powernow-k8.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451
  1. /*
  2. * (c) 2003-2006 Advanced Micro Devices, Inc.
  3. * Your use of this code is subject to the terms and conditions of the
  4. * GNU general public license version 2. See "COPYING" or
  5. * http://www.gnu.org/licenses/gpl.html
  6. *
  7. * Support : mark.langsdorf@amd.com
  8. *
  9. * Based on the powernow-k7.c module written by Dave Jones.
  10. * (C) 2003 Dave Jones on behalf of SuSE Labs
  11. * (C) 2004 Dominik Brodowski <linux@brodo.de>
  12. * (C) 2004 Pavel Machek <pavel@suse.cz>
  13. * Licensed under the terms of the GNU GPL License version 2.
  14. * Based upon datasheets & sample CPUs kindly provided by AMD.
  15. *
  16. * Valuable input gratefully received from Dave Jones, Pavel Machek,
  17. * Dominik Brodowski, Jacob Shin, and others.
  18. * Originally developed by Paul Devriendt.
  19. * Processor information obtained from Chapter 9 (Power and Thermal Management)
  20. * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
  21. * Opteron Processors" available for download from www.amd.com
  22. *
  23. * Tables for specific CPUs can be inferred from
  24. * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
  25. */
  26. #include <linux/kernel.h>
  27. #include <linux/smp.h>
  28. #include <linux/module.h>
  29. #include <linux/init.h>
  30. #include <linux/cpufreq.h>
  31. #include <linux/slab.h>
  32. #include <linux/string.h>
  33. #include <linux/cpumask.h>
  34. #include <linux/sched.h> /* for current / set_cpus_allowed() */
  35. #include <linux/io.h>
  36. #include <linux/delay.h>
  37. #include <asm/msr.h>
  38. #include <linux/acpi.h>
  39. #include <linux/mutex.h>
  40. #include <acpi/processor.h>
  41. #define PFX "powernow-k8: "
  42. #define VERSION "version 2.20.00"
  43. #include "powernow-k8.h"
  44. /* serialize freq changes */
  45. static DEFINE_MUTEX(fidvid_mutex);
  46. static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
  47. static int cpu_family = CPU_OPTERON;
  48. #ifndef CONFIG_SMP
  49. static inline const struct cpumask *cpu_core_mask(int cpu)
  50. {
  51. return cpumask_of(0);
  52. }
  53. #endif
  54. /* Return a frequency in MHz, given an input fid */
  55. static u32 find_freq_from_fid(u32 fid)
  56. {
  57. return 800 + (fid * 100);
  58. }
  59. /* Return a frequency in KHz, given an input fid */
  60. static u32 find_khz_freq_from_fid(u32 fid)
  61. {
  62. return 1000 * find_freq_from_fid(fid);
  63. }
  64. static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
  65. u32 pstate)
  66. {
  67. return data[pstate].frequency;
  68. }
  69. /* Return the vco fid for an input fid
  70. *
  71. * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
  72. * only from corresponding high fids. This returns "high" fid corresponding to
  73. * "low" one.
  74. */
  75. static u32 convert_fid_to_vco_fid(u32 fid)
  76. {
  77. if (fid < HI_FID_TABLE_BOTTOM)
  78. return 8 + (2 * fid);
  79. else
  80. return fid;
  81. }
  82. /*
  83. * Return 1 if the pending bit is set. Unless we just instructed the processor
  84. * to transition to a new state, seeing this bit set is really bad news.
  85. */
  86. static int pending_bit_stuck(void)
  87. {
  88. u32 lo, hi;
  89. if (cpu_family == CPU_HW_PSTATE)
  90. return 0;
  91. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  92. return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
  93. }
  94. /*
  95. * Update the global current fid / vid values from the status msr.
  96. * Returns 1 on error.
  97. */
  98. static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
  99. {
  100. u32 lo, hi;
  101. u32 i = 0;
  102. if (cpu_family == CPU_HW_PSTATE) {
  103. rdmsr(MSR_PSTATE_STATUS, lo, hi);
  104. i = lo & HW_PSTATE_MASK;
  105. data->currpstate = i;
  106. /*
  107. * a workaround for family 11h erratum 311 might cause
  108. * an "out-of-range Pstate if the core is in Pstate-0
  109. */
  110. if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
  111. data->currpstate = HW_PSTATE_0;
  112. return 0;
  113. }
  114. do {
  115. if (i++ > 10000) {
  116. dprintk("detected change pending stuck\n");
  117. return 1;
  118. }
  119. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  120. } while (lo & MSR_S_LO_CHANGE_PENDING);
  121. data->currvid = hi & MSR_S_HI_CURRENT_VID;
  122. data->currfid = lo & MSR_S_LO_CURRENT_FID;
  123. return 0;
  124. }
  125. /* the isochronous relief time */
  126. static void count_off_irt(struct powernow_k8_data *data)
  127. {
  128. udelay((1 << data->irt) * 10);
  129. return;
  130. }
  131. /* the voltage stabilization time */
  132. static void count_off_vst(struct powernow_k8_data *data)
  133. {
  134. udelay(data->vstable * VST_UNITS_20US);
  135. return;
  136. }
  137. /* need to init the control msr to a safe value (for each cpu) */
  138. static void fidvid_msr_init(void)
  139. {
  140. u32 lo, hi;
  141. u8 fid, vid;
  142. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  143. vid = hi & MSR_S_HI_CURRENT_VID;
  144. fid = lo & MSR_S_LO_CURRENT_FID;
  145. lo = fid | (vid << MSR_C_LO_VID_SHIFT);
  146. hi = MSR_C_HI_STP_GNT_BENIGN;
  147. dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
  148. wrmsr(MSR_FIDVID_CTL, lo, hi);
