input.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/random.h>
  17. #include <linux/major.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/sched.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/poll.h>
  22. #include <linux/device.h>
  23. #include <linux/mutex.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/smp_lock.h>
  26. #include "input-compat.h"
  27. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  28. MODULE_DESCRIPTION("Input core");
  29. MODULE_LICENSE("GPL");
  30. #define INPUT_DEVICES 256
  31. /*
  32. * EV_ABS events which should not be cached are listed here.
  33. */
  34. static unsigned int input_abs_bypass_init_data[] __initdata = {
  35. ABS_MT_TOUCH_MAJOR,
  36. ABS_MT_TOUCH_MINOR,
  37. ABS_MT_WIDTH_MAJOR,
  38. ABS_MT_WIDTH_MINOR,
  39. ABS_MT_ORIENTATION,
  40. ABS_MT_POSITION_X,
  41. ABS_MT_POSITION_Y,
  42. ABS_MT_TOOL_TYPE,
  43. ABS_MT_BLOB_ID,
  44. ABS_MT_TRACKING_ID,
  45. ABS_MT_PRESSURE,
  46. 0
  47. };
  48. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  49. static LIST_HEAD(input_dev_list);
  50. static LIST_HEAD(input_handler_list);
  51. /*
  52. * input_mutex protects access to both input_dev_list and input_handler_list.
  53. * This also causes input_[un]register_device and input_[un]register_handler
  54. * be mutually exclusive which simplifies locking in drivers implementing
  55. * input handlers.
  56. */
  57. static DEFINE_MUTEX(input_mutex);
  58. static struct input_handler *input_table[8];
  59. static inline int is_event_supported(unsigned int code,
  60. unsigned long *bm, unsigned int max)
  61. {
  62. return code <= max && test_bit(code, bm);
  63. }
  64. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  65. {
  66. if (fuzz) {
  67. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  68. return old_val;
  69. if (value > old_val - fuzz && value < old_val + fuzz)
  70. return (old_val * 3 + value) / 4;
  71. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  72. return (old_val + value) / 2;
  73. }
  74. return value;
  75. }
  76. /*
  77. * Pass event first through all filters and then, if event has not been
  78. * filtered out, through all open handles. This function is called with
  79. * dev->event_lock held and interrupts disabled.
  80. */
  81. static void input_pass_event(struct input_dev *dev,
  82. unsigned int type, unsigned int code, int value)
  83. {
  84. struct input_handler *handler;
  85. struct input_handle *handle;
  86. rcu_read_lock();
  87. handle = rcu_dereference(dev->grab);
  88. if (handle)
  89. handle->handler->event(handle, type, code, value);
  90. else {
  91. bool filtered = false;
  92. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  93. if (!handle->open)
  94. continue;
  95. handler = handle->handler;
  96. if (!handler->filter) {
  97. if (filtered)
  98. break;
  99. handler->event(handle, type, code, value);
  100. } else if (handler->filter(handle, type, code, value))
  101. filtered = true;
  102. }
  103. }
  104. rcu_read_unlock();
  105. }
  106. /*
  107. * Generate software autorepeat event. Note that we take
  108. * dev->event_lock here to avoid racing with input_event
  109. * which may cause keys get "stuck".
  110. */
  111. static void input_repeat_key(unsigned long data)
  112. {
  113. struct input_dev *dev = (void *) data;
  114. unsigned long flags;
  115. spin_lock_irqsave(&dev->event_lock, flags);
  116. if (test_bit(dev->repeat_key, dev->key) &&
  117. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  118. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  119. if (dev->sync) {
  120. /*
  121. * Only send SYN_REPORT if we are not in a middle
  122. * of driver parsing a new hardware packet.
  123. * Otherwise assume that the driver will send
  124. * SYN_REPORT once it's done.
  125. */
  126. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  127. }
  128. if (dev->rep[REP_PERIOD])
  129. mod_timer(&dev->timer, jiffies +
  130. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  131. }
  132. spin_unlock_irqrestore(&dev->event_lock, flags);
  133. }
  134. static void input_start_autorepeat(struct input_dev *dev, int code)
  135. {
  136. if (test_bit(EV_REP, dev->evbit) &&
  137. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  138. dev->timer.data) {
  139. dev->repeat_key = code;
  140. mod_timer(&dev->timer,
  141. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  142. }
  143. }
  144. static void input_stop_autorepeat(struct input_dev *dev)
  145. {
  146. del_timer(&dev->timer);
  147. }
  148. #define INPUT_IGNORE_EVENT 0
  149. #define INPUT_PASS_TO_HANDLERS 1
  150. #define INPUT_PASS_TO_DEVICE 2
  151. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  152. static void input_handle_event(struct input_dev *dev,
  153. unsigned int type, unsigned int code, int value)
  154. {
  155. int disposition = INPUT_IGNORE_EVENT;
  156. switch (type) {
  157. case EV_SYN:
  158. switch (code) {
  159. case SYN_CONFIG:
  160. disposition = INPUT_PASS_TO_ALL;
  161. break;
  162. case SYN_REPORT:
  163. if (!dev->sync) {
  164. dev->sync = 1;
  165. disposition = INPUT_PASS_TO_HANDLERS;
  166. }
  167. break;
  168. case SYN_MT_REPORT:
  169. dev->sync = 0;
  170. disposition = INPUT_PASS_TO_HANDLERS;
  171. break;
  172. }
  173. break;
  174. case EV_KEY:
  175. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  176. !!test_bit(code, dev->key) != value) {
  177. if (value != 2) {
  178. __change_bit(code, dev->key);
  179. if (value)
  180. input_start_autorepeat(dev, code);
  181. else
  182. input_stop_autorepeat(dev);
  183. }
  184. disposition = INPUT_PASS_TO_HANDLERS;
  185. }
  186. break;
  187. case EV_SW:
  188. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  189. !!test_bit(code, dev->sw) != value) {
  190. __change_bit(code, dev->sw);
  191. disposition = INPUT_PASS_TO_HANDLERS;
  192. }
  193. break;
  194. case EV_ABS:
  195. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  196. if (test_bit(code, input_abs_bypass)) {
  197. disposition = INPUT_PASS_TO_HANDLERS;
  198. break;
  199. }
  200. value = input_defuzz_abs_event(value,
  201. dev->abs[code], dev->absfuzz[code]);
  202. if (dev->abs[code] != value) {
  203. dev->abs[code] = value;
  204. disposition = INPUT_PASS_TO_HANDLERS;
  205. }
  206. }
  207. break;
  208. case EV_REL:
  209. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  210. disposition = INPUT_PASS_TO_HANDLERS;
  211. break;
  212. case EV_MSC:
  213. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  214. disposition = INPUT_PASS_TO_ALL;
  215. break;
  216. case EV_LED:
  217. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  218. !!test_bit(code, dev->led) != value) {
  219. __change_bit(code, dev->led);
  220. disposition = INPUT_PASS_TO_ALL;
  221. }
  222. break;
  223. case EV_SND:
  224. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  225. if (!!test_bit(code, dev->snd) != !!value)
  226. __change_bit(code, dev->snd);
  227. disposition = INPUT_PASS_TO_ALL;
  228. }
  229. break;
  230. case EV_REP:
  231. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  232. dev->rep[code] = value;
  233. disposition = INPUT_PASS_TO_ALL;
  234. }
  235. break;
  236. case EV_FF:
  237. if (value >= 0)
  238. disposition = INPUT_PASS_TO_ALL;
  239. break;
  240. case EV_PWR:
  241. disposition = INPUT_PASS_TO_ALL;
  242. break;
  243. }
  244. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  245. dev->sync = 0;
  246. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  247. dev->event(dev, type, code, value);
  248. if (disposition & INPUT_PASS_TO_HANDLERS)
  249. input_pass_event(dev, type, code, value);
  250. }
  251. /**
  252. * input_event() - report new input event
  253. * @dev: device that generated the event
  254. * @type: type of the event
  255. * @code: event code
  256. * @value: value of the event
  257. *
  258. * This function should be used by drivers implementing various input
  259. * devices to report input events. See also input_inject_event().
