cfq-iosched.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private[0])
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* number of requests that are on the dispatch list or inside driver */
  118. int dispatched;
  119. /* io prio of this group */
  120. unsigned short ioprio, org_ioprio;
  121. unsigned short ioprio_class;
  122. pid_t pid;
  123. u32 seek_history;
  124. sector_t last_request_pos;
  125. struct cfq_rb_root *service_tree;
  126. struct cfq_queue *new_cfqq;
  127. struct cfq_group *cfqg;
  128. /* Number of sectors dispatched from queue in single dispatch round */
  129. unsigned long nr_sectors;
  130. };
  131. /*
  132. * First index in the service_trees.
  133. * IDLE is handled separately, so it has negative index
  134. */
  135. enum wl_prio_t {
  136. BE_WORKLOAD = 0,
  137. RT_WORKLOAD = 1,
  138. IDLE_WORKLOAD = 2,
  139. CFQ_PRIO_NR,
  140. };
  141. /*
  142. * Second index in the service_trees.
  143. */
  144. enum wl_type_t {
  145. ASYNC_WORKLOAD = 0,
  146. SYNC_NOIDLE_WORKLOAD = 1,
  147. SYNC_WORKLOAD = 2
  148. };
  149. /* This is per cgroup per device grouping structure */
  150. struct cfq_group {
  151. /* group service_tree member */
  152. struct rb_node rb_node;
  153. /* group service_tree key */
  154. u64 vdisktime;
  155. unsigned int weight;
  156. unsigned int new_weight;
  157. bool needs_update;
  158. /* number of cfqq currently on this group */
  159. int nr_cfqq;
  160. /*
  161. * Per group busy queues average. Useful for workload slice calc. We
  162. * create the array for each prio class but at run time it is used
  163. * only for RT and BE class and slot for IDLE class remains unused.
  164. * This is primarily done to avoid confusion and a gcc warning.
  165. */
  166. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  167. /*
  168. * rr lists of queues with requests. We maintain service trees for
  169. * RT and BE classes. These trees are subdivided in subclasses
  170. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  171. * class there is no subclassification and all the cfq queues go on
  172. * a single tree service_tree_idle.
  173. * Counts are embedded in the cfq_rb_root
  174. */
  175. struct cfq_rb_root service_trees[2][3];
  176. struct cfq_rb_root service_tree_idle;
  177. unsigned long saved_workload_slice;
  178. enum wl_type_t saved_workload;
  179. enum wl_prio_t saved_serving_prio;
  180. struct blkio_group blkg;
  181. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  182. struct hlist_node cfqd_node;
  183. int ref;
  184. #endif
  185. /* number of requests that are on the dispatch list or inside driver */
  186. int dispatched;
  187. };
  188. /*
  189. * Per block device queue structure
  190. */
  191. struct cfq_data {
  192. struct request_queue *queue;
  193. /* Root service tree for cfq_groups */
  194. struct cfq_rb_root grp_service_tree;
  195. struct cfq_group root_group;
  196. /*
  197. * The priority currently being served
  198. */
  199. enum wl_prio_t serving_prio;
  200. enum wl_type_t serving_type;
  201. unsigned long workload_expires;
  202. struct cfq_group *serving_group;
  203. /*
  204. * Each priority tree is sorted by next_request position. These
  205. * trees are used when determining if two or more queues are
  206. * interleaving requests (see cfq_close_cooperator).
  207. */
  208. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  209. unsigned int busy_queues;
  210. unsigned int busy_sync_queues;
  211. int rq_in_driver;
  212. int rq_in_flight[2];
  213. /*
  214. * queue-depth detection
  215. */
  216. int rq_queued;
  217. int hw_tag;
  218. /*
  219. * hw_tag can be
  220. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  221. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  222. * 0 => no NCQ
  223. */
  224. int hw_tag_est_depth;
  225. unsigned int hw_tag_samples;
  226. /*
  227. * idle window management
  228. */
  229. struct timer_list idle_slice_timer;
  230. struct work_struct unplug_work;
  231. struct cfq_queue *active_queue;
  232. struct cfq_io_context *active_cic;
  233. /*
  234. * async queue for each priority case
  235. */
  236. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  237. struct cfq_queue *async_idle_cfqq;
  238. sector_t last_position;
  239. /*
  240. * tunables, see top of file
  241. */
  242. unsigned int cfq_quantum;
  243. unsigned int cfq_fifo_expire[2];
  244. unsigned int cfq_back_penalty;
  245. unsigned int cfq_back_max;
  246. unsigned int cfq_slice[2];
  247. unsigned int cfq_slice_async_rq;
  248. unsigned int cfq_slice_idle;
  249. unsigned int cfq_group_idle;
  250. unsigned int cfq_latency;
  251. unsigned int cic_index;
  252. struct list_head cic_list;
  253. /*
  254. * Fallback dummy cfqq for extreme OOM conditions
  255. */
  256. struct cfq_queue oom_cfqq;
  257. unsigned long last_delayed_sync;
  258. /* List of cfq groups being managed on this device*/
  259. struct hlist_head cfqg_list;
  260. /* Number of groups which are on blkcg->blkg_list */
  261. unsigned int nr_blkcg_linked_grps;
  262. };
  263. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  264. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  265. enum wl_prio_t prio,
  266. enum wl_type_t type)
  267. {
  268. if (!cfqg)
  269. return NULL;
  270. if (prio == IDLE_WORKLOAD)
  271. return &cfqg->service_tree_idle;
  272. return &cfqg->service_trees[prio][type];
  273. }
  274. enum cfqq_state_flags {
  275. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  276. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  277. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  278. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  279. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  280. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  281. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  282. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  283. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  284. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  285. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  286. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  287. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  288. };
  289. #define CFQ_CFQQ_FNS(name) \
  290. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  291. { \
  292. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  293. } \
  294. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  295. { \
  296. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  297. } \
  298. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  299. { \
  300. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  301. }
  302. CFQ_CFQQ_FNS(on_rr);
  303. CFQ_CFQQ_FNS(wait_request);
  304. CFQ_CFQQ_FNS(must_dispatch);
  305. CFQ_CFQQ_FNS(must_alloc_slice);
  306. CFQ_CFQQ_FNS(fifo_expire);
  307. CFQ_CFQQ_FNS(idle_window);
  308. CFQ_CFQQ_FNS(prio_changed);
  309. CFQ_CFQQ_FNS(slice_new);
  310. CFQ_CFQQ_FNS(sync);
  311. CFQ_CFQQ_FNS(coop);
  312. CFQ_CFQQ_FNS(split_coop);
  313. CFQ_CFQQ_FNS(deep);
  314. CFQ_CFQQ_FNS(wait_busy);
  315. #undef CFQ_CFQQ_FNS
  316. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  317. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  318. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  319. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  320. blkg_path(&(cfqq)->cfqg->blkg), ##args)
  321. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  322. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  323. blkg_path(&(cfqg)->blkg), ##args) \
  324. #else
  325. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  326. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  327. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  328. #endif
  329. #define cfq_log(cfqd, fmt, args...) \
  330. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  331. /* Traverses through cfq group service trees */
  332. #define for_each_cfqg_st(cfqg, i, j, st) \
  333. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  334. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  335. : &cfqg->service_tree_idle; \
  336. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  337. (i == IDLE_WORKLOAD && j == 0); \
  338. j++, st = i < IDLE_WORKLOAD ? \
  339. &cfqg->service_trees[i][j]: NULL) \
  340. static inline bool iops_mode(struct cfq_data *cfqd)
  341. {
  342. /*
  343. * If we are not idling on queues and it is a NCQ drive, parallel
  344. * execution of requests is on and measuring time is not possible
  345. * in most of the cases until and unless we drive shallower queue
  346. * depths and that becomes a performance bottleneck. In such cases
  347. * switch to start providing fairness in terms of number of IOs.
  348. */
  349. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  350. return true;
  351. else
  352. return false;
  353. }
  354. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  355. {
  356. if (cfq_class_idle(cfqq))
  357. return IDLE_WORKLOAD;
  358. if (cfq_class_rt(cfqq))
  359. return RT_WORKLOAD;
  360. return BE_WORKLOAD;
  361. }
  362. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  363. {
  364. if (!cfq_cfqq_sync(cfqq))
  365. return ASYNC_WORKLOAD;
  366. if (!cfq_cfqq_idle_window(cfqq))
  367. return SYNC_NOIDLE_WORKLOAD;
  368. return SYNC_WORKLOAD;
  369. }
  370. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  371. struct cfq_data *cfqd,
  372. struct cfq_group *cfqg)
  373. {
  374. if (wl == IDLE_WORKLOAD)
  375. return cfqg->service_tree_idle.count;
  376. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  377. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  378. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  379. }
  380. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  381. struct cfq_group *cfqg)
  382. {
  383. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  384. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  385. }
  386. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  387. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  388. struct io_context *, gfp_t);
  389. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  390. struct io_context *);
  391. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  392. bool is_sync)
  393. {
  394. return cic->cfqq[is_sync];
  395. }
  396. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  397. struct cfq_queue *cfqq, bool is_sync)
  398. {
  399. cic->cfqq[is_sync] = cfqq;
  400. }
  401. #define CIC_DEAD_KEY 1ul
  402. #define CIC_DEAD_INDEX_SHIFT 1
  403. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  404. {
  405. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  406. }
  407. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  408. {
  409. struct cfq_data *cfqd = cic->key;
  410. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  411. return NULL;
  412. return cfqd;
  413. }
  414. /*
  415. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  416. * set (in which case it could also be direct WRITE).
  417. */
  418. static inline bool cfq_bio_sync(struct bio *bio)
  419. {
  420. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  421. }
  422. /*
  423. * scheduler run of queue, if there are requests pending and no one in the
  424. * driver that will restart queueing
  425. */
  426. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  427. {
  428. if (cfqd->busy_queues) {
  429. cfq_log(cfqd, "schedule dispatch");
  430. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  431. }
  432. }
  433. /*
  434. * Scale schedule slice based on io priority. Use the sync time slice only
  435. * if a queue is marked sync and has sync io queued. A sync queue with async
  436. * io only, should not get full sync slice length.
