ieee80211_sta.c 119 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/rtnetlink.h>
  27. #include <net/iw_handler.h>
  28. #include <asm/types.h>
  29. #include <net/mac80211.h>
  30. #include "ieee80211_i.h"
  31. #include "ieee80211_rate.h"
  32. #include "ieee80211_led.h"
  33. #include "mesh.h"
  34. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  35. #define IEEE80211_AUTH_MAX_TRIES 3
  36. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  37. #define IEEE80211_ASSOC_MAX_TRIES 3
  38. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  39. #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
  40. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  41. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  42. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  43. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  44. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  45. #define IEEE80211_PROBE_DELAY (HZ / 33)
  46. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  47. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  48. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  49. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  50. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  51. #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
  52. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  53. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  54. #define ERP_INFO_USE_PROTECTION BIT(1)
  55. /* mgmt header + 1 byte action code */
  56. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  57. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  58. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  59. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  60. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  61. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  62. /* next values represent the buffer size for A-MPDU frame.
  63. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  64. #define IEEE80211_MIN_AMPDU_BUF 0x8
  65. #define IEEE80211_MAX_AMPDU_BUF 0x40
  66. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  67. u8 *ssid, size_t ssid_len);
  68. static struct ieee80211_sta_bss *
  69. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  70. u8 *ssid, u8 ssid_len);
  71. static void ieee80211_rx_bss_put(struct net_device *dev,
  72. struct ieee80211_sta_bss *bss);
  73. static int ieee80211_sta_find_ibss(struct net_device *dev,
  74. struct ieee80211_if_sta *ifsta);
  75. static int ieee80211_sta_wep_configured(struct net_device *dev);
  76. static int ieee80211_sta_start_scan(struct net_device *dev,
  77. u8 *ssid, size_t ssid_len);
  78. static int ieee80211_sta_config_auth(struct net_device *dev,
  79. struct ieee80211_if_sta *ifsta);
  80. void ieee802_11_parse_elems(u8 *start, size_t len,
  81. struct ieee802_11_elems *elems)
  82. {
  83. size_t left = len;
  84. u8 *pos = start;
  85. memset(elems, 0, sizeof(*elems));
  86. while (left >= 2) {
  87. u8 id, elen;
  88. id = *pos++;
  89. elen = *pos++;
  90. left -= 2;
  91. if (elen > left)
  92. return;
  93. switch (id) {
  94. case WLAN_EID_SSID:
  95. elems->ssid = pos;
  96. elems->ssid_len = elen;
  97. break;
  98. case WLAN_EID_SUPP_RATES:
  99. elems->supp_rates = pos;
  100. elems->supp_rates_len = elen;
  101. break;
  102. case WLAN_EID_FH_PARAMS:
  103. elems->fh_params = pos;
  104. elems->fh_params_len = elen;
  105. break;
  106. case WLAN_EID_DS_PARAMS:
  107. elems->ds_params = pos;
  108. elems->ds_params_len = elen;
  109. break;
  110. case WLAN_EID_CF_PARAMS:
  111. elems->cf_params = pos;
  112. elems->cf_params_len = elen;
  113. break;
  114. case WLAN_EID_TIM:
  115. elems->tim = pos;
  116. elems->tim_len = elen;
  117. break;
  118. case WLAN_EID_IBSS_PARAMS:
  119. elems->ibss_params = pos;
  120. elems->ibss_params_len = elen;
  121. break;
  122. case WLAN_EID_CHALLENGE:
  123. elems->challenge = pos;
  124. elems->challenge_len = elen;
  125. break;
  126. case WLAN_EID_WPA:
  127. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  128. pos[2] == 0xf2) {
  129. /* Microsoft OUI (00:50:F2) */
  130. if (pos[3] == 1) {
  131. /* OUI Type 1 - WPA IE */
  132. elems->wpa = pos;
  133. elems->wpa_len = elen;
  134. } else if (elen >= 5 && pos[3] == 2) {
  135. if (pos[4] == 0) {
  136. elems->wmm_info = pos;
  137. elems->wmm_info_len = elen;
  138. } else if (pos[4] == 1) {
  139. elems->wmm_param = pos;
  140. elems->wmm_param_len = elen;
  141. }
  142. }
  143. }
  144. break;
  145. case WLAN_EID_RSN:
  146. elems->rsn = pos;
  147. elems->rsn_len = elen;
  148. break;
  149. case WLAN_EID_ERP_INFO:
  150. elems->erp_info = pos;
  151. elems->erp_info_len = elen;
  152. break;
  153. case WLAN_EID_EXT_SUPP_RATES:
  154. elems->ext_supp_rates = pos;
  155. elems->ext_supp_rates_len = elen;
  156. break;
  157. case WLAN_EID_HT_CAPABILITY:
  158. elems->ht_cap_elem = pos;
  159. elems->ht_cap_elem_len = elen;
  160. break;
  161. case WLAN_EID_HT_EXTRA_INFO:
  162. elems->ht_info_elem = pos;
  163. elems->ht_info_elem_len = elen;
  164. break;
  165. case WLAN_EID_MESH_ID:
  166. elems->mesh_id = pos;
  167. elems->mesh_id_len = elen;
  168. break;
  169. case WLAN_EID_MESH_CONFIG:
  170. elems->mesh_config = pos;
  171. elems->mesh_config_len = elen;
  172. break;
  173. case WLAN_EID_PEER_LINK:
  174. elems->peer_link = pos;
  175. elems->peer_link_len = elen;
  176. break;
  177. case WLAN_EID_PREQ:
  178. elems->preq = pos;
  179. elems->preq_len = elen;
  180. break;
  181. case WLAN_EID_PREP:
  182. elems->prep = pos;
  183. elems->prep_len = elen;
  184. break;
  185. case WLAN_EID_PERR:
  186. elems->perr = pos;
  187. elems->perr_len = elen;
  188. break;
  189. default:
  190. break;
  191. }
  192. left -= elen;
  193. pos += elen;
  194. }
  195. }
  196. static int ecw2cw(int ecw)
  197. {
  198. return (1 << ecw) - 1;
  199. }
  200. static void ieee80211_sta_def_wmm_params(struct net_device *dev,
  201. struct ieee80211_sta_bss *bss,
  202. int ibss)
  203. {
  204. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  205. struct ieee80211_local *local = sdata->local;
  206. int i, have_higher_than_11mbit = 0;
  207. /* cf. IEEE 802.11 9.2.12 */
  208. for (i = 0; i < bss->supp_rates_len; i++)
  209. if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
  210. have_higher_than_11mbit = 1;
  211. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  212. have_higher_than_11mbit)
  213. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  214. else
  215. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  216. if (local->ops->conf_tx) {
  217. struct ieee80211_tx_queue_params qparam;
  218. memset(&qparam, 0, sizeof(qparam));
  219. qparam.aifs = 2;
  220. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  221. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  222. qparam.cw_min = 31;
  223. else
  224. qparam.cw_min = 15;
  225. qparam.cw_max = 1023;
  226. qparam.txop = 0;
  227. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  228. local->ops->conf_tx(local_to_hw(local),
  229. i + IEEE80211_TX_QUEUE_DATA0,
  230. &qparam);
  231. if (ibss) {
  232. /* IBSS uses different parameters for Beacon sending */
  233. qparam.cw_min++;
  234. qparam.cw_min *= 2;
  235. qparam.cw_min--;
  236. local->ops->conf_tx(local_to_hw(local),
  237. IEEE80211_TX_QUEUE_BEACON, &qparam);
  238. }
  239. }
  240. }
  241. static void ieee80211_sta_wmm_params(struct net_device *dev,
  242. struct ieee80211_if_sta *ifsta,
  243. u8 *wmm_param, size_t wmm_param_len)
  244. {
  245. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  246. struct ieee80211_tx_queue_params params;
  247. size_t left;
  248. int count;
  249. u8 *pos;
  250. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  251. return;
  252. count = wmm_param[6] & 0x0f;
  253. if (count == ifsta->wmm_last_param_set)
  254. return;
  255. ifsta->wmm_last_param_set = count;
  256. pos = wmm_param + 8;
  257. left = wmm_param_len - 8;
  258. memset(&params, 0, sizeof(params));
  259. if (!local->ops->conf_tx)
  260. return;
  261. local->wmm_acm = 0;
  262. for (; left >= 4; left -= 4, pos += 4) {
  263. int aci = (pos[0] >> 5) & 0x03;
  264. int acm = (pos[0] >> 4) & 0x01;
  265. int queue;
  266. switch (aci) {
  267. case 1:
  268. queue = IEEE80211_TX_QUEUE_DATA3;
  269. if (acm) {
  270. local->wmm_acm |= BIT(0) | BIT(3);
  271. }
  272. break;
  273. case 2:
  274. queue = IEEE80211_TX_QUEUE_DATA1;
  275. if (acm) {
  276. local->wmm_acm |= BIT(4) | BIT(5);
  277. }
  278. break;
  279. case 3:
  280. queue = IEEE80211_TX_QUEUE_DATA0;
  281. if (acm) {
  282. local->wmm_acm |= BIT(6) | BIT(7);
  283. }
  284. break;
  285. case 0:
  286. default:
  287. queue = IEEE80211_TX_QUEUE_DATA2;
  288. if (acm) {
  289. local->wmm_acm |= BIT(1) | BIT(2);
  290. }
  291. break;
  292. }
  293. params.aifs = pos[0] & 0x0f;
  294. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  295. params.cw_min = ecw2cw(pos[1] & 0x0f);
  296. params.txop = pos[2] | (pos[3] << 8);
  297. #ifdef CONFIG_MAC80211_DEBUG
  298. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  299. "cWmin=%d cWmax=%d txop=%d\n",
  300. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  301. params.cw_max, params.txop);
  302. #endif
  303. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  304. * AC for now) */
  305. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  306. printk(KERN_DEBUG "%s: failed to set TX queue "
  307. "parameters for queue %d\n", dev->name, queue);
  308. }
  309. }
  310. }
  311. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  312. u8 erp_value)
  313. {
  314. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  315. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  316. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  317. bool use_short_preamble = (erp_value & WLAN_ERP_BARKER_PREAMBLE) == 0;
  318. DECLARE_MAC_BUF(mac);
  319. u32 changed = 0;
  320. if (use_protection != bss_conf->use_cts_prot) {
  321. if (net_ratelimit()) {
  322. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  323. "%s)\n",
  324. sdata->dev->name,
  325. use_protection ? "enabled" : "disabled",
  326. print_mac(mac, ifsta->bssid));
  327. }
  328. bss_conf->use_cts_prot = use_protection;
  329. changed |= BSS_CHANGED_ERP_CTS_PROT;
  330. }
  331. if (use_short_preamble != bss_conf->use_short_preamble) {
  332. if (net_ratelimit()) {
  333. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  334. " (BSSID=%s)\n",
  335. sdata->dev->name,
  336. use_short_preamble ? "short" : "long",
  337. print_mac(mac, ifsta->bssid));
  338. }
  339. bss_conf->use_short_preamble = use_short_preamble;
  340. changed |= BSS_CHANGED_ERP_PREAMBLE;
  341. }
  342. return changed;
  343. }
  344. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  345. struct ieee80211_ht_info *ht_info)
  346. {
  347. if (ht_info == NULL)
  348. return -EINVAL;
  349. memset(ht_info, 0, sizeof(*ht_info));
  350. if (ht_cap_ie) {
  351. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  352. ht_info->ht_supported = 1;
  353. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  354. ht_info->ampdu_factor =
  355. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  356. ht_info->ampdu_density =
  357. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  358. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  359. } else
  360. ht_info->ht_supported = 0;
  361. return 0;
  362. }
  363. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  364. struct ieee80211_ht_addt_info *ht_add_info_ie,
  365. struct ieee80211_ht_bss_info *bss_info)
  366. {
  367. if (bss_info == NULL)
  368. return -EINVAL;
  369. memset(bss_info, 0, sizeof(*bss_info));
  370. if (ht_add_info_ie) {
  371. u16 op_mode;
  372. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  373. bss_info->primary_channel = ht_add_info_ie->control_chan;
  374. bss_info->bss_cap = ht_add_info_ie->ht_param;
  375. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  376. }
  377. return 0;
  378. }
  379. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  380. struct ieee80211_if_sta *ifsta)
  381. {
  382. char *buf;
  383. size_t len;
  384. int i;
  385. union iwreq_data wrqu;
  386. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  387. return;
  388. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  389. ifsta->assocresp_ies_len), GFP_KERNEL);
  390. if (!buf)
  391. return;
  392. len = sprintf(buf, "ASSOCINFO(");
  393. if (ifsta->assocreq_ies) {
  394. len += sprintf(buf + len, "ReqIEs=");
  395. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  396. len += sprintf(buf + len, "%02x",
  397. ifsta->assocreq_ies[i]);
  398. }
  399. }
  400. if (ifsta->assocresp_ies) {
  401. if (ifsta->assocreq_ies)
  402. len += sprintf(buf + len, " ");
  403. len += sprintf(buf + len, "RespIEs=");
  404. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  405. len += sprintf(buf + len, "%02x",
  406. ifsta->assocresp_ies[i]);
  407. }
  408. }
  409. len += sprintf(buf + len, ")");
  410. if (len > IW_CUSTOM_MAX) {
  411. len = sprintf(buf, "ASSOCRESPIE=");
  412. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  413. len += sprintf(buf + len, "%02x",
  414. ifsta->assocresp_ies[i]);
  415. }
  416. }
  417. memset(&wrqu, 0, sizeof(wrqu));
  418. wrqu.data.length = len;
  419. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  420. kfree(buf);
  421. }
  422. static void ieee80211_set_associated(struct net_device *dev,
  423. struct ieee80211_if_sta *ifsta,
  424. bool assoc)
  425. {
  426. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  427. struct ieee80211_local *local = sdata->local;
  428. struct ieee80211_conf *conf = &local_to_hw(local)->conf;
  429. union iwreq_data wrqu;
  430. u32 changed = BSS_CHANGED_ASSOC;
  431. if (assoc) {
  432. struct ieee80211_sta_bss *bss;
  433. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  434. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  435. return;
  436. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  437. conf->channel->center_freq,
  438. ifsta->ssid, ifsta->ssid_len);
  439. if (bss) {
  440. if (bss->has_erp_value)
  441. changed |= ieee80211_handle_erp_ie(
  442. sdata, bss->erp_value);
  443. ieee80211_rx_bss_put(dev, bss);
  444. }
  445. if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  446. changed |= BSS_CHANGED_HT;
  447. sdata->bss_conf.assoc_ht = 1;
  448. sdata->bss_conf.ht_conf = &conf->ht_conf;
  449. sdata->bss_conf.ht_bss_conf = &conf->ht_bss_conf;
  450. }
  451. netif_carrier_on(dev);
  452. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  453. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  454. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  455. ieee80211_sta_send_associnfo(dev, ifsta);
  456. } else {
  457. ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
  458. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  459. netif_carrier_off(dev);
  460. ieee80211_reset_erp_info(dev);
  461. sdata->bss_conf.assoc_ht = 0;
  462. sdata->bss_conf.ht_conf = NULL;
  463. sdata->bss_conf.ht_bss_conf = NULL;
  464. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  465. }
  466. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  467. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  468. ifsta->last_probe = jiffies;
  469. ieee80211_led_assoc(local, assoc);
  470. sdata->bss_conf.assoc = assoc;
  471. ieee80211_bss_info_change_notify(sdata, changed);
  472. }
  473. static void ieee80211_set_disassoc(struct net_device *dev,
  474. struct ieee80211_if_sta *ifsta, int deauth)
  475. {
  476. if (deauth)
  477. ifsta->auth_tries = 0;
  478. ifsta->assoc_tries = 0;
  479. ieee80211_set_associated(dev, ifsta, 0);
  480. }
  481. void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  482. int encrypt)
  483. {
  484. struct ieee80211_sub_if_data *sdata;
  485. struct ieee80211_tx_packet_data *pkt_data;
  486. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  487. skb->dev = sdata->local->mdev;
  488. skb_set_mac_header(skb, 0);
  489. skb_set_network_header(skb, 0);
  490. skb_set_transport_header(skb, 0);
  491. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  492. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  493. pkt_data->ifindex = sdata->dev->ifindex;
  494. if (!encrypt)
  495. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  496. dev_queue_xmit(skb);
  497. }
  498. static void ieee80211_send_auth(struct net_device *dev,
  499. struct ieee80211_if_sta *ifsta,
  500. int transaction, u8 *extra, size_t extra_len,
  501. int encrypt)
  502. {
  503. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  504. struct sk_buff *skb;
  505. struct ieee80211_mgmt *mgmt;
  506. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  507. sizeof(*mgmt) + 6 + extra_len);
  508. if (!skb) {
  509. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  510. "frame\n", dev->name);
  511. return;
  512. }
  513. skb_reserve(skb, local->hw.extra_tx_headroom);
  514. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  515. memset(mgmt, 0, 24 + 6);
  516. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  517. IEEE80211_STYPE_AUTH);
  518. if (encrypt)
  519. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  520. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  521. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  522. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  523. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  524. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  525. ifsta->auth_transaction = transaction + 1;
  526. mgmt->u.auth.status_code = cpu_to_le16(0);
  527. if (extra)
  528. memcpy(skb_put(skb, extra_len), extra, extra_len);
  529. ieee80211_sta_tx(dev, skb, encrypt);
  530. }
  531. static void ieee80211_authenticate(struct net_device *dev,
