb);
  652. return 0;
  653. }
  654. /* deliver */
  655. bh_lock_sock(sk);
  656. if (!sock_owned_by_user(sk))
  657. udpv6_queue_rcv_skb(sk, skb);
  658. else if (sk_add_backlog(sk, skb)) {
  659. atomic_inc(&sk->sk_drops);
  660. bh_unlock_sock(sk);
  661. sock_put(sk);
  662. goto discard;
  663. }
  664. bh_unlock_sock(sk);
  665. sock_put(sk);
  666. return 0;
  667. short_packet:
  668. LIMIT_NETDEBUG(KERN_DEBUG "UDP%sv6: short packet: %d/%u\n",
  669. proto == IPPROTO_UDPLITE ? "-Lite" : "",
  670. ulen, skb->len);
  671. discard:
  672. UDP6_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
  673. kfree_skb(skb);
  674. return 0;
  675. }
  676. static __inline__ int udpv6_rcv(struct sk_buff *skb)
  677. {
  678. return __udp6_lib_rcv(skb, &udp_table, IPPROTO_UDP);
  679. }
  680. /*
  681. * Throw away all pending data and cancel the corking. Socket is locked.
  682. */
  683. static void udp_v6_flush_pending_frames(struct sock *sk)
  684. {
  685. struct udp_sock *up = udp_sk(sk);
  686. if (up->pending == AF_INET)
  687. udp_flush_pending_frames(sk);
  688. else if (up->pending) {
  689. up->len = 0;
  690. up->pending = 0;
  691. ip6_flush_pending_frames(sk);
  692. }
  693. }
  694. /**
  695. * udp6_hwcsum_outgoing - handle outgoing HW checksumming
  696. * @sk: socket we are sending on
  697. * @skb: sk_buff containing the filled-in UDP header
  698. * (checksum field must be zeroed out)
  699. */
  700. static void udp6_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
  701. const struct in6_addr *saddr,
  702. const struct in6_addr *daddr, int len)
  703. {
  704. unsigned int offset;
  705. struct udphdr *uh = udp_hdr(skb);
  706. __wsum csum = 0;
  707. if (skb_queue_len(&sk->sk_write_queue) == 1) {
  708. /* Only one fragment on the socket. */
  709. skb->csum_start = skb_transport_header(skb) - skb->head;
  710. skb->csum_offset = offsetof(struct udphdr, check);
  711. uh->check = ~csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP, 0);
  712. } else {
  713. /*
  714. * HW-checksum won't work as there are two or more
  715. * fragments on the socket so that all csums of sk_buffs
  716. * should be together
  717. */
  718. offset = skb_transport_offset(skb);
  719. skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
  720. skb->ip_summed = CHECKSUM_NONE;
  721. skb_queue_walk(&sk->sk_write_queue, skb) {
  722. csum = csum_add(csum, skb->csum);
  723. }
  724. uh->check = csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP,
  725. csum);
  726. if (uh->check == 0)
  727. uh->check = CSUM_MANGLED_0;
  728. }
  729. }
  730. /*
  731. * Sending
  732. */
  733. static int udp_v6_push_pending_frames(struct sock *sk)
  734. {
  735. struct sk_buff *skb;
  736. struct udphdr *uh;
  737. struct udp_sock *up = udp_sk(sk);
  738. struct inet_sock *inet = inet_sk(sk);
  739. struct flowi *fl = &inet->cork.fl;
  740. int err = 0;
  741. int is_udplite = IS_UDPLITE(sk);
  742. __wsum csum = 0;
  743. /* Grab the skbuff where UDP header space exists. */
  744. if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
  745. goto out;
  746. /*
  747. * Create a UDP header
  748. */
  749. uh = udp_hdr(skb);
  750. uh->source = fl->fl_ip_sport;
