omap-dma.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. /*
  2. * OMAP DMAengine support
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/dmaengine.h>
  9. #include <linux/dma-mapping.h>
  10. #include <linux/err.h>
  11. #include <linux/init.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/list.h>
  14. #include <linux/module.h>
  15. #include <linux/omap-dma.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/slab.h>
  18. #include <linux/spinlock.h>
  19. #include "virt-dma.h"
  20. #include <plat/dma.h>
  21. struct omap_dmadev {
  22. struct dma_device ddev;
  23. spinlock_t lock;
  24. struct tasklet_struct task;
  25. struct list_head pending;
  26. };
  27. struct omap_chan {
  28. struct virt_dma_chan vc;
  29. struct list_head node;
  30. struct dma_slave_config cfg;
  31. unsigned dma_sig;
  32. int dma_ch;
  33. struct omap_desc *desc;
  34. unsigned sgidx;
  35. };
  36. struct omap_sg {
  37. dma_addr_t addr;
  38. uint32_t en; /* number of elements (24-bit) */
  39. uint32_t fn; /* number of frames (16-bit) */
  40. };
  41. struct omap_desc {
  42. struct virt_dma_desc vd;
  43. enum dma_transfer_direction dir;
  44. dma_addr_t dev_addr;
  45. uint8_t es; /* OMAP_DMA_DATA_TYPE_xxx */
  46. uint8_t sync_mode; /* OMAP_DMA_SYNC_xxx */
  47. uint8_t sync_type; /* OMAP_DMA_xxx_SYNC* */
  48. uint8_t periph_port; /* Peripheral port */
  49. unsigned sglen;
  50. struct omap_sg sg[0];
  51. };
  52. static const unsigned es_bytes[] = {
  53. [OMAP_DMA_DATA_TYPE_S8] = 1,
  54. [OMAP_DMA_DATA_TYPE_S16] = 2,
  55. [OMAP_DMA_DATA_TYPE_S32] = 4,
  56. };
  57. static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
  58. {
  59. return container_of(d, struct omap_dmadev, ddev);
  60. }
  61. static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
  62. {
  63. return container_of(c, struct omap_chan, vc.chan);
  64. }
  65. static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
  66. {
  67. return container_of(t, struct omap_desc, vd.tx);
  68. }
  69. static void omap_dma_desc_free(struct virt_dma_desc *vd)
  70. {
  71. kfree(container_of(vd, struct omap_desc, vd));
  72. }
  73. static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d,
  74. unsigned idx)
  75. {
  76. struct omap_sg *sg = d->sg + idx;
  77. if (d->dir == DMA_DEV_TO_MEM)
  78. omap_set_dma_dest_params(c->dma_ch, OMAP_DMA_PORT_EMIFF,
  79. OMAP_DMA_AMODE_POST_INC, sg->addr, 0, 0);
  80. else
  81. omap_set_dma_src_params(c->dma_ch, OMAP_DMA_PORT_EMIFF,
  82. OMAP_DMA_AMODE_POST_INC, sg->addr, 0, 0);
  83. omap_set_dma_transfer_params(c->dma_ch, d->es, sg->en, sg->fn,
  84. d->sync_mode, c->dma_sig, d->sync_type);
  85. omap_start_dma(c->dma_ch);
  86. }
  87. static void omap_dma_start_desc(struct omap_chan *c)
  88. {
  89. struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
  90. struct omap_desc *d;
  91. if (!vd) {
  92. c->desc = NULL;
  93. return;
  94. }
  95. list_del(&vd->node);
  96. c->desc = d = to_omap_dma_desc(&vd->tx);
  97. c->sgidx = 0;
  98. if (d->dir == DMA_DEV_TO_MEM)
  99. omap_set_dma_src_params(c->dma_ch, d->periph_port,
  100. OMAP_DMA_AMODE_CONSTANT, d->dev_addr, 0, 0);
  101. else
  102. omap_set_dma_dest_params(c->dma_ch, d->periph_port,
  103. OMAP_DMA_AMODE_CONSTANT, d->dev_addr, 0, 0);
  104. omap_dma_start_sg(c, d, 0);
  105. }
  106. static void omap_dma_callback(int ch, u16 status, void *data)
  107. {
  108. struct omap_chan *c = data;
  109. struct omap_desc *d;
  110. unsigned long flags;
  111. spin_lock_irqsave(&c->vc.lock, flags);
  112. d = c->desc;
  113. if (d) {
  114. if (++c->sgidx < d->sglen) {
  115. omap_dma_start_sg(c, d, c->sgidx);
  116. } else {
  117. omap_dma_start_desc(c);
  118. vchan_cookie_complete(&d->vd);
  119. }
  120. }
  121. spin_unlock_irqrestore(&c->vc.lock, flags);
  122. }
  123. /*
  124. * This callback schedules all pending channels. We could be more
  125. * clever here by postponing allocation of the real DMA channels to
  126. * this point, and freeing them when our virtual channel becomes idle.