  437. */
  438. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  439. unsigned short prio)
  440. {
  441. const int base_slice = cfqd->cfq_slice[sync];
  442. WARN_ON(prio >= IOPRIO_BE_NR);
  443. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  444. }
  445. static inline int
  446. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  447. {
  448. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  449. }
  450. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  451. {
  452. u64 d = delta << CFQ_SERVICE_SHIFT;
  453. d = d * BLKIO_WEIGHT_DEFAULT;
  454. do_div(d, cfqg->weight);
  455. return d;
  456. }
  457. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  458. {
  459. s64 delta = (s64)(vdisktime - min_vdisktime);
  460. if (delta > 0)
  461. min_vdisktime = vdisktime;
  462. return min_vdisktime;
  463. }
  464. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  465. {
  466. s64 delta = (s64)(vdisktime - min_vdisktime);
  467. if (delta < 0)
  468. min_vdisktime = vdisktime;
  469. return min_vdisktime;
  470. }
  471. static void update_min_vdisktime(struct cfq_rb_root *st)
  472. {
  473. struct cfq_group *cfqg;
  474. if (st->left) {
  475. cfqg = rb_entry_cfqg(st->left);
  476. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  477. cfqg->vdisktime);
  478. }
  479. }
  480. /*
  481. * get averaged number of queues of RT/BE priority.
  482. * average is updated, with a formula that gives more weight to higher numbers,
  483. * to quickly follows sudden increases and decrease slowly
  484. */
  485. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  486. struct cfq_group *cfqg, bool rt)
  487. {
  488. unsigned min_q, max_q;
  489. unsigned mult = cfq_hist_divisor - 1;
  490. unsigned round = cfq_hist_divisor / 2;
  491. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  492. min_q = min(cfqg->busy_queues_avg[rt], busy);
  493. max_q = max(cfqg->busy_queues_avg[rt], busy);
  494. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  495. cfq_hist_divisor;
  496. return cfqg->busy_queues_avg[rt];
  497. }
  498. static inline unsigned
  499. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  500. {
  501. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  502. return cfq_target_latency * cfqg->weight / st->total_weight;
  503. }
  504. static inline unsigned
  505. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  506. {
  507. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  508. if (cfqd->cfq_latency) {
  509. /*
  510. * interested queues (we consider only the ones with the same
  511. * priority class in the cfq group)
  512. */
  513. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  514. cfq_class_rt(cfqq));
  515. unsigned sync_slice = cfqd->cfq_slice[1];
  516. unsigned expect_latency = sync_slice * iq;
  517. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  518. if (expect_latency > group_slice) {
  519. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  520. /* scale low_slice according to IO priority
  521. * and sync vs async */
  522. unsigned low_slice =
  523. min(slice, base_low_slice * slice / sync_slice);
  524. /* the adapted slice value is scaled to fit all iqs
  525. * into the target latency */
  526. slice = max(slice * group_slice / expect_latency,
  527. low_slice);
  528. }
  529. }
  530. return slice;
  531. }
  532. static inline void
  533. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  534. {
  535. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  536. cfqq->slice_start = jiffies;
  537. cfqq->slice_end = jiffies + slice;
  538. cfqq->allocated_slice = slice;
  539. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  540. }
  541. /*
  542. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  543. * isn't valid until the first request from the dispatch is activated
  544. * and the slice time set.
  545. */
  546. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  547. {
  548. if (cfq_cfqq_slice_new(cfqq))
  549. return false;
  550. if (time_before(jiffies, cfqq->slice_end))
  551. return false;
  552. return true;
  553. }
  554. /*
  555. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  556. * We choose the request that is closest to the head right now. Distance
  557. * behind the head is penalized and only allowed to a certain extent.
  558. */
  559. static struct request *
  560. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  561. {
  562. sector_t s1, s2, d1 = 0, d2 = 0;
  563. unsigned long back_max;
  564. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  565. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  566. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  567. if (rq1 == NULL || rq1 == rq2)
  568. return rq2;
  569. if (rq2 == NULL)
  570. return rq1;
  571. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  572. return rq_is_sync(rq1) ? rq1 : rq2;
  573. s1 = blk_rq_pos(rq1);
  574. s2 = blk_rq_pos(rq2);
  575. /*
  576. * by definition, 1KiB is 2 sectors
  577. */
  578. back_max = cfqd->cfq_back_max * 2;
  579. /*
  580. * Strict one way elevator _except_ in the case where we allow
  581. * short backward seeks which are biased as twice the cost of a
  582. * similar forward seek.
  583. */
  584. if (s1 >= last)
  585. d1 = s1 - last;
  586. else if (s1 + back_max >= last)
  587. d1 = (last - s1) * cfqd->cfq_back_penalty;
  588. else
  589. wrap |= CFQ_RQ1_WRAP;
  590. if (s2 >= last)
  591. d2 = s2 - last;
  592. else if (s2 + back_max >= last)
  593. d2 = (last - s2) * cfqd->cfq_back_penalty;
  594. else
  595. wrap |= CFQ_RQ2_WRAP;
  596. /* Found required data */
  597. /*
  598. * By doing switch() on the bit mask "wrap" we avoid having to
  599. * check two variables for all permutations: --> faster!
  600. */
  601. switch (wrap) {
  602. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  603. if (d1 < d2)
  604. return rq1;
  605. else if (d2 < d1)
  606. return rq2;
  607. else {
  608. if (s1 >= s2)
  609. return rq1;
  610. else
  611. return rq2;
  612. }
  613. case CFQ_RQ2_WRAP:
  614. return rq1;
  615. case CFQ_RQ1_WRAP:
  616. return rq2;
  617. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  618. default:
  619. /*
  620. * Since both rqs are wrapped,
  621. * start with the one that's further behind head
  622. * (--> only *one* back seek required),
  623. * since back seek takes more time than forward.
  624. */
  625. if (s1 <= s2)
  626. return rq1;
  627. else
  628. return rq2;
  629. }
  630. }
  631. /*
  632. * The below is leftmost cache rbtree addon
  633. */
  634. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  635. {
  636. /* Service tree is empty */
  637. if (!root->count)
  638. return NULL;
  639. if (!root->left)
  640. root->left = rb_first(&root->rb);
  641. if (root->left)
  642. return rb_entry(root->left, struct cfq_queue, rb_node);
  643. return NULL;
  644. }
  645. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  646. {
  647. if (!root->left)
  648. root->left = rb_first(&root->rb);
  649. if (root->left)
  650. return rb_entry_cfqg(root->left);
  651. return NULL;
  652. }
  653. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  654. {
  655. rb_erase(n, root);
  656. RB_CLEAR_NODE(n);
  657. }
  658. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  659. {
  660. if (root->left == n)
  661. root->left = NULL;
  662. rb_erase_init(n, &root->rb);
  663. --root->count;
  664. }
  665. /*
  666. * would be nice to take fifo expire time into account as well
  667. */
  668. static struct request *
  669. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  670. struct request *last)
  671. {
  672. struct rb_node *rbnext = rb_next(&last->rb_node);
  673. struct rb_node *rbprev = rb_prev(&last->rb_node);
  674. struct request *next = NULL, *prev = NULL;
  675. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  676. if (rbprev)
  677. prev = rb_entry_rq(rbprev);
  678. if (rbnext)
  679. next = rb_entry_rq(rbnext);
  680. else {
  681. rbnext = rb_first(&cfqq->sort_list);
  682. if (rbnext && rbnext != &last->rb_node)
  683. next = rb_entry_rq(rbnext);
  684. }
  685. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  686. }
  687. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  688. struct cfq_queue *cfqq)
  689. {
  690. /*
  691. * just an approximation, should be ok.
  692. */
  693. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  694. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  695. }
  696. static inline s64
  697. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  698. {
  699. return cfqg->vdisktime - st->min_vdisktime;
  700. }
  701. static void
  702. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  703. {
  704. struct rb_node **node = &st->rb.rb_node;
  705. struct rb_node *parent = NULL;
  706. struct cfq_group *__cfqg;
  707. s64 key = cfqg_key(st, cfqg);
  708. int left = 1;
  709. while (*node != NULL) {
  710. parent = *node;
  711. __cfqg = rb_entry_cfqg(parent);
  712. if (key < cfqg_key(st, __cfqg))
  713. node = &parent->rb_left;
  714. else {
  715. node = &parent->rb_right;
  716. left = 0;
  717. }
  718. }
  719. if (left)
  720. st->left = &cfqg->rb_node;
  721. rb_link_node(&cfqg->rb_node, parent, node);
  722. rb_insert_color(&cfqg->rb_node, &st->rb);
  723. }
  724. static void
  725. cfq_update_group_weight(struct cfq_group *cfqg)
  726. {
  727. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  728. if (cfqg->needs_update) {
  729. cfqg->weight = cfqg->new_weight;
  730. cfqg->needs_update = false;
  731. }
  732. }
  733. static void
  734. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  735. {
  736. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  737. cfq_update_group_weight(cfqg);
  738. __cfq_group_service_tree_add(st, cfqg);
  739. st->total_weight += cfqg->weight;
  740. }
  741. static void
  742. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  743. {
  744. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  745. struct cfq_group *__cfqg;
  746. struct rb_node *n;
  747. cfqg->nr_cfqq++;
  748. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  749. return;
  750. /*
  751. * Currently put the group at the end. Later implement something
  752. * so that groups get lesser vtime based on their weights, so that
  753. * if group does not loose all if it was not continuously backlogged.
