exec.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969
  1. /*
  2. * linux/fs/exec.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * #!-checking implemented by tytso.
  8. */
  9. /*
  10. * Demand-loading implemented 01.12.91 - no need to read anything but
  11. * the header into memory. The inode of the executable is put into
  12. * "current->executable", and page faults do the actual loading. Clean.
  13. *
  14. * Once more I can proudly say that linux stood up to being changed: it
  15. * was less than 2 hours work to get demand-loading completely implemented.
  16. *
  17. * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
  18. * current->executable is only used by the procfs. This allows a dispatch
  19. * table to check for several different types of binary formats. We keep
  20. * trying until we recognize the file or we run out of supported binary
  21. * formats.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/file.h>
  25. #include <linux/fdtable.h>
  26. #include <linux/mm.h>
  27. #include <linux/stat.h>
  28. #include <linux/fcntl.h>
  29. #include <linux/smp_lock.h>
  30. #include <linux/swap.h>
  31. #include <linux/string.h>
  32. #include <linux/init.h>
  33. #include <linux/pagemap.h>
  34. #include <linux/perf_event.h>
  35. #include <linux/highmem.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/key.h>
  38. #include <linux/personality.h>
  39. #include <linux/binfmts.h>
  40. #include <linux/utsname.h>
  41. #include <linux/pid_namespace.h>
  42. #include <linux/module.h>
  43. #include <linux/namei.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/mount.h>
  46. #include <linux/security.h>
  47. #include <linux/syscalls.h>
  48. #include <linux/tsacct_kern.h>
  49. #include <linux/cn_proc.h>
  50. #include <linux/audit.h>
  51. #include <linux/tracehook.h>
  52. #include <linux/kmod.h>
  53. #include <linux/fsnotify.h>
  54. #include <linux/fs_struct.h>
  55. #include <linux/pipe_fs_i.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/mmu_context.h>
  58. #include <asm/tlb.h>
  59. #include "internal.h"
  60. int core_uses_pid;
  61. char core_pattern[CORENAME_MAX_SIZE] = "core";
  62. unsigned int core_pipe_limit;
  63. int suid_dumpable = 0;
  64. /* The maximal length of core_pattern is also specified in sysctl.c */
  65. static LIST_HEAD(formats);
  66. static DEFINE_RWLOCK(binfmt_lock);
  67. int __register_binfmt(struct linux_binfmt * fmt, int insert)
  68. {
  69. if (!fmt)
  70. return -EINVAL;
  71. write_lock(&binfmt_lock);
  72. insert ? list_add(&fmt->lh, &formats) :
  73. list_add_tail(&fmt->lh, &formats);
  74. write_unlock(&binfmt_lock);
  75. return 0;
  76. }
  77. EXPORT_SYMBOL(__register_binfmt);
  78. void unregister_binfmt(struct linux_binfmt * fmt)
  79. {
  80. write_lock(&binfmt_lock);
  81. list_del(&fmt->lh);
  82. write_unlock(&binfmt_lock);
  83. }
  84. EXPORT_SYMBOL(unregister_binfmt);
  85. static inline void put_binfmt(struct linux_binfmt * fmt)
  86. {
  87. module_put(fmt->module);
  88. }
  89. /*
  90. * Note that a shared library must be both readable and executable due to
  91. * security reasons.
  92. *
  93. * Also note that we take the address to load from from the file itself.
  94. */
  95. SYSCALL_DEFINE1(uselib, const char __user *, library)
  96. {
  97. struct file *file;
  98. char *tmp = getname(library);
  99. int error = PTR_ERR(tmp);
  100. if (IS_ERR(tmp))
  101. goto out;
  102. file = do_filp_open(AT_FDCWD, tmp,
  103. O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
  104. MAY_READ | MAY_EXEC | MAY_OPEN);
  105. putname(tmp);
  106. error = PTR_ERR(file);
  107. if (IS_ERR(file))
  108. goto out;
  109. error = -EINVAL;
  110. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  111. goto exit;
  112. error = -EACCES;
  113. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  114. goto exit;
  115. fsnotify_open(file->f_path.dentry);
  116. error = -ENOEXEC;
  117. if(file->f_op) {
  118. struct linux_binfmt * fmt;
  119. read_lock(&binfmt_lock);
  120. list_for_each_entry(fmt, &formats, lh) {
  121. if (!fmt->load_shlib)
  122. continue;
  123. if (!try_module_get(fmt->module))
  124. continue;
  125. read_unlock(&binfmt_lock);
  126. error = fmt->load_shlib(file);
  127. read_lock(&binfmt_lock);
  128. put_binfmt(fmt);
  129. if (error != -ENOEXEC)
  130. break;
  131. }
  132. read_unlock(&binfmt_lock);
  133. }
  134. exit:
  135. fput(file);
  136. out:
  137. return error;
  138. }
  139. #ifdef CONFIG_MMU
  140. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  141. int write)
  142. {
  143. struct page *page;
  144. int ret;
  145. #ifdef CONFIG_STACK_GROWSUP
  146. if (write) {
  147. ret = expand_stack_downwards(bprm->vma, pos);
  148. if (ret < 0)
  149. return NULL;
  150. }
  151. #endif
  152. ret = get_user_pages(current, bprm->mm, pos,
  153. 1, write, 1, &page, NULL);
  154. if (ret <= 0)
  155. return NULL;
  156. if (write) {
  157. unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
  158. struct rlimit *rlim;
  159. /*
  160. * We've historically supported up to 32 pages (ARG_MAX)
  161. * of argument strings even with small stacks
  162. */
  163. if (size <= ARG_MAX)
  164. return page;
  165. /*
  166. * Limit to 1/4-th the stack size for the argv+env strings.
  167. * This ensures that:
  168. * - the remaining binfmt code will not run out of stack space,
  169. * - the program will have a reasonable amount of stack left
  170. * to work from.
  171. */
  172. rlim = current->signal->rlim;
  173. if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
  174. put_page(page);
  175. return NULL;
  176. }
  177. }
  178. return page;
  179. }
  180. static void put_arg_page(struct page *page)
  181. {
  182. put_page(page);
  183. }
  184. static void free_arg_page(struct linux_binprm *bprm, int i)
  185. {
  186. }
  187. static void free_arg_pages(struct linux_binprm *bprm)
  188. {
  189. }
  190. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  191. struct page *page)
  192. {
  193. flush_cache_page(bprm->vma, pos, page_to_pfn(page));
  194. }
  195. static int __bprm_mm_init(struct linux_binprm *bprm)
  196. {
  197. int err;
  198. struct vm_area_struct *vma = NULL;
  199. struct mm_struct *mm = bprm->mm;
  200. bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  201. if (!vma)
  202. return -ENOMEM;
  203. down_write(&mm->mmap_sem);
  204. vma->vm_mm = mm;
  205. /*
  206. * Place the stack at the largest stack address the architecture
  207. * supports. Later, we'll move this to an appropriate place. We don't
  208. * use STACK_TOP because that can depend on attributes which aren't
  209. * configured yet.