  532. struct ieee80211_if_sta *ifsta)
  533. {
  534. DECLARE_MAC_BUF(mac);
  535. ifsta->auth_tries++;
  536. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  537. printk(KERN_DEBUG "%s: authentication with AP %s"
  538. " timed out\n",
  539. dev->name, print_mac(mac, ifsta->bssid));
  540. ifsta->state = IEEE80211_DISABLED;
  541. return;
  542. }
  543. ifsta->state = IEEE80211_AUTHENTICATE;
  544. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  545. dev->name, print_mac(mac, ifsta->bssid));
  546. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  547. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  548. }
  549. static void ieee80211_send_assoc(struct net_device *dev,
  550. struct ieee80211_if_sta *ifsta)
  551. {
  552. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  553. struct sk_buff *skb;
  554. struct ieee80211_mgmt *mgmt;
  555. u8 *pos, *ies;
  556. int i, len;
  557. u16 capab;
  558. struct ieee80211_sta_bss *bss;
  559. int wmm = 0;
  560. struct ieee80211_supported_band *sband;
  561. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  562. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  563. ifsta->ssid_len);
  564. if (!skb) {
  565. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  566. "frame\n", dev->name);
  567. return;
  568. }
  569. skb_reserve(skb, local->hw.extra_tx_headroom);
  570. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  571. capab = ifsta->capab;
  572. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  573. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  574. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  575. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  576. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  577. }
  578. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  579. local->hw.conf.channel->center_freq,
  580. ifsta->ssid, ifsta->ssid_len);
  581. if (bss) {
  582. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  583. capab |= WLAN_CAPABILITY_PRIVACY;
  584. if (bss->wmm_ie) {
  585. wmm = 1;
  586. }
  587. ieee80211_rx_bss_put(dev, bss);
  588. }
  589. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  590. memset(mgmt, 0, 24);
  591. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  592. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  593. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  594. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  595. skb_put(skb, 10);
  596. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  597. IEEE80211_STYPE_REASSOC_REQ);
  598. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  599. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  600. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  601. ETH_ALEN);
  602. } else {
  603. skb_put(skb, 4);
  604. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  605. IEEE80211_STYPE_ASSOC_REQ);
  606. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  607. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  608. }
  609. /* SSID */
  610. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  611. *pos++ = WLAN_EID_SSID;
  612. *pos++ = ifsta->ssid_len;
  613. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  614. len = sband->n_bitrates;
  615. if (len > 8)
  616. len = 8;
  617. pos = skb_put(skb, len + 2);
  618. *pos++ = WLAN_EID_SUPP_RATES;
  619. *pos++ = len;
  620. for (i = 0; i < len; i++) {
  621. int rate = sband->bitrates[i].bitrate;
  622. *pos++ = (u8) (rate / 5);
  623. }
  624. if (sband->n_bitrates > len) {
  625. pos = skb_put(skb, sband->n_bitrates - len + 2);
  626. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  627. *pos++ = sband->n_bitrates - len;
  628. for (i = len; i < sband->n_bitrates; i++) {
  629. int rate = sband->bitrates[i].bitrate;
  630. *pos++ = (u8) (rate / 5);
  631. }
  632. }
  633. if (ifsta->extra_ie) {
  634. pos = skb_put(skb, ifsta->extra_ie_len);
  635. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  636. }
  637. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  638. pos = skb_put(skb, 9);
  639. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  640. *pos++ = 7; /* len */
  641. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  642. *pos++ = 0x50;
  643. *pos++ = 0xf2;
  644. *pos++ = 2; /* WME */
  645. *pos++ = 0; /* WME info */
  646. *pos++ = 1; /* WME ver */
  647. *pos++ = 0;
  648. }
  649. /* wmm support is a must to HT */
  650. if (wmm && sband->ht_info.ht_supported) {
  651. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  652. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  653. *pos++ = WLAN_EID_HT_CAPABILITY;
  654. *pos++ = sizeof(struct ieee80211_ht_cap);
  655. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  656. memcpy(pos, &tmp, sizeof(u16));
  657. pos += sizeof(u16);
  658. /* TODO: needs a define here for << 2 */
  659. *pos++ = sband->ht_info.ampdu_factor |
  660. (sband->ht_info.ampdu_density << 2);
  661. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  662. }
  663. kfree(ifsta->assocreq_ies);
  664. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  665. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  666. if (ifsta->assocreq_ies)
  667. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  668. ieee80211_sta_tx(dev, skb, 0);
  669. }
  670. static void ieee80211_send_deauth(struct net_device *dev,
  671. struct ieee80211_if_sta *ifsta, u16 reason)
  672. {
  673. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  674. struct sk_buff *skb;
  675. struct ieee80211_mgmt *mgmt;
  676. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  677. if (!skb) {
  678. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  679. "frame\n", dev->name);
  680. return;
  681. }
  682. skb_reserve(skb, local->hw.extra_tx_headroom);
  683. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  684. memset(mgmt, 0, 24);
  685. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  686. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  687. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  688. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  689. IEEE80211_STYPE_DEAUTH);
  690. skb_put(skb, 2);
  691. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  692. ieee80211_sta_tx(dev, skb, 0);
  693. }
  694. static void ieee80211_send_disassoc(struct net_device *dev,
  695. struct ieee80211_if_sta *ifsta, u16 reason)
  696. {
  697. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  698. struct sk_buff *skb;
  699. struct ieee80211_mgmt *mgmt;
  700. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  701. if (!skb) {
  702. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  703. "frame\n", dev->name);
  704. return;
  705. }
  706. skb_reserve(skb, local->hw.extra_tx_headroom);
  707. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  708. memset(mgmt, 0, 24);
  709. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  710. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  711. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  712. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  713. IEEE80211_STYPE_DISASSOC);
  714. skb_put(skb, 2);
  715. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  716. ieee80211_sta_tx(dev, skb, 0);
  717. }
  718. static int ieee80211_privacy_mismatch(struct net_device *dev,
  719. struct ieee80211_if_sta *ifsta)
  720. {
  721. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  722. struct ieee80211_sta_bss *bss;
  723. int bss_privacy;
  724. int wep_privacy;
  725. int privacy_invoked;
  726. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  727. return 0;
  728. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  729. local->hw.conf.channel->center_freq,
  730. ifsta->ssid, ifsta->ssid_len);
  731. if (!bss)
  732. return 0;
  733. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  734. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  735. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  736. ieee80211_rx_bss_put(dev, bss);
  737. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  738. return 0;
  739. return 1;
  740. }
  741. static void ieee80211_associate(struct net_device *dev,
  742. struct ieee80211_if_sta *ifsta)
  743. {
  744. DECLARE_MAC_BUF(mac);
  745. ifsta->assoc_tries++;
  746. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  747. printk(KERN_DEBUG "%s: association with AP %s"
  748. " timed out\n",
  749. dev->name, print_mac(mac, ifsta->bssid));
  750. ifsta->state = IEEE80211_DISABLED;
  751. return;
  752. }
  753. ifsta->state = IEEE80211_ASSOCIATE;
  754. printk(KERN_DEBUG "%s: associate with AP %s\n",
  755. dev->name, print_mac(mac, ifsta->bssid));
  756. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  757. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  758. "mixed-cell disabled - abort association\n", dev->name);
  759. ifsta->state = IEEE80211_DISABLED;
  760. return;
  761. }
  762. ieee80211_send_assoc(dev, ifsta);
  763. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  764. }
  765. static void ieee80211_associated(struct net_device *dev,
  766. struct ieee80211_if_sta *ifsta)
  767. {
  768. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  769. struct sta_info *sta;
  770. int disassoc;
  771. DECLARE_MAC_BUF(mac);
  772. /* TODO: start monitoring current AP signal quality and number of
  773. * missed beacons. Scan other channels every now and then and search
  774. * for better APs. */
  775. /* TODO: remove expired BSSes */
  776. ifsta->state = IEEE80211_ASSOCIATED;
  777. rcu_read_lock();
  778. sta = sta_info_get(local, ifsta->bssid);
  779. if (!sta) {
  780. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  781. dev->name, print_mac(mac, ifsta->bssid));
  782. disassoc = 1;
  783. } else {
  784. disassoc = 0;
  785. if (time_after(jiffies,
  786. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  787. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  788. printk(KERN_DEBUG "%s: No ProbeResp from "
  789. "current AP %s - assume out of "
  790. "range\n",
  791. dev->name, print_mac(mac, ifsta->bssid));
  792. disassoc = 1;
  793. sta_info_unlink(&sta);
  794. } else
  795. ieee80211_send_probe_req(dev, ifsta->bssid,
  796. local->scan_ssid,
  797. local->scan_ssid_len);
  798. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  799. } else {
  800. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  801. if (time_after(jiffies, ifsta->last_probe +
  802. IEEE80211_PROBE_INTERVAL)) {
  803. ifsta->last_probe = jiffies;
  804. ieee80211_send_probe_req(dev, ifsta->bssid,
  805. ifsta->ssid,
  806. ifsta->ssid_len);
  807. }
  808. }
  809. }
  810. rcu_read_unlock();
  811. if (disassoc && sta) {
  812. rtnl_lock();
  813. sta_info_destroy(sta);
  814. rtnl_unlock();
  815. }
  816. if (disassoc) {
  817. ifsta->state = IEEE80211_DISABLED;
  818. ieee80211_set_associated(dev, ifsta, 0);
  819. } else {
  820. mod_timer(&ifsta->timer, jiffies +
  821. IEEE80211_MONITORING_INTERVAL);
  822. }
  823. }
  824. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  825. u8 *ssid, size_t ssid_len)
  826. {
  827. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  828. struct ieee80211_supported_band *sband;
  829. struct sk_buff *skb;
  830. struct ieee80211_mgmt *mgmt;
  831. u8 *pos, *supp_rates, *esupp_rates = NULL;
  832. int i;
  833. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  834. if (!skb) {
  835. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  836. "request\n", dev->name);
  837. return;
  838. }
  839. skb_reserve(skb, local->hw.extra_tx_headroom);
  840. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  841. memset(mgmt, 0, 24);
  842. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  843. IEEE80211_STYPE_PROBE_REQ);
  844. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  845. if (dst) {
  846. memcpy(mgmt->da, dst, ETH_ALEN);
  847. memcpy(mgmt->bssid, dst, ETH_ALEN);
  848. } else {
  849. memset(mgmt->da, 0xff, ETH_ALEN);
  850. memset(mgmt->bssid, 0xff, ETH_ALEN);
  851. }
  852. pos = skb_put(skb, 2 + ssid_len);
  853. *pos++ = WLAN_EID_SSID;
  854. *pos++ = ssid_len;
  855. memcpy(pos, ssid, ssid_len);
  856. supp_rates = skb_put(skb, 2);
  857. supp_rates[0] = WLAN_EID_SUPP_RATES;
  858. supp_rates[1] = 0;
  859. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  860. for (i = 0; i < sband->n_bitrates; i++) {
  861. struct ieee80211_rate *rate = &sband->bitrates[i];
  862. if (esupp_rates) {
  863. pos = skb_put(skb, 1);
  864. esupp_rates[1]++;
  865. } else if (supp_rates[1] == 8) {
  866. esupp_rates = skb_put(skb, 3);
  867. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  868. esupp_rates[1] = 1;
  869. pos = &esupp_rates[2];
  870. } else {
  871. pos = skb_put(skb, 1);
  872. supp_rates[1]++;
  873. }
  874. *pos = rate->bitrate / 5;
  875. }
  876. ieee80211_sta_tx(dev, skb, 0);
  877. }
  878. static int ieee80211_sta_wep_configured(struct net_device *dev)
  879. {
  880. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  881. if (!sdata || !sdata->default_key ||
  882. sdata->default_key->conf.alg != ALG_WEP)
  883. return 0;
  884. return 1;
  885. }
  886. static void ieee80211_auth_completed(struct net_device *dev,
  887. struct ieee80211_if_sta *ifsta)
  888. {
  889. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  890. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  891. ieee80211_associate(dev, ifsta);
  892. }
  893. static void ieee80211_auth_challenge(struct net_device *dev,
  894. struct ieee80211_if_sta *ifsta,
  895. struct ieee80211_mgmt *mgmt,
  896. size_t len)
  897. {
  898. u8 *pos;
  899. struct ieee802_11_elems elems;
  900. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  901. pos = mgmt->u.auth.variable;
  902. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  903. if (!elems.challenge) {
  904. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  905. "frame\n", dev->name);
  906. return;
  907. }
  908. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  909. elems.challenge_len + 2, 1);
  910. }
  911. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  912. u8 dialog_token, u16 status, u16 policy,
  913. u16 buf_size, u16 timeout)
  914. {
  915. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  916. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  917. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  918. struct sk_buff *skb;
  919. struct ieee80211_mgmt *mgmt;
  920. u16 capab;
  921. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  922. sizeof(mgmt->u.action.u.addba_resp));
  923. if (!skb) {
  924. printk(KERN_DEBUG "%s: failed to allocate buffer "
  925. "for addba resp frame\n", dev->name);
  926. return;
  927. }
  928. skb_reserve(skb, local->hw.extra_tx_headroom);
  929. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  930. memset(mgmt, 0, 24);
  931. memcpy(mgmt->da, da, ETH_ALEN);
  932. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  933. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  934. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  935. else
  936. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  937. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  938. IEEE80211_STYPE_ACTION);
  939. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  940. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  941. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  942. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  943. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  944. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  945. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  946. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  947. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  948. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  949. ieee80211_sta_tx(dev, skb, 0);
  950. return;
  951. }
  952. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  953. u16 tid, u8 dialog_token, u16 start_seq_num,
  954. u16 agg_size, u16 timeout)
  955. {
  956. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  957. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  958. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  959. struct sk_buff *skb;
  960. struct ieee80211_mgmt *mgmt;
  961. u16 capab;
  962. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  963. sizeof(mgmt->u.action.u.addba_req));
  964. if (!skb) {
  965. printk(KERN_ERR "%s: failed to allocate buffer "
  966. "for addba request frame\n", dev->name);
  967. return;
  968. }
  969. skb_reserve(skb, local->hw.extra_tx_headroom);
  970. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  971. memset(mgmt, 0, 24);
  972. memcpy(mgmt->da, da, ETH_ALEN);
  973. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  974. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  975. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  976. else
  977. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  978. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  979. IEEE80211_STYPE_ACTION);
  980. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  981. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  982. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  983. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  984. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  985. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  986. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  987. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  988. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  989. mgmt->u.action.u.addba_req.start_seq_num =
  990. cpu_to_le16(start_seq_num << 4);
  991. ieee80211_sta_tx(dev, skb, 0);
  992. }
  993. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  994. struct ieee80211_mgmt *mgmt,
  995. size_t len)
  996. {