  754. */
  755. n = rb_last(&st->rb);
  756. if (n) {
  757. __cfqg = rb_entry_cfqg(n);
  758. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  759. } else
  760. cfqg->vdisktime = st->min_vdisktime;
  761. cfq_group_service_tree_add(st, cfqg);
  762. }
  763. static void
  764. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  765. {
  766. st->total_weight -= cfqg->weight;
  767. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  768. cfq_rb_erase(&cfqg->rb_node, st);
  769. }
  770. static void
  771. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  772. {
  773. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  774. BUG_ON(cfqg->nr_cfqq < 1);
  775. cfqg->nr_cfqq--;
  776. /* If there are other cfq queues under this group, don't delete it */
  777. if (cfqg->nr_cfqq)
  778. return;
  779. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  780. cfq_group_service_tree_del(st, cfqg);
  781. cfqg->saved_workload_slice = 0;
  782. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  783. }
  784. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  785. unsigned int *unaccounted_time)
  786. {
  787. unsigned int slice_used;
  788. /*
  789. * Queue got expired before even a single request completed or
  790. * got expired immediately after first request completion.
  791. */
  792. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  793. /*
  794. * Also charge the seek time incurred to the group, otherwise
  795. * if there are mutiple queues in the group, each can dispatch
  796. * a single request on seeky media and cause lots of seek time
  797. * and group will never know it.
  798. */
  799. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  800. 1);
  801. } else {
  802. slice_used = jiffies - cfqq->slice_start;
  803. if (slice_used > cfqq->allocated_slice) {
  804. *unaccounted_time = slice_used - cfqq->allocated_slice;
  805. slice_used = cfqq->allocated_slice;
  806. }
  807. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  808. *unaccounted_time += cfqq->slice_start -
  809. cfqq->dispatch_start;
  810. }
  811. return slice_used;
  812. }
  813. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  814. struct cfq_queue *cfqq)
  815. {
  816. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  817. unsigned int used_sl, charge, unaccounted_sl = 0;
  818. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  819. - cfqg->service_tree_idle.count;
  820. BUG_ON(nr_sync < 0);
  821. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  822. if (iops_mode(cfqd))
  823. charge = cfqq->slice_dispatch;
  824. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  825. charge = cfqq->allocated_slice;
  826. /* Can't update vdisktime while group is on service tree */
  827. cfq_group_service_tree_del(st, cfqg);
  828. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  829. /* If a new weight was requested, update now, off tree */
  830. cfq_group_service_tree_add(st, cfqg);
  831. /* This group is being expired. Save the context */
  832. if (time_after(cfqd->workload_expires, jiffies)) {
  833. cfqg->saved_workload_slice = cfqd->workload_expires
  834. - jiffies;
  835. cfqg->saved_workload = cfqd->serving_type;
  836. cfqg->saved_serving_prio = cfqd->serving_prio;
  837. } else
  838. cfqg->saved_workload_slice = 0;
  839. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  840. st->min_vdisktime);
  841. cfq_log_cfqq(cfqq->cfqd, cfqq,
  842. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  843. used_sl, cfqq->slice_dispatch, charge,
  844. iops_mode(cfqd), cfqq->nr_sectors);
  845. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  846. unaccounted_sl);
  847. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  848. }
  849. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  850. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  851. {
  852. if (blkg)
  853. return container_of(blkg, struct cfq_group, blkg);
  854. return NULL;
  855. }
  856. static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  857. unsigned int weight)
  858. {
  859. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  860. cfqg->new_weight = weight;
  861. cfqg->needs_update = true;
  862. }
  863. static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
  864. struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
  865. {
  866. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  867. unsigned int major, minor;
  868. /*
  869. * Add group onto cgroup list. It might happen that bdi->dev is
  870. * not initialized yet. Initialize this new group without major
  871. * and minor info and this info will be filled in once a new thread
  872. * comes for IO.
  873. */
  874. if (bdi->dev) {
  875. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  876. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  877. (void *)cfqd, MKDEV(major, minor));
  878. } else
  879. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  880. (void *)cfqd, 0);
  881. cfqd->nr_blkcg_linked_grps++;
  882. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  883. /* Add group on cfqd list */
  884. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  885. }
  886. /*
  887. * Should be called from sleepable context. No request queue lock as per
  888. * cpu stats are allocated dynamically and alloc_percpu needs to be called
  889. * from sleepable context.
  890. */
  891. static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
  892. {
  893. struct cfq_group *cfqg = NULL;
  894. int i, j, ret;
  895. struct cfq_rb_root *st;
  896. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  897. if (!cfqg)
  898. return NULL;
  899. for_each_cfqg_st(cfqg, i, j, st)
  900. *st = CFQ_RB_ROOT;
  901. RB_CLEAR_NODE(&cfqg->rb_node);
  902. /*
  903. * Take the initial reference that will be released on destroy
  904. * This can be thought of a joint reference by cgroup and
  905. * elevator which will be dropped by either elevator exit
  906. * or cgroup deletion path depending on who is exiting first.
  907. */
  908. cfqg->ref = 1;
  909. ret = blkio_alloc_blkg_stats(&cfqg->blkg);
  910. if (ret) {
  911. kfree(cfqg);
  912. return NULL;
  913. }
  914. return cfqg;
  915. }
  916. static struct cfq_group *
  917. cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
  918. {
  919. struct cfq_group *cfqg = NULL;
  920. void *key = cfqd;
  921. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  922. unsigned int major, minor;
  923. /*
  924. * This is the common case when there are no blkio cgroups.
  925. * Avoid lookup in this case
  926. */
  927. if (blkcg == &blkio_root_cgroup)
  928. cfqg = &cfqd->root_group;
  929. else
  930. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  931. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  932. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  933. cfqg->blkg.dev = MKDEV(major, minor);
  934. }
  935. return cfqg;
  936. }
  937. /*
  938. * Search for the cfq group current task belongs to. request_queue lock must
  939. * be held.
  940. */
  941. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  942. {
  943. struct blkio_cgroup *blkcg;
  944. struct cfq_group *cfqg = NULL, *__cfqg = NULL;
  945. struct request_queue *q = cfqd->queue;
  946. rcu_read_lock();
  947. blkcg = task_blkio_cgroup(current);
  948. cfqg = cfq_find_cfqg(cfqd, blkcg);
  949. if (cfqg) {
  950. rcu_read_unlock();
  951. return cfqg;
  952. }
  953. /*
  954. * Need to allocate a group. Allocation of group also needs allocation
  955. * of per cpu stats which in-turn takes a mutex() and can block. Hence
  956. * we need to drop rcu lock and queue_lock before we call alloc.
  957. *
  958. * Not taking any queue reference here and assuming that queue is
  959. * around by the time we return. CFQ queue allocation code does
  960. * the same. It might be racy though.
  961. */
  962. rcu_read_unlock();
  963. spin_unlock_irq(q->queue_lock);
  964. cfqg = cfq_alloc_cfqg(cfqd);
  965. spin_lock_irq(q->queue_lock);
  966. rcu_read_lock();
  967. blkcg = task_blkio_cgroup(current);
  968. /*
  969. * If some other thread already allocated the group while we were
  970. * not holding queue lock, free up the group
  971. */
  972. __cfqg = cfq_find_cfqg(cfqd, blkcg);
  973. if (__cfqg) {
  974. kfree(cfqg);
  975. rcu_read_unlock();
  976. return __cfqg;
  977. }
  978. if (!cfqg)
  979. cfqg = &cfqd->root_group;
  980. cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
  981. rcu_read_unlock();
  982. return cfqg;
  983. }
  984. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  985. {
  986. cfqg->ref++;
  987. return cfqg;
  988. }
  989. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  990. {
  991. /* Currently, all async queues are mapped to root group */
  992. if (!cfq_cfqq_sync(cfqq))
  993. cfqg = &cfqq->cfqd->root_group;
  994. cfqq->cfqg = cfqg;
  995. /* cfqq reference on cfqg */
  996. cfqq->cfqg->ref++;
  997. }
  998. static void cfq_put_cfqg(struct cfq_group *cfqg)
  999. {
  1000. struct cfq_rb_root *st;
  1001. int i, j;
  1002. BUG_ON(cfqg->ref <= 0);
  1003. cfqg->ref--;
  1004. if (cfqg->ref)
  1005. return;
  1006. for_each_cfqg_st(cfqg, i, j, st)
  1007. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  1008. free_percpu(cfqg->blkg.stats_cpu);
  1009. kfree(cfqg);
  1010. }
  1011. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1012. {
  1013. /* Something wrong if we are trying to remove same group twice */
  1014. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  1015. hlist_del_init(&cfqg->cfqd_node);
  1016. /*
  1017. * Put the reference taken at the time of creation so that when all
  1018. * queues are gone, group can be destroyed.
  1019. */
  1020. cfq_put_cfqg(cfqg);
  1021. }
  1022. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  1023. {
  1024. struct hlist_node *pos, *n;
  1025. struct cfq_group *cfqg;
  1026. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  1027. /*
  1028. * If cgroup removal path got to blk_group first and removed
  1029. * it from cgroup list, then it will take care of destroying
  1030. * cfqg also.
  1031. */
  1032. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  1033. cfq_destroy_cfqg(cfqd, cfqg);
  1034. }
  1035. }
  1036. /*
  1037. * Blk cgroup controller notification saying that blkio_group object is being
  1038. * delinked as associated cgroup object is going away. That also means that
  1039. * no new IO will come in this group. So get rid of this group as soon as
  1040. * any pending IO in the group is finished.
  1041. *
  1042. * This function is called under rcu_read_lock(). key is the rcu protected
  1043. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  1044. * read lock.
  1045. *
  1046. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  1047. * it should not be NULL as even if elevator was exiting, cgroup deltion
  1048. * path got to it first.
  1049. */
  1050. static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1051. {
  1052. unsigned long flags;
  1053. struct cfq_data *cfqd = key;
  1054. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1055. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1056. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1057. }
  1058. #else /* GROUP_IOSCHED */
  1059. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  1060. {
  1061. return &cfqd->root_group;
  1062. }
  1063. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1064. {
  1065. return cfqg;
  1066. }
  1067. static inline void
  1068. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1069. cfqq->cfqg = cfqg;
  1070. }
  1071. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1072. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1073. #endif /* GROUP_IOSCHED */
  1074. /*
  1075. * The cfqd->service_trees holds all pending cfq_queue's that have
  1076. * requests waiting to be processed. It is sorted in the order that
  1077. * we will service the queues.