  149. }
  150. /* write the new fid value along with the other control fields to the msr */
  151. static int write_new_fid(struct powernow_k8_data *data, u32 fid)
  152. {
  153. u32 lo;
  154. u32 savevid = data->currvid;
  155. u32 i = 0;
  156. if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
  157. printk(KERN_ERR PFX "internal error - overflow on fid write\n");
  158. return 1;
  159. }
  160. lo = fid;
  161. lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
  162. lo |= MSR_C_LO_INIT_FID_VID;
  163. dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
  164. fid, lo, data->plllock * PLL_LOCK_CONVERSION);
  165. do {
  166. wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
  167. if (i++ > 100) {
  168. printk(KERN_ERR PFX
  169. "Hardware error - pending bit very stuck - "
  170. "no further pstate changes possible\n");
  171. return 1;
  172. }
  173. } while (query_current_values_with_pending_wait(data));
  174. count_off_irt(data);
  175. if (savevid != data->currvid) {
  176. printk(KERN_ERR PFX
  177. "vid change on fid trans, old 0x%x, new 0x%x\n",
  178. savevid, data->currvid);
  179. return 1;
  180. }
  181. if (fid != data->currfid) {
  182. printk(KERN_ERR PFX
  183. "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
  184. data->currfid);
  185. return 1;
  186. }
  187. return 0;
  188. }
  189. /* Write a new vid to the hardware */
  190. static int write_new_vid(struct powernow_k8_data *data, u32 vid)
  191. {
  192. u32 lo;
  193. u32 savefid = data->currfid;
  194. int i = 0;
  195. if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
  196. printk(KERN_ERR PFX "internal error - overflow on vid write\n");
  197. return 1;
  198. }
  199. lo = data->currfid;
  200. lo |= (vid << MSR_C_LO_VID_SHIFT);
  201. lo |= MSR_C_LO_INIT_FID_VID;
  202. dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
  203. vid, lo, STOP_GRANT_5NS);
  204. do {
  205. wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
  206. if (i++ > 100) {
  207. printk(KERN_ERR PFX "internal error - pending bit "
  208. "very stuck - no further pstate "
  209. "changes possible\n");
  210. return 1;
  211. }
  212. } while (query_current_values_with_pending_wait(data));
  213. if (savefid != data->currfid) {
  214. printk(KERN_ERR PFX "fid changed on vid trans, old "
  215. "0x%x new 0x%x\n",
  216. savefid, data->currfid);
  217. return 1;
  218. }
  219. if (vid != data->currvid) {
  220. printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
  221. "curr 0x%x\n",
  222. vid, data->currvid);
  223. return 1;
  224. }
  225. return 0;
  226. }
  227. /*
  228. * Reduce the vid by the max of step or reqvid.
  229. * Decreasing vid codes represent increasing voltages:
  230. * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
  231. */
  232. static int decrease_vid_code_by_step(struct powernow_k8_data *data,
  233. u32 reqvid, u32 step)
  234. {
  235. if ((data->currvid - reqvid) > step)
  236. reqvid = data->currvid - step;
  237. if (write_new_vid(data, reqvid))
  238. return 1;
  239. count_off_vst(data);
  240. return 0;
  241. }
  242. /* Change hardware pstate by single MSR write */
  243. static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
  244. {
  245. wrmsr(MSR_PSTATE_CTRL, pstate, 0);
  246. data->currpstate = pstate;
  247. return 0;
  248. }
  249. /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
  250. static int transition_fid_vid(struct powernow_k8_data *data,
  251. u32 reqfid, u32 reqvid)
  252. {
  253. if (core_voltage_pre_transition(data, reqvid, reqfid))
  254. return 1;
  255. if (core_frequency_transition(data, reqfid))
  256. return 1;
  257. if (core_voltage_post_transition(data, reqvid))
  258. return 1;
  259. if (query_current_values_with_pending_wait(data))
  260. return 1;
  261. if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
  262. printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
  263. "curr 0x%x 0x%x\n",
  264. smp_processor_id(),
  265. reqfid, reqvid, data->currfid, data->currvid);
  266. return 1;
  267. }
  268. dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
  269. smp_processor_id(), data->currfid, data->currvid);
  270. return 0;
  271. }
  272. /* Phase 1 - core voltage transition ... setup voltage */
  273. static int core_voltage_pre_transition(struct powernow_k8_data *data,
  274. u32 reqvid, u32 reqfid)
  275. {
  276. u32 rvosteps = data->rvo;
  277. u32 savefid = data->currfid;
  278. u32 maxvid, lo, rvomult = 1;
  279. dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
  280. "reqvid 0x%x, rvo 0x%x\n",
  281. smp_processor_id(),
  282. data->currfid, data->currvid, reqvid, data->rvo);
  283. if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
  284. rvomult = 2;
  285. rvosteps *= rvomult;
  286. rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
  287. maxvid = 0x1f & (maxvid >> 16);
  288. dprintk("ph1 maxvid=0x%x\n", maxvid);
  289. if (reqvid < maxvid) /* lower numbers are higher voltages */
  290. reqvid = maxvid;
  291. while (data->currvid > reqvid) {
  292. dprintk("ph1: curr 0x%x, req vid 0x%x\n",
  293. data->currvid, reqvid);
  294. if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
  295. return 1;
  296. }