  127. *
  128. * We would then need to deal with 'all channels in-use'
  129. */
  130. static void omap_dma_sched(unsigned long data)
  131. {
  132. struct omap_dmadev *d = (struct omap_dmadev *)data;
  133. LIST_HEAD(head);
  134. spin_lock_irq(&d->lock);
  135. list_splice_tail_init(&d->pending, &head);
  136. spin_unlock_irq(&d->lock);
  137. while (!list_empty(&head)) {
  138. struct omap_chan *c = list_first_entry(&head,
  139. struct omap_chan, node);
  140. spin_lock_irq(&c->vc.lock);
  141. list_del_init(&c->node);
  142. omap_dma_start_desc(c);
  143. spin_unlock_irq(&c->vc.lock);
  144. }
  145. }
  146. static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
  147. {
  148. struct omap_chan *c = to_omap_dma_chan(chan);
  149. dev_info(c->vc.chan.device->dev, "allocating channel for %u\n", c->dma_sig);
  150. return omap_request_dma(c->dma_sig, "DMA engine",
  151. omap_dma_callback, c, &c->dma_ch);
  152. }
  153. static void omap_dma_free_chan_resources(struct dma_chan *chan)
  154. {
  155. struct omap_chan *c = to_omap_dma_chan(chan);
  156. vchan_free_chan_resources(&c->vc);
  157. omap_free_dma(c->dma_ch);
  158. dev_info(c->vc.chan.device->dev, "freeing channel for %u\n", c->dma_sig);
  159. }
  160. static size_t omap_dma_sg_size(struct omap_sg *sg)
  161. {
  162. return sg->en * sg->fn;
  163. }
  164. static size_t omap_dma_desc_size(struct omap_desc *d)
  165. {
  166. unsigned i;
  167. size_t size;
  168. for (size = i = 0; i < d->sglen; i++)
  169. size += omap_dma_sg_size(&d->sg[i]);
  170. return size * es_bytes[d->es];
  171. }
  172. static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
  173. {
  174. unsigned i;
  175. size_t size, es_size = es_bytes[d->es];
  176. for (size = i = 0; i < d->sglen; i++) {
  177. size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
  178. if (size)
  179. size += this_size;
  180. else if (addr >= d->sg[i].addr &&
  181. addr < d->sg[i].addr + this_size)
  182. size += d->sg[i].addr + this_size - addr;
  183. }
  184. return size;
  185. }
  186. static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
  187. dma_cookie_t cookie, struct dma_tx_state *txstate)
  188. {
  189. struct omap_chan *c = to_omap_dma_chan(chan);
  190. struct virt_dma_desc *vd;
  191. enum dma_status ret;
  192. unsigned long flags;
  193. ret = dma_cookie_status(chan, cookie, txstate);
  194. if (ret == DMA_SUCCESS || !txstate)
  195. return ret;
  196. spin_lock_irqsave(&c->vc.lock, flags);
  197. vd = vchan_find_desc(&c->vc, cookie);
  198. if (vd) {
  199. txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
  200. } else if (c->desc && c->desc->vd.tx.cookie == cookie) {
  201. struct omap_desc *d = c->desc;
  202. dma_addr_t pos;
  203. if (d->dir == DMA_MEM_TO_DEV)
  204. pos = omap_get_dma_src_pos(c->dma_ch);
  205. else if (d->dir == DMA_DEV_TO_MEM)
  206. pos = omap_get_dma_dst_pos(c->dma_ch);
  207. else
  208. pos = 0;
  209. txstate->residue = omap_dma_desc_size_pos(d, pos);
  210. } else {
  211. txstate->residue = 0;
  212. }
  213. spin_unlock_irqrestore(&c->vc.lock, flags);
  214. return ret;
  215. }
  216. static void omap_dma_issue_pending(struct dma_chan *chan)
  217. {
  218. struct omap_chan *c = to_omap_dma_chan(chan);
  219. unsigned long flags;
  220. spin_lock_irqsave(&c->vc.lock, flags);
  221. if (vchan_issue_pending(&c->vc) && !c->desc) {
  222. struct omap_dmadev *d = to_omap_dma_dev(chan->device);
  223. spin_lock(&d->lock);
  224. if (list_empty(&c->node))
  225. list_add_tail(&c->node, &d->pending);