  1078. */
  1079. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1080. bool add_front)
  1081. {
  1082. struct rb_node **p, *parent;
  1083. struct cfq_queue *__cfqq;
  1084. unsigned long rb_key;
  1085. struct cfq_rb_root *service_tree;
  1086. int left;
  1087. int new_cfqq = 1;
  1088. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1089. cfqq_type(cfqq));
  1090. if (cfq_class_idle(cfqq)) {
  1091. rb_key = CFQ_IDLE_DELAY;
  1092. parent = rb_last(&service_tree->rb);
  1093. if (parent && parent != &cfqq->rb_node) {
  1094. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1095. rb_key += __cfqq->rb_key;
  1096. } else
  1097. rb_key += jiffies;
  1098. } else if (!add_front) {
  1099. /*
  1100. * Get our rb key offset. Subtract any residual slice
  1101. * value carried from last service. A negative resid
  1102. * count indicates slice overrun, and this should position
  1103. * the next service time further away in the tree.
  1104. */
  1105. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1106. rb_key -= cfqq->slice_resid;
  1107. cfqq->slice_resid = 0;
  1108. } else {
  1109. rb_key = -HZ;
  1110. __cfqq = cfq_rb_first(service_tree);
  1111. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1112. }
  1113. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1114. new_cfqq = 0;
  1115. /*
  1116. * same position, nothing more to do
  1117. */
  1118. if (rb_key == cfqq->rb_key &&
  1119. cfqq->service_tree == service_tree)
  1120. return;
  1121. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1122. cfqq->service_tree = NULL;
  1123. }
  1124. left = 1;
  1125. parent = NULL;
  1126. cfqq->service_tree = service_tree;
  1127. p = &service_tree->rb.rb_node;
  1128. while (*p) {
  1129. struct rb_node **n;
  1130. parent = *p;
  1131. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1132. /*
  1133. * sort by key, that represents service time.
  1134. */
  1135. if (time_before(rb_key, __cfqq->rb_key))
  1136. n = &(*p)->rb_left;
  1137. else {
  1138. n = &(*p)->rb_right;
  1139. left = 0;
  1140. }
  1141. p = n;
  1142. }
  1143. if (left)
  1144. service_tree->left = &cfqq->rb_node;
  1145. cfqq->rb_key = rb_key;
  1146. rb_link_node(&cfqq->rb_node, parent, p);
  1147. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1148. service_tree->count++;
  1149. if (add_front || !new_cfqq)
  1150. return;
  1151. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1152. }
  1153. static struct cfq_queue *
  1154. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1155. sector_t sector, struct rb_node **ret_parent,
  1156. struct rb_node ***rb_link)
  1157. {
  1158. struct rb_node **p, *parent;
  1159. struct cfq_queue *cfqq = NULL;
  1160. parent = NULL;
  1161. p = &root->rb_node;
  1162. while (*p) {
  1163. struct rb_node **n;
  1164. parent = *p;
  1165. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1166. /*
  1167. * Sort strictly based on sector. Smallest to the left,
  1168. * largest to the right.
  1169. */
  1170. if (sector > blk_rq_pos(cfqq->next_rq))
  1171. n = &(*p)->rb_right;
  1172. else if (sector < blk_rq_pos(cfqq->next_rq))
  1173. n = &(*p)->rb_left;
  1174. else
  1175. break;
  1176. p = n;
  1177. cfqq = NULL;
  1178. }
  1179. *ret_parent = parent;
  1180. if (rb_link)
  1181. *rb_link = p;
  1182. return cfqq;
  1183. }
  1184. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1185. {
  1186. struct rb_node **p, *parent;
  1187. struct cfq_queue *__cfqq;
  1188. if (cfqq->p_root) {
  1189. rb_erase(&cfqq->p_node, cfqq->p_root);
  1190. cfqq->p_root = NULL;
  1191. }
  1192. if (cfq_class_idle(cfqq))
  1193. return;
  1194. if (!cfqq->next_rq)
  1195. return;
  1196. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1197. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1198. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1199. if (!__cfqq) {
  1200. rb_link_node(&cfqq->p_node, parent, p);
  1201. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1202. } else
  1203. cfqq->p_root = NULL;
  1204. }
  1205. /*
  1206. * Update cfqq's position in the service tree.
  1207. */
  1208. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1209. {
  1210. /*
  1211. * Resorting requires the cfqq to be on the RR list already.
  1212. */
  1213. if (cfq_cfqq_on_rr(cfqq)) {
  1214. cfq_service_tree_add(cfqd, cfqq, 0);
  1215. cfq_prio_tree_add(cfqd, cfqq);
  1216. }
  1217. }
  1218. /*
  1219. * add to busy list of queues for service, trying to be fair in ordering
  1220. * the pending list according to last request service
  1221. */
  1222. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1223. {
  1224. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1225. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1226. cfq_mark_cfqq_on_rr(cfqq);
  1227. cfqd->busy_queues++;
  1228. if (cfq_cfqq_sync(cfqq))
  1229. cfqd->busy_sync_queues++;
  1230. cfq_resort_rr_list(cfqd, cfqq);
  1231. }
  1232. /*
  1233. * Called when the cfqq no longer has requests pending, remove it from
  1234. * the service tree.
  1235. */
  1236. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1237. {
  1238. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1239. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1240. cfq_clear_cfqq_on_rr(cfqq);
  1241. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1242. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1243. cfqq->service_tree = NULL;
  1244. }
  1245. if (cfqq->p_root) {
  1246. rb_erase(&cfqq->p_node, cfqq->p_root);
  1247. cfqq->p_root = NULL;
  1248. }
  1249. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1250. BUG_ON(!cfqd->busy_queues);
  1251. cfqd->busy_queues--;
  1252. if (cfq_cfqq_sync(cfqq))
  1253. cfqd->busy_sync_queues--;
  1254. }
  1255. /*
  1256. * rb tree support functions
  1257. */
  1258. static void cfq_del_rq_rb(struct request *rq)
  1259. {
  1260. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1261. const int sync = rq_is_sync(rq);
  1262. BUG_ON(!cfqq->queued[sync]);
  1263. cfqq->queued[sync]--;
  1264. elv_rb_del(&cfqq->sort_list, rq);
  1265. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1266. /*
  1267. * Queue will be deleted from service tree when we actually
  1268. * expire it later. Right now just remove it from prio tree
  1269. * as it is empty.
  1270. */
  1271. if (cfqq->p_root) {
  1272. rb_erase(&cfqq->p_node, cfqq->p_root);
  1273. cfqq->p_root = NULL;
  1274. }
  1275. }
  1276. }
  1277. static void cfq_add_rq_rb(struct request *rq)
  1278. {
  1279. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1280. struct cfq_data *cfqd = cfqq->cfqd;
  1281. struct request *prev;
  1282. cfqq->queued[rq_is_sync(rq)]++;
  1283. elv_rb_add(&cfqq->sort_list, rq);
  1284. if (!cfq_cfqq_on_rr(cfqq))
  1285. cfq_add_cfqq_rr(cfqd, cfqq);
  1286. /*
  1287. * check if this request is a better next-serve candidate
  1288. */
  1289. prev = cfqq->next_rq;
  1290. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1291. /*
  1292. * adjust priority tree position, if ->next_rq changes
  1293. */
  1294. if (prev != cfqq->next_rq)
  1295. cfq_prio_tree_add(cfqd, cfqq);
  1296. BUG_ON(!cfqq->next_rq);
  1297. }
  1298. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1299. {
  1300. elv_rb_del(&cfqq->sort_list, rq);
  1301. cfqq->queued[rq_is_sync(rq)]--;
  1302. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1303. rq_data_dir(rq), rq_is_sync(rq));
  1304. cfq_add_rq_rb(rq);
  1305. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1306. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1307. rq_is_sync(rq));
  1308. }
  1309. static struct request *
  1310. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1311. {
  1312. struct task_struct *tsk = current;
  1313. struct cfq_io_context *cic;
  1314. struct cfq_queue *cfqq;
  1315. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1316. if (!cic)
  1317. return NULL;
  1318. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1319. if (cfqq) {
  1320. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1321. return elv_rb_find(&cfqq->sort_list, sector);
  1322. }
  1323. return NULL;
  1324. }
  1325. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1326. {
  1327. struct cfq_data *cfqd = q->elevator->elevator_data;
  1328. cfqd->rq_in_driver++;
  1329. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1330. cfqd->rq_in_driver);
  1331. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1332. }
  1333. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1334. {
  1335. struct cfq_data *cfqd = q->elevator->elevator_data;
  1336. WARN_ON(!cfqd->rq_in_driver);
  1337. cfqd->rq_in_driver--;
  1338. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1339. cfqd->rq_in_driver);
  1340. }
  1341. static void cfq_remove_request(struct request *rq)
  1342. {
  1343. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1344. if (cfqq->next_rq == rq)
  1345. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1346. list_del_init(&rq->queuelist);
  1347. cfq_del_rq_rb(rq);
  1348. cfqq->cfqd->rq_queued--;
  1349. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1350. rq_data_dir(rq), rq_is_sync(rq));
  1351. }
  1352. static int cfq_merge(struct request_queue *q, struct request **req,
  1353. struct bio *bio)
  1354. {
  1355. struct cfq_data *cfqd = q->elevator->elevator_data;
  1356. struct request *__rq;
  1357. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1358. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1359. *req = __rq;
  1360. return ELEVATOR_FRONT_MERGE;
  1361. }
  1362. return ELEVATOR_NO_MERGE;
  1363. }
  1364. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1365. int type)
  1366. {
  1367. if (type == ELEVATOR_FRONT_MERGE) {
  1368. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1369. cfq_reposition_rq_rb(cfqq, req);
  1370. }
  1371. }
  1372. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1373. struct bio *bio)
  1374. {
  1375. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1376. bio_data_dir(bio), cfq_bio_sync(bio));
  1377. }
  1378. static void
  1379. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1380. struct request *next)
  1381. {
  1382. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1383. /*
  1384. * reposition in fifo if next is older than rq
  1385. */
  1386. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1387. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1388. list_move(&rq->queuelist, &next->queuelist);
  1389. rq_set_fifo_time(rq, rq_fifo_time(next));
  1390. }
  1391. if (cfqq->next_rq == next)
  1392. cfqq->next_rq = rq;
  1393. cfq_remove_request(next);
  1394. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1395. rq_data_dir(next), rq_is_sync(next));
  1396. }
  1397. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1398. struct bio *bio)
  1399. {
  1400. struct cfq_data *cfqd = q->elevator->elevator_data;
  1401. struct cfq_io_context *cic;
  1402. struct cfq_queue *cfqq;
  1403. /*
  1404. * Disallow merge of a sync bio into an async request.