  260. *
  261. * NOTE: input_event() may be safely used right after input device was
  262. * allocated with input_allocate_device(), even before it is registered
  263. * with input_register_device(), but the event will not reach any of the
  264. * input handlers. Such early invocation of input_event() may be used
  265. * to 'seed' initial state of a switch or initial position of absolute
  266. * axis, etc.
  267. */
  268. void input_event(struct input_dev *dev,
  269. unsigned int type, unsigned int code, int value)
  270. {
  271. unsigned long flags;
  272. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  273. spin_lock_irqsave(&dev->event_lock, flags);
  274. add_input_randomness(type, code, value);
  275. input_handle_event(dev, type, code, value);
  276. spin_unlock_irqrestore(&dev->event_lock, flags);
  277. }
  278. }
  279. EXPORT_SYMBOL(input_event);
  280. /**
  281. * input_inject_event() - send input event from input handler
  282. * @handle: input handle to send event through
  283. * @type: type of the event
  284. * @code: event code
  285. * @value: value of the event
  286. *
  287. * Similar to input_event() but will ignore event if device is
  288. * "grabbed" and handle injecting event is not the one that owns
  289. * the device.
  290. */
  291. void input_inject_event(struct input_handle *handle,
  292. unsigned int type, unsigned int code, int value)
  293. {
  294. struct input_dev *dev = handle->dev;
  295. struct input_handle *grab;
  296. unsigned long flags;
  297. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  298. spin_lock_irqsave(&dev->event_lock, flags);
  299. rcu_read_lock();
  300. grab = rcu_dereference(dev->grab);
  301. if (!grab || grab == handle)
  302. input_handle_event(dev, type, code, value);
  303. rcu_read_unlock();
  304. spin_unlock_irqrestore(&dev->event_lock, flags);
  305. }
  306. }
  307. EXPORT_SYMBOL(input_inject_event);
  308. /**
  309. * input_grab_device - grabs device for exclusive use
  310. * @handle: input handle that wants to own the device
  311. *
  312. * When a device is grabbed by an input handle all events generated by
  313. * the device are delivered only to this handle. Also events injected
  314. * by other input handles are ignored while device is grabbed.
  315. */
  316. int input_grab_device(struct input_handle *handle)
  317. {
  318. struct input_dev *dev = handle->dev;
  319. int retval;
  320. retval = mutex_lock_interruptible(&dev->mutex);
  321. if (retval)
  322. return retval;
  323. if (dev->grab) {
  324. retval = -EBUSY;
  325. goto out;
  326. }
  327. rcu_assign_pointer(dev->grab, handle);
  328. synchronize_rcu();
  329. out:
  330. mutex_unlock(&dev->mutex);
  331. return retval;
  332. }
  333. EXPORT_SYMBOL(input_grab_device);
  334. static void __input_release_device(struct input_handle *handle)
  335. {
  336. struct input_dev *dev = handle->dev;
  337. if (dev->grab == handle) {
  338. rcu_assign_pointer(dev->grab, NULL);
  339. /* Make sure input_pass_event() notices that grab is gone */
  340. synchronize_rcu();
  341. list_for_each_entry(handle, &dev->h_list, d_node)
  342. if (handle->open && handle->handler->start)
  343. handle->handler->start(handle);
  344. }
  345. }
  346. /**
  347. * input_release_device - release previously grabbed device
  348. * @handle: input handle that owns the device
  349. *
  350. * Releases previously grabbed device so that other input handles can
  351. * start receiving input events. Upon release all handlers attached
  352. * to the device have their start() method called so they have a change
  353. * to synchronize device state with the rest of the system.
  354. */
  355. void input_release_device(struct input_handle *handle)
  356. {
  357. struct input_dev *dev = handle->dev;
  358. mutex_lock(&dev->mutex);
  359. __input_release_device(handle);
  360. mutex_unlock(&dev->mutex);
  361. }
  362. EXPORT_SYMBOL(input_release_device);
  363. /**
  364. * input_open_device - open input device
  365. * @handle: handle through which device is being accessed
  366. *
  367. * This function should be called by input handlers when they
  368. * want to start receive events from given input device.
  369. */
  370. int input_open_device(struct input_handle *handle)
  371. {
  372. struct input_dev *dev = handle->dev;
  373. int retval;
  374. retval = mutex_lock_interruptible(&dev->mutex);
  375. if (retval)
  376. return retval;
  377. if (dev->going_away) {
  378. retval = -ENODEV;
  379. goto out;
  380. }
  381. handle->open++;
  382. if (!dev->users++ && dev->open)
  383. retval = dev->open(dev);
  384. if (retval) {
  385. dev->users--;
  386. if (!--handle->open) {
  387. /*
  388. * Make sure we are not delivering any more events
  389. * through this handle
  390. */
  391. synchronize_rcu();
  392. }
  393. }
  394. out:
  395. mutex_unlock(&dev->mutex);
  396. return retval;
  397. }
  398. EXPORT_SYMBOL(input_open_device);
  399. int input_flush_device(struct input_handle *handle, struct file *file)
  400. {
  401. struct input_dev *dev = handle->dev;
  402. int retval;
  403. retval = mutex_lock_interruptible(&dev->mutex);
  404. if (retval)
  405. return retval;
  406. if (dev->flush)
  407. retval = dev->flush(dev, file);
  408. mutex_unlock(&dev->mutex);
  409. return retval;
  410. }
  411. EXPORT_SYMBOL(input_flush_device);
  412. /**
  413. * input_close_device - close input device
  414. * @handle: handle through which device is being accessed
  415. *
  416. * This function should be called by input handlers when they
  417. * want to stop receive events from given input device.