  997. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  998. struct ieee80211_hw *hw = &local->hw;
  999. struct ieee80211_conf *conf = &hw->conf;
  1000. struct sta_info *sta;
  1001. struct tid_ampdu_rx *tid_agg_rx;
  1002. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  1003. u8 dialog_token;
  1004. int ret = -EOPNOTSUPP;
  1005. DECLARE_MAC_BUF(mac);
  1006. rcu_read_lock();
  1007. sta = sta_info_get(local, mgmt->sa);
  1008. if (!sta) {
  1009. rcu_read_unlock();
  1010. return;
  1011. }
  1012. /* extract session parameters from addba request frame */
  1013. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  1014. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  1015. start_seq_num =
  1016. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  1017. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  1018. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  1019. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1020. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  1021. status = WLAN_STATUS_REQUEST_DECLINED;
  1022. /* sanity check for incoming parameters:
  1023. * check if configuration can support the BA policy
  1024. * and if buffer size does not exceeds max value */
  1025. if (((ba_policy != 1)
  1026. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  1027. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  1028. status = WLAN_STATUS_INVALID_QOS_PARAM;
  1029. #ifdef CONFIG_MAC80211_HT_DEBUG
  1030. if (net_ratelimit())
  1031. printk(KERN_DEBUG "AddBA Req with bad params from "
  1032. "%s on tid %u. policy %d, buffer size %d\n",
  1033. print_mac(mac, mgmt->sa), tid, ba_policy,
  1034. buf_size);
  1035. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1036. goto end_no_lock;
  1037. }
  1038. /* determine default buffer size */
  1039. if (buf_size == 0) {
  1040. struct ieee80211_supported_band *sband;
  1041. sband = local->hw.wiphy->bands[conf->channel->band];
  1042. buf_size = IEEE80211_MIN_AMPDU_BUF;
  1043. buf_size = buf_size << sband->ht_info.ampdu_factor;
  1044. }
  1045. /* examine state machine */
  1046. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1047. if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) {
  1048. #ifdef CONFIG_MAC80211_HT_DEBUG
  1049. if (net_ratelimit())
  1050. printk(KERN_DEBUG "unexpected AddBA Req from "
  1051. "%s on tid %u\n",
  1052. print_mac(mac, mgmt->sa), tid);
  1053. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1054. goto end;
  1055. }
  1056. /* prepare A-MPDU MLME for Rx aggregation */
  1057. sta->ampdu_mlme.tid_rx[tid] =
  1058. kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC);
  1059. if (!sta->ampdu_mlme.tid_rx[tid]) {
  1060. if (net_ratelimit())
  1061. printk(KERN_ERR "allocate rx mlme to tid %d failed\n",
  1062. tid);
  1063. goto end;
  1064. }
  1065. /* rx timer */
  1066. sta->ampdu_mlme.tid_rx[tid]->session_timer.function =
  1067. sta_rx_agg_session_timer_expired;
  1068. sta->ampdu_mlme.tid_rx[tid]->session_timer.data =
  1069. (unsigned long)&sta->timer_to_tid[tid];
  1070. init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1071. tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
  1072. /* prepare reordering buffer */
  1073. tid_agg_rx->reorder_buf =
  1074. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  1075. if (!tid_agg_rx->reorder_buf) {
  1076. if (net_ratelimit())
  1077. printk(KERN_ERR "can not allocate reordering buffer "
  1078. "to tid %d\n", tid);
  1079. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1080. goto end;
  1081. }
  1082. memset(tid_agg_rx->reorder_buf, 0,
  1083. buf_size * sizeof(struct sk_buf *));
  1084. if (local->ops->ampdu_action)
  1085. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1086. sta->addr, tid, &start_seq_num);
  1087. #ifdef CONFIG_MAC80211_HT_DEBUG
  1088. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  1089. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1090. if (ret) {
  1091. kfree(tid_agg_rx->reorder_buf);
  1092. kfree(tid_agg_rx);
  1093. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1094. goto end;
  1095. }
  1096. /* change state and send addba resp */
  1097. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL;
  1098. tid_agg_rx->dialog_token = dialog_token;
  1099. tid_agg_rx->ssn = start_seq_num;
  1100. tid_agg_rx->head_seq_num = start_seq_num;
  1101. tid_agg_rx->buf_size = buf_size;
  1102. tid_agg_rx->timeout = timeout;
  1103. tid_agg_rx->stored_mpdu_num = 0;
  1104. status = WLAN_STATUS_SUCCESS;
  1105. end:
  1106. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1107. end_no_lock:
  1108. ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
  1109. dialog_token, status, 1, buf_size, timeout);
  1110. rcu_read_unlock();
  1111. }
  1112. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1113. struct ieee80211_mgmt *mgmt,
  1114. size_t len)
  1115. {
  1116. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1117. struct ieee80211_hw *hw = &local->hw;
  1118. struct sta_info *sta;
  1119. u16 capab;
  1120. u16 tid;
  1121. u8 *state;
  1122. rcu_read_lock();
  1123. sta = sta_info_get(local, mgmt->sa);
  1124. if (!sta) {
  1125. rcu_read_unlock();
  1126. return;
  1127. }
  1128. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1129. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1130. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1131. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1132. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1133. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1134. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1135. "%d\n", *state);
  1136. goto addba_resp_exit;
  1137. }
  1138. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1139. sta->ampdu_mlme.tid_tx[tid]->dialog_token) {
  1140. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1141. #ifdef CONFIG_MAC80211_HT_DEBUG
  1142. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1143. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1144. goto addba_resp_exit;
  1145. }
  1146. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer);
  1147. #ifdef CONFIG_MAC80211_HT_DEBUG
  1148. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1149. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1150. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1151. == WLAN_STATUS_SUCCESS) {
  1152. if (*state & HT_ADDBA_RECEIVED_MSK)
  1153. printk(KERN_DEBUG "double addBA response\n");
  1154. *state |= HT_ADDBA_RECEIVED_MSK;
  1155. sta->ampdu_mlme.addba_req_num[tid] = 0;
  1156. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1157. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1158. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1159. }
  1160. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1161. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1162. } else {
  1163. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1164. sta->ampdu_mlme.addba_req_num[tid]++;
  1165. /* this will allow the state check in stop_BA_session */
  1166. *state = HT_AGG_STATE_OPERATIONAL;
  1167. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1168. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1169. WLAN_BACK_INITIATOR);
  1170. }
  1171. addba_resp_exit:
  1172. rcu_read_unlock();
  1173. }
  1174. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1175. u16 initiator, u16 reason_code)
  1176. {
  1177. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1178. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1179. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1180. struct sk_buff *skb;
  1181. struct ieee80211_mgmt *mgmt;
  1182. u16 params;
  1183. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1184. sizeof(mgmt->u.action.u.delba));
  1185. if (!skb) {
  1186. printk(KERN_ERR "%s: failed to allocate buffer "
  1187. "for delba frame\n", dev->name);
  1188. return;
  1189. }
  1190. skb_reserve(skb, local->hw.extra_tx_headroom);
  1191. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1192. memset(mgmt, 0, 24);
  1193. memcpy(mgmt->da, da, ETH_ALEN);
  1194. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1195. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1196. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1197. else
  1198. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1199. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1200. IEEE80211_STYPE_ACTION);
  1201. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1202. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1203. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1204. params = (u16)(initiator << 11); /* bit 11 initiator */
  1205. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1206. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1207. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1208. ieee80211_sta_tx(dev, skb, 0);
  1209. }
  1210. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1211. u16 initiator, u16 reason)
  1212. {
  1213. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1214. struct ieee80211_hw *hw = &local->hw;
  1215. struct sta_info *sta;
  1216. int ret, i;
  1217. rcu_read_lock();
  1218. sta = sta_info_get(local, ra);
  1219. if (!sta) {
  1220. rcu_read_unlock();
  1221. return;
  1222. }
  1223. /* check if TID is in operational state */
  1224. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1225. if (sta->ampdu_mlme.tid_state_rx[tid]
  1226. != HT_AGG_STATE_OPERATIONAL) {
  1227. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1228. rcu_read_unlock();
  1229. return;
  1230. }
  1231. sta->ampdu_mlme.tid_state_rx[tid] =
  1232. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1233. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1234. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1235. /* stop HW Rx aggregation. ampdu_action existence
  1236. * already verified in session init so we add the BUG_ON */
  1237. BUG_ON(!local->ops->ampdu_action);
  1238. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1239. ra, tid, NULL);
  1240. if (ret)
  1241. printk(KERN_DEBUG "HW problem - can not stop rx "
  1242. "aggergation for tid %d\n", tid);
  1243. /* shutdown timer has not expired */
  1244. if (initiator != WLAN_BACK_TIMER)
  1245. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1246. /* check if this is a self generated aggregation halt */
  1247. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1248. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1249. /* free the reordering buffer */
  1250. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid]->buf_size; i++) {
  1251. if (sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]) {
  1252. /* release the reordered frames */
  1253. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]);
  1254. sta->ampdu_mlme.tid_rx[tid]->stored_mpdu_num--;
  1255. sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i] = NULL;
  1256. }
  1257. }
  1258. /* free resources */
  1259. kfree(sta->ampdu_mlme.tid_rx[tid]->reorder_buf);
  1260. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1261. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1262. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_IDLE;
  1263. rcu_read_unlock();
  1264. }
  1265. static void ieee80211_sta_process_delba(struct net_device *dev,
  1266. struct ieee80211_mgmt *mgmt, size_t len)
  1267. {
  1268. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1269. struct sta_info *sta;
  1270. u16 tid, params;
  1271. u16 initiator;
  1272. DECLARE_MAC_BUF(mac);
  1273. rcu_read_lock();
  1274. sta = sta_info_get(local, mgmt->sa);
  1275. if (!sta) {
  1276. rcu_read_unlock();
  1277. return;
  1278. }
  1279. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1280. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1281. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1282. #ifdef CONFIG_MAC80211_HT_DEBUG
  1283. if (net_ratelimit())
  1284. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1285. print_mac(mac, mgmt->sa),
  1286. initiator ? "initiator" : "recipient", tid,
  1287. mgmt->u.action.u.delba.reason_code);
  1288. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1289. if (initiator == WLAN_BACK_INITIATOR)
  1290. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1291. WLAN_BACK_INITIATOR, 0);
  1292. else { /* WLAN_BACK_RECIPIENT */
  1293. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1294. sta->ampdu_mlme.tid_state_tx[tid] =
  1295. HT_AGG_STATE_OPERATIONAL;
  1296. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1297. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1298. WLAN_BACK_RECIPIENT);
  1299. }
  1300. rcu_read_unlock();
  1301. }
  1302. /*
  1303. * After sending add Block Ack request we activated a timer until
  1304. * add Block Ack response will arrive from the recipient.
  1305. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1306. */
  1307. void sta_addba_resp_timer_expired(unsigned long data)
  1308. {
  1309. /* not an elegant detour, but there is no choice as the timer passes
  1310. * only one argument, and both sta_info and TID are needed, so init
  1311. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1312. * array gives the sta through container_of */
  1313. u16 tid = *(int *)data;
  1314. struct sta_info *temp_sta = container_of((void *)data,
  1315. struct sta_info, timer_to_tid[tid]);
  1316. struct ieee80211_local *local = temp_sta->local;
  1317. struct ieee80211_hw *hw = &local->hw;
  1318. struct sta_info *sta;
  1319. u8 *state;
  1320. rcu_read_lock();
  1321. sta = sta_info_get(local, temp_sta->addr);
  1322. if (!sta) {
  1323. rcu_read_unlock();
  1324. return;
  1325. }
  1326. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1327. /* check if the TID waits for addBA response */
  1328. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1329. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1330. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1331. *state = HT_AGG_STATE_IDLE;
  1332. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1333. "expecting addBA response there", tid);
  1334. goto timer_expired_exit;
  1335. }
  1336. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1337. /* go through the state check in stop_BA_session */
  1338. *state = HT_AGG_STATE_OPERATIONAL;
  1339. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1340. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1341. WLAN_BACK_INITIATOR);
  1342. timer_expired_exit:
  1343. rcu_read_unlock();
  1344. }
  1345. /*
  1346. * After accepting the AddBA Request we activated a timer,
  1347. * resetting it after each frame that arrives from the originator.
  1348. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1349. */
  1350. void sta_rx_agg_session_timer_expired(unsigned long data)
  1351. {
  1352. /* not an elegant detour, but there is no choice as the timer passes
  1353. * only one argument, and verious sta_info are needed here, so init
  1354. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1355. * array gives the sta through container_of */
  1356. u8 *ptid = (u8 *)data;
  1357. u8 *timer_to_id = ptid - *ptid;
  1358. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1359. timer_to_tid[0]);
  1360. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1361. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1362. (u16)*ptid, WLAN_BACK_TIMER,
  1363. WLAN_REASON_QSTA_TIMEOUT);
  1364. }
  1365. void ieee80211_sta_tear_down_BA_sessions(struct net_device *dev, u8 *addr)
  1366. {
  1367. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1368. int i;
  1369. for (i = 0; i < STA_TID_NUM; i++) {
  1370. ieee80211_stop_tx_ba_session(&local->hw, addr, i,
  1371. WLAN_BACK_INITIATOR);
  1372. ieee80211_sta_stop_rx_ba_session(dev, addr, i,
  1373. WLAN_BACK_RECIPIENT,
  1374. WLAN_REASON_QSTA_LEAVE_QBSS);
  1375. }
  1376. }
  1377. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1378. struct ieee80211_if_sta *ifsta,
  1379. struct ieee80211_mgmt *mgmt,
  1380. size_t len)
  1381. {
  1382. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1383. u16 auth_alg, auth_transaction, status_code;
  1384. DECLARE_MAC_BUF(mac);
  1385. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1386. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1387. printk(KERN_DEBUG "%s: authentication frame received from "
  1388. "%s, but not in authenticate state - ignored\n",
  1389. dev->name, print_mac(mac, mgmt->sa));
  1390. return;
  1391. }
  1392. if (len < 24 + 6) {
  1393. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1394. "received from %s - ignored\n",
  1395. dev->name, len, print_mac(mac, mgmt->sa));
  1396. return;
  1397. }
  1398. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1399. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1400. printk(KERN_DEBUG "%s: authentication frame received from "
  1401. "unknown AP (SA=%s BSSID=%s) - "
  1402. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1403. print_mac(mac, mgmt->bssid));
  1404. return;
  1405. }
  1406. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1407. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1408. printk(KERN_DEBUG "%s: authentication frame received from "
  1409. "unknown BSSID (SA=%s BSSID=%s) - "
  1410. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1411. print_mac(mac, mgmt->bssid));
  1412. return;
  1413. }
  1414. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1415. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1416. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1417. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1418. "transaction=%d status=%d)\n",
  1419. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1420. auth_transaction, status_code);
  1421. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1422. /* IEEE 802.11 standard does not require authentication in IBSS
  1423. * networks and most implementations do not seem to use it.