  226. spin_unlock(&d->lock);
  227. tasklet_schedule(&d->task);
  228. }
  229. spin_unlock_irqrestore(&c->vc.lock, flags);
  230. }
  231. static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
  232. struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
  233. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  234. {
  235. struct omap_chan *c = to_omap_dma_chan(chan);
  236. enum dma_slave_buswidth dev_width;
  237. struct scatterlist *sgent;
  238. struct omap_desc *d;
  239. dma_addr_t dev_addr;
  240. unsigned i, j = 0, es, en, frame_bytes, sync_type;
  241. u32 burst;
  242. if (dir == DMA_DEV_TO_MEM) {
  243. dev_addr = c->cfg.src_addr;
  244. dev_width = c->cfg.src_addr_width;
  245. burst = c->cfg.src_maxburst;
  246. sync_type = OMAP_DMA_SRC_SYNC;
  247. } else if (dir == DMA_MEM_TO_DEV) {
  248. dev_addr = c->cfg.dst_addr;
  249. dev_width = c->cfg.dst_addr_width;
  250. burst = c->cfg.dst_maxburst;
  251. sync_type = OMAP_DMA_DST_SYNC;
  252. } else {
  253. dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
  254. return NULL;
  255. }
  256. /* Bus width translates to the element size (ES) */
  257. switch (dev_width) {
  258. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  259. es = OMAP_DMA_DATA_TYPE_S8;
  260. break;
  261. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  262. es = OMAP_DMA_DATA_TYPE_S16;
  263. break;
  264. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  265. es = OMAP_DMA_DATA_TYPE_S32;
  266. break;
  267. default: /* not reached */
  268. return NULL;
  269. }
  270. /* Now allocate and setup the descriptor. */
  271. d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
  272. if (!d)
  273. return NULL;
  274. d->dir = dir;
  275. d->dev_addr = dev_addr;
  276. d->es = es;
  277. d->sync_mode = OMAP_DMA_SYNC_FRAME;
  278. d->sync_type = sync_type;
  279. d->periph_port = OMAP_DMA_PORT_TIPB;
  280. /*
  281. * Build our scatterlist entries: each contains the address,
  282. * the number of elements (EN) in each frame, and the number of
  283. * frames (FN). Number of bytes for this entry = ES * EN * FN.
  284. *
  285. * Burst size translates to number of elements with frame sync.
  286. * Note: DMA engine defines burst to be the number of dev-width
  287. * transfers.
  288. */
  289. en = burst;
  290. frame_bytes = es_bytes[es] * en;
  291. for_each_sg(sgl, sgent, sglen, i) {
  292. d->sg[j].addr = sg_dma_address(sgent);
  293. d->sg[j].en = en;
  294. d->sg[j].fn = sg_dma_len(sgent) / frame_bytes;
  295. j++;
  296. }
  297. d->sglen = j;
  298. return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
  299. }
  300. static int omap_dma_slave_config(struct omap_chan *c, struct dma_slave_config *cfg)
  301. {
  302. if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
  303. cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
  304. return -EINVAL;
  305. memcpy(&c->cfg, cfg, sizeof(c->cfg));
  306. return 0;
  307. }
  308. static int omap_dma_terminate_all(struct omap_chan *c)
  309. {
  310. struct omap_dmadev *d = to_omap_dma_dev(c->vc.chan.device);
  311. unsigned long flags;
  312. LIST_HEAD(head);
  313. spin_lock_irqsave(&c->vc.lock, flags);
  314. /* Prevent this channel being scheduled */
  315. spin_lock(&d->lock);
  316. list_del_init(&c->node);
  317. spin_unlock(&d->lock);
  318. /*
  319. * Stop DMA activity: we assume the callback will not be called
  320. * after omap_stop_dma() returns (even if it does, it will see
  321. * c->desc is NULL and exit.)