  418. */
  419. void input_close_device(struct input_handle *handle)
  420. {
  421. struct input_dev *dev = handle->dev;
  422. mutex_lock(&dev->mutex);
  423. __input_release_device(handle);
  424. if (!--dev->users && dev->close)
  425. dev->close(dev);
  426. if (!--handle->open) {
  427. /*
  428. * synchronize_rcu() makes sure that input_pass_event()
  429. * completed and that no more input events are delivered
  430. * through this handle
  431. */
  432. synchronize_rcu();
  433. }
  434. mutex_unlock(&dev->mutex);
  435. }
  436. EXPORT_SYMBOL(input_close_device);
  437. /*
  438. * Prepare device for unregistering
  439. */
  440. static void input_disconnect_device(struct input_dev *dev)
  441. {
  442. struct input_handle *handle;
  443. int code;
  444. /*
  445. * Mark device as going away. Note that we take dev->mutex here
  446. * not to protect access to dev->going_away but rather to ensure
  447. * that there are no threads in the middle of input_open_device()
  448. */
  449. mutex_lock(&dev->mutex);
  450. dev->going_away = true;
  451. mutex_unlock(&dev->mutex);
  452. spin_lock_irq(&dev->event_lock);
  453. /*
  454. * Simulate keyup events for all pressed keys so that handlers
  455. * are not left with "stuck" keys. The driver may continue
  456. * generate events even after we done here but they will not
  457. * reach any handlers.
  458. */
  459. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  460. for (code = 0; code <= KEY_MAX; code++) {
  461. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  462. __test_and_clear_bit(code, dev->key)) {
  463. input_pass_event(dev, EV_KEY, code, 0);
  464. }
  465. }
  466. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  467. }
  468. list_for_each_entry(handle, &dev->h_list, d_node)
  469. handle->open = 0;
  470. spin_unlock_irq(&dev->event_lock);
  471. }
  472. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  473. {
  474. switch (dev->keycodesize) {
  475. case 1:
  476. return ((u8 *)dev->keycode)[scancode];
  477. case 2:
  478. return ((u16 *)dev->keycode)[scancode];
  479. default:
  480. return ((u32 *)dev->keycode)[scancode];
  481. }
  482. }
  483. static int input_default_getkeycode(struct input_dev *dev,
  484. unsigned int scancode,
  485. unsigned int *keycode)
  486. {
  487. if (!dev->keycodesize)
  488. return -EINVAL;
  489. if (scancode >= dev->keycodemax)
  490. return -EINVAL;
  491. *keycode = input_fetch_keycode(dev, scancode);
  492. return 0;
  493. }
  494. static int input_default_setkeycode(struct input_dev *dev,
  495. unsigned int scancode,
  496. unsigned int keycode)
  497. {
  498. int old_keycode;
  499. int i;
  500. if (scancode >= dev->keycodemax)
  501. return -EINVAL;
  502. if (!dev->keycodesize)
  503. return -EINVAL;
  504. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  505. return -EINVAL;
  506. switch (dev->keycodesize) {
  507. case 1: {
  508. u8 *k = (u8 *)dev->keycode;
  509. old_keycode = k[scancode];
  510. k[scancode] = keycode;
  511. break;
  512. }
  513. case 2: {
  514. u16 *k = (u16 *)dev->keycode;
  515. old_keycode = k[scancode];
  516. k[scancode] = keycode;
  517. break;
  518. }
  519. default: {
  520. u32 *k = (u32 *)dev->keycode;
  521. old_keycode = k[scancode];
  522. k[scancode] = keycode;
  523. break;
  524. }
  525. }
  526. __clear_bit(old_keycode, dev->keybit);
  527. __set_bit(keycode, dev->keybit);
  528. for (i = 0; i < dev->keycodemax; i++) {
  529. if (input_fetch_keycode(dev, i) == old_keycode) {
  530. __set_bit(old_keycode, dev->keybit);
  531. break; /* Setting the bit twice is useless, so break */
  532. }
  533. }
  534. return 0;
  535. }
  536. /**
  537. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  538. * @dev: input device which keymap is being queried
  539. * @scancode: scancode (or its equivalent for device in question) for which
  540. * keycode is needed
  541. * @keycode: result
  542. *
  543. * This function should be called by anyone interested in retrieving current
  544. * keymap. Presently keyboard and evdev handlers use it.
  545. */
  546. int input_get_keycode(struct input_dev *dev,
  547. unsigned int scancode, unsigned int *keycode)
  548. {
  549. unsigned long flags;
  550. int retval;
  551. spin_lock_irqsave(&dev->event_lock, flags);
  552. retval = dev->getkeycode(dev, scancode, keycode);
  553. spin_unlock_irqrestore(&dev->event_lock, flags);
  554. return retval;
  555. }
  556. EXPORT_SYMBOL(input_get_keycode);
  557. /**
  558. * input_get_keycode - assign new keycode to a given scancode
  559. * @dev: input device which keymap is being updated
  560. * @scancode: scancode (or its equivalent for device in question)
  561. * @keycode: new keycode to be assigned to the scancode
  562. *
  563. * This function should be called by anyone needing to update current
  564. * keymap. Presently keyboard and evdev handlers use it.
  565. */
  566. int input_set_keycode(struct input_dev *dev,
  567. unsigned int scancode, unsigned int keycode)
  568. {
  569. unsigned long flags;
  570. int old_keycode;
  571. int retval;
  572. if (keycode > KEY_MAX)
  573. return -EINVAL;
  574. spin_lock_irqsave(&dev->event_lock, flags);
  575. retval = dev->getkeycode(dev, scancode, &old_keycode);
  576. if (retval)
  577. goto out;
  578. retval = dev->setkeycode(dev, scancode, keycode);
  579. if (retval)
  580. goto out;
  581. /* Make sure KEY_RESERVED did not get enabled. */
  582. __clear_bit(KEY_RESERVED, dev->keybit);
  583. /*
  584. * Simulate keyup event if keycode is not present
  585. * in the keymap anymore
  586. */
  587. if (test_bit(EV_KEY, dev->evbit) &&
  588. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  589. __test_and_clear_bit(old_keycode, dev->key)) {
  590. input_pass_event(dev, EV_KEY, old_keycode, 0);
  591. if (dev->sync)
  592. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  593. }
  594. out:
  595. spin_unlock_irqrestore(&dev->event_lock, flags);
  596. return retval;
  597. }
  598. EXPORT_SYMBOL(input_set_keycode);
  599. #define MATCH_BIT(bit, max) \
  600. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  601. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  602. break; \
  603. if (i != BITS_TO_LONGS(max)) \
  604. continue;
  605. static const struct input_device_id *input_match_device(struct input_handler *handler,
  606. struct input_dev *dev)
  607. {
  608. const struct input_device_id *id;
  609. int i;
  610. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  611. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  612. if (id->bustype != dev->id.bustype)
  613. continue;
  614. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  615. if (id->vendor != dev->id.vendor)
  616. continue;
  617. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  618. if (id->product != dev->id.product)
  619. continue;
  620. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  621. if (id->version != dev->id.version)
  622. continue;
  623. MATCH_BIT(evbit, EV_MAX);
  624. MATCH_BIT(keybit, KEY_MAX);
  625. MATCH_BIT(relbit, REL_MAX);
  626. MATCH_BIT(absbit, ABS_MAX);
  627. MATCH_BIT(mscbit, MSC_MAX);
  628. MATCH_BIT(ledbit, LED_MAX);
  629. MATCH_BIT(sndbit, SND_MAX);
  630. MATCH_BIT(ffbit, FF_MAX);
  631. MATCH_BIT(swbit, SW_MAX);
  632. if (!handler->match || handler->match(handler, dev))
  633. return id;
  634. }
  635. return NULL;
  636. }
  637. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  638. {
  639. const struct input_device_id *id;
  640. int error;
  641. id = input_match_device(handler, dev);
  642. if (!id)
  643. return -ENODEV;
  644. error = handler->connect(handler, dev, id);
  645. if (error && error != -ENODEV)
  646. printk(KERN_ERR
  647. "input: failed to attach handler %s to device %s, "
  648. "error: %d\n",
  649. handler->name, kobject_name(&dev->dev.kobj), error);
  650. return error;
  651. }
  652. #ifdef CONFIG_COMPAT
  653. static int input_bits_to_string(char *buf, int buf_size,
  654. unsigned long bits, bool skip_empty)
  655. {
  656. int len = 0;
  657. if (INPUT_COMPAT_TEST) {
  658. u32 dword = bits >> 32;
  659. if (dword || !skip_empty)
  660. len += snprintf(buf, buf_size, "%x ", dword);
  661. dword = bits & 0xffffffffUL;
  662. if (dword || !skip_empty || len)
  663. len += snprintf(buf + len, max(buf_size - len, 0),
  664. "%x", dword);
  665. } else {
  666. if (bits || !skip_empty)
  667. len += snprintf(buf, buf_size, "%lx", bits);
  668. }
  669. return len;
  670. }
  671. #else /* !CONFIG_COMPAT */
  672. static int input_bits_to_string(char *buf, int buf_size,
  673. unsigned long bits, bool skip_empty)
  674. {
  675. return bits || !skip_empty ?