  1405. */
  1406. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1407. return false;
  1408. /*
  1409. * Lookup the cfqq that this bio will be queued with. Allow
  1410. * merge only if rq is queued there.
  1411. */
  1412. cic = cfq_cic_lookup(cfqd, current->io_context);
  1413. if (!cic)
  1414. return false;
  1415. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1416. return cfqq == RQ_CFQQ(rq);
  1417. }
  1418. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1419. {
  1420. del_timer(&cfqd->idle_slice_timer);
  1421. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1422. }
  1423. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1424. struct cfq_queue *cfqq)
  1425. {
  1426. if (cfqq) {
  1427. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1428. cfqd->serving_prio, cfqd->serving_type);
  1429. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1430. cfqq->slice_start = 0;
  1431. cfqq->dispatch_start = jiffies;
  1432. cfqq->allocated_slice = 0;
  1433. cfqq->slice_end = 0;
  1434. cfqq->slice_dispatch = 0;
  1435. cfqq->nr_sectors = 0;
  1436. cfq_clear_cfqq_wait_request(cfqq);
  1437. cfq_clear_cfqq_must_dispatch(cfqq);
  1438. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1439. cfq_clear_cfqq_fifo_expire(cfqq);
  1440. cfq_mark_cfqq_slice_new(cfqq);
  1441. cfq_del_timer(cfqd, cfqq);
  1442. }
  1443. cfqd->active_queue = cfqq;
  1444. }
  1445. /*
  1446. * current cfqq expired its slice (or was too idle), select new one
  1447. */
  1448. static void
  1449. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1450. bool timed_out)
  1451. {
  1452. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1453. if (cfq_cfqq_wait_request(cfqq))
  1454. cfq_del_timer(cfqd, cfqq);
  1455. cfq_clear_cfqq_wait_request(cfqq);
  1456. cfq_clear_cfqq_wait_busy(cfqq);
  1457. /*
  1458. * If this cfqq is shared between multiple processes, check to
  1459. * make sure that those processes are still issuing I/Os within
  1460. * the mean seek distance. If not, it may be time to break the
  1461. * queues apart again.
  1462. */
  1463. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1464. cfq_mark_cfqq_split_coop(cfqq);
  1465. /*
  1466. * store what was left of this slice, if the queue idled/timed out
  1467. */
  1468. if (timed_out) {
  1469. if (cfq_cfqq_slice_new(cfqq))
  1470. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1471. else
  1472. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1473. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1474. }
  1475. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1476. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1477. cfq_del_cfqq_rr(cfqd, cfqq);
  1478. cfq_resort_rr_list(cfqd, cfqq);
  1479. if (cfqq == cfqd->active_queue)
  1480. cfqd->active_queue = NULL;
  1481. if (cfqd->active_cic) {
  1482. put_io_context(cfqd->active_cic->ioc);
  1483. cfqd->active_cic = NULL;
  1484. }
  1485. }
  1486. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1487. {
  1488. struct cfq_queue *cfqq = cfqd->active_queue;
  1489. if (cfqq)
  1490. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1491. }
  1492. /*
  1493. * Get next queue for service. Unless we have a queue preemption,
  1494. * we'll simply select the first cfqq in the service tree.
  1495. */
  1496. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1497. {
  1498. struct cfq_rb_root *service_tree =
  1499. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1500. cfqd->serving_type);
  1501. if (!cfqd->rq_queued)
  1502. return NULL;
  1503. /* There is nothing to dispatch */
  1504. if (!service_tree)
  1505. return NULL;
  1506. if (RB_EMPTY_ROOT(&service_tree->rb))
  1507. return NULL;
  1508. return cfq_rb_first(service_tree);
  1509. }
  1510. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1511. {
  1512. struct cfq_group *cfqg;
  1513. struct cfq_queue *cfqq;
  1514. int i, j;
  1515. struct cfq_rb_root *st;
  1516. if (!cfqd->rq_queued)
  1517. return NULL;
  1518. cfqg = cfq_get_next_cfqg(cfqd);
  1519. if (!cfqg)
  1520. return NULL;
  1521. for_each_cfqg_st(cfqg, i, j, st)
  1522. if ((cfqq = cfq_rb_first(st)) != NULL)
  1523. return cfqq;
  1524. return NULL;
  1525. }
  1526. /*
  1527. * Get and set a new active queue for service.
  1528. */
  1529. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1530. struct cfq_queue *cfqq)
  1531. {
  1532. if (!cfqq)
  1533. cfqq = cfq_get_next_queue(cfqd);
  1534. __cfq_set_active_queue(cfqd, cfqq);
  1535. return cfqq;
  1536. }
  1537. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1538. struct request *rq)
  1539. {
  1540. if (blk_rq_pos(rq) >= cfqd->last_position)
  1541. return blk_rq_pos(rq) - cfqd->last_position;
  1542. else
  1543. return cfqd->last_position - blk_rq_pos(rq);
  1544. }
  1545. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1546. struct request *rq)
  1547. {
  1548. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1549. }
  1550. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1551. struct cfq_queue *cur_cfqq)
  1552. {
  1553. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1554. struct rb_node *parent, *node;
  1555. struct cfq_queue *__cfqq;
  1556. sector_t sector = cfqd->last_position;
  1557. if (RB_EMPTY_ROOT(root))
  1558. return NULL;
  1559. /*
  1560. * First, if we find a request starting at the end of the last
  1561. * request, choose it.
  1562. */
  1563. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1564. if (__cfqq)
  1565. return __cfqq;
  1566. /*
  1567. * If the exact sector wasn't found, the parent of the NULL leaf
  1568. * will contain the closest sector.
  1569. */
  1570. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1571. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1572. return __cfqq;
  1573. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1574. node = rb_next(&__cfqq->p_node);
  1575. else
  1576. node = rb_prev(&__cfqq->p_node);
  1577. if (!node)
  1578. return NULL;
  1579. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1580. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1581. return __cfqq;
  1582. return NULL;
  1583. }
  1584. /*
  1585. * cfqd - obvious
  1586. * cur_cfqq - passed in so that we don't decide that the current queue is
  1587. * closely cooperating with itself.
  1588. *
  1589. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1590. * one request, and that cfqd->last_position reflects a position on the disk
  1591. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1592. * assumption.
  1593. */
  1594. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1595. struct cfq_queue *cur_cfqq)
  1596. {
  1597. struct cfq_queue *cfqq;
  1598. if (cfq_class_idle(cur_cfqq))
  1599. return NULL;
  1600. if (!cfq_cfqq_sync(cur_cfqq))
  1601. return NULL;
  1602. if (CFQQ_SEEKY(cur_cfqq))
  1603. return NULL;
  1604. /*
  1605. * Don't search priority tree if it's the only queue in the group.
  1606. */
  1607. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1608. return NULL;
  1609. /*
  1610. * We should notice if some of the queues are cooperating, eg
  1611. * working closely on the same area of the disk. In that case,
  1612. * we can group them together and don't waste time idling.
  1613. */
  1614. cfqq = cfqq_close(cfqd, cur_cfqq);
  1615. if (!cfqq)
  1616. return NULL;
  1617. /* If new queue belongs to different cfq_group, don't choose it */
  1618. if (cur_cfqq->cfqg != cfqq->cfqg)
  1619. return NULL;
  1620. /*
  1621. * It only makes sense to merge sync queues.
  1622. */
  1623. if (!cfq_cfqq_sync(cfqq))
  1624. return NULL;
  1625. if (CFQQ_SEEKY(cfqq))
  1626. return NULL;
  1627. /*
  1628. * Do not merge queues of different priority classes
  1629. */
  1630. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1631. return NULL;
  1632. return cfqq;
  1633. }
  1634. /*
  1635. * Determine whether we should enforce idle window for this queue.
  1636. */
  1637. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1638. {
  1639. enum wl_prio_t prio = cfqq_prio(cfqq);
  1640. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1641. BUG_ON(!service_tree);
  1642. BUG_ON(!service_tree->count);
  1643. if (!cfqd->cfq_slice_idle)
  1644. return false;
  1645. /* We never do for idle class queues. */
  1646. if (prio == IDLE_WORKLOAD)
  1647. return false;
  1648. /* We do for queues that were marked with idle window flag. */
  1649. if (cfq_cfqq_idle_window(cfqq) &&
  1650. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1651. return true;
  1652. /*
  1653. * Otherwise, we do only if they are the last ones
  1654. * in their service tree.
  1655. */
  1656. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1657. return true;
  1658. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1659. service_tree->count);
  1660. return false;
  1661. }
  1662. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1663. {
  1664. struct cfq_queue *cfqq = cfqd->active_queue;
  1665. struct cfq_io_context *cic;
  1666. unsigned long sl, group_idle = 0;
  1667. /*
  1668. * SSD device without seek penalty, disable idling. But only do so
  1669. * for devices that support queuing, otherwise we still have a problem
  1670. * with sync vs async workloads.
  1671. */
  1672. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1673. return;
  1674. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1675. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1676. /*
  1677. * idle is disabled, either manually or by past process history
  1678. */
  1679. if (!cfq_should_idle(cfqd, cfqq)) {
  1680. /* no queue idling. Check for group idling */
  1681. if (cfqd->cfq_group_idle)
  1682. group_idle = cfqd->cfq_group_idle;
  1683. else
  1684. return;
  1685. }
  1686. /*
  1687. * still active requests from this queue, don't idle
  1688. */
  1689. if (cfqq->dispatched)
  1690. return;
  1691. /*
  1692. * task has exited, don't wait
  1693. */
  1694. cic = cfqd->active_cic;
  1695. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1696. return;
  1697. /*
  1698. * If our average think time is larger than the remaining time
  1699. * slice, then don't idle. This avoids overrunning the allotted
  1700. * time slice.