  210. */
  211. vma->vm_end = STACK_TOP_MAX;
  212. vma->vm_start = vma->vm_end - PAGE_SIZE;
  213. vma->vm_flags = VM_STACK_FLAGS;
  214. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  215. INIT_LIST_HEAD(&vma->anon_vma_chain);
  216. err = insert_vm_struct(mm, vma);
  217. if (err)
  218. goto err;
  219. mm->stack_vm = mm->total_vm = 1;
  220. up_write(&mm->mmap_sem);
  221. bprm->p = vma->vm_end - sizeof(void *);
  222. return 0;
  223. err:
  224. up_write(&mm->mmap_sem);
  225. bprm->vma = NULL;
  226. kmem_cache_free(vm_area_cachep, vma);
  227. return err;
  228. }
  229. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  230. {
  231. return len <= MAX_ARG_STRLEN;
  232. }
  233. #else
  234. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  235. int write)
  236. {
  237. struct page *page;
  238. page = bprm->page[pos / PAGE_SIZE];
  239. if (!page && write) {
  240. page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
  241. if (!page)
  242. return NULL;
  243. bprm->page[pos / PAGE_SIZE] = page;
  244. }
  245. return page;
  246. }
  247. static void put_arg_page(struct page *page)
  248. {
  249. }
  250. static void free_arg_page(struct linux_binprm *bprm, int i)
  251. {
  252. if (bprm->page[i]) {
  253. __free_page(bprm->page[i]);
  254. bprm->page[i] = NULL;
  255. }
  256. }
  257. static void free_arg_pages(struct linux_binprm *bprm)
  258. {
  259. int i;
  260. for (i = 0; i < MAX_ARG_PAGES; i++)
  261. free_arg_page(bprm, i);
  262. }
  263. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  264. struct page *page)
  265. {
  266. }
  267. static int __bprm_mm_init(struct linux_binprm *bprm)
  268. {
  269. bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
  270. return 0;
  271. }
  272. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  273. {
  274. return len <= bprm->p;
  275. }
  276. #endif /* CONFIG_MMU */
  277. /*
  278. * Create a new mm_struct and populate it with a temporary stack
  279. * vm_area_struct. We don't have enough context at this point to set the stack
  280. * flags, permissions, and offset, so we use temporary values. We'll update
  281. * them later in setup_arg_pages().
  282. */
  283. int bprm_mm_init(struct linux_binprm *bprm)
  284. {
  285. int err;
  286. struct mm_struct *mm = NULL;
  287. bprm->mm = mm = mm_alloc();
  288. err = -ENOMEM;
  289. if (!mm)
  290. goto err;
  291. err = init_new_context(current, mm);
  292. if (err)
  293. goto err;
  294. err = __bprm_mm_init(bprm);
  295. if (err)
  296. goto err;
  297. return 0;
  298. err:
  299. if (mm) {
  300. bprm->mm = NULL;
  301. mmdrop(mm);
  302. }
  303. return err;
  304. }
  305. /*
  306. * count() counts the number of strings in array ARGV.
  307. */
  308. static int count(char __user * __user * argv, int max)
  309. {
  310. int i = 0;
  311. if (argv != NULL) {
  312. for (;;) {
  313. char __user * p;
  314. if (get_user(p, argv))
  315. return -EFAULT;
  316. if (!p)
  317. break;
  318. argv++;
  319. if (i++ >= max)
  320. return -E2BIG;
  321. cond_resched();
  322. }
  323. }
  324. return i;
  325. }
  326. /*
  327. * 'copy_strings()' copies argument/environment strings from the old
  328. * processes's memory to the new process's stack. The call to get_user_pages()
  329. * ensures the destination page is created and not swapped out.
  330. */
  331. static int copy_strings(int argc, char __user * __user * argv,
  332. struct linux_binprm *bprm)
  333. {
  334. struct page *kmapped_page = NULL;
  335. char *kaddr = NULL;
  336. unsigned long kpos = 0;
  337. int ret;
  338. while (argc-- > 0) {
  339. char __user *str;
  340. int len;
  341. unsigned long pos;
  342. if (get_user(str, argv+argc) ||
  343. !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
  344. ret = -EFAULT;
  345. goto out;
  346. }
  347. if (!valid_arg_len(bprm, len)) {
  348. ret = -E2BIG;
  349. goto out;
  350. }
  351. /* We're going to work our way backwords. */
  352. pos = bprm->p;
  353. str += len;
  354. bprm->p -= len;
  355. while (len > 0) {
  356. int offset, bytes_to_copy;
  357. offset = pos % PAGE_SIZE;
  358. if (offset == 0)
  359. offset = PAGE_SIZE;
  360. bytes_to_copy = offset;
  361. if (bytes_to_copy > len)
  362. bytes_to_copy = len;
  363. offset -= bytes_to_copy;
  364. pos -= bytes_to_copy;
  365. str -= bytes_to_copy;
  366. len -= bytes_to_copy;
  367. if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
  368. struct page *page;
  369. page = get_arg_page(bprm, pos, 1);
  370. if (!page) {
  371. ret = -E2BIG;
  372. goto out;
  373. }
  374. if (kmapped_page) {
  375. flush_kernel_dcache_page(kmapped_page);
  376. kunmap(kmapped_page);
  377. put_arg_page(kmapped_page);
  378. }
  379. kmapped_page = page;
  380. kaddr = kmap(kmapped_page);
  381. kpos = pos & PAGE_MASK;
  382. flush_arg_page(bprm, kpos, kmapped_page);
  383. }
  384. if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
  385. ret = -EFAULT;
  386. goto out;
  387. }
  388. }
  389. }
  390. ret = 0;
  391. out:
  392. if (kmapped_page) {
  393. flush_kernel_dcache_page(kmapped_page);
  394. kunmap(kmapped_page);
  395. put_arg_page(kmapped_page);
  396. }
  397. return ret;
  398. }
  399. /*
  400. * Like copy_strings, but get argv and its values from kernel memory.
  401. */
  402. int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
  403. {
  404. int r;
  405. mm_segment_t oldfs = get_fs();
  406. set_fs(KERNEL_DS);
  407. r = copy_strings(argc, (char __user * __user *)argv, bprm);
  408. set_fs(oldfs);
  409. return r;
  410. }
  411. EXPORT_SYMBOL(copy_strings_kernel);
  412. #ifdef CONFIG_MMU
  413. /*
  414. * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
  415. * the binfmt code determines where the new stack should reside, we shift it to
  416. * its final location. The process proceeds as follows:
  417. *
  418. * 1) Use shift to calculate the new vma endpoints.
  419. * 2) Extend vma to cover both the old and new ranges. This ensures the
  420. * arguments passed to subsequent functions are consistent.
  421. * 3) Move vma's page tables to the new range.
  422. * 4) Free up any cleared pgd range.
  423. * 5) Shrink the vma to cover only the new range.
  424. */
  425. static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
  426. {
  427. struct mm_struct *mm = vma->vm_mm;
  428. unsigned long old_start = vma->vm_start;
  429. unsigned long old_end = vma->vm_end;
  430. unsigned long length = old_end - old_start;
  431. unsigned long new_start = old_start - shift;
  432. unsigned long new_end = old_end - shift;
  433. struct mmu_gather *tlb;
  434. BUG_ON(new_start > new_end);
  435. /*
  436. * ensure there are no vmas between where we want to go
  437. * and where we are
  438. */
  439. if (vma != find_vma(mm, new_start))
  440. return -EFAULT;
  441. /*
  442. * cover the whole range: [new_start, old_end)
  443. */
  444. if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
  445. return -ENOMEM;
  446. /*
  447. * move the page tables downwards, on failure we rely on
  448. * process cleanup to remove whatever mess we made.
  449. */
  450. if (length != move_page_tables(vma, old_start,
  451. vma, new_start, length))
  452. return -ENOMEM;
  453. lru_add_drain();
  454. tlb = tlb_gather_mmu(mm, 0);
  455. if (new_end > old_start) {
  456. /*
  457. * when the old and new regions overlap clear from new_end.
  458. */
  459. free_pgd_range(tlb, new_end, old_end, new_end,
  460. vma->vm_next ? vma->vm_next->vm_start : 0);
  461. } else {
  462. /*
  463. * otherwise, clean from old_start; this is done to not touch
  464. * the address space in [new_end, old_start) some architectures
  465. * have constraints on va-space that make this illegal (IA64) -
  466. * for the others its just a little faster.
  467. */
  468. free_pgd_range(tlb, old_start, old_end, new_end,
  469. vma->vm_next ? vma->vm_next->vm_start : 0);
  470. }
  471. tlb_finish_mmu(tlb, new_end, old_end);
  472. /*
  473. * Shrink the vma to just the new range. Always succeeds.