  676. snprintf(buf, buf_size, "%lx", bits) : 0;
  677. }
  678. #endif
  679. #ifdef CONFIG_PROC_FS
  680. static struct proc_dir_entry *proc_bus_input_dir;
  681. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  682. static int input_devices_state;
  683. static inline void input_wakeup_procfs_readers(void)
  684. {
  685. input_devices_state++;
  686. wake_up(&input_devices_poll_wait);
  687. }
  688. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  689. {
  690. poll_wait(file, &input_devices_poll_wait, wait);
  691. if (file->f_version != input_devices_state) {
  692. file->f_version = input_devices_state;
  693. return POLLIN | POLLRDNORM;
  694. }
  695. return 0;
  696. }
  697. union input_seq_state {
  698. struct {
  699. unsigned short pos;
  700. bool mutex_acquired;
  701. };
  702. void *p;
  703. };
  704. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  705. {
  706. union input_seq_state *state = (union input_seq_state *)&seq->private;
  707. int error;
  708. /* We need to fit into seq->private pointer */
  709. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  710. error = mutex_lock_interruptible(&input_mutex);
  711. if (error) {
  712. state->mutex_acquired = false;
  713. return ERR_PTR(error);
  714. }
  715. state->mutex_acquired = true;
  716. return seq_list_start(&input_dev_list, *pos);
  717. }
  718. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  719. {
  720. return seq_list_next(v, &input_dev_list, pos);
  721. }
  722. static void input_seq_stop(struct seq_file *seq, void *v)
  723. {
  724. union input_seq_state *state = (union input_seq_state *)&seq->private;
  725. if (state->mutex_acquired)
  726. mutex_unlock(&input_mutex);
  727. }
  728. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  729. unsigned long *bitmap, int max)
  730. {
  731. int i;
  732. bool skip_empty = true;
  733. char buf[18];
  734. seq_printf(seq, "B: %s=", name);
  735. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  736. if (input_bits_to_string(buf, sizeof(buf),
  737. bitmap[i], skip_empty)) {
  738. skip_empty = false;
  739. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  740. }
  741. }
  742. /*
  743. * If no output was produced print a single 0.
  744. */
  745. if (skip_empty)
  746. seq_puts(seq, "0");
  747. seq_putc(seq, '\n');
  748. }
  749. static int input_devices_seq_show(struct seq_file *seq, void *v)
  750. {
  751. struct input_dev *dev = container_of(v, struct input_dev, node);
  752. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  753. struct input_handle *handle;
  754. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  755. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  756. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  757. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  758. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  759. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  760. seq_printf(seq, "H: Handlers=");
  761. list_for_each_entry(handle, &dev->h_list, d_node)
  762. seq_printf(seq, "%s ", handle->name);
  763. seq_putc(seq, '\n');
  764. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  765. if (test_bit(EV_KEY, dev->evbit))
  766. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  767. if (test_bit(EV_REL, dev->evbit))
  768. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  769. if (test_bit(EV_ABS, dev->evbit))
  770. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  771. if (test_bit(EV_MSC, dev->evbit))
  772. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  773. if (test_bit(EV_LED, dev->evbit))
  774. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  775. if (test_bit(EV_SND, dev->evbit))
  776. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  777. if (test_bit(EV_FF, dev->evbit))
  778. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  779. if (test_bit(EV_SW, dev->evbit))
  780. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  781. seq_putc(seq, '\n');
  782. kfree(path);
  783. return 0;
  784. }
  785. static const struct seq_operations input_devices_seq_ops = {
  786. .start = input_devices_seq_start,
  787. .next = input_devices_seq_next,
  788. .stop = input_seq_stop,
  789. .show = input_devices_seq_show,
  790. };
  791. static int input_proc_devices_open(struct inode *inode, struct file *file)
  792. {
  793. return seq_open(file, &input_devices_seq_ops);
  794. }
  795. static const struct file_operations input_devices_fileops = {
  796. .owner = THIS_MODULE,
  797. .open = input_proc_devices_open,
  798. .poll = input_proc_devices_poll,
  799. .read = seq_read,
  800. .llseek = seq_lseek,
  801. .release = seq_release,
  802. };
  803. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  804. {
  805. union input_seq_state *state = (union input_seq_state *)&seq->private;
  806. int error;
  807. /* We need to fit into seq->private pointer */
  808. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  809. error = mutex_lock_interruptible(&input_mutex);
  810. if (error) {
  811. state->mutex_acquired = false;
  812. return ERR_PTR(error);
  813. }
  814. state->mutex_acquired = true;
  815. state->pos = *pos;
  816. return seq_list_start(&input_handler_list, *pos);
  817. }
  818. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  819. {
  820. union input_seq_state *state = (union input_seq_state *)&seq->private;
  821. state->pos = *pos + 1;
  822. return seq_list_next(v, &input_handler_list, pos);
  823. }
  824. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  825. {
  826. struct input_handler *handler = container_of(v, struct input_handler, node);
  827. union input_seq_state *state = (union input_seq_state *)&seq->private;
  828. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  829. if (handler->filter)
  830. seq_puts(seq, " (filter)");
  831. if (handler->fops)
  832. seq_printf(seq, " Minor=%d", handler->minor);
  833. seq_putc(seq, '\n');
  834. return 0;
  835. }