  751. uh->dest = fl->fl_ip_dport;
  752. uh->len = htons(up->len);
  753. uh->check = 0;
  754. if (is_udplite)
  755. csum = udplite_csum_outgoing(sk, skb);
  756. else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
  757. udp6_hwcsum_outgoing(sk, skb, &fl->fl6_src, &fl->fl6_dst,
  758. up->len);
  759. goto send;
  760. } else
  761. csum = udp_csum_outgoing(sk, skb);
  762. /* add protocol-dependent pseudo-header */
  763. uh->check = csum_ipv6_magic(&fl->fl6_src, &fl->fl6_dst,
  764. up->len, fl->proto, csum );
  765. if (uh->check == 0)
  766. uh->check = CSUM_MANGLED_0;
  767. send:
  768. err = ip6_push_pending_frames(sk);
  769. if (err) {
  770. if (err == -ENOBUFS && !inet6_sk(sk)->recverr) {
  771. UDP6_INC_STATS_USER(sock_net(sk),
  772. UDP_MIB_SNDBUFERRORS, is_udplite);
  773. err = 0;
  774. }
  775. } else
  776. UDP6_INC_STATS_USER(sock_net(sk),
  777. UDP_MIB_OUTDATAGRAMS, is_udplite);
  778. out:
  779. up->len = 0;
  780. up->pending = 0;
  781. return err;
  782. }
  783. int udpv6_sendmsg(struct kiocb *iocb, struct sock *sk,
  784. struct msghdr *msg, size_t len)
  785. {
  786. struct ipv6_txoptions opt_space;
  787. struct udp_sock *up = udp_sk(sk);
  788. struct inet_sock *inet = inet_sk(sk);
  789. struct ipv6_pinfo *np = inet6_sk(sk);
  790. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) msg->msg_name;
  791. struct in6_addr *daddr, *final_p = NULL, final;
  792. struct ipv6_txoptions *opt = NULL;
  793. struct ip6_flowlabel *flowlabel = NULL;
  794. struct flowi fl;
  795. struct dst_entry *dst;
  796. int addr_len = msg->msg_namelen;
  797. int ulen = len;
  798. int hlimit = -1;
  799. int tclass = -1;
  800. int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
  801. int err;
  802. int connected = 0;
  803. int is_udplite = IS_UDPLITE(sk);
  804. int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
  805. /* destination address check */
  806. if (sin6) {
  807. if (addr_len < offsetof(struct sockaddr, sa_data))
  808. return -EINVAL;
  809. switch (sin6->sin6_family) {
  810. case AF_INET6:
  811. if (addr_len < SIN6_LEN_RFC2133)
  812. return -EINVAL;
  813. daddr = &sin6->sin6_addr;
  814. break;
  815. case AF_INET:
  816. goto do_udp_sendmsg;
  817. case AF_UNSPEC:
  818. msg->msg_name = sin6 = NULL;
  819. msg->msg_namelen = addr_len = 0;
  820. daddr = NULL;
  821. break;
  822. default:
  823. return -EINVAL;
  824. }
  825. } else if (!up->pending) {
  826. if (sk->sk_state != TCP_ESTABLISHED)
  827. return -EDESTADDRREQ;
  828. daddr = &np->daddr;
  829. } else
  830. daddr = NULL;
  831. if (daddr) {
  832. if (ipv6_addr_v4mapped(daddr)) {
  833. struct sockaddr_in sin;
  834. sin.sin_family = AF_INET;
  835. sin.sin_port = sin6 ? sin6->sin6_port : inet->inet_dport;
  836. sin.sin_addr.s_addr = daddr->s6_addr32[3];
  837. msg->msg_name = &sin;
  838. msg->msg_namelen = sizeof(sin);
  839. do_udp_sendmsg:
  840. if (__ipv6_only_sock(sk))
  841. return -ENETUNREACH;
  842. return udp_sendmsg(iocb, sk, msg, len);
  843. }
  844. }
  845. if (up->pending == AF_INET)
  846. return udp_sendmsg(iocb, sk, msg, len);
  847. /* Rough check on arithmetic overflow,
  848. better check is made in ip6_append_data().