  1424. * However, try to reply to authentication attempts if someone
  1425. * has actually implemented this.
  1426. * TODO: Could implement shared key authentication. */
  1427. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1428. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1429. "frame (alg=%d transaction=%d)\n",
  1430. dev->name, auth_alg, auth_transaction);
  1431. return;
  1432. }
  1433. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1434. }
  1435. if (auth_alg != ifsta->auth_alg ||
  1436. auth_transaction != ifsta->auth_transaction) {
  1437. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1438. "(alg=%d transaction=%d)\n",
  1439. dev->name, auth_alg, auth_transaction);
  1440. return;
  1441. }
  1442. if (status_code != WLAN_STATUS_SUCCESS) {
  1443. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1444. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1445. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1446. u8 algs[3];
  1447. const int num_algs = ARRAY_SIZE(algs);
  1448. int i, pos;
  1449. algs[0] = algs[1] = algs[2] = 0xff;
  1450. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1451. algs[0] = WLAN_AUTH_OPEN;
  1452. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1453. algs[1] = WLAN_AUTH_SHARED_KEY;
  1454. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1455. algs[2] = WLAN_AUTH_LEAP;
  1456. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1457. pos = 0;
  1458. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1459. pos = 1;
  1460. else
  1461. pos = 2;
  1462. for (i = 0; i < num_algs; i++) {
  1463. pos++;
  1464. if (pos >= num_algs)
  1465. pos = 0;
  1466. if (algs[pos] == ifsta->auth_alg ||
  1467. algs[pos] == 0xff)
  1468. continue;
  1469. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1470. !ieee80211_sta_wep_configured(dev))
  1471. continue;
  1472. ifsta->auth_alg = algs[pos];
  1473. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1474. "next try\n",
  1475. dev->name, ifsta->auth_alg);
  1476. break;
  1477. }
  1478. }
  1479. return;
  1480. }
  1481. switch (ifsta->auth_alg) {
  1482. case WLAN_AUTH_OPEN:
  1483. case WLAN_AUTH_LEAP:
  1484. ieee80211_auth_completed(dev, ifsta);
  1485. break;
  1486. case WLAN_AUTH_SHARED_KEY:
  1487. if (ifsta->auth_transaction == 4)
  1488. ieee80211_auth_completed(dev, ifsta);
  1489. else
  1490. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1491. break;
  1492. }
  1493. }
  1494. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1495. struct ieee80211_if_sta *ifsta,
  1496. struct ieee80211_mgmt *mgmt,
  1497. size_t len)
  1498. {
  1499. u16 reason_code;
  1500. DECLARE_MAC_BUF(mac);
  1501. if (len < 24 + 2) {
  1502. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1503. "received from %s - ignored\n",
  1504. dev->name, len, print_mac(mac, mgmt->sa));
  1505. return;
  1506. }
  1507. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1508. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1509. "unknown AP (SA=%s BSSID=%s) - "
  1510. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1511. print_mac(mac, mgmt->bssid));
  1512. return;
  1513. }
  1514. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1515. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1516. " (reason=%d)\n",
  1517. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1518. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1519. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1520. }
  1521. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1522. ifsta->state == IEEE80211_ASSOCIATE ||
  1523. ifsta->state == IEEE80211_ASSOCIATED) {
  1524. ifsta->state = IEEE80211_AUTHENTICATE;
  1525. mod_timer(&ifsta->timer, jiffies +
  1526. IEEE80211_RETRY_AUTH_INTERVAL);
  1527. }
  1528. ieee80211_set_disassoc(dev, ifsta, 1);
  1529. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1530. }
  1531. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1532. struct ieee80211_if_sta *ifsta,
  1533. struct ieee80211_mgmt *mgmt,
  1534. size_t len)
  1535. {
  1536. u16 reason_code;
  1537. DECLARE_MAC_BUF(mac);
  1538. if (len < 24 + 2) {
  1539. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1540. "received from %s - ignored\n",
  1541. dev->name, len, print_mac(mac, mgmt->sa));
  1542. return;
  1543. }
  1544. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1545. printk(KERN_DEBUG "%s: disassociation frame received from "
  1546. "unknown AP (SA=%s BSSID=%s) - "
  1547. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1548. print_mac(mac, mgmt->bssid));
  1549. return;
  1550. }
  1551. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1552. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1553. " (reason=%d)\n",
  1554. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1555. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1556. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1557. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1558. ifsta->state = IEEE80211_ASSOCIATE;
  1559. mod_timer(&ifsta->timer, jiffies +
  1560. IEEE80211_RETRY_AUTH_INTERVAL);
  1561. }
  1562. ieee80211_set_disassoc(dev, ifsta, 0);
  1563. }
  1564. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1565. struct ieee80211_if_sta *ifsta,
  1566. struct ieee80211_mgmt *mgmt,
  1567. size_t len,
  1568. int reassoc)
  1569. {
  1570. struct ieee80211_local *local = sdata->local;
  1571. struct net_device *dev = sdata->dev;
  1572. struct ieee80211_supported_band *sband;
  1573. struct sta_info *sta;
  1574. u64 rates, basic_rates;
  1575. u16 capab_info, status_code, aid;
  1576. struct ieee802_11_elems elems;
  1577. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1578. u8 *pos;
  1579. int i, j;
  1580. DECLARE_MAC_BUF(mac);
  1581. bool have_higher_than_11mbit = false;
  1582. /* AssocResp and ReassocResp have identical structure, so process both
  1583. * of them in this function. */
  1584. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1585. printk(KERN_DEBUG "%s: association frame received from "
  1586. "%s, but not in associate state - ignored\n",
  1587. dev->name, print_mac(mac, mgmt->sa));
  1588. return;
  1589. }
  1590. if (len < 24 + 6) {
  1591. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1592. "received from %s - ignored\n",
  1593. dev->name, len, print_mac(mac, mgmt->sa));
  1594. return;
  1595. }
  1596. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1597. printk(KERN_DEBUG "%s: association frame received from "
  1598. "unknown AP (SA=%s BSSID=%s) - "
  1599. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1600. print_mac(mac, mgmt->bssid));
  1601. return;
  1602. }
  1603. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1604. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1605. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1606. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1607. "status=%d aid=%d)\n",
  1608. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1609. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1610. if (status_code != WLAN_STATUS_SUCCESS) {
  1611. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1612. dev->name, status_code);
  1613. /* if this was a reassociation, ensure we try a "full"
  1614. * association next time. This works around some broken APs
  1615. * which do not correctly reject reassociation requests. */
  1616. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1617. return;
  1618. }
  1619. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1620. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1621. "set\n", dev->name, aid);
  1622. aid &= ~(BIT(15) | BIT(14));
  1623. pos = mgmt->u.assoc_resp.variable;
  1624. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1625. if (!elems.supp_rates) {
  1626. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1627. dev->name);
  1628. return;
  1629. }
  1630. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1631. ifsta->aid = aid;
  1632. ifsta->ap_capab = capab_info;
  1633. kfree(ifsta->assocresp_ies);
  1634. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1635. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1636. if (ifsta->assocresp_ies)
  1637. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1638. rcu_read_lock();
  1639. /* Add STA entry for the AP */
  1640. sta = sta_info_get(local, ifsta->bssid);
  1641. if (!sta) {
  1642. struct ieee80211_sta_bss *bss;
  1643. int err;
  1644. sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
  1645. if (!sta) {
  1646. printk(KERN_DEBUG "%s: failed to alloc STA entry for"
  1647. " the AP\n", dev->name);
  1648. rcu_read_unlock();
  1649. return;
  1650. }
  1651. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1652. local->hw.conf.channel->center_freq,
  1653. ifsta->ssid, ifsta->ssid_len);
  1654. if (bss) {
  1655. sta->last_rssi = bss->rssi;
  1656. sta->last_signal = bss->signal;
  1657. sta->last_noise = bss->noise;
  1658. ieee80211_rx_bss_put(dev, bss);
  1659. }
  1660. err = sta_info_insert(sta);
  1661. if (err) {
  1662. printk(KERN_DEBUG "%s: failed to insert STA entry for"
  1663. " the AP (error %d)\n", dev->name, err);
  1664. rcu_read_unlock();
  1665. return;
  1666. }
  1667. }
  1668. /*
  1669. * FIXME: Do we really need to update the sta_info's information here?
  1670. * We already know about the AP (we found it in our list) so it
  1671. * should already be filled with the right info, no?
  1672. * As is stands, all this is racy because typically we assume
  1673. * the information that is filled in here (except flags) doesn't
  1674. * change while a STA structure is alive. As such, it should move
  1675. * to between the sta_info_alloc() and sta_info_insert() above.
  1676. */
  1677. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1678. WLAN_STA_AUTHORIZED;
  1679. rates = 0;
  1680. basic_rates = 0;
  1681. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1682. for (i = 0; i < elems.supp_rates_len; i++) {
  1683. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1684. if (rate > 110)
  1685. have_higher_than_11mbit = true;
  1686. for (j = 0; j < sband->n_bitrates; j++) {
  1687. if (sband->bitrates[j].bitrate == rate)
  1688. rates |= BIT(j);
  1689. if (elems.supp_rates[i] & 0x80)
  1690. basic_rates |= BIT(j);
  1691. }
  1692. }
  1693. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1694. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1695. if (rate > 110)
  1696. have_higher_than_11mbit = true;
  1697. for (j = 0; j < sband->n_bitrates; j++) {
  1698. if (sband->bitrates[j].bitrate == rate)
  1699. rates |= BIT(j);
  1700. if (elems.ext_supp_rates[i] & 0x80)
  1701. basic_rates |= BIT(j);
  1702. }
  1703. }
  1704. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1705. sdata->basic_rates = basic_rates;
  1706. /* cf. IEEE 802.11 9.2.12 */
  1707. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1708. have_higher_than_11mbit)
  1709. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1710. else
  1711. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1712. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param) {
  1713. struct ieee80211_ht_bss_info bss_info;
  1714. ieee80211_ht_cap_ie_to_ht_info(
  1715. (struct ieee80211_ht_cap *)
  1716. elems.ht_cap_elem, &sta->ht_info);
  1717. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1718. (struct ieee80211_ht_addt_info *)
  1719. elems.ht_info_elem, &bss_info);
  1720. ieee80211_handle_ht(local, 1, &sta->ht_info, &bss_info);
  1721. }
  1722. rate_control_rate_init(sta, local);
  1723. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1724. sta->flags |= WLAN_STA_WME;
  1725. rcu_read_unlock();
  1726. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1727. elems.wmm_param_len);
  1728. } else
  1729. rcu_read_unlock();
  1730. /* set AID, ieee80211_set_associated() will tell the driver */
  1731. bss_conf->aid = aid;
  1732. ieee80211_set_associated(dev, ifsta, 1);
  1733. ieee80211_associated(dev, ifsta);
  1734. }
  1735. /* Caller must hold local->sta_bss_lock */
  1736. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1737. struct ieee80211_sta_bss *bss)
  1738. {
  1739. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1740. u8 hash_idx;
  1741. if (bss_mesh_cfg(bss))
  1742. hash_idx = mesh_id_hash(bss_mesh_id(bss),
  1743. bss_mesh_id_len(bss));
  1744. else
  1745. hash_idx = STA_HASH(bss->bssid);
  1746. bss->hnext = local->sta_bss_hash[hash_idx];
  1747. local->sta_bss_hash[hash_idx] = bss;
  1748. }
  1749. /* Caller must hold local->sta_bss_lock */
  1750. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1751. struct ieee80211_sta_bss *bss)
  1752. {
  1753. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1754. struct ieee80211_sta_bss *b, *prev = NULL;
  1755. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1756. while (b) {
  1757. if (b == bss) {
  1758. if (!prev)
  1759. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1760. bss->hnext;
  1761. else
  1762. prev->hnext = bss->hnext;
  1763. break;
  1764. }
  1765. prev = b;
  1766. b = b->hnext;
  1767. }
  1768. }
  1769. static struct ieee80211_sta_bss *
  1770. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1771. u8 *ssid, u8 ssid_len)
  1772. {
  1773. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1774. struct ieee80211_sta_bss *bss;
  1775. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1776. if (!bss)
  1777. return NULL;
  1778. atomic_inc(&bss->users);
  1779. atomic_inc(&bss->users);
  1780. memcpy(bss->bssid, bssid, ETH_ALEN);
  1781. bss->freq = freq;
  1782. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1783. memcpy(bss->ssid, ssid, ssid_len);
  1784. bss->ssid_len = ssid_len;
  1785. }
  1786. spin_lock_bh(&local->sta_bss_lock);
  1787. /* TODO: order by RSSI? */
  1788. list_add_tail(&bss->list, &local->sta_bss_list);
  1789. __ieee80211_rx_bss_hash_add(dev, bss);
  1790. spin_unlock_bh(&local->sta_bss_lock);
  1791. return bss;
  1792. }
  1793. static struct ieee80211_sta_bss *
  1794. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1795. u8 *ssid, u8 ssid_len)
  1796. {
  1797. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1798. struct ieee80211_sta_bss *bss;
  1799. spin_lock_bh(&local->sta_bss_lock);
  1800. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1801. while (bss) {
  1802. if (!bss_mesh_cfg(bss) &&
  1803. !memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1804. bss->freq == freq &&
  1805. bss->ssid_len == ssid_len &&
  1806. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1807. atomic_inc(&bss->users);
  1808. break;
  1809. }
  1810. bss = bss->hnext;
  1811. }
  1812. spin_unlock_bh(&local->sta_bss_lock);
  1813. return bss;
  1814. }
  1815. #ifdef CONFIG_MAC80211_MESH
  1816. static struct ieee80211_sta_bss *
  1817. ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1818. u8 *mesh_cfg, int freq)
  1819. {
  1820. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1821. struct ieee80211_sta_bss *bss;
  1822. spin_lock_bh(&local->sta_bss_lock);
  1823. bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
  1824. while (bss) {
  1825. if (bss_mesh_cfg(bss) &&
  1826. !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
  1827. bss->freq == freq &&
  1828. mesh_id_len == bss->mesh_id_len &&
  1829. (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
  1830. mesh_id_len))) {
  1831. atomic_inc(&bss->users);
  1832. break;
  1833. }
  1834. bss = bss->hnext;
  1835. }
  1836. spin_unlock_bh(&local->sta_bss_lock);
  1837. return bss;
  1838. }
  1839. static struct ieee80211_sta_bss *
  1840. ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1841. u8 *mesh_cfg, int mesh_config_len, int freq)
  1842. {
  1843. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1844. struct ieee80211_sta_bss *bss;
  1845. if (mesh_config_len != MESH_CFG_LEN)
  1846. return NULL;
  1847. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1848. if (!bss)
  1849. return NULL;
  1850. bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
  1851. if (!bss->mesh_cfg) {
  1852. kfree(bss);
  1853. return NULL;
  1854. }
  1855. if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
  1856. bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
  1857. if (!bss->mesh_id) {
  1858. kfree(bss->mesh_cfg);
  1859. kfree(bss);
  1860. return NULL;
  1861. }
  1862. memcpy(bss->mesh_id, mesh_id, mesh_id_len);
  1863. }
  1864. atomic_inc(&bss->users);
  1865. atomic_inc(&bss->users);
  1866. memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
  1867. bss->mesh_id_len = mesh_id_len;
  1868. bss->freq = freq;
  1869. spin_lock_bh(&local->sta_bss_lock);
  1870. /* TODO: order by RSSI? */