  836. static const struct seq_operations input_handlers_seq_ops = {
  837. .start = input_handlers_seq_start,
  838. .next = input_handlers_seq_next,
  839. .stop = input_seq_stop,
  840. .show = input_handlers_seq_show,
  841. };
  842. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  843. {
  844. return seq_open(file, &input_handlers_seq_ops);
  845. }
  846. static const struct file_operations input_handlers_fileops = {
  847. .owner = THIS_MODULE,
  848. .open = input_proc_handlers_open,
  849. .read = seq_read,
  850. .llseek = seq_lseek,
  851. .release = seq_release,
  852. };
  853. static int __init input_proc_init(void)
  854. {
  855. struct proc_dir_entry *entry;
  856. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  857. if (!proc_bus_input_dir)
  858. return -ENOMEM;
  859. entry = proc_create("devices", 0, proc_bus_input_dir,
  860. &input_devices_fileops);
  861. if (!entry)
  862. goto fail1;
  863. entry = proc_create("handlers", 0, proc_bus_input_dir,
  864. &input_handlers_fileops);
  865. if (!entry)
  866. goto fail2;
  867. return 0;
  868. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  869. fail1: remove_proc_entry("bus/input", NULL);
  870. return -ENOMEM;
  871. }
  872. static void input_proc_exit(void)
  873. {
  874. remove_proc_entry("devices", proc_bus_input_dir);
  875. remove_proc_entry("handlers", proc_bus_input_dir);
  876. remove_proc_entry("bus/input", NULL);
  877. }
  878. #else /* !CONFIG_PROC_FS */
  879. static inline void input_wakeup_procfs_readers(void) { }
  880. static inline int input_proc_init(void) { return 0; }
  881. static inline void input_proc_exit(void) { }
  882. #endif
  883. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  884. static ssize_t input_dev_show_##name(struct device *dev, \
  885. struct device_attribute *attr, \
  886. char *buf) \
  887. { \
  888. struct input_dev *input_dev = to_input_dev(dev); \
  889. \
  890. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  891. input_dev->name ? input_dev->name : ""); \
  892. } \
  893. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  894. INPUT_DEV_STRING_ATTR_SHOW(name);
  895. INPUT_DEV_STRING_ATTR_SHOW(phys);
  896. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  897. static int input_print_modalias_bits(char *buf, int size,
  898. char name, unsigned long *bm,
  899. unsigned int min_bit, unsigned int max_bit)
  900. {
  901. int len = 0, i;
  902. len += snprintf(buf, max(size, 0), "%c", name);
  903. for (i = min_bit; i < max_bit; i++)
  904. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  905. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  906. return len;
  907. }
  908. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  909. int add_cr)
  910. {
  911. int len;
  912. len = snprintf(buf, max(size, 0),
  913. "input:b%04Xv%04Xp%04Xe%04X-",
  914. id->id.bustype, id->id.vendor,
  915. id->id.product, id->id.version);
  916. len += input_print_modalias_bits(buf + len, size - len,
  917. 'e', id->evbit, 0, EV_MAX);
  918. len += input_print_modalias_bits(buf + len, size - len,
  919. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  920. len += input_print_modalias_bits(buf + len, size - len,
  921. 'r', id->relbit, 0, REL_MAX);
  922. len += input_print_modalias_bits(buf + len, size - len,
  923. 'a', id->absbit, 0, ABS_MAX);
  924. len += input_print_modalias_bits(buf + len, size - len,
  925. 'm', id->mscbit, 0, MSC_MAX);
  926. len += input_print_modalias_bits(buf + len, size - len,
  927. 'l', id->ledbit, 0, LED_MAX);
  928. len += input_print_modalias_bits(buf + len, size - len,
  929. 's', id->sndbit, 0, SND_MAX);
  930. len += input_print_modalias_bits(buf + len, size - len,
  931. 'f', id->ffbit, 0, FF_MAX);
  932. len += input_print_modalias_bits(buf + len, size - len,
  933. 'w', id->swbit, 0, SW_MAX);
  934. if (add_cr)
  935. len += snprintf(buf + len, max(size - len, 0), "\n");
  936. return len;
  937. }
  938. static ssize_t input_dev_show_modalias(struct device *dev,
  939. struct device_attribute *attr,
  940. char *buf)
  941. {
  942. struct input_dev *id = to_input_dev(dev);
  943. ssize_t len;
  944. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  945. return min_t(int, len, PAGE_SIZE);
  946. }
  947. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  948. static struct attribute *input_dev_attrs[] = {
  949. &dev_attr_name.attr,
  950. &dev_attr_phys.attr,
  951. &dev_attr_uniq.attr,
  952. &dev_attr_modalias.attr,
  953. NULL
  954. };
  955. static struct attribute_group input_dev_attr_group = {
  956. .attrs = input_dev_attrs,
  957. };
  958. #define INPUT_DEV_ID_ATTR(name) \
  959. static ssize_t input_dev_show_id_##name(struct device *dev, \
  960. struct device_attribute *attr, \
  961. char *buf) \
  962. { \
  963. struct input_dev *input_dev = to_input_dev(dev); \
  964. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  965. } \
  966. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  967. INPUT_DEV_ID_ATTR(bustype);
  968. INPUT_DEV_ID_ATTR(vendor);
  969. INPUT_DEV_ID_ATTR(product);
  970. INPUT_DEV_ID_ATTR(version);
  971. static struct attribute *input_dev_id_attrs[] = {
  972. &dev_attr_bustype.attr,
  973. &dev_attr_vendor.attr,
  974. &dev_attr_product.attr,
  975. &dev_attr_version.attr,
  976. NULL
  977. };
  978. static struct attribute_group input_dev_id_attr_group = {
  979. .name = "id",
  980. .attrs = input_dev_id_attrs,
  981. };
  982. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  983. int max, int add_cr)
  984. {
  985. int i;
  986. int len = 0;
  987. bool skip_empty = true;
  988. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  989. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  990. bitmap[i], skip_empty);
  991. if (len) {
  992. skip_empty = false;
  993. if (i > 0)
  994. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  995. }
  996. }
  997. /*
  998. * If no output was produced print a single 0.