  297. while ((rvosteps > 0) &&
  298. ((rvomult * data->rvo + data->currvid) > reqvid)) {
  299. if (data->currvid == maxvid) {
  300. rvosteps = 0;
  301. } else {
  302. dprintk("ph1: changing vid for rvo, req 0x%x\n",
  303. data->currvid - 1);
  304. if (decrease_vid_code_by_step(data, data->currvid-1, 1))
  305. return 1;
  306. rvosteps--;
  307. }
  308. }
  309. if (query_current_values_with_pending_wait(data))
  310. return 1;
  311. if (savefid != data->currfid) {
  312. printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
  313. data->currfid);
  314. return 1;
  315. }
  316. dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
  317. data->currfid, data->currvid);
  318. return 0;
  319. }
  320. /* Phase 2 - core frequency transition */
  321. static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
  322. {
  323. u32 vcoreqfid, vcocurrfid, vcofiddiff;
  324. u32 fid_interval, savevid = data->currvid;
  325. if (data->currfid == reqfid) {
  326. printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
  327. data->currfid);
  328. return 0;
  329. }
  330. dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
  331. "reqfid 0x%x\n",
  332. smp_processor_id(),
  333. data->currfid, data->currvid, reqfid);
  334. vcoreqfid = convert_fid_to_vco_fid(reqfid);
  335. vcocurrfid = convert_fid_to_vco_fid(data->currfid);
  336. vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
  337. : vcoreqfid - vcocurrfid;
  338. if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
  339. vcofiddiff = 0;
  340. while (vcofiddiff > 2) {
  341. (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
  342. if (reqfid > data->currfid) {
  343. if (data->currfid > LO_FID_TABLE_TOP) {
  344. if (write_new_fid(data,
  345. data->currfid + fid_interval))
  346. return 1;
  347. } else {
  348. if (write_new_fid
  349. (data,
  350. 2 + convert_fid_to_vco_fid(data->currfid)))
  351. return 1;
  352. }
  353. } else {
  354. if (write_new_fid(data, data->currfid - fid_interval))
  355. return 1;
  356. }
  357. vcocurrfid = convert_fid_to_vco_fid(data->currfid);
  358. vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
  359. : vcoreqfid - vcocurrfid;
  360. }
  361. if (write_new_fid(data, reqfid))
  362. return 1;
  363. if (query_current_values_with_pending_wait(data))
  364. return 1;
  365. if (data->currfid != reqfid) {
  366. printk(KERN_ERR PFX
  367. "ph2: mismatch, failed fid transition, "
  368. "curr 0x%x, req 0x%x\n",
  369. data->currfid, reqfid);
  370. return 1;
  371. }
  372. if (savevid != data->currvid) {
  373. printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
  374. savevid, data->currvid);
  375. return 1;
  376. }
  377. dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
  378. data->currfid, data->currvid);
  379. return 0;
  380. }
  381. /* Phase 3 - core voltage transition flow ... jump to the final vid. */
  382. static int core_voltage_post_transition(struct powernow_k8_data *data,
  383. u32 reqvid)
  384. {
  385. u32 savefid = data->currfid;
  386. u32 savereqvid = reqvid;
  387. dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
  388. smp_processor_id(),
  389. data->currfid, data->currvid);
  390. if (reqvid != data->currvid) {
  391. if (write_new_vid(data, reqvid))
  392. return 1;
  393. if (savefid != data->currfid) {
  394. printk(KERN_ERR PFX
  395. "ph3: bad fid change, save 0x%x, curr 0x%x\n",
  396. savefid, data->currfid);
  397. return 1;
  398. }
  399. if (data->currvid != reqvid) {
  400. printk(KERN_ERR PFX
  401. "ph3: failed vid transition\n, "
  402. "req 0x%x, curr 0x%x",
  403. reqvid, data->currvid);
  404. return 1;
  405. }
  406. }
  407. if (query_current_values_with_pending_wait(data))
  408. return 1;
  409. if (savereqvid != data->currvid) {
  410. dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
  411. return 1;
  412. }
  413. if (savefid != data->currfid) {
  414. dprintk("ph3 failed, currfid changed 0x%x\n",
  415. data->currfid);
  416. return 1;
  417. }
  418. dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
  419. data->currfid, data->currvid);
  420. return 0;
  421. }
  422. static void check_supported_cpu(void *_rc)
  423. {
  424. u32 eax, ebx, ecx, edx;
  425. int *rc = _rc;
  426. *rc = -ENODEV;
  427. if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
  428. return;
  429. eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  430. if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
  431. ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
  432. return;
  433. if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
  434. if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
  435. ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
  436. printk(KERN_INFO PFX
  437. "Processor cpuid %x not supported\n", eax);
  438. return;
  439. }
  440. eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
  441. if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
  442. printk(KERN_INFO PFX
  443. "No frequency change capabilities detected\n");
  444. return;
  445. }
  446. cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
  447. if ((edx & P_STATE_TRANSITION_CAPABLE)
  448. != P_STATE_TRANSITION_CAPABLE) {
  449. printk(KERN_INFO PFX