  474. */
  475. vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
  476. return 0;
  477. }
  478. /*
  479. * Finalizes the stack vm_area_struct. The flags and permissions are updated,
  480. * the stack is optionally relocated, and some extra space is added.
  481. */
  482. int setup_arg_pages(struct linux_binprm *bprm,
  483. unsigned long stack_top,
  484. int executable_stack)
  485. {
  486. unsigned long ret;
  487. unsigned long stack_shift;
  488. struct mm_struct *mm = current->mm;
  489. struct vm_area_struct *vma = bprm->vma;
  490. struct vm_area_struct *prev = NULL;
  491. unsigned long vm_flags;
  492. unsigned long stack_base;
  493. unsigned long stack_size;
  494. unsigned long stack_expand;
  495. unsigned long rlim_stack;
  496. #ifdef CONFIG_STACK_GROWSUP
  497. /* Limit stack size to 1GB */
  498. stack_base = rlimit_max(RLIMIT_STACK);
  499. if (stack_base > (1 << 30))
  500. stack_base = 1 << 30;
  501. /* Make sure we didn't let the argument array grow too large. */
  502. if (vma->vm_end - vma->vm_start > stack_base)
  503. return -ENOMEM;
  504. stack_base = PAGE_ALIGN(stack_top - stack_base);
  505. stack_shift = vma->vm_start - stack_base;
  506. mm->arg_start = bprm->p - stack_shift;
  507. bprm->p = vma->vm_end - stack_shift;
  508. #else
  509. stack_top = arch_align_stack(stack_top);
  510. stack_top = PAGE_ALIGN(stack_top);
  511. stack_shift = vma->vm_end - stack_top;
  512. bprm->p -= stack_shift;
  513. mm->arg_start = bprm->p;
  514. #endif
  515. if (bprm->loader)
  516. bprm->loader -= stack_shift;
  517. bprm->exec -= stack_shift;
  518. down_write(&mm->mmap_sem);
  519. vm_flags = VM_STACK_FLAGS;
  520. /*
  521. * Adjust stack execute permissions; explicitly enable for
  522. * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
  523. * (arch default) otherwise.
  524. */
  525. if (unlikely(executable_stack == EXSTACK_ENABLE_X))
  526. vm_flags |= VM_EXEC;
  527. else if (executable_stack == EXSTACK_DISABLE_X)
  528. vm_flags &= ~VM_EXEC;
  529. vm_flags |= mm->def_flags;
  530. ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
  531. vm_flags);
  532. if (ret)
  533. goto out_unlock;
  534. BUG_ON(prev != vma);
  535. /* Move stack pages down in memory. */
  536. if (stack_shift) {
  537. ret = shift_arg_pages(vma, stack_shift);
  538. if (ret)
  539. goto out_unlock;
  540. }
  541. stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
  542. stack_size = vma->vm_end - vma->vm_start;
  543. /*
  544. * Align this down to a page boundary as expand_stack
  545. * will align it up.
  546. */
  547. rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
  548. #ifdef CONFIG_STACK_GROWSUP
  549. if (stack_size + stack_expand > rlim_stack)
  550. stack_base = vma->vm_start + rlim_stack;
  551. else
  552. stack_base = vma->vm_end + stack_expand;
  553. #else
  554. if (stack_size + stack_expand > rlim_stack)
  555. stack_base = vma->vm_end - rlim_stack;
  556. else
  557. stack_base = vma->vm_start - stack_expand;
  558. #endif
  559. ret = expand_stack(vma, stack_base);
  560. if (ret)
  561. ret = -EFAULT;
  562. out_unlock:
  563. up_write(&mm->mmap_sem);
  564. return ret;
  565. }
  566. EXPORT_SYMBOL(setup_arg_pages);
  567. #endif /* CONFIG_MMU */
  568. struct file *open_exec(const char *name)
  569. {
  570. struct file *file;
  571. int err;
  572. file = do_filp_open(AT_FDCWD, name,
  573. O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
  574. MAY_EXEC | MAY_OPEN);
  575. if (IS_ERR(file))
  576. goto out;
  577. err = -EACCES;
  578. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  579. goto exit;
  580. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  581. goto exit;
  582. fsnotify_open(file->f_path.dentry);
  583. err = deny_write_access(file);
  584. if (err)
  585. goto exit;
  586. out:
  587. return file;
  588. exit:
  589. fput(file);
  590. return ERR_PTR(err);
  591. }
  592. EXPORT_SYMBOL(open_exec);
  593. int kernel_read(struct file *file, loff_t offset,
  594. char *addr, unsigned long count)
  595. {
  596. mm_segment_t old_fs;
  597. loff_t pos = offset;
  598. int result;
  599. old_fs = get_fs();
  600. set_fs(get_ds());
  601. /* The cast to a user pointer is valid due to the set_fs() */
  602. result = vfs_read(file, (void __user *)addr, count, &pos);
  603. set_fs(old_fs);
  604. return result;
  605. }
  606. EXPORT_SYMBOL(kernel_read);
  607. static int exec_mmap(struct mm_struct *mm)
  608. {
  609. struct task_struct *tsk;
  610. struct mm_struct * old_mm, *active_mm;
  611. /* Notify parent that we're no longer interested in the old VM */
  612. tsk = current;
  613. old_mm = current->mm;
  614. sync_mm_rss(tsk, old_mm);
  615. mm_release(tsk, old_mm);
  616. if (old_mm) {
  617. /*
  618. * Make sure that if there is a core dump in progress
  619. * for the old mm, we get out and die instead of going
  620. * through with the exec. We must hold mmap_sem around
  621. * checking core_state and changing tsk->mm.
  622. */
  623. down_read(&old_mm->mmap_sem);
  624. if (unlikely(old_mm->core_state)) {
  625. up_read(&old_mm->mmap_sem);
  626. return -EINTR;
  627. }
  628. }
  629. task_lock(tsk);
  630. active_mm = tsk->active_mm;
  631. tsk->mm = mm;
  632. tsk->active_mm = mm;
  633. activate_mm(active_mm, mm);
  634. task_unlock(tsk);
  635. arch_pick_mmap_layout(mm);
  636. if (old_mm) {
  637. up_read(&old_mm->mmap_sem);
  638. BUG_ON(active_mm != old_mm);
  639. mm_update_next_owner(old_mm);
  640. mmput(old_mm);
  641. return 0;
  642. }
  643. mmdrop(active_mm);
  644. return 0;
  645. }
  646. /*
  647. * This function makes sure the current process has its own signal table,
  648. * so that flush_signal_handlers can later reset the handlers without
  649. * disturbing other processes. (Other processes might share the signal
  650. * table via the CLONE_SIGHAND option to clone().)
  651. */
  652. static int de_thread(struct task_struct *tsk)
  653. {
  654. struct signal_struct *sig = tsk->signal;
  655. struct sighand_struct *oldsighand = tsk->sighand;
  656. spinlock_t *lock = &oldsighand->siglock;
  657. int count;
  658. if (thread_group_empty(tsk))
  659. goto no_thread_group;
  660. /*
  661. * Kill all other threads in the thread group.
  662. */
  663. spin_lock_irq(lock);
  664. if (signal_group_exit(sig)) {
  665. /*
  666. * Another group action in progress, just
  667. * return so that the signal is processed.