  849. */
  850. if (len > INT_MAX - sizeof(struct udphdr))
  851. return -EMSGSIZE;
  852. if (up->pending) {
  853. /*
  854. * There are pending frames.
  855. * The socket lock must be held while it's corked.
  856. */
  857. lock_sock(sk);
  858. if (likely(up->pending)) {
  859. if (unlikely(up->pending != AF_INET6)) {
  860. release_sock(sk);
  861. return -EAFNOSUPPORT;
  862. }
  863. dst = NULL;
  864. goto do_append_data;
  865. }
  866. release_sock(sk);
  867. }
  868. ulen += sizeof(struct udphdr);
  869. memset(&fl, 0, sizeof(fl));
  870. if (sin6) {
  871. if (sin6->sin6_port == 0)
  872. return -EINVAL;
  873. fl.fl_ip_dport = sin6->sin6_port;
  874. daddr = &sin6->sin6_addr;
  875. if (np->sndflow) {
  876. fl.fl6_flowlabel = sin6->sin6_flowinfo&IPV6_FLOWINFO_MASK;
  877. if (fl.fl6_flowlabel&IPV6_FLOWLABEL_MASK) {
  878. flowlabel = fl6_sock_lookup(sk, fl.fl6_flowlabel);
  879. if (flowlabel == NULL)
  880. return -EINVAL;
  881. daddr = &flowlabel->dst;
  882. }
  883. }
  884. /*
  885. * Otherwise it will be difficult to maintain
  886. * sk->sk_dst_cache.
  887. */
  888. if (sk->sk_state == TCP_ESTABLISHED &&
  889. ipv6_addr_equal(daddr, &np->daddr))
  890. daddr = &np->daddr;
  891. if (addr_len >= sizeof(struct sockaddr_in6) &&
  892. sin6->sin6_scope_id &&
  893. ipv6_addr_type(daddr)&IPV6_ADDR_LINKLOCAL)
  894. fl.oif = sin6->sin6_scope_id;
  895. } else {
  896. if (sk->sk_state != TCP_ESTABLISHED)
  897. return -EDESTADDRREQ;
  898. fl.fl_ip_dport = inet->inet_dport;
  899. daddr = &np->daddr;
  900. fl.fl6_flowlabel = np->flow_label;
  901. connected = 1;
  902. }
  903. if (!fl.oif)
  904. fl.oif = sk->sk_bound_dev_if;
  905. if (!fl.oif)
  906. fl.oif = np->sticky_pktinfo.ipi6_ifindex;
  907. fl.mark = sk->sk_mark;
  908. if (msg->msg_controllen) {
  909. opt = &opt_space;
  910. memset(opt, 0, sizeof(struct ipv6_txoptions));
  911. opt->tot_len = sizeof(*opt);
  912. err = datagram_send_ctl(sock_net(sk), msg, &fl, opt, &hlimit, &tclass);
  913. if (err < 0) {
  914. fl6_sock_release(flowlabel);
  915. return err;
  916. }
  917. if ((fl.fl6_flowlabel&IPV6_FLOWLABEL_MASK) && !flowlabel) {
  918. flowlabel = fl6_sock_lookup(sk, fl.fl6_flowlabel);
  919. if (flowlabel == NULL)
  920. return -EINVAL;
  921. }
  922. if (!(opt->opt_nflen|opt->opt_flen))
  923. opt = NULL;
  924. connected = 0;
  925. }
  926. if (opt == NULL)
  927. opt = np->opt;
  928. if (flowlabel)
  929. opt = fl6_merge_options(&opt_space, flowlabel, opt);
  930. opt = ipv6_fixup_options(&opt_space, opt);
  931. fl.proto = sk->sk_protocol;
  932. if (!ipv6_addr_any(daddr))
  933. ipv6_addr_copy(&fl.fl6_dst, daddr);
  934. else
  935. fl.fl6_dst.s6_addr[15] = 0x1; /* :: means loopback (BSD'ism) */
  936. if (ipv6_addr_any(&fl.fl6_src) && !ipv6_addr_any(&np->saddr))
  937. ipv6_addr_copy(&fl.fl6_src, &np->saddr);
  938. fl.fl_ip_sport = inet->inet_sport;
  939. /* merge ip6_build_xmit from ip6_output */