  1871. list_add_tail(&bss->list, &local->sta_bss_list);
  1872. __ieee80211_rx_bss_hash_add(dev, bss);
  1873. spin_unlock_bh(&local->sta_bss_lock);
  1874. return bss;
  1875. }
  1876. #endif
  1877. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1878. {
  1879. kfree(bss->wpa_ie);
  1880. kfree(bss->rsn_ie);
  1881. kfree(bss->wmm_ie);
  1882. kfree(bss->ht_ie);
  1883. kfree(bss_mesh_id(bss));
  1884. kfree(bss_mesh_cfg(bss));
  1885. kfree(bss);
  1886. }
  1887. static void ieee80211_rx_bss_put(struct net_device *dev,
  1888. struct ieee80211_sta_bss *bss)
  1889. {
  1890. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1891. if (!atomic_dec_and_test(&bss->users))
  1892. return;
  1893. spin_lock_bh(&local->sta_bss_lock);
  1894. __ieee80211_rx_bss_hash_del(dev, bss);
  1895. list_del(&bss->list);
  1896. spin_unlock_bh(&local->sta_bss_lock);
  1897. ieee80211_rx_bss_free(bss);
  1898. }
  1899. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1900. {
  1901. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1902. spin_lock_init(&local->sta_bss_lock);
  1903. INIT_LIST_HEAD(&local->sta_bss_list);
  1904. }
  1905. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1906. {
  1907. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1908. struct ieee80211_sta_bss *bss, *tmp;
  1909. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1910. ieee80211_rx_bss_put(dev, bss);
  1911. }
  1912. static int ieee80211_sta_join_ibss(struct net_device *dev,
  1913. struct ieee80211_if_sta *ifsta,
  1914. struct ieee80211_sta_bss *bss)
  1915. {
  1916. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1917. int res, rates, i, j;
  1918. struct sk_buff *skb;
  1919. struct ieee80211_mgmt *mgmt;
  1920. struct ieee80211_tx_control control;
  1921. struct rate_selection ratesel;
  1922. u8 *pos;
  1923. struct ieee80211_sub_if_data *sdata;
  1924. struct ieee80211_supported_band *sband;
  1925. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1926. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1927. /* Remove possible STA entries from other IBSS networks. */
  1928. sta_info_flush_delayed(sdata);
  1929. if (local->ops->reset_tsf) {
  1930. /* Reset own TSF to allow time synchronization work. */
  1931. local->ops->reset_tsf(local_to_hw(local));
  1932. }
  1933. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  1934. res = ieee80211_if_config(dev);
  1935. if (res)
  1936. return res;
  1937. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  1938. sdata->drop_unencrypted = bss->capability &
  1939. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  1940. res = ieee80211_set_freq(local, bss->freq);
  1941. if (local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS) {
  1942. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  1943. "%d MHz\n", dev->name, local->oper_channel->center_freq);
  1944. return -1;
  1945. }
  1946. /* Set beacon template */
  1947. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  1948. do {
  1949. if (!skb)
  1950. break;
  1951. skb_reserve(skb, local->hw.extra_tx_headroom);
  1952. mgmt = (struct ieee80211_mgmt *)
  1953. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  1954. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  1955. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1956. IEEE80211_STYPE_BEACON);
  1957. memset(mgmt->da, 0xff, ETH_ALEN);
  1958. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1959. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1960. mgmt->u.beacon.beacon_int =
  1961. cpu_to_le16(local->hw.conf.beacon_int);
  1962. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  1963. pos = skb_put(skb, 2 + ifsta->ssid_len);
  1964. *pos++ = WLAN_EID_SSID;
  1965. *pos++ = ifsta->ssid_len;
  1966. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  1967. rates = bss->supp_rates_len;
  1968. if (rates > 8)
  1969. rates = 8;
  1970. pos = skb_put(skb, 2 + rates);
  1971. *pos++ = WLAN_EID_SUPP_RATES;
  1972. *pos++ = rates;
  1973. memcpy(pos, bss->supp_rates, rates);
  1974. if (bss->band == IEEE80211_BAND_2GHZ) {
  1975. pos = skb_put(skb, 2 + 1);
  1976. *pos++ = WLAN_EID_DS_PARAMS;
  1977. *pos++ = 1;
  1978. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  1979. }
  1980. pos = skb_put(skb, 2 + 2);
  1981. *pos++ = WLAN_EID_IBSS_PARAMS;
  1982. *pos++ = 2;
  1983. /* FIX: set ATIM window based on scan results */
  1984. *pos++ = 0;
  1985. *pos++ = 0;
  1986. if (bss->supp_rates_len > 8) {
  1987. rates = bss->supp_rates_len - 8;
  1988. pos = skb_put(skb, 2 + rates);
  1989. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  1990. *pos++ = rates;
  1991. memcpy(pos, &bss->supp_rates[8], rates);
  1992. }
  1993. memset(&control, 0, sizeof(control));
  1994. rate_control_get_rate(dev, sband, skb, &ratesel);
  1995. if (!ratesel.rate) {
  1996. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  1997. "for IBSS beacon\n", dev->name);
  1998. break;
  1999. }
  2000. control.vif = &sdata->vif;
  2001. control.tx_rate = ratesel.rate;
  2002. if (sdata->bss_conf.use_short_preamble &&
  2003. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  2004. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  2005. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  2006. control.flags |= IEEE80211_TXCTL_NO_ACK;
  2007. control.retry_limit = 1;
  2008. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2009. if (ifsta->probe_resp) {
  2010. mgmt = (struct ieee80211_mgmt *)
  2011. ifsta->probe_resp->data;
  2012. mgmt->frame_control =
  2013. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2014. IEEE80211_STYPE_PROBE_RESP);
  2015. } else {
  2016. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2017. "template for IBSS\n", dev->name);
  2018. }
  2019. if (local->ops->beacon_update &&
  2020. local->ops->beacon_update(local_to_hw(local),
  2021. skb, &control) == 0) {
  2022. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2023. "template\n", dev->name);
  2024. skb = NULL;
  2025. }
  2026. rates = 0;
  2027. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2028. for (i = 0; i < bss->supp_rates_len; i++) {
  2029. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2030. for (j = 0; j < sband->n_bitrates; j++)
  2031. if (sband->bitrates[j].bitrate == bitrate)
  2032. rates |= BIT(j);
  2033. }
  2034. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  2035. ieee80211_sta_def_wmm_params(dev, bss, 1);
  2036. } while (0);
  2037. if (skb) {
  2038. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2039. "template\n", dev->name);
  2040. dev_kfree_skb(skb);
  2041. }
  2042. ifsta->state = IEEE80211_IBSS_JOINED;
  2043. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2044. ieee80211_rx_bss_put(dev, bss);
  2045. return res;
  2046. }
  2047. u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
  2048. struct ieee802_11_elems *elems,
  2049. enum ieee80211_band band)
  2050. {
  2051. struct ieee80211_supported_band *sband;
  2052. struct ieee80211_rate *bitrates;
  2053. size_t num_rates;
  2054. u64 supp_rates;
  2055. int i, j;
  2056. sband = local->hw.wiphy->bands[band];
  2057. if (!sband) {
  2058. WARN_ON(1);
  2059. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2060. }
  2061. bitrates = sband->bitrates;
  2062. num_rates = sband->n_bitrates;
  2063. supp_rates = 0;
  2064. for (i = 0; i < elems->supp_rates_len +
  2065. elems->ext_supp_rates_len; i++) {
  2066. u8 rate = 0;
  2067. int own_rate;
  2068. if (i < elems->supp_rates_len)
  2069. rate = elems->supp_rates[i];
  2070. else if (elems->ext_supp_rates)
  2071. rate = elems->ext_supp_rates
  2072. [i - elems->supp_rates_len];
  2073. own_rate = 5 * (rate & 0x7f);
  2074. for (j = 0; j < num_rates; j++)
  2075. if (bitrates[j].bitrate == own_rate)
  2076. supp_rates |= BIT(j);
  2077. }
  2078. return supp_rates;
  2079. }
  2080. static void ieee80211_rx_bss_info(struct net_device *dev,
  2081. struct ieee80211_mgmt *mgmt,
  2082. size_t len,
  2083. struct ieee80211_rx_status *rx_status,
  2084. int beacon)
  2085. {
  2086. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2087. struct ieee802_11_elems elems;
  2088. size_t baselen;
  2089. int freq, clen;
  2090. struct ieee80211_sta_bss *bss;
  2091. struct sta_info *sta;
  2092. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2093. u64 beacon_timestamp, rx_timestamp;
  2094. struct ieee80211_channel *channel;
  2095. DECLARE_MAC_BUF(mac);
  2096. DECLARE_MAC_BUF(mac2);
  2097. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  2098. return; /* ignore ProbeResp to foreign address */
  2099. #if 0
  2100. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  2101. dev->name, beacon ? "Beacon" : "Probe Response",
  2102. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  2103. #endif
  2104. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2105. if (baselen > len)
  2106. return;
  2107. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  2108. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2109. if (ieee80211_vif_is_mesh(&sdata->vif) && elems.mesh_id &&
  2110. elems.mesh_config && mesh_matches_local(&elems, dev)) {
  2111. u64 rates = ieee80211_sta_get_rates(local, &elems,
  2112. rx_status->band);
  2113. mesh_neighbour_update(mgmt->sa, rates, dev,
  2114. mesh_peer_accepts_plinks(&elems, dev));
  2115. }
  2116. rcu_read_lock();
  2117. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  2118. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  2119. (sta = sta_info_get(local, mgmt->sa))) {
  2120. u64 prev_rates;
  2121. u64 supp_rates = ieee80211_sta_get_rates(local, &elems,
  2122. rx_status->band);
  2123. prev_rates = sta->supp_rates[rx_status->band];
  2124. sta->supp_rates[rx_status->band] &= supp_rates;
  2125. if (sta->supp_rates[rx_status->band] == 0) {
  2126. /* No matching rates - this should not really happen.
  2127. * Make sure that at least one rate is marked
  2128. * supported to avoid issues with TX rate ctrl. */
  2129. sta->supp_rates[rx_status->band] =
  2130. sdata->u.sta.supp_rates_bits[rx_status->band];
  2131. }
  2132. if (sta->supp_rates[rx_status->band] != prev_rates) {
  2133. printk(KERN_DEBUG "%s: updated supp_rates set for "
  2134. "%s based on beacon info (0x%llx & 0x%llx -> "
  2135. "0x%llx)\n",
  2136. dev->name, print_mac(mac, sta->addr),
  2137. (unsigned long long) prev_rates,
  2138. (unsigned long long) supp_rates,
  2139. (unsigned long long) sta->supp_rates[rx_status->band]);
  2140. }
  2141. }
  2142. rcu_read_unlock();
  2143. if (elems.ds_params && elems.ds_params_len == 1)
  2144. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  2145. else
  2146. freq = rx_status->freq;
  2147. channel = ieee80211_get_channel(local->hw.wiphy, freq);
  2148. if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
  2149. return;
  2150. #ifdef CONFIG_MAC80211_MESH
  2151. if (elems.mesh_config)
  2152. bss = ieee80211_rx_mesh_bss_get(dev, elems.mesh_id,
  2153. elems.mesh_id_len, elems.mesh_config, freq);
  2154. else
  2155. #endif
  2156. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  2157. elems.ssid, elems.ssid_len);
  2158. if (!bss) {
  2159. #ifdef CONFIG_MAC80211_MESH
  2160. if (elems.mesh_config)
  2161. bss = ieee80211_rx_mesh_bss_add(dev, elems.mesh_id,
  2162. elems.mesh_id_len, elems.mesh_config,
  2163. elems.mesh_config_len, freq);
  2164. else
  2165. #endif
  2166. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  2167. elems.ssid, elems.ssid_len);
  2168. if (!bss)
  2169. return;
  2170. } else {
  2171. #if 0
  2172. /* TODO: order by RSSI? */
  2173. spin_lock_bh(&local->sta_bss_lock);
  2174. list_move_tail(&bss->list, &local->sta_bss_list);
  2175. spin_unlock_bh(&local->sta_bss_lock);
  2176. #endif
  2177. }
  2178. bss->band = rx_status->band;
  2179. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2180. bss->probe_resp && beacon) {
  2181. /* STA mode:
  2182. * Do not allow beacon to override data from Probe Response. */
  2183. ieee80211_rx_bss_put(dev, bss);
  2184. return;
  2185. }
  2186. /* save the ERP value so that it is available at association time */
  2187. if (elems.erp_info && elems.erp_info_len >= 1) {
  2188. bss->erp_value = elems.erp_info[0];
  2189. bss->has_erp_value = 1;
  2190. }
  2191. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  2192. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  2193. bss->supp_rates_len = 0;
  2194. if (elems.supp_rates) {
  2195. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2196. if (clen > elems.supp_rates_len)
  2197. clen = elems.supp_rates_len;
  2198. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  2199. clen);
  2200. bss->supp_rates_len += clen;
  2201. }
  2202. if (elems.ext_supp_rates) {
  2203. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2204. if (clen > elems.ext_supp_rates_len)
  2205. clen = elems.ext_supp_rates_len;
  2206. memcpy(&bss->supp_rates[bss->supp_rates_len],
  2207. elems.ext_supp_rates, clen);
  2208. bss->supp_rates_len += clen;
  2209. }
  2210. if (elems.wpa &&
  2211. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  2212. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  2213. kfree(bss->wpa_ie);
  2214. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  2215. if (bss->wpa_ie) {
  2216. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  2217. bss->wpa_ie_len = elems.wpa_len + 2;
  2218. } else
  2219. bss->wpa_ie_len = 0;
  2220. } else if (!elems.wpa && bss->wpa_ie) {
  2221. kfree(bss->wpa_ie);
  2222. bss->wpa_ie = NULL;
  2223. bss->wpa_ie_len = 0;
  2224. }
  2225. if (elems.rsn &&
  2226. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  2227. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  2228. kfree(bss->rsn_ie);
  2229. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  2230. if (bss->rsn_ie) {
  2231. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  2232. bss->rsn_ie_len = elems.rsn_len + 2;
  2233. } else
  2234. bss->rsn_ie_len = 0;
  2235. } else if (!elems.rsn && bss->rsn_ie) {
  2236. kfree(bss->rsn_ie);
  2237. bss->rsn_ie = NULL;
  2238. bss->rsn_ie_len = 0;
  2239. }
  2240. if (elems.wmm_param &&
  2241. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  2242. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  2243. kfree(bss->wmm_ie);
  2244. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  2245. if (bss->wmm_ie) {
  2246. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  2247. elems.wmm_param_len + 2);
  2248. bss->wmm_ie_len = elems.wmm_param_len + 2;
  2249. } else
  2250. bss->wmm_ie_len = 0;
  2251. } else if (!elems.wmm_param && bss->wmm_ie) {
  2252. kfree(bss->wmm_ie);
  2253. bss->wmm_ie = NULL;
  2254. bss->wmm_ie_len = 0;
  2255. }
  2256. if (elems.ht_cap_elem &&
  2257. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  2258. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  2259. kfree(bss->ht_ie);
  2260. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  2261. if (bss->ht_ie) {
  2262. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  2263. elems.ht_cap_elem_len + 2);
  2264. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  2265. } else
  2266. bss->ht_ie_len = 0;
  2267. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  2268. kfree(bss->ht_ie);
  2269. bss->ht_ie = NULL;
  2270. bss->ht_ie_len = 0;
  2271. }
  2272. bss->timestamp = beacon_timestamp;
  2273. bss->last_update = jiffies;
  2274. bss->rssi = rx_status->ssi;
  2275. bss->signal = rx_status->signal;
  2276. bss->noise = rx_status->noise;
  2277. if (!beacon)
  2278. bss->probe_resp++;
  2279. /* check if we need to merge IBSS */
  2280. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2281. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2282. bss->capability & WLAN_CAPABILITY_IBSS &&
  2283. bss->freq == local->oper_channel->center_freq &&
  2284. elems.ssid_len == sdata->u.sta.ssid_len &&
  2285. memcmp(elems.ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) {
  2286. if (rx_status->flag & RX_FLAG_TSFT) {
  2287. /* in order for correct IBSS merging we need mactime
  2288. *
  2289. * since mactime is defined as the time the first data
  2290. * symbol of the frame hits the PHY, and the timestamp
  2291. * of the beacon is defined as "the time that the data
  2292. * symbol containing the first bit of the timestamp is
  2293. * transmitted to the PHY plus the transmitting STA’s
  2294. * delays through its local PHY from the MAC-PHY
  2295. * interface to its interface with the WM"
  2296. * (802.11 11.1.2) - equals the time this bit arrives at
  2297. * the receiver - we have to take into account the
  2298. * offset between the two.