  450. "Power state transitions not supported\n");
  451. return;
  452. }
  453. } else { /* must be a HW Pstate capable processor */
  454. cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
  455. if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
  456. cpu_family = CPU_HW_PSTATE;
  457. else
  458. return;
  459. }
  460. *rc = 0;
  461. }
  462. static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
  463. u8 maxvid)
  464. {
  465. unsigned int j;
  466. u8 lastfid = 0xff;
  467. for (j = 0; j < data->numps; j++) {
  468. if (pst[j].vid > LEAST_VID) {
  469. printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
  470. j, pst[j].vid);
  471. return -EINVAL;
  472. }
  473. if (pst[j].vid < data->rvo) {
  474. /* vid + rvo >= 0 */
  475. printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
  476. " %d\n", j);
  477. return -ENODEV;
  478. }
  479. if (pst[j].vid < maxvid + data->rvo) {
  480. /* vid + rvo >= maxvid */
  481. printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
  482. " %d\n", j);
  483. return -ENODEV;
  484. }
  485. if (pst[j].fid > MAX_FID) {
  486. printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
  487. " %d\n", j);
  488. return -ENODEV;
  489. }
  490. if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
  491. /* Only first fid is allowed to be in "low" range */
  492. printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
  493. "0x%x\n", j, pst[j].fid);
  494. return -EINVAL;
  495. }
  496. if (pst[j].fid < lastfid)
  497. lastfid = pst[j].fid;
  498. }
  499. if (lastfid & 1) {
  500. printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
  501. return -EINVAL;
  502. }
  503. if (lastfid > LO_FID_TABLE_TOP)
  504. printk(KERN_INFO FW_BUG PFX
  505. "first fid not from lo freq table\n");
  506. return 0;
  507. }
  508. static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
  509. unsigned int entry)
  510. {
  511. powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
  512. }
  513. static void print_basics(struct powernow_k8_data *data)
  514. {
  515. int j;
  516. for (j = 0; j < data->numps; j++) {
  517. if (data->powernow_table[j].frequency !=
  518. CPUFREQ_ENTRY_INVALID) {
  519. if (cpu_family == CPU_HW_PSTATE) {
  520. printk(KERN_INFO PFX
  521. " %d : pstate %d (%d MHz)\n", j,
  522. data->powernow_table[j].index,
  523. data->powernow_table[j].frequency/1000);
  524. } else {
  525. printk(KERN_INFO PFX
  526. " %d : fid 0x%x (%d MHz), vid 0x%x\n",
  527. j,
  528. data->powernow_table[j].index & 0xff,
  529. data->powernow_table[j].frequency/1000,
  530. data->powernow_table[j].index >> 8);
  531. }
  532. }
  533. }
  534. if (data->batps)
  535. printk(KERN_INFO PFX "Only %d pstates on battery\n",
  536. data->batps);
  537. }
  538. static u32 freq_from_fid_did(u32 fid, u32 did)
  539. {
  540. u32 mhz = 0;
  541. if (boot_cpu_data.x86 == 0x10)
  542. mhz = (100 * (fid + 0x10)) >> did;
  543. else if (boot_cpu_data.x86 == 0x11)
  544. mhz = (100 * (fid + 8)) >> did;
  545. else
  546. BUG();
  547. return mhz * 1000;
  548. }
  549. static int fill_powernow_table(struct powernow_k8_data *data,
  550. struct pst_s *pst, u8 maxvid)
  551. {
  552. struct cpufreq_frequency_table *powernow_table;
  553. unsigned int j;
  554. if (data->batps) {
  555. /* use ACPI support to get full speed on mains power */
  556. printk(KERN_WARNING PFX
  557. "Only %d pstates usable (use ACPI driver for full "
  558. "range\n", data->batps);
  559. data->numps = data->batps;
  560. }
  561. for (j = 1; j < data->numps; j++) {
  562. if (pst[j-1].fid >= pst[j].fid) {
  563. printk(KERN_ERR PFX "PST out of sequence\n");
  564. return -EINVAL;
  565. }
  566. }
  567. if (data->numps < 2) {
  568. printk(KERN_ERR PFX "no p states to transition\n");
  569. return -ENODEV;
  570. }
  571. if (check_pst_table(data, pst, maxvid))
  572. return -EINVAL;
  573. powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
  574. * (data->numps + 1)), GFP_KERNEL);
  575. if (!powernow_table) {
  576. printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
  577. return -ENOMEM;
  578. }
  579. for (j = 0; j < data->numps; j++) {
  580. int freq;
  581. powernow_table[j].index = pst[j].fid; /* lower 8 bits */
  582. powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
  583. freq = find_khz_freq_from_fid(pst[j].fid);
  584. powernow_table[j].frequency = freq;
  585. }
  586. powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
  587. powernow_table[data->numps].index = 0;
  588. if (query_current_values_with_pending_wait(data)) {
  589. kfree(powernow_table);
  590. return -EIO;
  591. }
  592. dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
  593. data->powernow_table = powernow_table;
  594. if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
  595. print_basics(data);
  596. for (j = 0; j < data->numps; j++)
  597. if ((pst[j].fid == data->currfid) &&
  598. (pst[j].vid == data->currvid))
  599. return 0;
  600. dprintk("currfid/vid do not match PST, ignoring\n");
  601. return 0;
  602. }
  603. /* Find and validate the PSB/PST table in BIOS. */
  604. static int find_psb_table(struct powernow_k8_data *data)
  605. {
  606. struct psb_s *psb;
  607. unsigned int i;
  608. u32 mvs;
  609. u8 maxvid;