  668. */
  669. spin_unlock_irq(lock);
  670. return -EAGAIN;
  671. }
  672. sig->group_exit_task = tsk;
  673. zap_other_threads(tsk);
  674. /* Account for the thread group leader hanging around: */
  675. count = thread_group_leader(tsk) ? 1 : 2;
  676. sig->notify_count = count;
  677. while (atomic_read(&sig->count) > count) {
  678. __set_current_state(TASK_UNINTERRUPTIBLE);
  679. spin_unlock_irq(lock);
  680. schedule();
  681. spin_lock_irq(lock);
  682. }
  683. spin_unlock_irq(lock);
  684. /*
  685. * At this point all other threads have exited, all we have to
  686. * do is to wait for the thread group leader to become inactive,
  687. * and to assume its PID:
  688. */
  689. if (!thread_group_leader(tsk)) {
  690. struct task_struct *leader = tsk->group_leader;
  691. sig->notify_count = -1; /* for exit_notify() */
  692. for (;;) {
  693. write_lock_irq(&tasklist_lock);
  694. if (likely(leader->exit_state))
  695. break;
  696. __set_current_state(TASK_UNINTERRUPTIBLE);
  697. write_unlock_irq(&tasklist_lock);
  698. schedule();
  699. }
  700. /*
  701. * The only record we have of the real-time age of a
  702. * process, regardless of execs it's done, is start_time.
  703. * All the past CPU time is accumulated in signal_struct
  704. * from sister threads now dead. But in this non-leader
  705. * exec, nothing survives from the original leader thread,
  706. * whose birth marks the true age of this process now.
  707. * When we take on its identity by switching to its PID, we
  708. * also take its birthdate (always earlier than our own).
  709. */
  710. tsk->start_time = leader->start_time;
  711. BUG_ON(!same_thread_group(leader, tsk));
  712. BUG_ON(has_group_leader_pid(tsk));
  713. /*
  714. * An exec() starts a new thread group with the
  715. * TGID of the previous thread group. Rehash the
  716. * two threads with a switched PID, and release
  717. * the former thread group leader:
  718. */
  719. /* Become a process group leader with the old leader's pid.
  720. * The old leader becomes a thread of the this thread group.
  721. * Note: The old leader also uses this pid until release_task
  722. * is called. Odd but simple and correct.
  723. */
  724. detach_pid(tsk, PIDTYPE_PID);
  725. tsk->pid = leader->pid;
  726. attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
  727. transfer_pid(leader, tsk, PIDTYPE_PGID);
  728. transfer_pid(leader, tsk, PIDTYPE_SID);
  729. list_replace_rcu(&leader->tasks, &tsk->tasks);
  730. list_replace_init(&leader->sibling, &tsk->sibling);
  731. tsk->group_leader = tsk;
  732. leader->group_leader = tsk;
  733. tsk->exit_signal = SIGCHLD;
  734. BUG_ON(leader->exit_state != EXIT_ZOMBIE);
  735. leader->exit_state = EXIT_DEAD;
  736. write_unlock_irq(&tasklist_lock);
  737. release_task(leader);
  738. }
  739. sig->group_exit_task = NULL;
  740. sig->notify_count = 0;
  741. no_thread_group:
  742. if (current->mm)
  743. setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
  744. exit_itimers(sig);
  745. flush_itimer_signals();
  746. if (atomic_read(&oldsighand->count) != 1) {
  747. struct sighand_struct *newsighand;
  748. /*
  749. * This ->sighand is shared with the CLONE_SIGHAND
  750. * but not CLONE_THREAD task, switch to the new one.
  751. */
  752. newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  753. if (!newsighand)
  754. return -ENOMEM;
  755. atomic_set(&newsighand->count, 1);
  756. memcpy(newsighand->action, oldsighand->action,
  757. sizeof(newsighand->action));
  758. write_lock_irq(&tasklist_lock);
  759. spin_lock(&oldsighand->siglock);
  760. rcu_assign_pointer(tsk->sighand, newsighand);
  761. spin_unlock(&oldsighand->siglock);
  762. write_unlock_irq(&tasklist_lock);
  763. __cleanup_sighand(oldsighand);
  764. }
  765. BUG_ON(!thread_group_leader(tsk));
  766. return 0;
  767. }
  768. /*
  769. * These functions flushes out all traces of the currently running executable
  770. * so that a new one can be started
  771. */
  772. static void flush_old_files(struct files_struct * files)
  773. {
  774. long j = -1;
  775. struct fdtable *fdt;
  776. spin_lock(&files->file_lock);
  777. for (;;) {
  778. unsigned long set, i;
  779. j++;
  780. i = j * __NFDBITS;
  781. fdt = files_fdtable(files);
  782. if (i >= fdt->max_fds)
  783. break;
  784. set = fdt->close_on_exec->fds_bits[j];
  785. if (!set)
  786. continue;
  787. fdt->close_on_exec->fds_bits[j] = 0;
  788. spin_unlock(&files->file_lock);
  789. for ( ; set ; i++,set >>= 1) {
  790. if (set & 1) {
  791. sys_close(i);
  792. }
  793. }
  794. spin_lock(&files->file_lock);
  795. }
  796. spin_unlock(&files->file_lock);
  797. }
  798. char *get_task_comm(char *buf, struct task_struct *tsk)
  799. {
  800. /* buf must be at least sizeof(tsk->comm) in size */
  801. task_lock(tsk);
  802. strncpy(buf, tsk->comm, sizeof(tsk->comm));
  803. task_unlock(tsk);
  804. return buf;
  805. }
  806. void set_task_comm(struct task_struct *tsk, char *buf)
  807. {
  808. task_lock(tsk);
  809. /*
  810. * Threads may access current->comm without holding
  811. * the task lock, so write the string carefully.
  812. * Readers without a lock may see incomplete new
  813. * names but are safe from non-terminating string reads.
  814. */
  815. memset(tsk->comm, 0, TASK_COMM_LEN);
  816. wmb();
  817. strlcpy(tsk->comm, buf, sizeof(tsk->comm));
  818. task_unlock(tsk);
  819. perf_event_comm(tsk);
  820. }
  821. int flush_old_exec(struct linux_binprm * bprm)
  822. {
  823. int retval;
  824. /*
  825. * Make sure we have a private signal table and that
  826. * we are unassociated from the previous thread group.
  827. */
  828. retval = de_thread(current);
  829. if (retval)
  830. goto out;
  831. set_mm_exe_file(bprm->mm, bprm->file);
  832. /*
  833. * Release all of the old mmap stuff
  834. */
  835. retval = exec_mmap(bprm->mm);
  836. if (retval)
  837. goto out;
  838. bprm->mm = NULL; /* We're using it now */
  839. current->flags &= ~PF_RANDOMIZE;
  840. flush_thread();
  841. current->personality &= ~bprm->per_clear;
  842. return 0;
  843. out:
  844. return retval;
  845. }
  846. EXPORT_SYMBOL(flush_old_exec);
  847. void setup_new_exec(struct linux_binprm * bprm)
  848. {
  849. int i, ch;
  850. char * name;
  851. char tcomm[sizeof(current->comm)];
  852. arch_pick_mmap_layout(current->mm);
  853. /* This is the point of no return */
  854. current->sas_ss_sp = current->sas_ss_size = 0;
  855. if (current_euid() == current_uid() && current_egid() == current_gid())
  856. set_dumpable(current->mm, 1);
  857. else
  858. set_dumpable(current->mm, suid_dumpable);
  859. name = bprm->filename;
  860. /* Copies the binary name from after last slash */
  861. for (i=0; (ch = *(name++)) != '\0';) {
  862. if (ch == '/')
  863. i = 0; /* overwrite what we wrote */
  864. else
  865. if (i < (sizeof(tcomm) - 1))
  866. tcomm[i++] = ch;
  867. }
  868. tcomm[i] = '\0';
  869. set_task_comm(current, tcomm);
  870. /* Set the new mm task size. We have to do that late because it may
  871. * depend on TIF_32BIT which is only updated in flush_thread() on
  872. * some architectures like powerpc
  873. */
  874. current->mm->task_size = TASK_SIZE;
  875. /* install the new credentials */
  876. if (bprm->cred->uid != current_euid() ||
  877. bprm->cred->gid != current_egid()) {
  878. current->pdeath_signal = 0;
  879. } else if (file_permission(bprm->file, MAY_READ) ||
  880. bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
  881. set_dumpable(current->mm, suid_dumpable);
  882. }
  883. /*
  884. * Flush performance counters when crossing a
  885. * security domain:
  886. */
  887. if (!get_dumpable(current->mm))
  888. perf_event_exit_task(current);
  889. /* An exec changes our domain. We are no longer part of the thread
  890. group */
  891. current->self_exec_id++;
  892. flush_signal_handlers(current, 0);
  893. flush_old_files(current->files);
  894. }
  895. EXPORT_SYMBOL(setup_new_exec);
  896. /*
  897. * Prepare credentials and lock ->cred_guard_mutex.