  940. if (opt && opt->srcrt) {
  941. struct rt0_hdr *rt0 = (struct rt0_hdr *) opt->srcrt;
  942. ipv6_addr_copy(&final, &fl.fl6_dst);
  943. ipv6_addr_copy(&fl.fl6_dst, rt0->addr);
  944. final_p = &final;
  945. connected = 0;
  946. }
  947. if (!fl.oif && ipv6_addr_is_multicast(&fl.fl6_dst)) {
  948. fl.oif = np->mcast_oif;
  949. connected = 0;
  950. }
  951. security_sk_classify_flow(sk, &fl);
  952. err = ip6_sk_dst_lookup(sk, &dst, &fl);
  953. if (err)
  954. goto out;
  955. if (final_p)
  956. ipv6_addr_copy(&fl.fl6_dst, final_p);
  957. err = __xfrm_lookup(sock_net(sk), &dst, &fl, sk, XFRM_LOOKUP_WAIT);
  958. if (err < 0) {
  959. if (err == -EREMOTE)
  960. err = ip6_dst_blackhole(sk, &dst, &fl);
  961. if (err < 0)
  962. goto out;
  963. }
  964. if (hlimit < 0) {
  965. if (ipv6_addr_is_multicast(&fl.fl6_dst))
  966. hlimit = np->mcast_hops;
  967. else
  968. hlimit = np->hop_limit;
  969. if (hlimit < 0)
  970. hlimit = ip6_dst_hoplimit(dst);
  971. }
  972. if (tclass < 0)
  973. tclass = np->tclass;
  974. if (msg->msg_flags&MSG_CONFIRM)
  975. goto do_confirm;
  976. back_from_confirm:
  977. lock_sock(sk);
  978. if (unlikely(up->pending)) {
  979. /* The socket is already corked while preparing it. */
  980. /* ... which is an evident application bug. --ANK */
  981. release_sock(sk);
  982. LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
  983. err = -EINVAL;
  984. goto out;
  985. }
  986. up->pending = AF_INET6;
  987. do_append_data:
  988. up->len += ulen;
  989. getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
  990. err = ip6_append_data(sk, getfrag, msg->msg_iov, ulen,
  991. sizeof(struct udphdr), hlimit, tclass, opt, &fl,
  992. (struct rt6_info*)dst,
  993. corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
  994. if (err)
  995. udp_v6_flush_pending_frames(sk);
  996. else if (!corkreq)
  997. err = udp_v6_push_pending_frames(sk);
  998. else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
  999. up->pending = 0;
  1000. if (dst) {
  1001. if (connected) {
  1002. ip6_dst_store(sk, dst,
  1003. ipv6_addr_equal(&fl.fl6_dst, &np->daddr) ?
  1004. &np->daddr : NULL,
  1005. #ifdef CONFIG_IPV6_SUBTREES
  1006. ipv6_addr_equal(&fl.fl6_src, &np->saddr) ?
  1007. &np->saddr :
  1008. #endif
  1009. NULL);
  1010. } else {
  1011. dst_release(dst);
  1012. }
  1013. dst = NULL;
  1014. }
  1015. if (err > 0)
  1016. err = np->recverr ? net_xmit_errno(err) : 0;
  1017. release_sock(sk);
  1018. out:
  1019. dst_release(dst);
  1020. fl6_sock_release(flowlabel);
  1021. if (!err)
  1022. return len;
  1023. /*
  1024. * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
  1025. * ENOBUFS might not be good (it's not tunable per se), but otherwise
  1026. * we don't have a good statistic (IpOutDiscards but it can be too many
  1027. * things). We could add another new stat but at least for now that
  1028. * seems like overkill.