  1701. */
  1702. if (sample_valid(cic->ttime.ttime_samples) &&
  1703. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1704. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1705. cic->ttime.ttime_mean);
  1706. return;
  1707. }
  1708. /* There are other queues in the group, don't do group idle */
  1709. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1710. return;
  1711. cfq_mark_cfqq_wait_request(cfqq);
  1712. if (group_idle)
  1713. sl = cfqd->cfq_group_idle;
  1714. else
  1715. sl = cfqd->cfq_slice_idle;
  1716. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1717. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1718. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1719. group_idle ? 1 : 0);
  1720. }
  1721. /*
  1722. * Move request from internal lists to the request queue dispatch list.
  1723. */
  1724. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1725. {
  1726. struct cfq_data *cfqd = q->elevator->elevator_data;
  1727. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1728. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1729. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1730. cfq_remove_request(rq);
  1731. cfqq->dispatched++;
  1732. (RQ_CFQG(rq))->dispatched++;
  1733. elv_dispatch_sort(q, rq);
  1734. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1735. cfqq->nr_sectors += blk_rq_sectors(rq);
  1736. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1737. rq_data_dir(rq), rq_is_sync(rq));
  1738. }
  1739. /*
  1740. * return expired entry, or NULL to just start from scratch in rbtree
  1741. */
  1742. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1743. {
  1744. struct request *rq = NULL;
  1745. if (cfq_cfqq_fifo_expire(cfqq))
  1746. return NULL;
  1747. cfq_mark_cfqq_fifo_expire(cfqq);
  1748. if (list_empty(&cfqq->fifo))
  1749. return NULL;
  1750. rq = rq_entry_fifo(cfqq->fifo.next);
  1751. if (time_before(jiffies, rq_fifo_time(rq)))
  1752. rq = NULL;
  1753. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1754. return rq;
  1755. }
  1756. static inline int
  1757. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1758. {
  1759. const int base_rq = cfqd->cfq_slice_async_rq;
  1760. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1761. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1762. }
  1763. /*
  1764. * Must be called with the queue_lock held.
  1765. */
  1766. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1767. {
  1768. int process_refs, io_refs;
  1769. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1770. process_refs = cfqq->ref - io_refs;
  1771. BUG_ON(process_refs < 0);
  1772. return process_refs;
  1773. }
  1774. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1775. {
  1776. int process_refs, new_process_refs;
  1777. struct cfq_queue *__cfqq;
  1778. /*
  1779. * If there are no process references on the new_cfqq, then it is
  1780. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1781. * chain may have dropped their last reference (not just their
  1782. * last process reference).
  1783. */
  1784. if (!cfqq_process_refs(new_cfqq))
  1785. return;
  1786. /* Avoid a circular list and skip interim queue merges */
  1787. while ((__cfqq = new_cfqq->new_cfqq)) {
  1788. if (__cfqq == cfqq)
  1789. return;
  1790. new_cfqq = __cfqq;
  1791. }
  1792. process_refs = cfqq_process_refs(cfqq);
  1793. new_process_refs = cfqq_process_refs(new_cfqq);
  1794. /*
  1795. * If the process for the cfqq has gone away, there is no
  1796. * sense in merging the queues.
  1797. */
  1798. if (process_refs == 0 || new_process_refs == 0)
  1799. return;
  1800. /*
  1801. * Merge in the direction of the lesser amount of work.
  1802. */
  1803. if (new_process_refs >= process_refs) {
  1804. cfqq->new_cfqq = new_cfqq;
  1805. new_cfqq->ref += process_refs;
  1806. } else {
  1807. new_cfqq->new_cfqq = cfqq;
  1808. cfqq->ref += new_process_refs;
  1809. }
  1810. }
  1811. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1812. struct cfq_group *cfqg, enum wl_prio_t prio)
  1813. {
  1814. struct cfq_queue *queue;
  1815. int i;
  1816. bool key_valid = false;
  1817. unsigned long lowest_key = 0;
  1818. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1819. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1820. /* select the one with lowest rb_key */
  1821. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1822. if (queue &&
  1823. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1824. lowest_key = queue->rb_key;
  1825. cur_best = i;
  1826. key_valid = true;
  1827. }
  1828. }
  1829. return cur_best;
  1830. }
  1831. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1832. {
  1833. unsigned slice;
  1834. unsigned count;
  1835. struct cfq_rb_root *st;
  1836. unsigned group_slice;
  1837. enum wl_prio_t original_prio = cfqd->serving_prio;
  1838. /* Choose next priority. RT > BE > IDLE */
  1839. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1840. cfqd->serving_prio = RT_WORKLOAD;
  1841. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1842. cfqd->serving_prio = BE_WORKLOAD;
  1843. else {
  1844. cfqd->serving_prio = IDLE_WORKLOAD;
  1845. cfqd->workload_expires = jiffies + 1;
  1846. return;
  1847. }
  1848. if (original_prio != cfqd->serving_prio)
  1849. goto new_workload;
  1850. /*
  1851. * For RT and BE, we have to choose also the type
  1852. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1853. * expiration time
  1854. */
  1855. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1856. count = st->count;
  1857. /*
  1858. * check workload expiration, and that we still have other queues ready
  1859. */
  1860. if (count && !time_after(jiffies, cfqd->workload_expires))
  1861. return;
  1862. new_workload:
  1863. /* otherwise select new workload type */
  1864. cfqd->serving_type =
  1865. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1866. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1867. count = st->count;
  1868. /*
  1869. * the workload slice is computed as a fraction of target latency
  1870. * proportional to the number of queues in that workload, over
  1871. * all the queues in the same priority class
  1872. */
  1873. group_slice = cfq_group_slice(cfqd, cfqg);
  1874. slice = group_slice * count /
  1875. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1876. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1877. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1878. unsigned int tmp;
  1879. /*
  1880. * Async queues are currently system wide. Just taking
  1881. * proportion of queues with-in same group will lead to higher
  1882. * async ratio system wide as generally root group is going
  1883. * to have higher weight. A more accurate thing would be to
  1884. * calculate system wide asnc/sync ratio.
  1885. */
  1886. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1887. tmp = tmp/cfqd->busy_queues;
  1888. slice = min_t(unsigned, slice, tmp);
  1889. /* async workload slice is scaled down according to
  1890. * the sync/async slice ratio. */
  1891. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1892. } else
  1893. /* sync workload slice is at least 2 * cfq_slice_idle */
  1894. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1895. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1896. cfq_log(cfqd, "workload slice:%d", slice);
  1897. cfqd->workload_expires = jiffies + slice;
  1898. }
  1899. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1900. {
  1901. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1902. struct cfq_group *cfqg;
  1903. if (RB_EMPTY_ROOT(&st->rb))
  1904. return NULL;
  1905. cfqg = cfq_rb_first_group(st);
  1906. update_min_vdisktime(st);
  1907. return cfqg;
  1908. }
  1909. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1910. {
  1911. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1912. cfqd->serving_group = cfqg;
  1913. /* Restore the workload type data */
  1914. if (cfqg->saved_workload_slice) {
  1915. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1916. cfqd->serving_type = cfqg->saved_workload;
  1917. cfqd->serving_prio = cfqg->saved_serving_prio;
  1918. } else
  1919. cfqd->workload_expires = jiffies - 1;
  1920. choose_service_tree(cfqd, cfqg);
  1921. }
  1922. /*
  1923. * Select a queue for service. If we have a current active queue,
  1924. * check whether to continue servicing it, or retrieve and set a new one.
  1925. */
  1926. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1927. {
  1928. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1929. cfqq = cfqd->active_queue;
  1930. if (!cfqq)
  1931. goto new_queue;
  1932. if (!cfqd->rq_queued)
  1933. return NULL;
  1934. /*
  1935. * We were waiting for group to get backlogged. Expire the queue
  1936. */
  1937. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1938. goto expire;
  1939. /*
  1940. * The active queue has run out of time, expire it and select new.
  1941. */
  1942. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1943. /*
  1944. * If slice had not expired at the completion of last request
  1945. * we might not have turned on wait_busy flag. Don't expire
  1946. * the queue yet. Allow the group to get backlogged.
  1947. *
  1948. * The very fact that we have used the slice, that means we
  1949. * have been idling all along on this queue and it should be
  1950. * ok to wait for this request to complete.
  1951. */
  1952. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1953. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1954. cfqq = NULL;
  1955. goto keep_queue;
  1956. } else
  1957. goto check_group_idle;
  1958. }
  1959. /*
  1960. * The active queue has requests and isn't expired, allow it to
  1961. * dispatch.
  1962. */
  1963. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1964. goto keep_queue;
  1965. /*
  1966. * If another queue has a request waiting within our mean seek
  1967. * distance, let it run. The expire code will check for close
  1968. * cooperators and put the close queue at the front of the service
  1969. * tree. If possible, merge the expiring queue with the new cfqq.
  1970. */
  1971. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1972. if (new_cfqq) {
  1973. if (!cfqq->new_cfqq)
  1974. cfq_setup_merge(cfqq, new_cfqq);
  1975. goto expire;
  1976. }
  1977. /*
  1978. * No requests pending. If the active queue still has requests in
  1979. * flight or is idling for a new request, allow either of these
  1980. * conditions to happen (or time out) before selecting a new queue.
  1981. */
  1982. if (timer_pending(&cfqd->idle_slice_timer)) {
  1983. cfqq = NULL;
  1984. goto keep_queue;
  1985. }
  1986. /*
  1987. * This is a deep seek queue, but the device is much faster than
  1988. * the queue can deliver, don't idle
  1989. **/
  1990. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1991. (cfq_cfqq_slice_new(cfqq) ||
  1992. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1993. cfq_clear_cfqq_deep(cfqq);
  1994. cfq_clear_cfqq_idle_window(cfqq);
  1995. }
  1996. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1997. cfqq = NULL;
  1998. goto keep_queue;
  1999. }
  2000. /*
  2001. * If group idle is enabled and there are requests dispatched from
  2002. * this group, wait for requests to complete.