  999. */
  1000. if (len == 0)
  1001. len = snprintf(buf, buf_size, "%d", 0);
  1002. if (add_cr)
  1003. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  1004. return len;
  1005. }
  1006. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1007. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1008. struct device_attribute *attr, \
  1009. char *buf) \
  1010. { \
  1011. struct input_dev *input_dev = to_input_dev(dev); \
  1012. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1013. input_dev->bm##bit, ev##_MAX, \
  1014. true); \
  1015. return min_t(int, len, PAGE_SIZE); \
  1016. } \
  1017. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1018. INPUT_DEV_CAP_ATTR(EV, ev);
  1019. INPUT_DEV_CAP_ATTR(KEY, key);
  1020. INPUT_DEV_CAP_ATTR(REL, rel);
  1021. INPUT_DEV_CAP_ATTR(ABS, abs);
  1022. INPUT_DEV_CAP_ATTR(MSC, msc);
  1023. INPUT_DEV_CAP_ATTR(LED, led);
  1024. INPUT_DEV_CAP_ATTR(SND, snd);
  1025. INPUT_DEV_CAP_ATTR(FF, ff);
  1026. INPUT_DEV_CAP_ATTR(SW, sw);
  1027. static struct attribute *input_dev_caps_attrs[] = {
  1028. &dev_attr_ev.attr,
  1029. &dev_attr_key.attr,
  1030. &dev_attr_rel.attr,
  1031. &dev_attr_abs.attr,
  1032. &dev_attr_msc.attr,
  1033. &dev_attr_led.attr,
  1034. &dev_attr_snd.attr,
  1035. &dev_attr_ff.attr,
  1036. &dev_attr_sw.attr,
  1037. NULL
  1038. };
  1039. static struct attribute_group input_dev_caps_attr_group = {
  1040. .name = "capabilities",
  1041. .attrs = input_dev_caps_attrs,
  1042. };
  1043. static const struct attribute_group *input_dev_attr_groups[] = {
  1044. &input_dev_attr_group,
  1045. &input_dev_id_attr_group,
  1046. &input_dev_caps_attr_group,
  1047. NULL
  1048. };
  1049. static void input_dev_release(struct device *device)
  1050. {
  1051. struct input_dev *dev = to_input_dev(device);
  1052. input_ff_destroy(dev);
  1053. kfree(dev);
  1054. module_put(THIS_MODULE);
  1055. }
  1056. /*
  1057. * Input uevent interface - loading event handlers based on
  1058. * device bitfields.
  1059. */
  1060. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1061. const char *name, unsigned long *bitmap, int max)
  1062. {
  1063. int len;
  1064. if (add_uevent_var(env, "%s=", name))
  1065. return -ENOMEM;
  1066. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1067. sizeof(env->buf) - env->buflen,
  1068. bitmap, max, false);
  1069. if (len >= (sizeof(env->buf) - env->buflen))
  1070. return -ENOMEM;
  1071. env->buflen += len;
  1072. return 0;
  1073. }
  1074. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1075. struct input_dev *dev)
  1076. {
  1077. int len;
  1078. if (add_uevent_var(env, "MODALIAS="))
  1079. return -ENOMEM;
  1080. len = input_print_modalias(&env->buf[env->buflen - 1],
  1081. sizeof(env->buf) - env->buflen,
  1082. dev, 0);
  1083. if (len >= (sizeof(env->buf) - env->buflen))
  1084. return -ENOMEM;
  1085. env->buflen += len;
  1086. return 0;
  1087. }
  1088. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1089. do { \
  1090. int err = add_uevent_var(env, fmt, val); \
  1091. if (err) \
  1092. return err; \
  1093. } while (0)
  1094. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1095. do { \
  1096. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1097. if (err) \
  1098. return err; \
  1099. } while (0)
  1100. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1101. do { \
  1102. int err = input_add_uevent_modalias_var(env, dev); \
  1103. if (err) \
  1104. return err; \
  1105. } while (0)
  1106. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1107. {
  1108. struct input_dev *dev = to_input_dev(device);
  1109. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1110. dev->id.bustype, dev->id.vendor,
  1111. dev->id.product, dev->id.version);
  1112. if (dev->name)
  1113. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1114. if (dev->phys)
  1115. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1116. if (dev->uniq)
  1117. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1118. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1119. if (test_bit(EV_KEY, dev->evbit))
  1120. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1121. if (test_bit(EV_REL, dev->evbit))
  1122. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1123. if (test_bit(EV_ABS, dev->evbit))
  1124. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1125. if (test_bit(EV_MSC, dev->evbit))
  1126. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1127. if (test_bit(EV_LED, dev->evbit))
  1128. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1129. if (test_bit(EV_SND, dev->evbit))
  1130. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1131. if (test_bit(EV_FF, dev->evbit))
  1132. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1133. if (test_bit(EV_SW, dev->evbit))
  1134. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1135. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1136. return 0;
  1137. }
  1138. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1139. do { \
  1140. int i; \
  1141. bool active; \
  1142. \
  1143. if (!test_bit(EV_##type, dev->evbit)) \
  1144. break; \
  1145. \
  1146. for (i = 0; i < type##_MAX; i++) { \
  1147. if (!test_bit(i, dev->bits##bit)) \
  1148. continue; \
  1149. \
  1150. active = test_bit(i, dev->bits); \
  1151. if (!active && !on) \
  1152. continue; \
  1153. \
  1154. dev->event(dev, EV_##type, i, on ? active : 0); \
  1155. } \
  1156. } while (0)
  1157. #ifdef CONFIG_PM
  1158. static void input_dev_reset(struct input_dev *dev, bool activate)
  1159. {
  1160. if (!dev->event)
  1161. return;
  1162. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1163. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1164. if (activate && test_bit(EV_REP, dev->evbit)) {
  1165. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1166. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1167. }
  1168. }
  1169. static int input_dev_suspend(struct device *dev)
  1170. {
  1171. struct input_dev *input_dev = to_input_dev(dev);
  1172. mutex_lock(&input_dev->mutex);
  1173. input_dev_reset(input_dev, false);
  1174. mutex_unlock(&input_dev->mutex);
  1175. return 0;
  1176. }
  1177. static int input_dev_resume(struct device *dev)
  1178. {
  1179. struct input_dev *input_dev = to_input_dev(dev);
  1180. mutex_lock(&input_dev->mutex);
  1181. input_dev_reset(input_dev, true);
  1182. mutex_unlock(&input_dev->mutex);
  1183. return 0;
  1184. }
  1185. static const struct dev_pm_ops input_dev_pm_ops = {
  1186. .suspend = input_dev_suspend,
  1187. .resume = input_dev_resume,
  1188. .poweroff = input_dev_suspend,
  1189. .restore = input_dev_resume,
  1190. };
  1191. #endif /* CONFIG_PM */
  1192. static struct device_type input_dev_type = {
  1193. .groups = input_dev_attr_groups,
  1194. .release = input_dev_release,
  1195. .uevent = input_dev_uevent,
  1196. #ifdef CONFIG_PM
  1197. .pm = &input_dev_pm_ops,
  1198. #endif
  1199. };
  1200. static char *input_devnode(struct device *dev, mode_t *mode)
  1201. {
  1202. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1203. }
  1204. struct class input_class = {
  1205. .name = "input",
  1206. .devnode = input_devnode,
  1207. };
  1208. EXPORT_SYMBOL_GPL(input_class);
  1209. /**
  1210. * input_allocate_device - allocate memory for new input device
  1211. *
  1212. * Returns prepared struct input_dev or NULL.
  1213. *
  1214. * NOTE: Use input_free_device() to free devices that have not been
  1215. * registered; input_unregister_device() should be used for already
  1216. * registered devices.