  610. u32 cpst = 0;
  611. u32 thiscpuid;
  612. for (i = 0xc0000; i < 0xffff0; i += 0x10) {
  613. /* Scan BIOS looking for the signature. */
  614. /* It can not be at ffff0 - it is too big. */
  615. psb = phys_to_virt(i);
  616. if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
  617. continue;
  618. dprintk("found PSB header at 0x%p\n", psb);
  619. dprintk("table vers: 0x%x\n", psb->tableversion);
  620. if (psb->tableversion != PSB_VERSION_1_4) {
  621. printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
  622. return -ENODEV;
  623. }
  624. dprintk("flags: 0x%x\n", psb->flags1);
  625. if (psb->flags1) {
  626. printk(KERN_ERR FW_BUG PFX "unknown flags\n");
  627. return -ENODEV;
  628. }
  629. data->vstable = psb->vstable;
  630. dprintk("voltage stabilization time: %d(*20us)\n",
  631. data->vstable);
  632. dprintk("flags2: 0x%x\n", psb->flags2);
  633. data->rvo = psb->flags2 & 3;
  634. data->irt = ((psb->flags2) >> 2) & 3;
  635. mvs = ((psb->flags2) >> 4) & 3;
  636. data->vidmvs = 1 << mvs;
  637. data->batps = ((psb->flags2) >> 6) & 3;
  638. dprintk("ramp voltage offset: %d\n", data->rvo);
  639. dprintk("isochronous relief time: %d\n", data->irt);
  640. dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
  641. dprintk("numpst: 0x%x\n", psb->num_tables);
  642. cpst = psb->num_tables;
  643. if ((psb->cpuid == 0x00000fc0) ||
  644. (psb->cpuid == 0x00000fe0)) {
  645. thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  646. if ((thiscpuid == 0x00000fc0) ||
  647. (thiscpuid == 0x00000fe0))
  648. cpst = 1;
  649. }
  650. if (cpst != 1) {
  651. printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
  652. return -ENODEV;
  653. }
  654. data->plllock = psb->plllocktime;
  655. dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
  656. dprintk("maxfid: 0x%x\n", psb->maxfid);
  657. dprintk("maxvid: 0x%x\n", psb->maxvid);
  658. maxvid = psb->maxvid;
  659. data->numps = psb->numps;
  660. dprintk("numpstates: 0x%x\n", data->numps);
  661. return fill_powernow_table(data,
  662. (struct pst_s *)(psb+1), maxvid);
  663. }
  664. /*
  665. * If you see this message, complain to BIOS manufacturer. If
  666. * he tells you "we do not support Linux" or some similar
  667. * nonsense, remember that Windows 2000 uses the same legacy
  668. * mechanism that the old Linux PSB driver uses. Tell them it
  669. * is broken with Windows 2000.
  670. *
  671. * The reference to the AMD documentation is chapter 9 in the
  672. * BIOS and Kernel Developer's Guide, which is available on
  673. * www.amd.com
  674. */
  675. printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
  676. return -ENODEV;
  677. }
  678. static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
  679. unsigned int index)
  680. {
  681. u64 control;
  682. if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
  683. return;
  684. control = data->acpi_data.states[index].control;
  685. data->irt = (control >> IRT_SHIFT) & IRT_MASK;
  686. data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
  687. data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
  688. data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
  689. data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
  690. data->vstable = (control >> VST_SHIFT) & VST_MASK;
  691. }
  692. static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
  693. {
  694. struct cpufreq_frequency_table *powernow_table;
  695. int ret_val = -ENODEV;
  696. u64 control, status;
  697. if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
  698. dprintk("register performance failed: bad ACPI data\n");
  699. return -EIO;
  700. }
  701. /* verify the data contained in the ACPI structures */
  702. if (data->acpi_data.state_count <= 1) {
  703. dprintk("No ACPI P-States\n");
  704. goto err_out;
  705. }
  706. control = data->acpi_data.control_register.space_id;
  707. status = data->acpi_data.status_register.space_id;
  708. if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
  709. (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
  710. dprintk("Invalid control/status registers (%x - %x)\n",
  711. control, status);
  712. goto err_out;
  713. }
  714. /* fill in data->powernow_table */
  715. powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
  716. * (data->acpi_data.state_count + 1)), GFP_KERNEL);
  717. if (!powernow_table) {
  718. dprintk("powernow_table memory alloc failure\n");
  719. goto err_out;
  720. }
  721. /* fill in data */
  722. data->numps = data->acpi_data.state_count;
  723. powernow_k8_acpi_pst_values(data, 0);
  724. if (cpu_family == CPU_HW_PSTATE)
  725. ret_val = fill_powernow_table_pstate(data, powernow_table);
  726. else
  727. ret_val = fill_powernow_table_fidvid(data, powernow_table);
  728. if (ret_val)
  729. goto err_out_mem;
  730. powernow_table[data->acpi_data.state_count].frequency =
  731. CPUFREQ_TABLE_END;
  732. powernow_table[data->acpi_data.state_count].index = 0;
  733. data->powernow_table = powernow_table;
  734. if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
  735. print_basics(data);
  736. /* notify BIOS that we exist */
  737. acpi_processor_notify_smm(THIS_MODULE);
  738. if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