  2299. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2300. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2301. */
  2302. int rate = local->hw.wiphy->bands[rx_status->band]->
  2303. bitrates[rx_status->rate_idx].bitrate;
  2304. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2305. } else if (local && local->ops && local->ops->get_tsf)
  2306. /* second best option: get current TSF */
  2307. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2308. else
  2309. /* can't merge without knowing the TSF */
  2310. rx_timestamp = -1LLU;
  2311. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2312. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2313. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2314. print_mac(mac, mgmt->sa),
  2315. print_mac(mac2, mgmt->bssid),
  2316. (unsigned long long)rx_timestamp,
  2317. (unsigned long long)beacon_timestamp,
  2318. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2319. jiffies);
  2320. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2321. if (beacon_timestamp > rx_timestamp) {
  2322. #ifndef CONFIG_MAC80211_IBSS_DEBUG
  2323. if (net_ratelimit())
  2324. #endif
  2325. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2326. "local TSF - IBSS merge with BSSID %s\n",
  2327. dev->name, print_mac(mac, mgmt->bssid));
  2328. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2329. ieee80211_ibss_add_sta(dev, NULL,
  2330. mgmt->bssid, mgmt->sa);
  2331. }
  2332. }
  2333. ieee80211_rx_bss_put(dev, bss);
  2334. }
  2335. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2336. struct ieee80211_mgmt *mgmt,
  2337. size_t len,
  2338. struct ieee80211_rx_status *rx_status)
  2339. {
  2340. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  2341. }
  2342. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2343. struct ieee80211_mgmt *mgmt,
  2344. size_t len,
  2345. struct ieee80211_rx_status *rx_status)
  2346. {
  2347. struct ieee80211_sub_if_data *sdata;
  2348. struct ieee80211_if_sta *ifsta;
  2349. size_t baselen;
  2350. struct ieee802_11_elems elems;
  2351. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2352. struct ieee80211_conf *conf = &local->hw.conf;
  2353. u32 changed = 0;
  2354. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  2355. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2356. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2357. return;
  2358. ifsta = &sdata->u.sta;
  2359. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2360. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2361. return;
  2362. /* Process beacon from the current BSS */
  2363. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2364. if (baselen > len)
  2365. return;
  2366. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2367. if (elems.erp_info && elems.erp_info_len >= 1)
  2368. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2369. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2370. elems.wmm_param && conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2371. struct ieee80211_ht_bss_info bss_info;
  2372. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2373. (struct ieee80211_ht_addt_info *)
  2374. elems.ht_info_elem, &bss_info);
  2375. changed |= ieee80211_handle_ht(local, 1, &conf->ht_conf,
  2376. &bss_info);
  2377. }
  2378. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2379. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2380. elems.wmm_param_len);
  2381. }
  2382. ieee80211_bss_info_change_notify(sdata, changed);
  2383. }
  2384. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2385. struct ieee80211_if_sta *ifsta,
  2386. struct ieee80211_mgmt *mgmt,
  2387. size_t len,
  2388. struct ieee80211_rx_status *rx_status)
  2389. {
  2390. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2391. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2392. int tx_last_beacon;
  2393. struct sk_buff *skb;
  2394. struct ieee80211_mgmt *resp;
  2395. u8 *pos, *end;
  2396. DECLARE_MAC_BUF(mac);
  2397. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2398. DECLARE_MAC_BUF(mac2);
  2399. DECLARE_MAC_BUF(mac3);
  2400. #endif
  2401. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2402. ifsta->state != IEEE80211_IBSS_JOINED ||
  2403. len < 24 + 2 || !ifsta->probe_resp)
  2404. return;
  2405. if (local->ops->tx_last_beacon)
  2406. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2407. else
  2408. tx_last_beacon = 1;
  2409. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2410. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2411. "%s (tx_last_beacon=%d)\n",
  2412. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2413. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2414. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2415. if (!tx_last_beacon)
  2416. return;
  2417. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2418. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2419. return;
  2420. end = ((u8 *) mgmt) + len;
  2421. pos = mgmt->u.probe_req.variable;
  2422. if (pos[0] != WLAN_EID_SSID ||
  2423. pos + 2 + pos[1] > end) {
  2424. if (net_ratelimit()) {
  2425. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2426. "from %s\n",
  2427. dev->name, print_mac(mac, mgmt->sa));
  2428. }
  2429. return;
  2430. }
  2431. if (pos[1] != 0 &&
  2432. (pos[1] != ifsta->ssid_len ||
  2433. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2434. /* Ignore ProbeReq for foreign SSID */
  2435. return;
  2436. }
  2437. /* Reply with ProbeResp */
  2438. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2439. if (!skb)
  2440. return;
  2441. resp = (struct ieee80211_mgmt *) skb->data;
  2442. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2443. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2444. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2445. dev->name, print_mac(mac, resp->da));
  2446. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2447. ieee80211_sta_tx(dev, skb, 0);
  2448. }
  2449. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2450. struct ieee80211_if_sta *ifsta,
  2451. struct ieee80211_mgmt *mgmt,
  2452. size_t len,
  2453. struct ieee80211_rx_status *rx_status)
  2454. {
  2455. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2456. if (len < IEEE80211_MIN_ACTION_SIZE)
  2457. return;
  2458. switch (mgmt->u.action.category) {
  2459. case WLAN_CATEGORY_BACK:
  2460. switch (mgmt->u.action.u.addba_req.action_code) {
  2461. case WLAN_ACTION_ADDBA_REQ:
  2462. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2463. sizeof(mgmt->u.action.u.addba_req)))
  2464. break;
  2465. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2466. break;
  2467. case WLAN_ACTION_ADDBA_RESP:
  2468. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2469. sizeof(mgmt->u.action.u.addba_resp)))
  2470. break;
  2471. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2472. break;
  2473. case WLAN_ACTION_DELBA:
  2474. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2475. sizeof(mgmt->u.action.u.delba)))
  2476. break;
  2477. ieee80211_sta_process_delba(dev, mgmt, len);
  2478. break;
  2479. default:
  2480. if (net_ratelimit())
  2481. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2482. dev->name);
  2483. break;
  2484. }
  2485. break;
  2486. case PLINK_CATEGORY:
  2487. if (ieee80211_vif_is_mesh(&sdata->vif))
  2488. mesh_rx_plink_frame(dev, mgmt, len, rx_status);
  2489. break;
  2490. case MESH_PATH_SEL_CATEGORY:
  2491. if (ieee80211_vif_is_mesh(&sdata->vif))
  2492. mesh_rx_path_sel_frame(dev, mgmt, len);
  2493. break;
  2494. default:
  2495. if (net_ratelimit())
  2496. printk(KERN_DEBUG "%s: Rx unknown action frame - "
  2497. "category=%d\n", dev->name, mgmt->u.action.category);
  2498. break;
  2499. }
  2500. }
  2501. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2502. struct ieee80211_rx_status *rx_status)
  2503. {
  2504. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2505. struct ieee80211_sub_if_data *sdata;
  2506. struct ieee80211_if_sta *ifsta;
  2507. struct ieee80211_mgmt *mgmt;
  2508. u16 fc;
  2509. if (skb->len < 24)
  2510. goto fail;
  2511. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2512. ifsta = &sdata->u.sta;
  2513. mgmt = (struct ieee80211_mgmt *) skb->data;
  2514. fc = le16_to_cpu(mgmt->frame_control);
  2515. switch (fc & IEEE80211_FCTL_STYPE) {
  2516. case IEEE80211_STYPE_PROBE_REQ:
  2517. case IEEE80211_STYPE_PROBE_RESP:
  2518. case IEEE80211_STYPE_BEACON:
  2519. case IEEE80211_STYPE_ACTION:
  2520. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2521. case IEEE80211_STYPE_AUTH:
  2522. case IEEE80211_STYPE_ASSOC_RESP:
  2523. case IEEE80211_STYPE_REASSOC_RESP:
  2524. case IEEE80211_STYPE_DEAUTH:
  2525. case IEEE80211_STYPE_DISASSOC:
  2526. skb_queue_tail(&ifsta->skb_queue, skb);
  2527. queue_work(local->hw.workqueue, &ifsta->work);
  2528. return;
  2529. default:
  2530. printk(KERN_DEBUG "%s: received unknown management frame - "
  2531. "stype=%d\n", dev->name,
  2532. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2533. break;
  2534. }
  2535. fail:
  2536. kfree_skb(skb);
  2537. }
  2538. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2539. struct sk_buff *skb)
  2540. {
  2541. struct ieee80211_rx_status *rx_status;
  2542. struct ieee80211_sub_if_data *sdata;
  2543. struct ieee80211_if_sta *ifsta;
  2544. struct ieee80211_mgmt *mgmt;
  2545. u16 fc;
  2546. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2547. ifsta = &sdata->u.sta;
  2548. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2549. mgmt = (struct ieee80211_mgmt *) skb->data;
  2550. fc = le16_to_cpu(mgmt->frame_control);
  2551. switch (fc & IEEE80211_FCTL_STYPE) {
  2552. case IEEE80211_STYPE_PROBE_REQ:
  2553. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2554. rx_status);
  2555. break;
  2556. case IEEE80211_STYPE_PROBE_RESP:
  2557. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2558. break;
  2559. case IEEE80211_STYPE_BEACON:
  2560. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2561. break;
  2562. case IEEE80211_STYPE_AUTH:
  2563. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2564. break;
  2565. case IEEE80211_STYPE_ASSOC_RESP:
  2566. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2567. break;
  2568. case IEEE80211_STYPE_REASSOC_RESP:
  2569. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2570. break;
  2571. case IEEE80211_STYPE_DEAUTH:
  2572. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2573. break;
  2574. case IEEE80211_STYPE_DISASSOC:
  2575. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2576. break;
  2577. case IEEE80211_STYPE_ACTION:
  2578. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
  2579. break;
  2580. }
  2581. kfree_skb(skb);
  2582. }
  2583. ieee80211_rx_result
  2584. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2585. struct ieee80211_rx_status *rx_status)
  2586. {
  2587. struct ieee80211_mgmt *mgmt;
  2588. u16 fc;
  2589. if (skb->len < 2)
  2590. return RX_DROP_UNUSABLE;
  2591. mgmt = (struct ieee80211_mgmt *) skb->data;
  2592. fc = le16_to_cpu(mgmt->frame_control);
  2593. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2594. return RX_CONTINUE;
  2595. if (skb->len < 24)
  2596. return RX_DROP_MONITOR;
  2597. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2598. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2599. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2600. skb->len, rx_status);
  2601. dev_kfree_skb(skb);
  2602. return RX_QUEUED;
  2603. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2604. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2605. rx_status);
  2606. dev_kfree_skb(skb);
  2607. return RX_QUEUED;
  2608. }
  2609. }
  2610. return RX_CONTINUE;
  2611. }
  2612. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2613. {
  2614. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2615. int active = 0;
  2616. struct sta_info *sta;
  2617. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2618. rcu_read_lock();
  2619. list_for_each_entry_rcu(sta, &local->sta_list, list) {
  2620. if (sta->sdata == sdata &&
  2621. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2622. jiffies)) {
  2623. active++;
  2624. break;
  2625. }
  2626. }
  2627. rcu_read_unlock();
  2628. return active;
  2629. }
  2630. static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
  2631. {
  2632. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2633. struct sta_info *sta, *tmp;
  2634. LIST_HEAD(tmp_list);
  2635. DECLARE_MAC_BUF(mac);
  2636. unsigned long flags;
  2637. spin_lock_irqsave(&local->sta_lock, flags);
  2638. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2639. if (time_after(jiffies, sta->last_rx + exp_time)) {
  2640. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2641. dev->name, print_mac(mac, sta->addr));
  2642. __sta_info_unlink(&sta);
  2643. if (sta)
  2644. list_add(&sta->list, &tmp_list);
  2645. }
  2646. spin_unlock_irqrestore(&local->sta_lock, flags);
  2647. synchronize_rcu();
  2648. rtnl_lock();
  2649. list_for_each_entry_safe(sta, tmp, &tmp_list, list)
  2650. sta_info_destroy(sta);
  2651. rtnl_unlock();
  2652. }
  2653. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2654. struct ieee80211_if_sta *ifsta)
  2655. {
  2656. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2657. ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
  2658. if (ieee80211_sta_active_ibss(dev))
  2659. return;
  2660. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2661. "IBSS networks with same SSID (merge)\n", dev->name);
  2662. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2663. }
  2664. #ifdef CONFIG_MAC80211_MESH
  2665. static void ieee80211_mesh_housekeeping(struct net_device *dev,
  2666. struct ieee80211_if_sta *ifsta)
  2667. {
  2668. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2669. bool free_plinks;
  2670. ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
  2671. mesh_path_expire(dev);
  2672. free_plinks = mesh_plink_availables(sdata);
  2673. if (free_plinks != sdata->u.sta.accepting_plinks)
  2674. ieee80211_if_config_beacon(dev);
  2675. mod_timer(&ifsta->timer, jiffies +
  2676. IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
  2677. }
  2678. void ieee80211_start_mesh(struct net_device *dev)
  2679. {
  2680. struct ieee80211_if_sta *ifsta;
  2681. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2682. ifsta = &sdata->u.sta;
  2683. ifsta->state = IEEE80211_MESH_UP;
  2684. ieee80211_sta_timer((unsigned long)sdata);
  2685. }
  2686. #endif
  2687. void ieee80211_sta_timer(unsigned long data)
  2688. {
  2689. struct ieee80211_sub_if_data *sdata =
  2690. (struct ieee80211_sub_if_data *) data;
  2691. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2692. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2693. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2694. queue_work(local->hw.workqueue, &ifsta->work);
  2695. }
  2696. void ieee80211_sta_work(struct work_struct *work)
  2697. {
  2698. struct ieee80211_sub_if_data *sdata =
  2699. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2700. struct net_device *dev = sdata->dev;
  2701. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2702. struct ieee80211_if_sta *ifsta;
  2703. struct sk_buff *skb;
  2704. if (!netif_running(dev))
  2705. return;
  2706. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2707. return;
  2708. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2709. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2710. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT) {
  2711. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2712. "(type=%d)\n", dev->name, sdata->vif.type);
  2713. return;
  2714. }
  2715. ifsta = &sdata->u.sta;
  2716. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2717. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2718. #ifdef CONFIG_MAC80211_MESH
  2719. if (ifsta->preq_queue_len &&
  2720. time_after(jiffies,
  2721. ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
  2722. mesh_path_start_discovery(dev);
  2723. #endif
  2724. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2725. ifsta->state != IEEE80211_ASSOCIATE &&
  2726. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2727. if (ifsta->scan_ssid_len)
  2728. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2729. else
  2730. ieee80211_sta_start_scan(dev, NULL, 0);
  2731. return;
  2732. }
  2733. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2734. if (ieee80211_sta_config_auth(dev, ifsta))
  2735. return;
  2736. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2737. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2738. return;
  2739. switch (ifsta->state) {
  2740. case IEEE80211_DISABLED:
  2741. break;
  2742. case IEEE80211_AUTHENTICATE:
  2743. ieee80211_authenticate(dev, ifsta);
  2744. break;
  2745. case IEEE80211_ASSOCIATE:
  2746. ieee80211_associate(dev, ifsta);
  2747. break;
  2748. case IEEE80211_ASSOCIATED:
  2749. ieee80211_associated(dev, ifsta);
  2750. break;
  2751. case IEEE80211_IBSS_SEARCH:
  2752. ieee80211_sta_find_ibss(dev, ifsta);
  2753. break;
  2754. case IEEE80211_IBSS_JOINED:
  2755. ieee80211_sta_merge_ibss(dev, ifsta);
  2756. break;
  2757. #ifdef CONFIG_MAC80211_MESH
  2758. case IEEE80211_MESH_UP:
  2759. ieee80211_mesh_housekeeping(dev, ifsta);
  2760. break;
  2761. #endif