  322. */
  323. if (c->desc) {
  324. c->desc = NULL;
  325. omap_stop_dma(c->dma_ch);
  326. }
  327. vchan_get_all_descriptors(&c->vc, &head);
  328. spin_unlock_irqrestore(&c->vc.lock, flags);
  329. vchan_dma_desc_free_list(&c->vc, &head);
  330. return 0;
  331. }
  332. static int omap_dma_pause(struct omap_chan *c)
  333. {
  334. /* FIXME: not supported by platform private API */
  335. return -EINVAL;
  336. }
  337. static int omap_dma_resume(struct omap_chan *c)
  338. {
  339. /* FIXME: not supported by platform private API */
  340. return -EINVAL;
  341. }
  342. static int omap_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  343. unsigned long arg)
  344. {
  345. struct omap_chan *c = to_omap_dma_chan(chan);
  346. int ret;
  347. switch (cmd) {
  348. case DMA_SLAVE_CONFIG:
  349. ret = omap_dma_slave_config(c, (struct dma_slave_config *)arg);
  350. break;
  351. case DMA_TERMINATE_ALL:
  352. ret = omap_dma_terminate_all(c);
  353. break;
  354. case DMA_PAUSE:
  355. ret = omap_dma_pause(c);
  356. break;
  357. case DMA_RESUME:
  358. ret = omap_dma_resume(c);
  359. break;
  360. default:
  361. ret = -ENXIO;
  362. break;
  363. }
  364. return ret;
  365. }
  366. static int omap_dma_chan_init(struct omap_dmadev *od, int dma_sig)
  367. {
  368. struct omap_chan *c;
  369. c = kzalloc(sizeof(*c), GFP_KERNEL);
  370. if (!c)
  371. return -ENOMEM;
  372. c->dma_sig = dma_sig;
  373. c->vc.desc_free = omap_dma_desc_free;
  374. vchan_init(&c->vc, &od->ddev);
  375. INIT_LIST_HEAD(&c->node);
  376. od->ddev.chancnt++;
  377. return 0;
  378. }
  379. static void omap_dma_free(struct omap_dmadev *od)
  380. {
  381. tasklet_kill(&od->task);
  382. while (!list_empty(&od->ddev.channels)) {
  383. struct omap_chan *c = list_first_entry(&od->ddev.channels,
  384. struct omap_chan, vc.chan.device_node);
  385. list_del(&c->vc.chan.device_node);
  386. tasklet_kill(&c->vc.task);
  387. kfree(c);
  388. }
  389. kfree(od);
  390. }
  391. static int omap_dma_probe(struct platform_device *pdev)
  392. {
  393. struct omap_dmadev *od;
  394. int rc, i;
  395. od = kzalloc(sizeof(*od), GFP_KERNEL);
  396. if (!od)
  397. return -ENOMEM;
  398. dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
  399. od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
  400. od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
  401. od->ddev.device_tx_status = omap_dma_tx_status;
  402. od->ddev.device_issue_pending = omap_dma_issue_pending;
  403. od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
  404. od->ddev.device_control = omap_dma_control;
  405. od->ddev.dev = &pdev->dev;
  406. INIT_LIST_HEAD(&od->ddev.channels);
  407. INIT_LIST_HEAD(&od->pending);
  408. spin_lock_init(&od->lock);
  409. tasklet_init(&od->task, omap_dma_sched, (unsigned long)od);
  410. for (i = 0; i < 127; i++) {
  411. rc = omap_dma_chan_init(od, i);
  412. if (rc) {
  413. omap_dma_free(od);
  414. return rc;
  415. }
  416. }
  417. rc = dma_async_device_register(&od->ddev);
  418. if (rc) {
  419. pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
  420. rc);
  421. omap_dma_free(od);
  422. } else {
  423. platform_set_drvdata(pdev, od);
  424. }
  425. dev_info(&pdev->dev, "OMAP DMA engine driver\n");
  426. return rc;
  427. }
  428. static int omap_dma_remove(struct platform_device *pdev)
  429. {
  430. struct omap_dmadev *od = platform_get_drvdata(pdev);
  431. dma_async_device_unregister(&od->ddev);
  432. omap_dma_free(od);
  433. return 0;
  434. }
  435. static struct platform_driver omap_dma_driver = {
  436. .probe = omap_dma_probe,
  437. .remove = omap_dma_remove,
  438. .driver = {
  439. .name = "omap-dma-engine",
  440. .owner = THIS_MODULE,
  441. },
  442. };
  443. bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
  444. {
  445. if (chan->device->dev->driver == &omap_dma_driver.driver) {
  446. struct omap_chan *c = to_omap_dma_chan(chan);
  447. unsigned req = *(unsigned *)param;
  448. return req == c->dma_sig;
  449. }
  450. return false;
  451. }
  452. EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
  453. static struct platform_device *pdev;
  454. static const struct platform_device_info omap_dma_dev_info = {
  455. .name = "omap-dma-engine",
  456. .id = -1,
  457. .dma_mask = DMA_BIT_MASK(32),
  458. };
  459. static int omap_dma_init(void)
  460. {
  461. int rc = platform_driver_register(&omap_dma_driver);
  462. if (rc == 0) {
  463. pdev = platform_device_register_full(&omap_dma_dev_info);
  464. if (IS_ERR(pdev)) {
  465. platform_driver_unregister(&omap_dma_driver);
  466. rc = PTR_ERR(pdev);
  467. }
  468. }
  469. return rc;
  470. }
  471. subsys_initcall(omap_dma_init);
  472. static void __exit omap_dma_exit(void)
  473. {
  474. platform_device_unregister(pdev);
  475. platform_driver_unregister(&omap_dma_driver);
  476. }
  477. module_exit(omap_dma_exit);
  478. MODULE_AUTHOR("Russell King");
  479. MODULE_LICENSE("GPL");