  1217. */
  1218. struct input_dev *input_allocate_device(void)
  1219. {
  1220. struct input_dev *dev;
  1221. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1222. if (dev) {
  1223. dev->dev.type = &input_dev_type;
  1224. dev->dev.class = &input_class;
  1225. device_initialize(&dev->dev);
  1226. mutex_init(&dev->mutex);
  1227. spin_lock_init(&dev->event_lock);
  1228. INIT_LIST_HEAD(&dev->h_list);
  1229. INIT_LIST_HEAD(&dev->node);
  1230. __module_get(THIS_MODULE);
  1231. }
  1232. return dev;
  1233. }
  1234. EXPORT_SYMBOL(input_allocate_device);
  1235. /**
  1236. * input_free_device - free memory occupied by input_dev structure
  1237. * @dev: input device to free
  1238. *
  1239. * This function should only be used if input_register_device()
  1240. * was not called yet or if it failed. Once device was registered
  1241. * use input_unregister_device() and memory will be freed once last
  1242. * reference to the device is dropped.
  1243. *
  1244. * Device should be allocated by input_allocate_device().
  1245. *
  1246. * NOTE: If there are references to the input device then memory
  1247. * will not be freed until last reference is dropped.
  1248. */
  1249. void input_free_device(struct input_dev *dev)
  1250. {
  1251. if (dev)
  1252. input_put_device(dev);
  1253. }
  1254. EXPORT_SYMBOL(input_free_device);
  1255. /**
  1256. * input_set_capability - mark device as capable of a certain event
  1257. * @dev: device that is capable of emitting or accepting event
  1258. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1259. * @code: event code
  1260. *
  1261. * In addition to setting up corresponding bit in appropriate capability
  1262. * bitmap the function also adjusts dev->evbit.
  1263. */
  1264. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1265. {
  1266. switch (type) {
  1267. case EV_KEY:
  1268. __set_bit(code, dev->keybit);
  1269. break;
  1270. case EV_REL:
  1271. __set_bit(code, dev->relbit);
  1272. break;
  1273. case EV_ABS:
  1274. __set_bit(code, dev->absbit);
  1275. break;
  1276. case EV_MSC:
  1277. __set_bit(code, dev->mscbit);
  1278. break;
  1279. case EV_SW:
  1280. __set_bit(code, dev->swbit);
  1281. break;
  1282. case EV_LED:
  1283. __set_bit(code, dev->ledbit);
  1284. break;
  1285. case EV_SND:
  1286. __set_bit(code, dev->sndbit);
  1287. break;
  1288. case EV_FF:
  1289. __set_bit(code, dev->ffbit);
  1290. break;
  1291. case EV_PWR:
  1292. /* do nothing */
  1293. break;
  1294. default:
  1295. printk(KERN_ERR
  1296. "input_set_capability: unknown type %u (code %u)\n",
  1297. type, code);
  1298. dump_stack();
  1299. return;
  1300. }
  1301. __set_bit(type, dev->evbit);
  1302. }
  1303. EXPORT_SYMBOL(input_set_capability);
  1304. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1305. do { \
  1306. if (!test_bit(EV_##type, dev->evbit)) \
  1307. memset(dev->bits##bit, 0, \
  1308. sizeof(dev->bits##bit)); \
  1309. } while (0)
  1310. static void input_cleanse_bitmasks(struct input_dev *dev)
  1311. {
  1312. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1313. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1314. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1315. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1316. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1317. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1318. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1319. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1320. }
  1321. /**
  1322. * input_register_device - register device with input core
  1323. * @dev: device to be registered
  1324. *
  1325. * This function registers device with input core. The device must be
  1326. * allocated with input_allocate_device() and all it's capabilities
  1327. * set up before registering.
  1328. * If function fails the device must be freed with input_free_device().
  1329. * Once device has been successfully registered it can be unregistered
  1330. * with input_unregister_device(); input_free_device() should not be
  1331. * called in this case.
  1332. */
  1333. int input_register_device(struct input_dev *dev)
  1334. {
  1335. static atomic_t input_no = ATOMIC_INIT(0);
  1336. struct input_handler *handler;
  1337. const char *path;
  1338. int error;
  1339. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1340. __set_bit(EV_SYN, dev->evbit);
  1341. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1342. __clear_bit(KEY_RESERVED, dev->keybit);
  1343. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1344. input_cleanse_bitmasks(dev);
  1345. /*
  1346. * If delay and period are pre-set by the driver, then autorepeating
  1347. * is handled by the driver itself and we don't do it in input.c.
  1348. */
  1349. init_timer(&dev->timer);
  1350. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1351. dev->timer.data = (long) dev;
  1352. dev->timer.function = input_repeat_key;
  1353. dev->rep[REP_DELAY] = 250;
  1354. dev->rep[REP_PERIOD] = 33;
  1355. }
  1356. if (!dev->getkeycode)
  1357. dev->getkeycode = input_default_getkeycode;
  1358. if (!dev->setkeycode)
  1359. dev->setkeycode = input_default_setkeycode;
  1360. dev_set_name(&dev->dev, "input%ld",
  1361. (unsigned long) atomic_inc_return(&input_no) - 1);
  1362. error = device_add(&dev->dev);
  1363. if (error)
  1364. return error;
  1365. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1366. printk(KERN_INFO "input: %s as %s\n",
  1367. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1368. kfree(path);
  1369. error = mutex_lock_interruptible(&input_mutex);
  1370. if (error) {
  1371. device_del(&dev->dev);
  1372. return error;
  1373. }
  1374. list_add_tail(&dev->node, &input_dev_list);
  1375. list_for_each_entry(handler, &input_handler_list, node)
  1376. input_attach_handler(dev, handler);
  1377. input_wakeup_procfs_readers();
  1378. mutex_unlock(&input_mutex);
  1379. return 0;
  1380. }
  1381. EXPORT_SYMBOL(input_register_device);
  1382. /**
  1383. * input_unregister_device - unregister previously registered device
  1384. * @dev: device to be unregistered
  1385. *
  1386. * This function unregisters an input device. Once device is unregistered
  1387. * the caller should not try to access it as it may get freed at any moment.
  1388. */
  1389. void input_unregister_device(struct input_dev *dev)
  1390. {
  1391. struct input_handle *handle, *next;
  1392. input_disconnect_device(dev);
  1393. mutex_lock(&input_mutex);
  1394. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1395. handle->handler->disconnect(handle);
  1396. WARN_ON(!list_empty(&dev->h_list));
  1397. del_timer_sync(&dev->timer);
  1398. list_del_init(&dev->node);
  1399. input_wakeup_procfs_readers();
  1400. mutex_unlock(&input_mutex);
  1401. device_unregister(&dev->dev);
  1402. }
  1403. EXPORT_SYMBOL(input_unregister_device);
  1404. /**
  1405. * input_register_handler - register a new input handler
  1406. * @handler: handler to be registered
  1407. *
  1408. * This function registers a new input handler (interface) for input
  1409. * devices in the system and attaches it to all input devices that
  1410. * are compatible with the handler.