  1029. */
  1030. if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1031. UDP6_INC_STATS_USER(sock_net(sk),
  1032. UDP_MIB_SNDBUFERRORS, is_udplite);
  1033. }
  1034. return err;
  1035. do_confirm:
  1036. dst_confirm(dst);
  1037. if (!(msg->msg_flags&MSG_PROBE) || len)
  1038. goto back_from_confirm;
  1039. err = 0;
  1040. goto out;
  1041. }
  1042. void udpv6_destroy_sock(struct sock *sk)
  1043. {
  1044. lock_sock(sk);
  1045. udp_v6_flush_pending_frames(sk);
  1046. release_sock(sk);
  1047. inet6_destroy_sock(sk);
  1048. }
  1049. /*
  1050. * Socket option code for UDP
  1051. */
  1052. int udpv6_setsockopt(struct sock *sk, int level, int optname,
  1053. char __user *optval, unsigned int optlen)
  1054. {
  1055. if (level == SOL_UDP || level == SOL_UDPLITE)
  1056. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1057. udp_v6_push_pending_frames);
  1058. return ipv6_setsockopt(sk, level, optname, optval, optlen);
  1059. }
  1060. #ifdef CONFIG_COMPAT
  1061. int compat_udpv6_setsockopt(struct sock *sk, int level, int optname,
  1062. char __user *optval, unsigned int optlen)
  1063. {
  1064. if (level == SOL_UDP || level == SOL_UDPLITE)
  1065. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1066. udp_v6_push_pending_frames);
  1067. return compat_ipv6_setsockopt(sk, level, optname, optval, optlen);
  1068. }
  1069. #endif
  1070. int udpv6_getsockopt(struct sock *sk, int level, int optname,
  1071. char __user *optval, int __user *optlen)
  1072. {
  1073. if (level == SOL_UDP || level == SOL_UDPLITE)
  1074. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1075. return ipv6_getsockopt(sk, level, optname, optval, optlen);
  1076. }
  1077. #ifdef CONFIG_COMPAT
  1078. int compat_udpv6_getsockopt(struct sock *sk, int level, int optname,
  1079. char __user *optval, int __user *optlen)
  1080. {
  1081. if (level == SOL_UDP || level == SOL_UDPLITE)
  1082. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1083. return compat_ipv6_getsockopt(sk, level, optname, optval, optlen);
  1084. }
  1085. #endif
  1086. static int udp6_ufo_send_check(struct sk_buff *skb)
  1087. {
  1088. struct ipv6hdr *ipv6h;
  1089. struct udphdr *uh;
  1090. if (!pskb_may_pull(skb, sizeof(*uh)))
  1091. return -EINVAL;
  1092. ipv6h = ipv6_hdr(skb);
  1093. uh = udp_hdr(skb);
  1094. uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, skb->len,
  1095. IPPROTO_UDP, 0);
  1096. skb->csum_start = skb_transport_header(skb) - skb->head;
  1097. skb->csum_offset = offsetof(struct udphdr, check);
  1098. skb->ip_summed = CHECKSUM_PARTIAL;
  1099. return 0;
  1100. }
  1101. static struct sk_buff *udp6_ufo_fragment(struct sk_buff *skb, int features)
  1102. {
  1103. struct sk_buff *segs = ERR_PTR(-EINVAL);
  1104. unsigned int mss;
  1105. unsigned int unfrag_ip6hlen, unfrag_len;
  1106. struct frag_hdr *fptr;
  1107. u8 *mac_start, *prevhdr;
  1108. u8 nexthdr;
  1109. u8 frag_hdr_sz = sizeof(struct frag_hdr);
  1110. int offset;
  1111. __wsum csum;
  1112. mss = skb_shinfo(skb)->gso_size;
  1113. if (unlikely(skb->len <= mss))
  1114. goto out;
  1115. if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
  1116. /* Packet is from an untrusted source, reset gso_segs. */
  1117. int type = skb_shinfo(skb)->gso_type;
  1118. if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
  1119. !(type & (SKB_GSO_UDP))))
  1120. goto out;
  1121. skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
  1122. segs = NULL;
  1123. goto out;
  1124. }
  1125. /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
  1126. * do checksum of UDP packets sent as multiple IP fragments.