  739. printk(KERN_ERR PFX
  740. "unable to alloc powernow_k8_data cpumask\n");
  741. ret_val = -ENOMEM;
  742. goto err_out_mem;
  743. }
  744. return 0;
  745. err_out_mem:
  746. kfree(powernow_table);
  747. err_out:
  748. acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
  749. /* data->acpi_data.state_count informs us at ->exit()
  750. * whether ACPI was used */
  751. data->acpi_data.state_count = 0;
  752. return ret_val;
  753. }
  754. static int fill_powernow_table_pstate(struct powernow_k8_data *data,
  755. struct cpufreq_frequency_table *powernow_table)
  756. {
  757. int i;
  758. u32 hi = 0, lo = 0;
  759. rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
  760. data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
  761. for (i = 0; i < data->acpi_data.state_count; i++) {
  762. u32 index;
  763. index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
  764. if (index > data->max_hw_pstate) {
  765. printk(KERN_ERR PFX "invalid pstate %d - "
  766. "bad value %d.\n", i, index);
  767. printk(KERN_ERR PFX "Please report to BIOS "
  768. "manufacturer\n");
  769. invalidate_entry(powernow_table, i);
  770. continue;
  771. }
  772. rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
  773. if (!(hi & HW_PSTATE_VALID_MASK)) {
  774. dprintk("invalid pstate %d, ignoring\n", index);
  775. invalidate_entry(powernow_table, i);
  776. continue;
  777. }
  778. powernow_table[i].index = index;
  779. /* Frequency may be rounded for these */
  780. if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
  781. || boot_cpu_data.x86 == 0x11) {
  782. powernow_table[i].frequency =
  783. freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
  784. } else
  785. powernow_table[i].frequency =
  786. data->acpi_data.states[i].core_frequency * 1000;
  787. }
  788. return 0;
  789. }
  790. static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
  791. struct cpufreq_frequency_table *powernow_table)
  792. {
  793. int i;
  794. for (i = 0; i < data->acpi_data.state_count; i++) {
  795. u32 fid;
  796. u32 vid;
  797. u32 freq, index;
  798. u64 status, control;
  799. if (data->exttype) {
  800. status = data->acpi_data.states[i].status;
  801. fid = status & EXT_FID_MASK;
  802. vid = (status >> VID_SHIFT) & EXT_VID_MASK;
  803. } else {
  804. control = data->acpi_data.states[i].control;
  805. fid = control & FID_MASK;
  806. vid = (control >> VID_SHIFT) & VID_MASK;
  807. }
  808. dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
  809. index = fid | (vid<<8);
  810. powernow_table[i].index = index;
  811. freq = find_khz_freq_from_fid(fid);
  812. powernow_table[i].frequency = freq;
  813. /* verify frequency is OK */
  814. if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
  815. dprintk("invalid freq %u kHz, ignoring\n", freq);
  816. invalidate_entry(powernow_table, i);
  817. continue;
  818. }
  819. /* verify voltage is OK -
  820. * BIOSs are using "off" to indicate invalid */
  821. if (vid == VID_OFF) {
  822. dprintk("invalid vid %u, ignoring\n", vid);
  823. invalidate_entry(powernow_table, i);
  824. continue;
  825. }
  826. if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
  827. printk(KERN_INFO PFX "invalid freq entries "
  828. "%u kHz vs. %u kHz\n", freq,
  829. (unsigned int)
  830. (data->acpi_data.states[i].core_frequency
  831. * 1000));
  832. invalidate_entry(powernow_table, i);
  833. continue;
  834. }
  835. }
  836. return 0;
  837. }
  838. static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
  839. {
  840. if (data->acpi_data.state_count)
  841. acpi_processor_unregister_performance(&data->acpi_data,
  842. data->cpu);
  843. free_cpumask_var(data->acpi_data.shared_cpu_map);
  844. }
  845. static int get_transition_latency(struct powernow_k8_data *data)
  846. {
  847. int max_latency = 0;
  848. int i;
  849. for (i = 0; i < data->acpi_data.state_count; i++) {
  850. int cur_latency = data->acpi_data.states[i].transition_latency
  851. + data->acpi_data.states[i].bus_master_latency;
  852. if (cur_latency > max_latency)
  853. max_latency = cur_latency;
  854. }
  855. if (max_latency == 0) {
  856. /*
  857. * Fam 11h always returns 0 as transition latency.
  858. * This is intended and means "very fast". While cpufreq core
  859. * and governors currently can handle that gracefully, better
  860. * set it to 1 to avoid problems in the future.
  861. * For all others it's a BIOS bug.
  862. */
  863. if (boot_cpu_data.x86 != 0x11)
  864. printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
  865. "latency\n");
  866. max_latency = 1;
  867. }
  868. /* value in usecs, needs to be in nanoseconds */
  869. return 1000 * max_latency;
  870. }
  871. /* Take a frequency, and issue the fid/vid transition command */
  872. static int transition_frequency_fidvid(struct powernow_k8_data *data,
  873. unsigned int index)
  874. {
  875. u32 fid = 0;
  876. u32 vid = 0;
  877. int res, i;
  878. struct cpufreq_freqs freqs;
  879. dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
  880. /* fid/vid correctness check for k8 */
  881. /* fid are the lower 8 bits of the index we stored into
  882. * the cpufreq frequency table in find_psb_table, vid
  883. * are the upper 8 bits.