  2762. default:
  2763. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2764. ifsta->state);
  2765. break;
  2766. }
  2767. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2768. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2769. "mixed-cell disabled - disassociate\n", dev->name);
  2770. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2771. ieee80211_set_disassoc(dev, ifsta, 0);
  2772. }
  2773. }
  2774. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2775. struct ieee80211_if_sta *ifsta)
  2776. {
  2777. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2778. if (local->ops->reset_tsf) {
  2779. /* Reset own TSF to allow time synchronization work. */
  2780. local->ops->reset_tsf(local_to_hw(local));
  2781. }
  2782. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2783. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2784. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2785. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2786. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2787. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2788. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2789. else
  2790. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2791. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2792. ifsta->auth_alg);
  2793. ifsta->auth_transaction = -1;
  2794. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2795. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2796. netif_carrier_off(dev);
  2797. }
  2798. void ieee80211_sta_req_auth(struct net_device *dev,
  2799. struct ieee80211_if_sta *ifsta)
  2800. {
  2801. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2802. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2803. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2804. return;
  2805. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2806. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2807. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2808. IEEE80211_STA_AUTO_SSID_SEL))) {
  2809. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2810. queue_work(local->hw.workqueue, &ifsta->work);
  2811. }
  2812. }
  2813. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2814. const char *ssid, int ssid_len)
  2815. {
  2816. int tmp, hidden_ssid;
  2817. if (ssid_len == ifsta->ssid_len &&
  2818. !memcmp(ifsta->ssid, ssid, ssid_len))
  2819. return 1;
  2820. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2821. return 0;
  2822. hidden_ssid = 1;
  2823. tmp = ssid_len;
  2824. while (tmp--) {
  2825. if (ssid[tmp] != '\0') {
  2826. hidden_ssid = 0;
  2827. break;
  2828. }
  2829. }
  2830. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2831. return 1;
  2832. if (ssid_len == 1 && ssid[0] == ' ')
  2833. return 1;
  2834. return 0;
  2835. }
  2836. static int ieee80211_sta_config_auth(struct net_device *dev,
  2837. struct ieee80211_if_sta *ifsta)
  2838. {
  2839. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2840. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2841. struct ieee80211_sta_bss *bss, *selected = NULL;
  2842. int top_rssi = 0, freq;
  2843. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2844. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2845. ifsta->state = IEEE80211_AUTHENTICATE;
  2846. ieee80211_sta_reset_auth(dev, ifsta);
  2847. return 0;
  2848. }
  2849. spin_lock_bh(&local->sta_bss_lock);
  2850. freq = local->oper_channel->center_freq;
  2851. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2852. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2853. continue;
  2854. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2855. !!sdata->default_key)
  2856. continue;
  2857. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2858. bss->freq != freq)
  2859. continue;
  2860. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2861. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2862. continue;
  2863. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2864. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2865. continue;
  2866. if (!selected || top_rssi < bss->rssi) {
  2867. selected = bss;
  2868. top_rssi = bss->rssi;
  2869. }
  2870. }
  2871. if (selected)
  2872. atomic_inc(&selected->users);
  2873. spin_unlock_bh(&local->sta_bss_lock);
  2874. if (selected) {
  2875. ieee80211_set_freq(local, selected->freq);
  2876. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2877. ieee80211_sta_set_ssid(dev, selected->ssid,
  2878. selected->ssid_len);
  2879. ieee80211_sta_set_bssid(dev, selected->bssid);
  2880. ieee80211_sta_def_wmm_params(dev, selected, 0);
  2881. ieee80211_rx_bss_put(dev, selected);
  2882. ifsta->state = IEEE80211_AUTHENTICATE;
  2883. ieee80211_sta_reset_auth(dev, ifsta);
  2884. return 0;
  2885. } else {
  2886. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2887. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2888. ieee80211_sta_start_scan(dev, NULL, 0);
  2889. else
  2890. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2891. ifsta->ssid_len);
  2892. ifsta->state = IEEE80211_AUTHENTICATE;
  2893. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2894. } else
  2895. ifsta->state = IEEE80211_DISABLED;
  2896. }
  2897. return -1;
  2898. }
  2899. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2900. struct ieee80211_if_sta *ifsta)
  2901. {
  2902. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2903. struct ieee80211_sta_bss *bss;
  2904. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2905. struct ieee80211_supported_band *sband;
  2906. u8 bssid[ETH_ALEN], *pos;
  2907. int i;
  2908. DECLARE_MAC_BUF(mac);
  2909. #if 0
  2910. /* Easier testing, use fixed BSSID. */
  2911. memset(bssid, 0xfe, ETH_ALEN);
  2912. #else
  2913. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2914. * own MAC address to make sure that devices that do not have proper
  2915. * random number generator get different BSSID. */
  2916. get_random_bytes(bssid, ETH_ALEN);
  2917. for (i = 0; i < ETH_ALEN; i++)
  2918. bssid[i] ^= dev->dev_addr[i];
  2919. bssid[0] &= ~0x01;
  2920. bssid[0] |= 0x02;
  2921. #endif
  2922. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2923. dev->name, print_mac(mac, bssid));
  2924. bss = ieee80211_rx_bss_add(dev, bssid,
  2925. local->hw.conf.channel->center_freq,
  2926. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2927. if (!bss)
  2928. return -ENOMEM;
  2929. bss->band = local->hw.conf.channel->band;
  2930. sband = local->hw.wiphy->bands[bss->band];
  2931. if (local->hw.conf.beacon_int == 0)
  2932. local->hw.conf.beacon_int = 10000;
  2933. bss->beacon_int = local->hw.conf.beacon_int;
  2934. bss->last_update = jiffies;
  2935. bss->capability = WLAN_CAPABILITY_IBSS;
  2936. if (sdata->default_key) {
  2937. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2938. } else
  2939. sdata->drop_unencrypted = 0;
  2940. bss->supp_rates_len = sband->n_bitrates;
  2941. pos = bss->supp_rates;
  2942. for (i = 0; i < sband->n_bitrates; i++) {
  2943. int rate = sband->bitrates[i].bitrate;
  2944. *pos++ = (u8) (rate / 5);
  2945. }
  2946. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2947. }
  2948. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2949. struct ieee80211_if_sta *ifsta)
  2950. {
  2951. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2952. struct ieee80211_sta_bss *bss;
  2953. int found = 0;
  2954. u8 bssid[ETH_ALEN];
  2955. int active_ibss;
  2956. DECLARE_MAC_BUF(mac);
  2957. DECLARE_MAC_BUF(mac2);
  2958. if (ifsta->ssid_len == 0)
  2959. return -EINVAL;
  2960. active_ibss = ieee80211_sta_active_ibss(dev);
  2961. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2962. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2963. dev->name, active_ibss);
  2964. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2965. spin_lock_bh(&local->sta_bss_lock);
  2966. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2967. if (ifsta->ssid_len != bss->ssid_len ||
  2968. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2969. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2970. continue;
  2971. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2972. printk(KERN_DEBUG " bssid=%s found\n",
  2973. print_mac(mac, bss->bssid));
  2974. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2975. memcpy(bssid, bss->bssid, ETH_ALEN);
  2976. found = 1;
  2977. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2978. break;
  2979. }
  2980. spin_unlock_bh(&local->sta_bss_lock);
  2981. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2982. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2983. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2984. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2985. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2986. (bss = ieee80211_rx_bss_get(dev, bssid,
  2987. local->hw.conf.channel->center_freq,
  2988. ifsta->ssid, ifsta->ssid_len))) {
  2989. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2990. " based on configured SSID\n",
  2991. dev->name, print_mac(mac, bssid));
  2992. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2993. }
  2994. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2995. printk(KERN_DEBUG " did not try to join ibss\n");
  2996. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2997. /* Selected IBSS not found in current scan results - try to scan */
  2998. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2999. !ieee80211_sta_active_ibss(dev)) {
  3000. mod_timer(&ifsta->timer, jiffies +
  3001. IEEE80211_IBSS_MERGE_INTERVAL);
  3002. } else if (time_after(jiffies, local->last_scan_completed +
  3003. IEEE80211_SCAN_INTERVAL)) {
  3004. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  3005. "join\n", dev->name);
  3006. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  3007. ifsta->ssid_len);
  3008. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  3009. int interval = IEEE80211_SCAN_INTERVAL;
  3010. if (time_after(jiffies, ifsta->ibss_join_req +
  3011. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  3012. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  3013. (!(local->oper_channel->flags &
  3014. IEEE80211_CHAN_NO_IBSS)))
  3015. return ieee80211_sta_create_ibss(dev, ifsta);
  3016. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  3017. printk(KERN_DEBUG "%s: IBSS not allowed on"
  3018. " %d MHz\n", dev->name,
  3019. local->hw.conf.channel->center_freq);
  3020. }
  3021. /* No IBSS found - decrease scan interval and continue
  3022. * scanning. */
  3023. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  3024. }
  3025. ifsta->state = IEEE80211_IBSS_SEARCH;
  3026. mod_timer(&ifsta->timer, jiffies + interval);
  3027. return 0;
  3028. }
  3029. return 0;
  3030. }
  3031. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  3032. {
  3033. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3034. struct ieee80211_if_sta *ifsta;
  3035. if (len > IEEE80211_MAX_SSID_LEN)
  3036. return -EINVAL;
  3037. ifsta = &sdata->u.sta;
  3038. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  3039. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  3040. memcpy(ifsta->ssid, ssid, len);
  3041. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  3042. ifsta->ssid_len = len;
  3043. if (len)
  3044. ifsta->flags |= IEEE80211_STA_SSID_SET;
  3045. else
  3046. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  3047. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3048. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  3049. ifsta->ibss_join_req = jiffies;
  3050. ifsta->state = IEEE80211_IBSS_SEARCH;
  3051. return ieee80211_sta_find_ibss(dev, ifsta);
  3052. }
  3053. return 0;
  3054. }
  3055. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  3056. {
  3057. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3058. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3059. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  3060. *len = ifsta->ssid_len;
  3061. return 0;
  3062. }
  3063. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  3064. {
  3065. struct ieee80211_sub_if_data *sdata;
  3066. struct ieee80211_if_sta *ifsta;
  3067. int res;
  3068. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3069. ifsta = &sdata->u.sta;
  3070. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3071. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  3072. res = ieee80211_if_config(dev);
  3073. if (res) {
  3074. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  3075. "the low-level driver\n", dev->name);
  3076. return res;
  3077. }
  3078. }
  3079. if (is_valid_ether_addr(bssid))
  3080. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  3081. else
  3082. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  3083. return 0;
  3084. }
  3085. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  3086. struct ieee80211_sub_if_data *sdata,
  3087. int powersave)
  3088. {
  3089. struct sk_buff *skb;
  3090. struct ieee80211_hdr *nullfunc;
  3091. u16 fc;
  3092. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  3093. if (!skb) {
  3094. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  3095. "frame\n", sdata->dev->name);
  3096. return;
  3097. }
  3098. skb_reserve(skb, local->hw.extra_tx_headroom);
  3099. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  3100. memset(nullfunc, 0, 24);
  3101. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  3102. IEEE80211_FCTL_TODS;
  3103. if (powersave)
  3104. fc |= IEEE80211_FCTL_PM;
  3105. nullfunc->frame_control = cpu_to_le16(fc);
  3106. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  3107. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  3108. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  3109. ieee80211_sta_tx(sdata->dev, skb, 0);
  3110. }
  3111. static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
  3112. {
  3113. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  3114. ieee80211_vif_is_mesh(&sdata->vif))
  3115. ieee80211_sta_timer((unsigned long)sdata);
  3116. }
  3117. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  3118. {
  3119. struct ieee80211_local *local = hw_to_local(hw);
  3120. struct net_device *dev = local->scan_dev;
  3121. struct ieee80211_sub_if_data *sdata;
  3122. union iwreq_data wrqu;
  3123. local->last_scan_completed = jiffies;
  3124. memset(&wrqu, 0, sizeof(wrqu));
  3125. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  3126. if (local->sta_hw_scanning) {
  3127. local->sta_hw_scanning = 0;
  3128. if (ieee80211_hw_config(local))
  3129. printk(KERN_DEBUG "%s: failed to restore operational "
  3130. "channel after scan\n", dev->name);
  3131. /* Restart STA timer for HW scan case */
  3132. rcu_read_lock();
  3133. list_for_each_entry_rcu(sdata, &local->interfaces, list)
  3134. ieee80211_restart_sta_timer(sdata);
  3135. rcu_read_unlock();
  3136. goto done;
  3137. }
  3138. local->sta_sw_scanning = 0;
  3139. if (ieee80211_hw_config(local))
  3140. printk(KERN_DEBUG "%s: failed to restore operational "
  3141. "channel after scan\n", dev->name);
  3142. netif_tx_lock_bh(local->mdev);
  3143. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  3144. local->ops->configure_filter(local_to_hw(local),
  3145. FIF_BCN_PRBRESP_PROMISC,
  3146. &local->filter_flags,
  3147. local->mdev->mc_count,
  3148. local->mdev->mc_list);
  3149. netif_tx_unlock_bh(local->mdev);
  3150. rcu_read_lock();
  3151. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3152. /* No need to wake the master device. */
  3153. if (sdata->dev == local->mdev)
  3154. continue;
  3155. /* Tell AP we're back */
  3156. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3157. sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  3158. ieee80211_send_nullfunc(local, sdata, 0);
  3159. ieee80211_restart_sta_timer(sdata);
  3160. netif_wake_queue(sdata->dev);
  3161. }
  3162. rcu_read_unlock();
  3163. done:
  3164. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3165. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  3166. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3167. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  3168. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  3169. !ieee80211_sta_active_ibss(dev)))
  3170. ieee80211_sta_find_ibss(dev, ifsta);
  3171. }
  3172. }
  3173. EXPORT_SYMBOL(ieee80211_scan_completed);
  3174. void ieee80211_sta_scan_work(struct work_struct *work)
  3175. {
  3176. struct ieee80211_local *local =
  3177. container_of(work, struct ieee80211_local, scan_work.work);
  3178. struct net_device *dev = local->scan_dev;
  3179. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3180. struct ieee80211_supported_band *sband;
  3181. struct ieee80211_channel *chan;
  3182. int skip;
  3183. unsigned long next_delay = 0;
  3184. if (!local->sta_sw_scanning)
  3185. return;
  3186. switch (local->scan_state) {
  3187. case SCAN_SET_CHANNEL:
  3188. /*
  3189. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  3190. * after we successfully scanned the last channel of the last
  3191. * band (and the last band is supported by the hw)
  3192. */
  3193. if (local->scan_band < IEEE80211_NUM_BANDS)
  3194. sband = local->hw.wiphy->bands[local->scan_band];
  3195. else
  3196. sband = NULL;
  3197. /*
  3198. * If we are at an unsupported band and have more bands
  3199. * left to scan, advance to the next supported one.