  1127. */
  1128. offset = skb->csum_start - skb_headroom(skb);
  1129. csum = skb_checksum(skb, offset, skb->len- offset, 0);
  1130. offset += skb->csum_offset;
  1131. *(__sum16 *)(skb->data + offset) = csum_fold(csum);
  1132. skb->ip_summed = CHECKSUM_NONE;
  1133. /* Check if there is enough headroom to insert fragment header. */
  1134. if ((skb_headroom(skb) < frag_hdr_sz) &&
  1135. pskb_expand_head(skb, frag_hdr_sz, 0, GFP_ATOMIC))
  1136. goto out;
  1137. /* Find the unfragmentable header and shift it left by frag_hdr_sz
  1138. * bytes to insert fragment header.
  1139. */
  1140. unfrag_ip6hlen = ip6_find_1stfragopt(skb, &prevhdr);
  1141. nexthdr = *prevhdr;
  1142. *prevhdr = NEXTHDR_FRAGMENT;
  1143. unfrag_len = skb_network_header(skb) - skb_mac_header(skb) +
  1144. unfrag_ip6hlen;
  1145. mac_start = skb_mac_header(skb);
  1146. memmove(mac_start-frag_hdr_sz, mac_start, unfrag_len);
  1147. skb->mac_header -= frag_hdr_sz;
  1148. skb->network_header -= frag_hdr_sz;
  1149. fptr = (struct frag_hdr *)(skb_network_header(skb) + unfrag_ip6hlen);
  1150. fptr->nexthdr = nexthdr;
  1151. fptr->reserved = 0;
  1152. ipv6_select_ident(fptr);
  1153. /* Fragment the skb. ipv6 header and the remaining fields of the
  1154. * fragment header are updated in ipv6_gso_segment()
  1155. */
  1156. segs = skb_segment(skb, features);
  1157. out:
  1158. return segs;
  1159. }
  1160. static const struct inet6_protocol udpv6_protocol = {
  1161. .handler = udpv6_rcv,
  1162. .err_handler = udpv6_err,
  1163. .gso_send_check = udp6_ufo_send_check,
  1164. .gso_segment = udp6_ufo_fragment,
  1165. .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL,
  1166. };
  1167. /* ------------------------------------------------------------------------ */
  1168. #ifdef CONFIG_PROC_FS
  1169. static void udp6_sock_seq_show(struct seq_file *seq, struct sock *sp, int bucket)
  1170. {
  1171. struct inet_sock *inet = inet_sk(sp);
  1172. struct ipv6_pinfo *np = inet6_sk(sp);
  1173. struct in6_addr *dest, *src;
  1174. __u16 destp, srcp;
  1175. dest = &np->daddr;
  1176. src = &np->rcv_saddr;
  1177. destp = ntohs(inet->inet_dport);
  1178. srcp = ntohs(inet->inet_sport);
  1179. seq_printf(seq,
  1180. "%5d: %08X%08X%08X%08X:%04X %08X%08X%08X%08X:%04X "
  1181. "%02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d\n",
  1182. bucket,
  1183. src->s6_addr32[0], src->s6_addr32[1],
  1184. src->s6_addr32[2], src->s6_addr32[3], srcp,
  1185. dest->s6_addr32[0], dest->s6_addr32[1],
  1186. dest->s6_addr32[2], dest->s6_addr32[3], destp,
  1187. sp->sk_state,
  1188. sk_wmem_alloc_get(sp),
  1189. sk_rmem_alloc_get(sp),
  1190. 0, 0L, 0,
  1191. sock_i_uid(sp), 0,
  1192. sock_i_ino(sp),
  1193. atomic_read(&sp->sk_refcnt), sp,
  1194. atomic_read(&sp->sk_drops));
  1195. }
  1196. int udp6_seq_show(struct seq_file *seq, void *v)