  898. * install_exec_creds() commits the new creds and drops the lock.
  899. * Or, if exec fails before, free_bprm() should release ->cred and
  900. * and unlock.
  901. */
  902. int prepare_bprm_creds(struct linux_binprm *bprm)
  903. {
  904. if (mutex_lock_interruptible(&current->cred_guard_mutex))
  905. return -ERESTARTNOINTR;
  906. bprm->cred = prepare_exec_creds();
  907. if (likely(bprm->cred))
  908. return 0;
  909. mutex_unlock(&current->cred_guard_mutex);
  910. return -ENOMEM;
  911. }
  912. void free_bprm(struct linux_binprm *bprm)
  913. {
  914. free_arg_pages(bprm);
  915. if (bprm->cred) {
  916. mutex_unlock(&current->cred_guard_mutex);
  917. abort_creds(bprm->cred);
  918. }
  919. kfree(bprm);
  920. }
  921. /*
  922. * install the new credentials for this executable
  923. */
  924. void install_exec_creds(struct linux_binprm *bprm)
  925. {
  926. security_bprm_committing_creds(bprm);
  927. commit_creds(bprm->cred);
  928. bprm->cred = NULL;
  929. /*
  930. * cred_guard_mutex must be held at least to this point to prevent
  931. * ptrace_attach() from altering our determination of the task's
  932. * credentials; any time after this it may be unlocked.
  933. */
  934. security_bprm_committed_creds(bprm);
  935. mutex_unlock(&current->cred_guard_mutex);
  936. }
  937. EXPORT_SYMBOL(install_exec_creds);
  938. /*
  939. * determine how safe it is to execute the proposed program
  940. * - the caller must hold current->cred_guard_mutex to protect against
  941. * PTRACE_ATTACH
  942. */
  943. int check_unsafe_exec(struct linux_binprm *bprm)
  944. {
  945. struct task_struct *p = current, *t;
  946. unsigned n_fs;
  947. int res = 0;
  948. bprm->unsafe = tracehook_unsafe_exec(p);
  949. n_fs = 1;
  950. write_lock(&p->fs->lock);
  951. rcu_read_lock();
  952. for (t = next_thread(p); t != p; t = next_thread(t)) {
  953. if (t->fs == p->fs)
  954. n_fs++;
  955. }
  956. rcu_read_unlock();
  957. if (p->fs->users > n_fs) {
  958. bprm->unsafe |= LSM_UNSAFE_SHARE;
  959. } else {
  960. res = -EAGAIN;
  961. if (!p->fs->in_exec) {
  962. p->fs->in_exec = 1;
  963. res = 1;
  964. }
  965. }
  966. write_unlock(&p->fs->lock);
  967. return res;
  968. }
  969. /*
  970. * Fill the binprm structure from the inode.
  971. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
  972. *
  973. * This may be called multiple times for binary chains (scripts for example).
  974. */
  975. int prepare_binprm(struct linux_binprm *bprm)
  976. {
  977. umode_t mode;
  978. struct inode * inode = bprm->file->f_path.dentry->d_inode;
  979. int retval;
  980. mode = inode->i_mode;
  981. if (bprm->file->f_op == NULL)
  982. return -EACCES;
  983. /* clear any previous set[ug]id data from a previous binary */
  984. bprm->cred->euid = current_euid();
  985. bprm->cred->egid = current_egid();
  986. if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
  987. /* Set-uid? */
  988. if (mode & S_ISUID) {
  989. bprm->per_clear |= PER_CLEAR_ON_SETID;
  990. bprm->cred->euid = inode->i_uid;
  991. }
  992. /* Set-gid? */
  993. /*
  994. * If setgid is set but no group execute bit then this
  995. * is a candidate for mandatory locking, not a setgid
  996. * executable.
  997. */
  998. if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
  999. bprm->per_clear |= PER_CLEAR_ON_SETID;
  1000. bprm->cred->egid = inode->i_gid;
  1001. }
  1002. }
  1003. /* fill in binprm security blob */
  1004. retval = security_bprm_set_creds(bprm);
  1005. if (retval)
  1006. return retval;
  1007. bprm->cred_prepared = 1;
  1008. memset(bprm->buf, 0, BINPRM_BUF_SIZE);
  1009. return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
  1010. }
  1011. EXPORT_SYMBOL(prepare_binprm);
  1012. /*
  1013. * Arguments are '\0' separated strings found at the location bprm->p
  1014. * points to; chop off the first by relocating brpm->p to right after
  1015. * the first '\0' encountered.
  1016. */
  1017. int remove_arg_zero(struct linux_binprm *bprm)
  1018. {
  1019. int ret = 0;
  1020. unsigned long offset;
  1021. char *kaddr;
  1022. struct page *page;
  1023. if (!bprm->argc)
  1024. return 0;
  1025. do {
  1026. offset = bprm->p & ~PAGE_MASK;
  1027. page = get_arg_page(bprm, bprm->p, 0);
  1028. if (!page) {
  1029. ret = -EFAULT;
  1030. goto out;
  1031. }
  1032. kaddr = kmap_atomic(page, KM_USER0);
  1033. for (; offset < PAGE_SIZE && kaddr[offset];
  1034. offset++, bprm->p++)
  1035. ;
  1036. kunmap_atomic(kaddr, KM_USER0);
  1037. put_arg_page(page);
  1038. if (offset == PAGE_SIZE)
  1039. free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
  1040. } while (offset == PAGE_SIZE);
  1041. bprm->p++;
  1042. bprm->argc--;
  1043. ret = 0;
  1044. out:
  1045. return ret;
  1046. }
  1047. EXPORT_SYMBOL(remove_arg_zero);
  1048. /*
  1049. * cycle the list of binary formats handler, until one recognizes the image
  1050. */
  1051. int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
  1052. {
  1053. unsigned int depth = bprm->recursion_depth;
  1054. int try,retval;
  1055. struct linux_binfmt *fmt;
  1056. retval = security_bprm_check(bprm);
  1057. if (retval)
  1058. return retval;
  1059. /* kernel module loader fixup */
  1060. /* so we don't try to load run modprobe in kernel space. */
  1061. set_fs(USER_DS);
  1062. retval = audit_bprm(bprm);
  1063. if (retval)
  1064. return retval;
  1065. retval = -ENOENT;
  1066. for (try=0; try<2; try++) {
  1067. read_lock(&binfmt_lock);
  1068. list_for_each_entry(fmt, &formats, lh) {
  1069. int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
  1070. if (!fn)
  1071. continue;
  1072. if (!try_module_get(fmt->module))
  1073. continue;
  1074. read_unlock(&binfmt_lock);
  1075. retval = fn(bprm, regs);
  1076. /*
  1077. * Restore the depth counter to its starting value
  1078. * in this call, so we don't have to rely on every
  1079. * load_binary function to restore it on return.