  2003. */
  2004. check_group_idle:
  2005. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  2006. && cfqq->cfqg->dispatched) {
  2007. cfqq = NULL;
  2008. goto keep_queue;
  2009. }
  2010. expire:
  2011. cfq_slice_expired(cfqd, 0);
  2012. new_queue:
  2013. /*
  2014. * Current queue expired. Check if we have to switch to a new
  2015. * service tree
  2016. */
  2017. if (!new_cfqq)
  2018. cfq_choose_cfqg(cfqd);
  2019. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2020. keep_queue:
  2021. return cfqq;
  2022. }
  2023. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2024. {
  2025. int dispatched = 0;
  2026. while (cfqq->next_rq) {
  2027. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2028. dispatched++;
  2029. }
  2030. BUG_ON(!list_empty(&cfqq->fifo));
  2031. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2032. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2033. return dispatched;
  2034. }
  2035. /*
  2036. * Drain our current requests. Used for barriers and when switching
  2037. * io schedulers on-the-fly.
  2038. */
  2039. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2040. {
  2041. struct cfq_queue *cfqq;
  2042. int dispatched = 0;
  2043. /* Expire the timeslice of the current active queue first */
  2044. cfq_slice_expired(cfqd, 0);
  2045. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2046. __cfq_set_active_queue(cfqd, cfqq);
  2047. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2048. }
  2049. BUG_ON(cfqd->busy_queues);
  2050. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2051. return dispatched;
  2052. }
  2053. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2054. struct cfq_queue *cfqq)
  2055. {
  2056. /* the queue hasn't finished any request, can't estimate */
  2057. if (cfq_cfqq_slice_new(cfqq))
  2058. return true;
  2059. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2060. cfqq->slice_end))
  2061. return true;
  2062. return false;
  2063. }
  2064. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2065. {
  2066. unsigned int max_dispatch;
  2067. /*
  2068. * Drain async requests before we start sync IO
  2069. */
  2070. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2071. return false;
  2072. /*
  2073. * If this is an async queue and we have sync IO in flight, let it wait
  2074. */
  2075. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2076. return false;
  2077. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2078. if (cfq_class_idle(cfqq))
  2079. max_dispatch = 1;
  2080. /*
  2081. * Does this cfqq already have too much IO in flight?
  2082. */
  2083. if (cfqq->dispatched >= max_dispatch) {
  2084. bool promote_sync = false;
  2085. /*
  2086. * idle queue must always only have a single IO in flight
  2087. */
  2088. if (cfq_class_idle(cfqq))
  2089. return false;
  2090. /*
  2091. * If there is only one sync queue
  2092. * we can ignore async queue here and give the sync
  2093. * queue no dispatch limit. The reason is a sync queue can
  2094. * preempt async queue, limiting the sync queue doesn't make
  2095. * sense. This is useful for aiostress test.
  2096. */
  2097. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2098. promote_sync = true;
  2099. /*
  2100. * We have other queues, don't allow more IO from this one
  2101. */
  2102. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2103. !promote_sync)
  2104. return false;
  2105. /*
  2106. * Sole queue user, no limit
  2107. */
  2108. if (cfqd->busy_queues == 1 || promote_sync)
  2109. max_dispatch = -1;
  2110. else
  2111. /*
  2112. * Normally we start throttling cfqq when cfq_quantum/2
  2113. * requests have been dispatched. But we can drive
  2114. * deeper queue depths at the beginning of slice
  2115. * subjected to upper limit of cfq_quantum.
  2116. * */
  2117. max_dispatch = cfqd->cfq_quantum;
  2118. }
  2119. /*
  2120. * Async queues must wait a bit before being allowed dispatch.
  2121. * We also ramp up the dispatch depth gradually for async IO,
  2122. * based on the last sync IO we serviced
  2123. */
  2124. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2125. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2126. unsigned int depth;
  2127. depth = last_sync / cfqd->cfq_slice[1];
  2128. if (!depth && !cfqq->dispatched)
  2129. depth = 1;
  2130. if (depth < max_dispatch)
  2131. max_dispatch = depth;
  2132. }
  2133. /*
  2134. * If we're below the current max, allow a dispatch
  2135. */
  2136. return cfqq->dispatched < max_dispatch;
  2137. }
  2138. /*
  2139. * Dispatch a request from cfqq, moving them to the request queue
  2140. * dispatch list.
  2141. */
  2142. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2143. {
  2144. struct request *rq;
  2145. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2146. if (!cfq_may_dispatch(cfqd, cfqq))
  2147. return false;
  2148. /*
  2149. * follow expired path, else get first next available
  2150. */
  2151. rq = cfq_check_fifo(cfqq);
  2152. if (!rq)
  2153. rq = cfqq->next_rq;
  2154. /*
  2155. * insert request into driver dispatch list
  2156. */
  2157. cfq_dispatch_insert(cfqd->queue, rq);
  2158. if (!cfqd->active_cic) {
  2159. struct cfq_io_context *cic = RQ_CIC(rq);
  2160. atomic_long_inc(&cic->ioc->refcount);
  2161. cfqd->active_cic = cic;
  2162. }
  2163. return true;
  2164. }
  2165. /*
  2166. * Find the cfqq that we need to service and move a request from that to the
  2167. * dispatch list
  2168. */
  2169. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2170. {
  2171. struct cfq_data *cfqd = q->elevator->elevator_data;
  2172. struct cfq_queue *cfqq;
  2173. if (!cfqd->busy_queues)
  2174. return 0;
  2175. if (unlikely(force))
  2176. return cfq_forced_dispatch(cfqd);
  2177. cfqq = cfq_select_queue(cfqd);
  2178. if (!cfqq)
  2179. return 0;
  2180. /*
  2181. * Dispatch a request from this cfqq, if it is allowed
  2182. */
  2183. if (!cfq_dispatch_request(cfqd, cfqq))
  2184. return 0;
  2185. cfqq->slice_dispatch++;
  2186. cfq_clear_cfqq_must_dispatch(cfqq);
  2187. /*
  2188. * expire an async queue immediately if it has used up its slice. idle
  2189. * queue always expire after 1 dispatch round.
  2190. */
  2191. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2192. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2193. cfq_class_idle(cfqq))) {
  2194. cfqq->slice_end = jiffies + 1;
  2195. cfq_slice_expired(cfqd, 0);
  2196. }
  2197. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2198. return 1;
  2199. }
  2200. /*
  2201. * task holds one reference to the queue, dropped when task exits. each rq
  2202. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2203. *
  2204. * Each cfq queue took a reference on the parent group. Drop it now.
  2205. * queue lock must be held here.
  2206. */
  2207. static void cfq_put_queue(struct cfq_queue *cfqq)
  2208. {
  2209. struct cfq_data *cfqd = cfqq->cfqd;
  2210. struct cfq_group *cfqg;
  2211. BUG_ON(cfqq->ref <= 0);
  2212. cfqq->ref--;
  2213. if (cfqq->ref)
  2214. return;
  2215. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2216. BUG_ON(rb_first(&cfqq->sort_list));
  2217. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2218. cfqg = cfqq->cfqg;
  2219. if (unlikely(cfqd->active_queue == cfqq)) {
  2220. __cfq_slice_expired(cfqd, cfqq, 0);
  2221. cfq_schedule_dispatch(cfqd);
  2222. }
  2223. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2224. kmem_cache_free(cfq_pool, cfqq);
  2225. cfq_put_cfqg(cfqg);
  2226. }
  2227. /*
  2228. * Call func for each cic attached to this ioc.
  2229. */
  2230. static void
  2231. call_for_each_cic(struct io_context *ioc,
  2232. void (*func)(struct io_context *, struct cfq_io_context *))
  2233. {
  2234. struct cfq_io_context *cic;
  2235. struct hlist_node *n;
  2236. rcu_read_lock();
  2237. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2238. func(ioc, cic);
  2239. rcu_read_unlock();
  2240. }
  2241. static void cfq_cic_free_rcu(struct rcu_head *head)
  2242. {
  2243. struct cfq_io_context *cic;
  2244. cic = container_of(head, struct cfq_io_context, rcu_head);
  2245. kmem_cache_free(cfq_ioc_pool, cic);
  2246. elv_ioc_count_dec(cfq_ioc_count);
  2247. if (ioc_gone) {
  2248. /*
  2249. * CFQ scheduler is exiting, grab exit lock and check
  2250. * the pending io context count. If it hits zero,
  2251. * complete ioc_gone and set it back to NULL
  2252. */
  2253. spin_lock(&ioc_gone_lock);
  2254. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2255. complete(ioc_gone);
  2256. ioc_gone = NULL;
  2257. }
  2258. spin_unlock(&ioc_gone_lock);
  2259. }
  2260. }
  2261. static void cfq_cic_free(struct cfq_io_context *cic)
  2262. {
  2263. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2264. }
  2265. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2266. {
  2267. unsigned long flags;
  2268. unsigned long dead_key = (unsigned long) cic->key;
  2269. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2270. spin_lock_irqsave(&ioc->lock, flags);
  2271. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2272. hlist_del_rcu(&cic->cic_list);
  2273. spin_unlock_irqrestore(&ioc->lock, flags);
  2274. cfq_cic_free(cic);
  2275. }
  2276. /*
  2277. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2278. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2279. * and ->trim() which is called with the task lock held
  2280. */
  2281. static void cfq_free_io_context(struct io_context *ioc)
  2282. {
  2283. /*
  2284. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2285. * so no more cic's are allowed to be linked into this ioc. So it
  2286. * should be ok to iterate over the known list, we will see all cic's
  2287. * since no new ones are added.