  1197. {
  1198. if (v == SEQ_START_TOKEN)
  1199. seq_printf(seq,
  1200. " sl "
  1201. "local_address "
  1202. "remote_address "
  1203. "st tx_queue rx_queue tr tm->when retrnsmt"
  1204. " uid timeout inode ref pointer drops\n");
  1205. else
  1206. udp6_sock_seq_show(seq, v, ((struct udp_iter_state *)seq->private)->bucket);
  1207. return 0;
  1208. }
  1209. static struct udp_seq_afinfo udp6_seq_afinfo = {
  1210. .name = "udp6",
  1211. .family = AF_INET6,
  1212. .udp_table = &udp_table,
  1213. .seq_fops = {
  1214. .owner = THIS_MODULE,
  1215. },
  1216. .seq_ops = {
  1217. .show = udp6_seq_show,
  1218. },
  1219. };
  1220. int __net_init udp6_proc_init(struct net *net)
  1221. {
  1222. return udp_proc_register(net, &udp6_seq_afinfo);
  1223. }
  1224. void udp6_proc_exit(struct net *net) {
  1225. udp_proc_unregister(net, &udp6_seq_afinfo);
  1226. }
  1227. #endif /* CONFIG_PROC_FS */
  1228. /* ------------------------------------------------------------------------ */
  1229. struct proto udpv6_prot = {
  1230. .name = "UDPv6",
  1231. .owner = THIS_MODULE,
  1232. .close = udp_lib_close,
  1233. .connect = ip6_datagram_connect,
  1234. .disconnect = udp_disconnect,
  1235. .ioctl = udp_ioctl,
  1236. .destroy = udpv6_destroy_sock,
  1237. .setsockopt = udpv6_setsockopt,
  1238. .getsockopt = udpv6_getsockopt,
  1239. .sendmsg = udpv6_sendmsg,
  1240. .recvmsg = udpv6_recvmsg,
  1241. .backlog_rcv = udpv6_queue_rcv_skb,
  1242. .hash = udp_lib_hash,
  1243. .unhash = udp_lib_unhash,
  1244. .get_port = udp_v6_get_port,
  1245. .memory_allocated = &udp_memory_allocated,
  1246. .sysctl_mem = sysctl_udp_mem,
  1247. .sysctl_wmem = &sysctl_udp_wmem_min,
  1248. .sysctl_rmem = &sysctl_udp_rmem_min,
  1249. .obj_size = sizeof(struct udp6_sock),
  1250. .slab_flags = SLAB_DESTROY_BY_RCU,
  1251. .h.udp_table = &udp_table,
  1252. #ifdef CONFIG_COMPAT
  1253. .compat_setsockopt = compat_udpv6_setsockopt,
  1254. .compat_getsockopt = compat_udpv6_getsockopt,
  1255. #endif
  1256. };
  1257. static struct inet_protosw udpv6_protosw = {
  1258. .type = SOCK_DGRAM,
  1259. .protocol = IPPROTO_UDP,
  1260. .prot = &udpv6_prot,
  1261. .ops = &inet6_dgram_ops,
  1262. .no_check = UDP_CSUM_DEFAULT,
  1263. .flags = INET_PROTOSW_PERMANENT,
  1264. };
  1265. int __init udpv6_init(void)
  1266. {
  1267. int ret;
  1268. ret = inet6_add_protocol(&udpv6_protocol, IPPROTO_UDP);
  1269. if (ret)
  1270. goto out;
  1271. ret = inet6_register_protosw(&udpv6_protosw);
  1272. if (ret)
  1273. goto out_udpv6_protocol;
  1274. out:
  1275. return ret;
  1276. out_udpv6_protocol:
  1277. inet6_del_protocol(&udpv6_protocol, IPPROTO_UDP);
  1278. goto out;
  1279. }
  1280. void udpv6_exit(void)
  1281. {
  1282. inet6_unregister_protosw(&udpv6_protosw);
  1283. inet6_del_protocol(&udpv6_protocol, IPPROTO_UDP);
  1284. }