  884. */
  885. fid = data->powernow_table[index].index & 0xFF;
  886. vid = (data->powernow_table[index].index & 0xFF00) >> 8;
  887. dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
  888. if (query_current_values_with_pending_wait(data))
  889. return 1;
  890. if ((data->currvid == vid) && (data->currfid == fid)) {
  891. dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
  892. fid, vid);
  893. return 0;
  894. }
  895. dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
  896. smp_processor_id(), fid, vid);
  897. freqs.old = find_khz_freq_from_fid(data->currfid);
  898. freqs.new = find_khz_freq_from_fid(fid);
  899. for_each_cpu(i, data->available_cores) {
  900. freqs.cpu = i;
  901. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  902. }
  903. res = transition_fid_vid(data, fid, vid);
  904. freqs.new = find_khz_freq_from_fid(data->currfid);
  905. for_each_cpu(i, data->available_cores) {
  906. freqs.cpu = i;
  907. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  908. }
  909. return res;
  910. }
  911. /* Take a frequency, and issue the hardware pstate transition command */
  912. static int transition_frequency_pstate(struct powernow_k8_data *data,
  913. unsigned int index)
  914. {
  915. u32 pstate = 0;
  916. int res, i;
  917. struct cpufreq_freqs freqs;
  918. dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
  919. /* get MSR index for hardware pstate transition */
  920. pstate = index & HW_PSTATE_MASK;
  921. if (pstate > data->max_hw_pstate)
  922. return 0;
  923. freqs.old = find_khz_freq_from_pstate(data->powernow_table,
  924. data->currpstate);
  925. freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
  926. for_each_cpu(i, data->available_cores) {
  927. freqs.cpu = i;
  928. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  929. }
  930. res = transition_pstate(data, pstate);
  931. freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
  932. for_each_cpu(i, data->available_cores) {
  933. freqs.cpu = i;
  934. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  935. }
  936. return res;
  937. }
  938. /* Driver entry point to switch to the target frequency */
  939. static int powernowk8_target(struct cpufreq_policy *pol,
  940. unsigned targfreq, unsigned relation)
  941. {
  942. cpumask_var_t oldmask;
  943. struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
  944. u32 checkfid;
  945. u32 checkvid;
  946. unsigned int newstate;
  947. int ret = -EIO;
  948. if (!data)
  949. return -EINVAL;
  950. checkfid = data->currfid;
  951. checkvid = data->currvid;
  952. /* only run on specific CPU from here on. */
  953. /* This is poor form: use a workqueue or smp_call_function_single */
  954. if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
  955. return -ENOMEM;
  956. cpumask_copy(oldmask, tsk_cpus_allowed(current));
  957. set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
  958. if (smp_processor_id() != pol->cpu) {
  959. printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
  960. goto err_out;
  961. }
  962. if (pending_bit_stuck()) {
  963. printk(KERN_ERR PFX "failing targ, change pending bit set\n");
  964. goto err_out;
  965. }
  966. dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
  967. pol->cpu, targfreq, pol->min, pol->max, relation);
  968. if (query_current_values_with_pending_wait(data))
  969. goto err_out;
  970. if (cpu_family != CPU_HW_PSTATE) {
  971. dprintk("targ: curr fid 0x%x, vid 0x%x\n",
  972. data->currfid, data->currvid);
  973. if ((checkvid != data->currvid) ||
  974. (checkfid != data->currfid)) {
  975. printk(KERN_INFO PFX
  976. "error - out of sync, fix 0x%x 0x%x, "
  977. "vid 0x%x 0x%x\n",
  978. checkfid, data->currfid,
  979. checkvid, data->currvid);
  980. }
  981. }
  982. if (cpufreq_frequency_table_target(pol, data->powernow_table,
  983. targfreq, relation, &newstate))
  984. goto err_out;
  985. mutex_lock(&fidvid_mutex);
  986. powernow_k8_acpi_pst_values(data, newstate);
  987. if (cpu_family == CPU_HW_PSTATE)
  988. ret = transition_frequency_pstate(data, newstate);
  989. else
  990. ret = transition_frequency_fidvid(data, newstate);
  991. if (ret) {
  992. printk(KERN_ERR PFX "transition frequency failed\n");
  993. ret = 1;
  994. mutex_unlock(&fidvid_mutex);
  995. goto err_out;
  996. }
  997. mutex_unlock(&fidvid_mutex);
  998. if (cpu_family == CPU_HW_PSTATE)
  999. pol->cur = find_khz_freq_from_pstate(data->powernow_table,
  1000. newstate);
  1001. else
  1002. pol->cur = find_khz_freq_from_fid(data->currfid);
  1003. ret = 0;
  1004. err_out:
  1005. set_cpus_allowed_ptr(current, oldmask);
  1006. free_cpumask_var(oldmask);
  1007. return ret;
  1008. }
  1009. /* Driver entry point to verify the policy and range of frequencies */
  1010. static int powernowk8_verify(struct cpufreq_policy *pol)
  1011. {
  1012. struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
  1013. if (!data)
  1014. return -EINVAL;
  1015. return cpufreq_frequency_table_verify(pol, data->powernow_table);
  1016. }
  1017. struct init_on_cpu {
  1018. struct powernow_k8_data *data;
  1019. int rc;
  1020. };
  1021. static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
  1022. {
  1023. struct init_on_cpu *init_on_cpu = _init_on_cpu;
  1024. if (pending_bit_stuck()) {
  1025. printk(KERN_ERR PFX "failing init, change pending bit set\n");
  1026. init_on_cpu->rc = -ENODEV;
  1027. return;
  1028. }
  1029. if (query_current_values_with_pending_wait(init_on_cpu->data)) {
  1030. init_on_cpu->rc = -ENODEV;
  1031. return;
  1032. }
  1033. if (cpu_family == CPU_OPTERON)
  1034. fidvid_msr_init();
  1035. init_on_cpu->rc = 0;
  1036. }
  1037. /* per CPU init entry point to the driver */
  1038. static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
  1039. {
  1040. static const char ACPI_PSS_BIOS_BUG_MSG[] =
  1041. KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
  1042. FW_BUG PFX "Try again with latest BIOS.\n";
  1043. struct powernow_k8_data *data;
  1044. struct init_on_cpu init_on_cpu;
  1045. int rc;
  1046. if (!cpu_online(pol->cpu))
  1047. return -ENODEV;
  1048. smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
  1049. if (rc)
  1050. return -ENODEV;
  1051. data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
  1052. if (!data) {
  1053. printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
  1054. return -ENOMEM;
  1055. }
  1056. data->cpu = pol->cpu;
  1057. data->currpstate = HW_PSTATE_INVALID;
  1058. if (powernow_k8_cpu_init_acpi(data)) {
  1059. /*
  1060. * Use the PSB BIOS structure. This is only availabe on
  1061. * an UP version, and is deprecated by AMD.