  1080. */
  1081. bprm->recursion_depth = depth;
  1082. if (retval >= 0) {
  1083. if (depth == 0)
  1084. tracehook_report_exec(fmt, bprm, regs);
  1085. put_binfmt(fmt);
  1086. allow_write_access(bprm->file);
  1087. if (bprm->file)
  1088. fput(bprm->file);
  1089. bprm->file = NULL;
  1090. current->did_exec = 1;
  1091. proc_exec_connector(current);
  1092. return retval;
  1093. }
  1094. read_lock(&binfmt_lock);
  1095. put_binfmt(fmt);
  1096. if (retval != -ENOEXEC || bprm->mm == NULL)
  1097. break;
  1098. if (!bprm->file) {
  1099. read_unlock(&binfmt_lock);
  1100. return retval;
  1101. }
  1102. }
  1103. read_unlock(&binfmt_lock);
  1104. if (retval != -ENOEXEC || bprm->mm == NULL) {
  1105. break;
  1106. #ifdef CONFIG_MODULES
  1107. } else {
  1108. #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
  1109. if (printable(bprm->buf[0]) &&
  1110. printable(bprm->buf[1]) &&
  1111. printable(bprm->buf[2]) &&
  1112. printable(bprm->buf[3]))
  1113. break; /* -ENOEXEC */
  1114. request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
  1115. #endif
  1116. }
  1117. }
  1118. return retval;
  1119. }
  1120. EXPORT_SYMBOL(search_binary_handler);
  1121. /*
  1122. * sys_execve() executes a new program.
  1123. */
  1124. int do_execve(char * filename,
  1125. char __user *__user *argv,
  1126. char __user *__user *envp,
  1127. struct pt_regs * regs)
  1128. {
  1129. struct linux_binprm *bprm;
  1130. struct file *file;
  1131. struct files_struct *displaced;
  1132. bool clear_in_exec;
  1133. int retval;
  1134. retval = unshare_files(&displaced);
  1135. if (retval)
  1136. goto out_ret;
  1137. retval = -ENOMEM;
  1138. bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
  1139. if (!bprm)
  1140. goto out_files;
  1141. retval = prepare_bprm_creds(bprm);
  1142. if (retval)
  1143. goto out_free;
  1144. retval = check_unsafe_exec(bprm);
  1145. if (retval < 0)
  1146. goto out_free;
  1147. clear_in_exec = retval;
  1148. current->in_execve = 1;
  1149. file = open_exec(filename);
  1150. retval = PTR_ERR(file);
  1151. if (IS_ERR(file))
  1152. goto out_unmark;
  1153. sched_exec();
  1154. bprm->file = file;
  1155. bprm->filename = filename;
  1156. bprm->interp = filename;
  1157. retval = bprm_mm_init(bprm);
  1158. if (retval)
  1159. goto out_file;
  1160. bprm->argc = count(argv, MAX_ARG_STRINGS);
  1161. if ((retval = bprm->argc) < 0)
  1162. goto out;
  1163. bprm->envc = count(envp, MAX_ARG_STRINGS);
  1164. if ((retval = bprm->envc) < 0)
  1165. goto out;
  1166. retval = prepare_binprm(bprm);
  1167. if (retval < 0)
  1168. goto out;
  1169. retval = copy_strings_kernel(1, &bprm->filename, bprm);
  1170. if (retval < 0)
  1171. goto out;
  1172. bprm->exec = bprm->p;
  1173. retval = copy_strings(bprm->envc, envp, bprm);
  1174. if (retval < 0)
  1175. goto out;
  1176. retval = copy_strings(bprm->argc, argv, bprm);
  1177. if (retval < 0)
  1178. goto out;
  1179. current->flags &= ~PF_KTHREAD;
  1180. retval = search_binary_handler(bprm,regs);
  1181. if (retval < 0)
  1182. goto out;
  1183. /* execve succeeded */
  1184. current->fs->in_exec = 0;
  1185. current->in_execve = 0;
  1186. acct_update_integrals(current);
  1187. free_bprm(bprm);
  1188. if (displaced)
  1189. put_files_struct(displaced);
  1190. return retval;
  1191. out:
  1192. if (bprm->mm)
  1193. mmput (bprm->mm);
  1194. out_file:
  1195. if (bprm->file) {
  1196. allow_write_access(bprm->file);
  1197. fput(bprm->file);
  1198. }
  1199. out_unmark:
  1200. if (clear_in_exec)
  1201. current->fs->in_exec = 0;
  1202. current->in_execve = 0;
  1203. out_free:
  1204. free_bprm(bprm);
  1205. out_files:
  1206. if (displaced)
  1207. reset_files_struct(displaced);
  1208. out_ret:
  1209. return retval;
  1210. }
  1211. void set_binfmt(struct linux_binfmt *new)
  1212. {
  1213. struct mm_struct *mm = current->mm;
  1214. if (mm->binfmt)
  1215. module_put(mm->binfmt->module);
  1216. mm->binfmt = new;
  1217. if (new)
  1218. __module_get(new->module);
  1219. }
  1220. EXPORT_SYMBOL(set_binfmt);
  1221. /* format_corename will inspect the pattern parameter, and output a
  1222. * name into corename, which must have space for at least
  1223. * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
  1224. */
  1225. static int format_corename(char *corename, long signr)
  1226. {
  1227. const struct cred *cred = current_cred();
  1228. const char *pat_ptr = core_pattern;
  1229. int ispipe = (*pat_ptr == '|');
  1230. char *out_ptr = corename;
  1231. char *const out_end = corename + CORENAME_MAX_SIZE;
  1232. int rc;
  1233. int pid_in_pattern = 0;
  1234. /* Repeat as long as we have more pattern to process and more output
  1235. space */
  1236. while (*pat_ptr) {
  1237. if (*pat_ptr != '%') {
  1238. if (out_ptr == out_end)
  1239. goto out;
  1240. *out_ptr++ = *pat_ptr++;
  1241. } else {
  1242. switch (*++pat_ptr) {
  1243. case 0:
  1244. goto out;
  1245. /* Double percent, output one percent */
  1246. case '%':
  1247. if (out_ptr == out_end)
  1248. goto out;
  1249. *out_ptr++ = '%';
  1250. break;
  1251. /* pid */
  1252. case 'p':
  1253. pid_in_pattern = 1;
  1254. rc = snprintf(out_ptr, out_end - out_ptr,
  1255. "%d", task_tgid_vnr(current));
  1256. if (rc > out_end - out_ptr)
  1257. goto out;
  1258. out_ptr += rc;
  1259. break;
  1260. /* uid */
  1261. case 'u':
  1262. rc = snprintf(out_ptr, out_end - out_ptr,
  1263. "%d", cred->uid);
  1264. if (rc > out_end - out_ptr)
  1265. goto out;
  1266. out_ptr += rc;
  1267. break;
  1268. /* gid */
  1269. case 'g':
  1270. rc = snprintf(out_ptr, out_end - out_ptr,
  1271. "%d", cred->gid);
  1272. if (rc > out_end - out_ptr)
  1273. goto out;
  1274. out_ptr += rc;
  1275. break;
  1276. /* signal that caused the coredump */
  1277. case 's':
  1278. rc = snprintf(out_ptr, out_end - out_ptr,
  1279. "%ld", signr);
  1280. if (rc > out_end - out_ptr)
  1281. goto out;
  1282. out_ptr += rc;
  1283. break;
  1284. /* UNIX time of coredump */
  1285. case 't': {
  1286. struct timeval tv;
  1287. do_gettimeofday(&tv);
  1288. rc = snprintf(out_ptr, out_end - out_ptr,
  1289. "%lu", tv.tv_sec);
  1290. if (rc > out_end - out_ptr)
  1291. goto out;
  1292. out_ptr += rc;
  1293. break;
  1294. }
  1295. /* hostname */
  1296. case 'h':
  1297. down_read(&uts_sem);
  1298. rc = snprintf(out_ptr, out_end - out_ptr,
  1299. "%s", utsname()->nodename);
  1300. up_read(&uts_sem);