  1411. */
  1412. int input_register_handler(struct input_handler *handler)
  1413. {
  1414. struct input_dev *dev;
  1415. int retval;
  1416. retval = mutex_lock_interruptible(&input_mutex);
  1417. if (retval)
  1418. return retval;
  1419. INIT_LIST_HEAD(&handler->h_list);
  1420. if (handler->fops != NULL) {
  1421. if (input_table[handler->minor >> 5]) {
  1422. retval = -EBUSY;
  1423. goto out;
  1424. }
  1425. input_table[handler->minor >> 5] = handler;
  1426. }
  1427. list_add_tail(&handler->node, &input_handler_list);
  1428. list_for_each_entry(dev, &input_dev_list, node)
  1429. input_attach_handler(dev, handler);
  1430. input_wakeup_procfs_readers();
  1431. out:
  1432. mutex_unlock(&input_mutex);
  1433. return retval;
  1434. }
  1435. EXPORT_SYMBOL(input_register_handler);
  1436. /**
  1437. * input_unregister_handler - unregisters an input handler
  1438. * @handler: handler to be unregistered
  1439. *
  1440. * This function disconnects a handler from its input devices and
  1441. * removes it from lists of known handlers.
  1442. */
  1443. void input_unregister_handler(struct input_handler *handler)
  1444. {
  1445. struct input_handle *handle, *next;
  1446. mutex_lock(&input_mutex);
  1447. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1448. handler->disconnect(handle);
  1449. WARN_ON(!list_empty(&handler->h_list));
  1450. list_del_init(&handler->node);
  1451. if (handler->fops != NULL)
  1452. input_table[handler->minor >> 5] = NULL;
  1453. input_wakeup_procfs_readers();
  1454. mutex_unlock(&input_mutex);
  1455. }
  1456. EXPORT_SYMBOL(input_unregister_handler);
  1457. /**
  1458. * input_handler_for_each_handle - handle iterator
  1459. * @handler: input handler to iterate
  1460. * @data: data for the callback
  1461. * @fn: function to be called for each handle
  1462. *
  1463. * Iterate over @bus's list of devices, and call @fn for each, passing
  1464. * it @data and stop when @fn returns a non-zero value. The function is
  1465. * using RCU to traverse the list and therefore may be usind in atonic
  1466. * contexts. The @fn callback is invoked from RCU critical section and
  1467. * thus must not sleep.
  1468. */
  1469. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1470. int (*fn)(struct input_handle *, void *))
  1471. {
  1472. struct input_handle *handle;
  1473. int retval = 0;
  1474. rcu_read_lock();
  1475. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1476. retval = fn(handle, data);
  1477. if (retval)
  1478. break;
  1479. }
  1480. rcu_read_unlock();
  1481. return retval;
  1482. }
  1483. EXPORT_SYMBOL(input_handler_for_each_handle);
  1484. /**
  1485. * input_register_handle - register a new input handle
  1486. * @handle: handle to register
  1487. *
  1488. * This function puts a new input handle onto device's
  1489. * and handler's lists so that events can flow through
  1490. * it once it is opened using input_open_device().
  1491. *
  1492. * This function is supposed to be called from handler's
  1493. * connect() method.
  1494. */
  1495. int input_register_handle(struct input_handle *handle)
  1496. {
  1497. struct input_handler *handler = handle->handler;
  1498. struct input_dev *dev = handle->dev;
  1499. int error;
  1500. /*
  1501. * We take dev->mutex here to prevent race with
  1502. * input_release_device().
  1503. */
  1504. error = mutex_lock_interruptible(&dev->mutex);
  1505. if (error)
  1506. return error;
  1507. /*
  1508. * Filters go to the head of the list, normal handlers
  1509. * to the tail.
  1510. */
  1511. if (handler->filter)
  1512. list_add_rcu(&handle->d_node, &dev->h_list);
  1513. else
  1514. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1515. mutex_unlock(&dev->mutex);
  1516. /*
  1517. * Since we are supposed to be called from ->connect()
  1518. * which is mutually exclusive with ->disconnect()
  1519. * we can't be racing with input_unregister_handle()
  1520. * and so separate lock is not needed here.
  1521. */
  1522. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1523. if (handler->start)
  1524. handler->start(handle);
  1525. return 0;
  1526. }
  1527. EXPORT_SYMBOL(input_register_handle);
  1528. /**
  1529. * input_unregister_handle - unregister an input handle
  1530. * @handle: handle to unregister
  1531. *
  1532. * This function removes input handle from device's
  1533. * and handler's lists.
  1534. *
  1535. * This function is supposed to be called from handler's
  1536. * disconnect() method.
  1537. */
  1538. void input_unregister_handle(struct input_handle *handle)
  1539. {
  1540. struct input_dev *dev = handle->dev;
  1541. list_del_rcu(&handle->h_node);
  1542. /*
  1543. * Take dev->mutex to prevent race with input_release_device().
  1544. */
  1545. mutex_lock(&dev->mutex);
  1546. list_del_rcu(&handle->d_node);
  1547. mutex_unlock(&dev->mutex);
  1548. synchronize_rcu();
  1549. }
  1550. EXPORT_SYMBOL(input_unregister_handle);
  1551. static int input_open_file(struct inode *inode, struct file *file)
  1552. {
  1553. struct input_handler *handler;
  1554. const struct file_operations *old_fops, *new_fops = NULL;
  1555. int err;
  1556. err = mutex_lock_interruptible(&input_mutex);
  1557. if (err)
  1558. return err;
  1559. /* No load-on-demand here? */
  1560. handler = input_table[iminor(inode) >> 5];
  1561. if (handler)
  1562. new_fops = fops_get(handler->fops);
  1563. mutex_unlock(&input_mutex);
  1564. /*
  1565. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1566. * not "no device". Oh, well...
  1567. */
  1568. if (!new_fops || !new_fops->open) {
  1569. fops_put(new_fops);
  1570. err = -ENODEV;
  1571. goto out;
  1572. }
  1573. old_fops = file->f_op;
  1574. file->f_op = new_fops;
  1575. err = new_fops->open(inode, file);
  1576. if (err) {
  1577. fops_put(file->f_op);
  1578. file->f_op = fops_get(old_fops);
  1579. }
  1580. fops_put(old_fops);
  1581. out:
  1582. return err;
  1583. }
  1584. static const struct file_operations input_fops = {
  1585. .owner = THIS_MODULE,
  1586. .open = input_open_file,
  1587. };
  1588. static void __init input_init_abs_bypass(void)
  1589. {
  1590. const unsigned int *p;
  1591. for (p = input_abs_bypass_init_data; *p; p++)
  1592. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1593. }
  1594. static int __init input_init(void)
  1595. {
  1596. int err;
  1597. input_init_abs_bypass();
  1598. err = class_register(&input_class);
  1599. if (err) {
  1600. printk(KERN_ERR "input: unable to register input_dev class\n");
  1601. return err;
  1602. }
  1603. err = input_proc_init();
  1604. if (err)
  1605. goto fail1;
  1606. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1607. if (err) {
  1608. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1609. goto fail2;
  1610. }
  1611. return 0;
  1612. fail2: input_proc_exit();
  1613. fail1: class_unregister(&input_class);
  1614. return err;
  1615. }
  1616. static void __exit input_exit(void)
  1617. {
  1618. input_proc_exit();
  1619. unregister_chrdev(INPUT_MAJOR, "input");
  1620. class_unregister(&input_class);
  1621. }
  1622. subsys_initcall(input_init);
  1623. module_exit(input_exit);