  3200. */
  3201. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  3202. local->scan_band++;
  3203. sband = local->hw.wiphy->bands[local->scan_band];
  3204. local->scan_channel_idx = 0;
  3205. }
  3206. /* if no more bands/channels left, complete scan */
  3207. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  3208. ieee80211_scan_completed(local_to_hw(local));
  3209. return;
  3210. }
  3211. skip = 0;
  3212. chan = &sband->channels[local->scan_channel_idx];
  3213. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  3214. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3215. chan->flags & IEEE80211_CHAN_NO_IBSS))
  3216. skip = 1;
  3217. if (!skip) {
  3218. local->scan_channel = chan;
  3219. if (ieee80211_hw_config(local)) {
  3220. printk(KERN_DEBUG "%s: failed to set freq to "
  3221. "%d MHz for scan\n", dev->name,
  3222. chan->center_freq);
  3223. skip = 1;
  3224. }
  3225. }
  3226. /* advance state machine to next channel/band */
  3227. local->scan_channel_idx++;
  3228. if (local->scan_channel_idx >= sband->n_channels) {
  3229. /*
  3230. * scan_band may end up == IEEE80211_NUM_BANDS, but
  3231. * we'll catch that case above and complete the scan
  3232. * if that is the case.
  3233. */
  3234. local->scan_band++;
  3235. local->scan_channel_idx = 0;
  3236. }
  3237. if (skip)
  3238. break;
  3239. next_delay = IEEE80211_PROBE_DELAY +
  3240. usecs_to_jiffies(local->hw.channel_change_time);
  3241. local->scan_state = SCAN_SEND_PROBE;
  3242. break;
  3243. case SCAN_SEND_PROBE:
  3244. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  3245. local->scan_state = SCAN_SET_CHANNEL;
  3246. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  3247. break;
  3248. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  3249. local->scan_ssid_len);
  3250. next_delay = IEEE80211_CHANNEL_TIME;
  3251. break;
  3252. }
  3253. if (local->sta_sw_scanning)
  3254. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3255. next_delay);
  3256. }
  3257. static int ieee80211_sta_start_scan(struct net_device *dev,
  3258. u8 *ssid, size_t ssid_len)
  3259. {
  3260. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3261. struct ieee80211_sub_if_data *sdata;
  3262. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3263. return -EINVAL;
  3264. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3265. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3266. * BSSID: MACAddress
  3267. * SSID
  3268. * ScanType: ACTIVE, PASSIVE
  3269. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3270. * a Probe frame during active scanning
  3271. * ChannelList
  3272. * MinChannelTime (>= ProbeDelay), in TU
  3273. * MaxChannelTime: (>= MinChannelTime), in TU
  3274. */
  3275. /* MLME-SCAN.confirm
  3276. * BSSDescriptionSet
  3277. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3278. */
  3279. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3280. if (local->scan_dev == dev)
  3281. return 0;
  3282. return -EBUSY;
  3283. }
  3284. if (local->ops->hw_scan) {
  3285. int rc = local->ops->hw_scan(local_to_hw(local),
  3286. ssid, ssid_len);
  3287. if (!rc) {
  3288. local->sta_hw_scanning = 1;
  3289. local->scan_dev = dev;
  3290. }
  3291. return rc;
  3292. }
  3293. local->sta_sw_scanning = 1;
  3294. rcu_read_lock();
  3295. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3296. /* Don't stop the master interface, otherwise we can't transmit
  3297. * probes! */
  3298. if (sdata->dev == local->mdev)
  3299. continue;
  3300. netif_stop_queue(sdata->dev);
  3301. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3302. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3303. ieee80211_send_nullfunc(local, sdata, 1);
  3304. }
  3305. rcu_read_unlock();
  3306. if (ssid) {
  3307. local->scan_ssid_len = ssid_len;
  3308. memcpy(local->scan_ssid, ssid, ssid_len);
  3309. } else
  3310. local->scan_ssid_len = 0;
  3311. local->scan_state = SCAN_SET_CHANNEL;
  3312. local->scan_channel_idx = 0;
  3313. local->scan_band = IEEE80211_BAND_2GHZ;
  3314. local->scan_dev = dev;
  3315. netif_tx_lock_bh(local->mdev);
  3316. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3317. local->ops->configure_filter(local_to_hw(local),
  3318. FIF_BCN_PRBRESP_PROMISC,
  3319. &local->filter_flags,
  3320. local->mdev->mc_count,
  3321. local->mdev->mc_list);
  3322. netif_tx_unlock_bh(local->mdev);
  3323. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3324. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3325. IEEE80211_CHANNEL_TIME);
  3326. return 0;
  3327. }
  3328. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3329. {
  3330. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3331. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3332. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3333. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3334. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3335. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3336. if (local->scan_dev == dev)
  3337. return 0;
  3338. return -EBUSY;
  3339. }
  3340. ifsta->scan_ssid_len = ssid_len;
  3341. if (ssid_len)
  3342. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3343. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3344. queue_work(local->hw.workqueue, &ifsta->work);
  3345. return 0;
  3346. }
  3347. static char *
  3348. ieee80211_sta_scan_result(struct net_device *dev,
  3349. struct ieee80211_sta_bss *bss,
  3350. char *current_ev, char *end_buf)
  3351. {
  3352. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3353. struct iw_event iwe;
  3354. if (time_after(jiffies,
  3355. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3356. return current_ev;
  3357. memset(&iwe, 0, sizeof(iwe));
  3358. iwe.cmd = SIOCGIWAP;
  3359. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3360. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3361. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3362. IW_EV_ADDR_LEN);
  3363. memset(&iwe, 0, sizeof(iwe));
  3364. iwe.cmd = SIOCGIWESSID;
  3365. if (bss_mesh_cfg(bss)) {
  3366. iwe.u.data.length = bss_mesh_id_len(bss);
  3367. iwe.u.data.flags = 1;
  3368. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3369. bss_mesh_id(bss));
  3370. } else {
  3371. iwe.u.data.length = bss->ssid_len;
  3372. iwe.u.data.flags = 1;
  3373. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3374. bss->ssid);
  3375. }
  3376. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
  3377. || bss_mesh_cfg(bss)) {
  3378. memset(&iwe, 0, sizeof(iwe));
  3379. iwe.cmd = SIOCGIWMODE;
  3380. if (bss_mesh_cfg(bss))
  3381. iwe.u.mode = IW_MODE_MESH;
  3382. else if (bss->capability & WLAN_CAPABILITY_ESS)
  3383. iwe.u.mode = IW_MODE_MASTER;
  3384. else
  3385. iwe.u.mode = IW_MODE_ADHOC;
  3386. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3387. IW_EV_UINT_LEN);
  3388. }
  3389. memset(&iwe, 0, sizeof(iwe));
  3390. iwe.cmd = SIOCGIWFREQ;
  3391. iwe.u.freq.m = bss->freq;
  3392. iwe.u.freq.e = 6;
  3393. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3394. IW_EV_FREQ_LEN);
  3395. memset(&iwe, 0, sizeof(iwe));
  3396. iwe.cmd = SIOCGIWFREQ;
  3397. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3398. iwe.u.freq.e = 0;
  3399. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3400. IW_EV_FREQ_LEN);
  3401. memset(&iwe, 0, sizeof(iwe));
  3402. iwe.cmd = IWEVQUAL;
  3403. iwe.u.qual.qual = bss->signal;
  3404. iwe.u.qual.level = bss->rssi;
  3405. iwe.u.qual.noise = bss->noise;
  3406. iwe.u.qual.updated = local->wstats_flags;
  3407. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3408. IW_EV_QUAL_LEN);
  3409. memset(&iwe, 0, sizeof(iwe));
  3410. iwe.cmd = SIOCGIWENCODE;
  3411. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3412. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3413. else
  3414. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3415. iwe.u.data.length = 0;
  3416. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3417. if (bss && bss->wpa_ie) {
  3418. memset(&iwe, 0, sizeof(iwe));
  3419. iwe.cmd = IWEVGENIE;
  3420. iwe.u.data.length = bss->wpa_ie_len;
  3421. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3422. bss->wpa_ie);
  3423. }
  3424. if (bss && bss->rsn_ie) {
  3425. memset(&iwe, 0, sizeof(iwe));
  3426. iwe.cmd = IWEVGENIE;
  3427. iwe.u.data.length = bss->rsn_ie_len;
  3428. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3429. bss->rsn_ie);
  3430. }
  3431. if (bss && bss->supp_rates_len > 0) {
  3432. /* display all supported rates in readable format */
  3433. char *p = current_ev + IW_EV_LCP_LEN;
  3434. int i;
  3435. memset(&iwe, 0, sizeof(iwe));
  3436. iwe.cmd = SIOCGIWRATE;
  3437. /* Those two flags are ignored... */
  3438. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3439. for (i = 0; i < bss->supp_rates_len; i++) {
  3440. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3441. 0x7f) * 500000);
  3442. p = iwe_stream_add_value(current_ev, p,
  3443. end_buf, &iwe, IW_EV_PARAM_LEN);
  3444. }
  3445. current_ev = p;
  3446. }
  3447. if (bss) {
  3448. char *buf;
  3449. buf = kmalloc(30, GFP_ATOMIC);
  3450. if (buf) {
  3451. memset(&iwe, 0, sizeof(iwe));
  3452. iwe.cmd = IWEVCUSTOM;
  3453. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3454. iwe.u.data.length = strlen(buf);
  3455. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3456. &iwe, buf);
  3457. kfree(buf);
  3458. }
  3459. }
  3460. if (bss_mesh_cfg(bss)) {
  3461. char *buf;
  3462. u8 *cfg = bss_mesh_cfg(bss);
  3463. buf = kmalloc(50, GFP_ATOMIC);
  3464. if (buf) {
  3465. memset(&iwe, 0, sizeof(iwe));
  3466. iwe.cmd = IWEVCUSTOM;
  3467. sprintf(buf, "Mesh network (version %d)", cfg[0]);
  3468. iwe.u.data.length = strlen(buf);
  3469. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3470. &iwe, buf);
  3471. sprintf(buf, "Path Selection Protocol ID: "
  3472. "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
  3473. cfg[4]);
  3474. iwe.u.data.length = strlen(buf);
  3475. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3476. &iwe, buf);
  3477. sprintf(buf, "Path Selection Metric ID: "
  3478. "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
  3479. cfg[8]);
  3480. iwe.u.data.length = strlen(buf);
  3481. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3482. &iwe, buf);
  3483. sprintf(buf, "Congestion Control Mode ID: "
  3484. "0x%02X%02X%02X%02X", cfg[9], cfg[10],
  3485. cfg[11], cfg[12]);
  3486. iwe.u.data.length = strlen(buf);
  3487. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3488. &iwe, buf);
  3489. sprintf(buf, "Channel Precedence: "
  3490. "0x%02X%02X%02X%02X", cfg[13], cfg[14],
  3491. cfg[15], cfg[16]);
  3492. iwe.u.data.length = strlen(buf);
  3493. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3494. &iwe, buf);
  3495. kfree(buf);
  3496. }
  3497. }
  3498. return current_ev;
  3499. }
  3500. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3501. {
  3502. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3503. char *current_ev = buf;
  3504. char *end_buf = buf + len;
  3505. struct ieee80211_sta_bss *bss;
  3506. spin_lock_bh(&local->sta_bss_lock);
  3507. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3508. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3509. spin_unlock_bh(&local->sta_bss_lock);
  3510. return -E2BIG;
  3511. }
  3512. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3513. end_buf);
  3514. }
  3515. spin_unlock_bh(&local->sta_bss_lock);
  3516. return current_ev - buf;
  3517. }
  3518. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3519. {
  3520. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3521. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3522. kfree(ifsta->extra_ie);
  3523. if (len == 0) {
  3524. ifsta->extra_ie = NULL;
  3525. ifsta->extra_ie_len = 0;
  3526. return 0;
  3527. }
  3528. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3529. if (!ifsta->extra_ie) {
  3530. ifsta->extra_ie_len = 0;
  3531. return -ENOMEM;
  3532. }
  3533. memcpy(ifsta->extra_ie, ie, len);
  3534. ifsta->extra_ie_len = len;
  3535. return 0;
  3536. }
  3537. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3538. struct sk_buff *skb, u8 *bssid,
  3539. u8 *addr)
  3540. {
  3541. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3542. struct sta_info *sta;
  3543. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3544. DECLARE_MAC_BUF(mac);
  3545. /* TODO: Could consider removing the least recently used entry and
  3546. * allow new one to be added. */
  3547. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3548. if (net_ratelimit()) {
  3549. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3550. "entry %s\n", dev->name, print_mac(mac, addr));
  3551. }
  3552. return NULL;
  3553. }
  3554. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3555. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3556. sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
  3557. if (!sta)
  3558. return NULL;
  3559. sta->flags |= WLAN_STA_AUTHORIZED;
  3560. sta->supp_rates[local->hw.conf.channel->band] =
  3561. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3562. rate_control_rate_init(sta, local);
  3563. if (sta_info_insert(sta))
  3564. return NULL;
  3565. return sta;
  3566. }
  3567. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3568. {
  3569. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3570. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3571. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3572. dev->name, reason);
  3573. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3574. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3575. return -EINVAL;
  3576. ieee80211_send_deauth(dev, ifsta, reason);
  3577. ieee80211_set_disassoc(dev, ifsta, 1);
  3578. return 0;
  3579. }
  3580. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3581. {
  3582. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3583. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3584. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3585. dev->name, reason);
  3586. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3587. return -EINVAL;
  3588. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3589. return -1;
  3590. ieee80211_send_disassoc(dev, ifsta, reason);
  3591. ieee80211_set_disassoc(dev, ifsta, 0);
  3592. return 0;
  3593. }