  1301. if (rc > out_end - out_ptr)
  1302. goto out;
  1303. out_ptr += rc;
  1304. break;
  1305. /* executable */
  1306. case 'e':
  1307. rc = snprintf(out_ptr, out_end - out_ptr,
  1308. "%s", current->comm);
  1309. if (rc > out_end - out_ptr)
  1310. goto out;
  1311. out_ptr += rc;
  1312. break;
  1313. /* core limit size */
  1314. case 'c':
  1315. rc = snprintf(out_ptr, out_end - out_ptr,
  1316. "%lu", rlimit(RLIMIT_CORE));
  1317. if (rc > out_end - out_ptr)
  1318. goto out;
  1319. out_ptr += rc;
  1320. break;
  1321. default:
  1322. break;
  1323. }
  1324. ++pat_ptr;
  1325. }
  1326. }
  1327. /* Backward compatibility with core_uses_pid:
  1328. *
  1329. * If core_pattern does not include a %p (as is the default)
  1330. * and core_uses_pid is set, then .%pid will be appended to
  1331. * the filename. Do not do this for piped commands. */
  1332. if (!ispipe && !pid_in_pattern && core_uses_pid) {
  1333. rc = snprintf(out_ptr, out_end - out_ptr,
  1334. ".%d", task_tgid_vnr(current));
  1335. if (rc > out_end - out_ptr)
  1336. goto out;
  1337. out_ptr += rc;
  1338. }
  1339. out:
  1340. *out_ptr = 0;
  1341. return ispipe;
  1342. }
  1343. static int zap_process(struct task_struct *start, int exit_code)
  1344. {
  1345. struct task_struct *t;
  1346. int nr = 0;
  1347. start->signal->flags = SIGNAL_GROUP_EXIT;
  1348. start->signal->group_exit_code = exit_code;
  1349. start->signal->group_stop_count = 0;
  1350. t = start;
  1351. do {
  1352. if (t != current && t->mm) {
  1353. sigaddset(&t->pending.signal, SIGKILL);
  1354. signal_wake_up(t, 1);
  1355. nr++;
  1356. }
  1357. } while_each_thread(start, t);
  1358. return nr;
  1359. }
  1360. static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
  1361. struct core_state *core_state, int exit_code)
  1362. {
  1363. struct task_struct *g, *p;
  1364. unsigned long flags;
  1365. int nr = -EAGAIN;
  1366. spin_lock_irq(&tsk->sighand->siglock);
  1367. if (!signal_group_exit(tsk->signal)) {
  1368. mm->core_state = core_state;
  1369. nr = zap_process(tsk, exit_code);
  1370. }
  1371. spin_unlock_irq(&tsk->sighand->siglock);
  1372. if (unlikely(nr < 0))
  1373. return nr;
  1374. if (atomic_read(&mm->mm_users) == nr + 1)
  1375. goto done;
  1376. /*
  1377. * We should find and kill all tasks which use this mm, and we should
  1378. * count them correctly into ->nr_threads. We don't take tasklist
  1379. * lock, but this is safe wrt:
  1380. *
  1381. * fork:
  1382. * None of sub-threads can fork after zap_process(leader). All
  1383. * processes which were created before this point should be
  1384. * visible to zap_threads() because copy_process() adds the new
  1385. * process to the tail of init_task.tasks list, and lock/unlock
  1386. * of ->siglock provides a memory barrier.
  1387. *
  1388. * do_exit:
  1389. * The caller holds mm->mmap_sem. This means that the task which
  1390. * uses this mm can't pass exit_mm(), so it can't exit or clear
  1391. * its ->mm.
  1392. *
  1393. * de_thread:
  1394. * It does list_replace_rcu(&leader->tasks, &current->tasks),
  1395. * we must see either old or new leader, this does not matter.
  1396. * However, it can change p->sighand, so lock_task_sighand(p)
  1397. * must be used. Since p->mm != NULL and we hold ->mmap_sem
  1398. * it can't fail.
  1399. *
  1400. * Note also that "g" can be the old leader with ->mm == NULL
  1401. * and already unhashed and thus removed from ->thread_group.
  1402. * This is OK, __unhash_process()->list_del_rcu() does not
  1403. * clear the ->next pointer, we will find the new leader via
  1404. * next_thread().
  1405. */
  1406. rcu_read_lock();
  1407. for_each_process(g) {
  1408. if (g == tsk->group_leader)
  1409. continue;
  1410. if (g->flags & PF_KTHREAD)
  1411. continue;
  1412. p = g;
  1413. do {
  1414. if (p->mm) {
  1415. if (unlikely(p->mm == mm)) {
  1416. lock_task_sighand(p, &flags);
  1417. nr += zap_process(p, exit_code);
  1418. unlock_task_sighand(p, &flags);
  1419. }
  1420. break;
  1421. }
  1422. } while_each_thread(g, p);
  1423. }
  1424. rcu_read_unlock();
  1425. done:
  1426. atomic_set(&core_state->nr_threads, nr);
  1427. return nr;
  1428. }
  1429. static int coredump_wait(int exit_code, struct core_state *core_state)
  1430. {
  1431. struct task_struct *tsk = current;
  1432. struct mm_struct *mm = tsk->mm;
  1433. struct completion *vfork_done;
  1434. int core_waiters;
  1435. init_completion(&core_state->startup);
  1436. core_state->dumper.task = tsk;
  1437. core_state->dumper.next = NULL;
  1438. core_waiters = zap_threads(tsk, mm, core_state, exit_code);
  1439. up_write(&mm->mmap_sem);
  1440. if (unlikely(core_waiters < 0))
  1441. goto fail;
  1442. /*
  1443. * Make sure nobody is waiting for us to release the VM,
  1444. * otherwise we can deadlock when we wait on each other
  1445. */
  1446. vfork_done = tsk->vfork_done;
  1447. if (vfork_done) {
  1448. tsk->vfork_done = NULL;
  1449. complete(vfork_done);
  1450. }
  1451. if (core_waiters)
  1452. wait_for_completion(&core_state->startup);
  1453. fail:
  1454. return core_waiters;
  1455. }
  1456. static void coredump_finish(struct mm_struct *mm)
  1457. {
  1458. struct core_thread *curr, *next;
  1459. struct task_struct *task;
  1460. next = mm->core_state->dumper.next;
  1461. while ((curr = next) != NULL) {
  1462. next = curr->next;
  1463. task = curr->task;
  1464. /*
  1465. * see exit_mm(), curr->task must not see
  1466. * ->task == NULL before we read ->next.
  1467. */
  1468. smp_mb();
  1469. curr->task = NULL;
  1470. wake_up_process(task);
  1471. }
  1472. mm->core_state = NULL;
  1473. }
  1474. /*
  1475. * set_dumpable converts traditional three-value dumpable to two flags and
  1476. * stores them into mm->flags. It modifies lower two bits of mm->flags, but
  1477. * these bits are not changed atomically. So get_dumpable can observe the
  1478. * intermediate state. To avoid doing unexpected behavior, get get_dumpable
  1479. * return either old dumpable or new one by paying attention to the order of
  1480. * modifying the bits.
  1481. *
  1482. * dumpable | mm->flags (binary)
  1483. * old new | initial interim final
  1484. * ---------+-----------------------
  1485. * 0 1 | 00 01 01
  1486. * 0 2 | 00 10(*) 11
  1487. * 1 0 | 01 00 00
  1488. * 1 2 | 01 11 11
  1489. * 2 0 | 11 10(*) 00
  1490. * 2 1 | 11 11 01
  1491. *
  1492. * (*) get_dumpable regards interim value of 10 as 11.