  1062. */
  1063. if (num_online_cpus() != 1) {
  1064. printk_once(ACPI_PSS_BIOS_BUG_MSG);
  1065. goto err_out;
  1066. }
  1067. if (pol->cpu != 0) {
  1068. printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
  1069. "CPU other than CPU0. Complain to your BIOS "
  1070. "vendor.\n");
  1071. goto err_out;
  1072. }
  1073. rc = find_psb_table(data);
  1074. if (rc)
  1075. goto err_out;
  1076. /* Take a crude guess here.
  1077. * That guess was in microseconds, so multiply with 1000 */
  1078. pol->cpuinfo.transition_latency = (
  1079. ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
  1080. ((1 << data->irt) * 30)) * 1000;
  1081. } else /* ACPI _PSS objects available */
  1082. pol->cpuinfo.transition_latency = get_transition_latency(data);
  1083. /* only run on specific CPU from here on */
  1084. init_on_cpu.data = data;
  1085. smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
  1086. &init_on_cpu, 1);
  1087. rc = init_on_cpu.rc;
  1088. if (rc != 0)
  1089. goto err_out_exit_acpi;
  1090. if (cpu_family == CPU_HW_PSTATE)
  1091. cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
  1092. else
  1093. cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
  1094. data->available_cores = pol->cpus;
  1095. if (cpu_family == CPU_HW_PSTATE)
  1096. pol->cur = find_khz_freq_from_pstate(data->powernow_table,
  1097. data->currpstate);
  1098. else
  1099. pol->cur = find_khz_freq_from_fid(data->currfid);
  1100. dprintk("policy current frequency %d kHz\n", pol->cur);
  1101. /* min/max the cpu is capable of */
  1102. if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
  1103. printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
  1104. powernow_k8_cpu_exit_acpi(data);
  1105. kfree(data->powernow_table);
  1106. kfree(data);
  1107. return -EINVAL;
  1108. }
  1109. cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
  1110. if (cpu_family == CPU_HW_PSTATE)
  1111. dprintk("cpu_init done, current pstate 0x%x\n",
  1112. data->currpstate);
  1113. else
  1114. dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
  1115. data->currfid, data->currvid);
  1116. per_cpu(powernow_data, pol->cpu) = data;
  1117. return 0;
  1118. err_out_exit_acpi:
  1119. powernow_k8_cpu_exit_acpi(data);
  1120. err_out:
  1121. kfree(data);
  1122. return -ENODEV;
  1123. }
  1124. static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
  1125. {
  1126. struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
  1127. if (!data)
  1128. return -EINVAL;
  1129. powernow_k8_cpu_exit_acpi(data);
  1130. cpufreq_frequency_table_put_attr(pol->cpu);
  1131. kfree(data->powernow_table);
  1132. kfree(data);
  1133. per_cpu(powernow_data, pol->cpu) = NULL;
  1134. return 0;
  1135. }
  1136. static void query_values_on_cpu(void *_err)
  1137. {
  1138. int *err = _err;
  1139. struct powernow_k8_data *data = __get_cpu_var(powernow_data);
  1140. *err = query_current_values_with_pending_wait(data);
  1141. }
  1142. static unsigned int powernowk8_get(unsigned int cpu)
  1143. {
  1144. struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
  1145. unsigned int khz = 0;
  1146. int err;
  1147. if (!data)
  1148. return 0;
  1149. smp_call_function_single(cpu, query_values_on_cpu, &err, true);
  1150. if (err)
  1151. goto out;
  1152. if (cpu_family == CPU_HW_PSTATE)
  1153. khz = find_khz_freq_from_pstate(data->powernow_table,
  1154. data->currpstate);
  1155. else
  1156. khz = find_khz_freq_from_fid(data->currfid);
  1157. out:
  1158. return khz;
  1159. }
  1160. static struct freq_attr *powernow_k8_attr[] = {
  1161. &cpufreq_freq_attr_scaling_available_freqs,
  1162. NULL,
  1163. };
  1164. static struct cpufreq_driver cpufreq_amd64_driver = {
  1165. .verify = powernowk8_verify,
  1166. .target = powernowk8_target,
  1167. .bios_limit = acpi_processor_get_bios_limit,
  1168. .init = powernowk8_cpu_init,
  1169. .exit = __devexit_p(powernowk8_cpu_exit),
  1170. .get = powernowk8_get,
  1171. .name = "powernow-k8",
  1172. .owner = THIS_MODULE,
  1173. .attr = powernow_k8_attr,
  1174. };
  1175. /* driver entry point for init */
  1176. static int __cpuinit powernowk8_init(void)
  1177. {
  1178. unsigned int i, supported_cpus = 0;
  1179. for_each_online_cpu(i) {
  1180. int rc;
  1181. smp_call_function_single(i, check_supported_cpu, &rc, 1);
  1182. if (rc == 0)
  1183. supported_cpus++;
  1184. }
  1185. if (supported_cpus == num_online_cpus()) {
  1186. printk(KERN_INFO PFX "Found %d %s "
  1187. "processors (%d cpu cores) (" VERSION ")\n",
  1188. num_online_nodes(),
  1189. boot_cpu_data.x86_model_id, supported_cpus);
  1190. return cpufreq_register_driver(&cpufreq_amd64_driver);
  1191. }
  1192. return -ENODEV;
  1193. }
  1194. /* driver entry point for term */
  1195. static void __exit powernowk8_exit(void)
  1196. {
  1197. dprintk("exit\n");
  1198. cpufreq_unregister_driver(&cpufreq_amd64_driver);
  1199. }
  1200. MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
  1201. "Mark Langsdorf <mark.langsdorf@amd.com>");
  1202. MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
  1203. MODULE_LICENSE("GPL");
  1204. late_initcall(powernowk8_init);
  1205. module_exit(powernowk8_exit);