  1493. */
  1494. void set_dumpable(struct mm_struct *mm, int value)
  1495. {
  1496. switch (value) {
  1497. case 0:
  1498. clear_bit(MMF_DUMPABLE, &mm->flags);
  1499. smp_wmb();
  1500. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1501. break;
  1502. case 1:
  1503. set_bit(MMF_DUMPABLE, &mm->flags);
  1504. smp_wmb();
  1505. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1506. break;
  1507. case 2:
  1508. set_bit(MMF_DUMP_SECURELY, &mm->flags);
  1509. smp_wmb();
  1510. set_bit(MMF_DUMPABLE, &mm->flags);
  1511. break;
  1512. }
  1513. }
  1514. static int __get_dumpable(unsigned long mm_flags)
  1515. {
  1516. int ret;
  1517. ret = mm_flags & MMF_DUMPABLE_MASK;
  1518. return (ret >= 2) ? 2 : ret;
  1519. }
  1520. int get_dumpable(struct mm_struct *mm)
  1521. {
  1522. return __get_dumpable(mm->flags);
  1523. }
  1524. static void wait_for_dump_helpers(struct file *file)
  1525. {
  1526. struct pipe_inode_info *pipe;
  1527. pipe = file->f_path.dentry->d_inode->i_pipe;
  1528. pipe_lock(pipe);
  1529. pipe->readers++;
  1530. pipe->writers--;
  1531. while ((pipe->readers > 1) && (!signal_pending(current))) {
  1532. wake_up_interruptible_sync(&pipe->wait);
  1533. kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
  1534. pipe_wait(pipe);
  1535. }
  1536. pipe->readers--;
  1537. pipe->writers++;
  1538. pipe_unlock(pipe);
  1539. }
  1540. void do_coredump(long signr, int exit_code, struct pt_regs *regs)
  1541. {
  1542. struct core_state core_state;
  1543. char corename[CORENAME_MAX_SIZE + 1];
  1544. struct mm_struct *mm = current->mm;
  1545. struct linux_binfmt * binfmt;
  1546. struct inode * inode;
  1547. const struct cred *old_cred;
  1548. struct cred *cred;
  1549. int retval = 0;
  1550. int flag = 0;
  1551. int ispipe = 0;
  1552. char **helper_argv = NULL;
  1553. int helper_argc = 0;
  1554. int dump_count = 0;
  1555. static atomic_t core_dump_count = ATOMIC_INIT(0);
  1556. struct coredump_params cprm = {
  1557. .signr = signr,
  1558. .regs = regs,
  1559. .limit = rlimit(RLIMIT_CORE),
  1560. /*
  1561. * We must use the same mm->flags while dumping core to avoid
  1562. * inconsistency of bit flags, since this flag is not protected
  1563. * by any locks.
  1564. */
  1565. .mm_flags = mm->flags,
  1566. };
  1567. audit_core_dumps(signr);
  1568. binfmt = mm->binfmt;
  1569. if (!binfmt || !binfmt->core_dump)
  1570. goto fail;
  1571. cred = prepare_creds();
  1572. if (!cred) {
  1573. retval = -ENOMEM;
  1574. goto fail;
  1575. }
  1576. down_write(&mm->mmap_sem);
  1577. /*
  1578. * If another thread got here first, or we are not dumpable, bail out.
  1579. */
  1580. if (mm->core_state || !__get_dumpable(cprm.mm_flags)) {
  1581. up_write(&mm->mmap_sem);
  1582. put_cred(cred);
  1583. goto fail;
  1584. }
  1585. /*
  1586. * We cannot trust fsuid as being the "true" uid of the
  1587. * process nor do we know its entire history. We only know it
  1588. * was tainted so we dump it as root in mode 2.
  1589. */
  1590. if (__get_dumpable(cprm.mm_flags) == 2) {
  1591. /* Setuid core dump mode */
  1592. flag = O_EXCL; /* Stop rewrite attacks */
  1593. cred->fsuid = 0; /* Dump root private */
  1594. }
  1595. retval = coredump_wait(exit_code, &core_state);
  1596. if (retval < 0) {
  1597. put_cred(cred);
  1598. goto fail;
  1599. }
  1600. old_cred = override_creds(cred);
  1601. /*
  1602. * Clear any false indication of pending signals that might
  1603. * be seen by the filesystem code called to write the core file.
  1604. */
  1605. clear_thread_flag(TIF_SIGPENDING);
  1606. /*
  1607. * lock_kernel() because format_corename() is controlled by sysctl, which
  1608. * uses lock_kernel()
  1609. */
  1610. lock_kernel();
  1611. ispipe = format_corename(corename, signr);
  1612. unlock_kernel();
  1613. if ((!ispipe) && (cprm.limit < binfmt->min_coredump))
  1614. goto fail_unlock;
  1615. if (ispipe) {
  1616. if (cprm.limit == 0) {
  1617. /*
  1618. * Normally core limits are irrelevant to pipes, since
  1619. * we're not writing to the file system, but we use
  1620. * cprm.limit of 0 here as a speacial value. Any
  1621. * non-zero limit gets set to RLIM_INFINITY below, but
  1622. * a limit of 0 skips the dump. This is a consistent
  1623. * way to catch recursive crashes. We can still crash
  1624. * if the core_pattern binary sets RLIM_CORE = !0
  1625. * but it runs as root, and can do lots of stupid things
  1626. * Note that we use task_tgid_vnr here to grab the pid
  1627. * of the process group leader. That way we get the
  1628. * right pid if a thread in a multi-threaded
  1629. * core_pattern process dies.
  1630. */
  1631. printk(KERN_WARNING
  1632. "Process %d(%s) has RLIMIT_CORE set to 0\n",
  1633. task_tgid_vnr(current), current->comm);
  1634. printk(KERN_WARNING "Aborting core\n");
  1635. goto fail_unlock;
  1636. }
  1637. dump_count = atomic_inc_return(&core_dump_count);
  1638. if (core_pipe_limit && (core_pipe_limit < dump_count)) {
  1639. printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
  1640. task_tgid_vnr(current), current->comm);
  1641. printk(KERN_WARNING "Skipping core dump\n");
  1642. goto fail_dropcount;
  1643. }
  1644. helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
  1645. if (!helper_argv) {
  1646. printk(KERN_WARNING "%s failed to allocate memory\n",
  1647. __func__);
  1648. goto fail_dropcount;
  1649. }
  1650. cprm.limit = RLIM_INFINITY;
  1651. /* SIGPIPE can happen, but it's just never processed */
  1652. if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
  1653. &cprm.file)) {
  1654. printk(KERN_INFO "Core dump to %s pipe failed\n",
  1655. corename);
  1656. goto fail_dropcount;
  1657. }
  1658. } else
  1659. cprm.file = filp_open(corename,
  1660. O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
  1661. 0600);
  1662. if (IS_ERR(cprm.file))
  1663. goto fail_dropcount;
  1664. inode = cprm.file->f_path.dentry->d_inode;
  1665. if (inode->i_nlink > 1)
  1666. goto close_fail; /* multiple links - don't dump */
  1667. if (!ispipe && d_unhashed(cprm.file->f_path.dentry))
  1668. goto close_fail;
  1669. /* AK: actually i see no reason to not allow this for named pipes etc.,
  1670. but keep the previous behaviour for now. */
  1671. if (!ispipe && !S_ISREG(inode->i_mode))
  1672. goto close_fail;
  1673. /*
  1674. * Dont allow local users get cute and trick others to coredump
  1675. * into their pre-created files:
  1676. * Note, this is not relevant for pipes
  1677. */
  1678. if (!ispipe && (inode->i_uid != current_fsuid()))
  1679. goto close_fail;
  1680. if (!cprm.file->f_op)
  1681. goto close_fail;
  1682. if (!cprm.file->f_op->write)
  1683. goto close_fail;
  1684. if (!ispipe &&
  1685. do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0)
  1686. goto close_fail;
  1687. retval = binfmt->core_dump(&cprm);
  1688. if (retval)
  1689. current->signal->group_exit_code |= 0x80;
  1690. close_fail:
  1691. if (ispipe && core_pipe_limit)
  1692. wait_for_dump_helpers(cprm.file);
  1693. filp_close(cprm.file, NULL);
  1694. fail_dropcount:
  1695. if (dump_count)
  1696. atomic_dec(&core_dump_count);
  1697. fail_unlock:
  1698. if (helper_argv)
  1699. argv_free(helper_argv);
  1700. revert_creds(old_cred);
  1701. put_cred(cred);
  1702. coredump_finish(mm);
  1703. fail:
  1704. return;
  1705. }