  2288. */
  2289. call_for_each_cic(ioc, cic_free_func);
  2290. }
  2291. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2292. {
  2293. struct cfq_queue *__cfqq, *next;
  2294. /*
  2295. * If this queue was scheduled to merge with another queue, be
  2296. * sure to drop the reference taken on that queue (and others in
  2297. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2298. */
  2299. __cfqq = cfqq->new_cfqq;
  2300. while (__cfqq) {
  2301. if (__cfqq == cfqq) {
  2302. WARN(1, "cfqq->new_cfqq loop detected\n");
  2303. break;
  2304. }
  2305. next = __cfqq->new_cfqq;
  2306. cfq_put_queue(__cfqq);
  2307. __cfqq = next;
  2308. }
  2309. }
  2310. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2311. {
  2312. if (unlikely(cfqq == cfqd->active_queue)) {
  2313. __cfq_slice_expired(cfqd, cfqq, 0);
  2314. cfq_schedule_dispatch(cfqd);
  2315. }
  2316. cfq_put_cooperator(cfqq);
  2317. cfq_put_queue(cfqq);
  2318. }
  2319. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2320. struct cfq_io_context *cic)
  2321. {
  2322. struct io_context *ioc = cic->ioc;
  2323. list_del_init(&cic->queue_list);
  2324. /*
  2325. * Make sure dead mark is seen for dead queues
  2326. */
  2327. smp_wmb();
  2328. cic->key = cfqd_dead_key(cfqd);
  2329. rcu_read_lock();
  2330. if (rcu_dereference(ioc->ioc_data) == cic) {
  2331. rcu_read_unlock();
  2332. spin_lock(&ioc->lock);
  2333. rcu_assign_pointer(ioc->ioc_data, NULL);
  2334. spin_unlock(&ioc->lock);
  2335. } else
  2336. rcu_read_unlock();
  2337. if (cic->cfqq[BLK_RW_ASYNC]) {
  2338. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2339. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2340. }
  2341. if (cic->cfqq[BLK_RW_SYNC]) {
  2342. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2343. cic->cfqq[BLK_RW_SYNC] = NULL;
  2344. }
  2345. }
  2346. static void cfq_exit_single_io_context(struct io_context *ioc,
  2347. struct cfq_io_context *cic)
  2348. {
  2349. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2350. if (cfqd) {
  2351. struct request_queue *q = cfqd->queue;
  2352. unsigned long flags;
  2353. spin_lock_irqsave(q->queue_lock, flags);
  2354. /*
  2355. * Ensure we get a fresh copy of the ->key to prevent
  2356. * race between exiting task and queue
  2357. */
  2358. smp_read_barrier_depends();
  2359. if (cic->key == cfqd)
  2360. __cfq_exit_single_io_context(cfqd, cic);
  2361. spin_unlock_irqrestore(q->queue_lock, flags);
  2362. }
  2363. }
  2364. /*
  2365. * The process that ioc belongs to has exited, we need to clean up
  2366. * and put the internal structures we have that belongs to that process.
  2367. */
  2368. static void cfq_exit_io_context(struct io_context *ioc)
  2369. {
  2370. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2371. }
  2372. static struct cfq_io_context *
  2373. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2374. {
  2375. struct cfq_io_context *cic;
  2376. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2377. cfqd->queue->node);
  2378. if (cic) {
  2379. cic->ttime.last_end_request = jiffies;
  2380. INIT_LIST_HEAD(&cic->queue_list);
  2381. INIT_HLIST_NODE(&cic->cic_list);
  2382. cic->dtor = cfq_free_io_context;
  2383. cic->exit = cfq_exit_io_context;
  2384. elv_ioc_count_inc(cfq_ioc_count);
  2385. }
  2386. return cic;
  2387. }
  2388. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2389. {
  2390. struct task_struct *tsk = current;
  2391. int ioprio_class;
  2392. if (!cfq_cfqq_prio_changed(cfqq))
  2393. return;
  2394. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2395. switch (ioprio_class) {
  2396. default:
  2397. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2398. case IOPRIO_CLASS_NONE:
  2399. /*
  2400. * no prio set, inherit CPU scheduling settings
  2401. */
  2402. cfqq->ioprio = task_nice_ioprio(tsk);
  2403. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2404. break;
  2405. case IOPRIO_CLASS_RT:
  2406. cfqq->ioprio = task_ioprio(ioc);
  2407. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2408. break;
  2409. case IOPRIO_CLASS_BE:
  2410. cfqq->ioprio = task_ioprio(ioc);
  2411. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2412. break;
  2413. case IOPRIO_CLASS_IDLE:
  2414. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2415. cfqq->ioprio = 7;
  2416. cfq_clear_cfqq_idle_window(cfqq);
  2417. break;
  2418. }
  2419. /*
  2420. * keep track of original prio settings in case we have to temporarily
  2421. * elevate the priority of this queue
  2422. */
  2423. cfqq->org_ioprio = cfqq->ioprio;
  2424. cfq_clear_cfqq_prio_changed(cfqq);
  2425. }
  2426. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2427. {
  2428. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2429. struct cfq_queue *cfqq;
  2430. unsigned long flags;
  2431. if (unlikely(!cfqd))
  2432. return;
  2433. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2434. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2435. if (cfqq) {
  2436. struct cfq_queue *new_cfqq;
  2437. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2438. GFP_ATOMIC);
  2439. if (new_cfqq) {
  2440. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2441. cfq_put_queue(cfqq);
  2442. }
  2443. }
  2444. cfqq = cic->cfqq[BLK_RW_SYNC];
  2445. if (cfqq)
  2446. cfq_mark_cfqq_prio_changed(cfqq);
  2447. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2448. }
  2449. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2450. {
  2451. call_for_each_cic(ioc, changed_ioprio);
  2452. ioc->ioprio_changed = 0;
  2453. }
  2454. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2455. pid_t pid, bool is_sync)
  2456. {
  2457. RB_CLEAR_NODE(&cfqq->rb_node);
  2458. RB_CLEAR_NODE(&cfqq->p_node);
  2459. INIT_LIST_HEAD(&cfqq->fifo);
  2460. cfqq->ref = 0;
  2461. cfqq->cfqd = cfqd;
  2462. cfq_mark_cfqq_prio_changed(cfqq);
  2463. if (is_sync) {
  2464. if (!cfq_class_idle(cfqq))
  2465. cfq_mark_cfqq_idle_window(cfqq);
  2466. cfq_mark_cfqq_sync(cfqq);
  2467. }
  2468. cfqq->pid = pid;
  2469. }
  2470. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2471. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2472. {
  2473. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2474. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2475. unsigned long flags;
  2476. struct request_queue *q;
  2477. if (unlikely(!cfqd))
  2478. return;
  2479. q = cfqd->queue;
  2480. spin_lock_irqsave(q->queue_lock, flags);
  2481. if (sync_cfqq) {
  2482. /*
  2483. * Drop reference to sync queue. A new sync queue will be
  2484. * assigned in new group upon arrival of a fresh request.
  2485. */
  2486. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2487. cic_set_cfqq(cic, NULL, 1);
  2488. cfq_put_queue(sync_cfqq);
  2489. }
  2490. spin_unlock_irqrestore(q->queue_lock, flags);
  2491. }
  2492. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2493. {
  2494. call_for_each_cic(ioc, changed_cgroup);
  2495. ioc->cgroup_changed = 0;
  2496. }
  2497. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2498. static struct cfq_queue *
  2499. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2500. struct io_context *ioc, gfp_t gfp_mask)
  2501. {
  2502. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2503. struct cfq_io_context *cic;
  2504. struct cfq_group *cfqg;
  2505. retry:
  2506. cfqg = cfq_get_cfqg(cfqd);
  2507. cic = cfq_cic_lookup(cfqd, ioc);
  2508. /* cic always exists here */
  2509. cfqq = cic_to_cfqq(cic, is_sync);
  2510. /*
  2511. * Always try a new alloc if we fell back to the OOM cfqq
  2512. * originally, since it should just be a temporary situation.
  2513. */
  2514. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2515. cfqq = NULL;
  2516. if (new_cfqq) {
  2517. cfqq = new_cfqq;
  2518. new_cfqq = NULL;
  2519. } else if (gfp_mask & __GFP_WAIT) {
  2520. spin_unlock_irq(cfqd->queue->queue_lock);
  2521. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2522. gfp_mask | __GFP_ZERO,
  2523. cfqd->queue->node);
  2524. spin_lock_irq(cfqd->queue->queue_lock);
  2525. if (new_cfqq)
  2526. goto retry;
  2527. } else {
  2528. cfqq = kmem_cache_alloc_node(cfq_pool,
  2529. gfp_mask | __GFP_ZERO,
  2530. cfqd->queue->node);
  2531. }
  2532. if (cfqq) {
  2533. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2534. cfq_init_prio_data(cfqq, ioc);
  2535. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2536. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2537. } else
  2538. cfqq = &cfqd->oom_cfqq;
  2539. }
  2540. if (new_cfqq)
  2541. kmem_cache_free(cfq_pool, new_cfqq);
  2542. return cfqq;
  2543. }
  2544. static struct cfq_queue **
  2545. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2546. {
  2547. switch (ioprio_class) {
  2548. case IOPRIO_CLASS_RT:
  2549. return &cfqd->async_cfqq[0][ioprio];
  2550. case IOPRIO_CLASS_BE:
  2551. return &cfqd->async_cfqq[1][ioprio];
  2552. case IOPRIO_CLASS_IDLE:
  2553. return &cfqd->async_idle_cfqq;
  2554. default:
  2555. BUG();
  2556. }
  2557. }
  2558. static struct cfq_queue *
  2559. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2560. gfp_t gfp_mask)
  2561. {
  2562. const int ioprio = task_ioprio(ioc);
  2563. const int ioprio_class = task_ioprio_class(ioc);
  2564. struct cfq_queue **async_cfqq = NULL;
  2565. struct cfq_queue *cfqq = NULL;
  2566. if (!is_sync) {
  2567. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2568. cfqq = *async_cfqq;
  2569. }
  2570. if (!cfqq)
  2571. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2572. /*
  2573. * pin the queue now that it's allocated, scheduler exit will prune it
  2574. */
  2575. if (!is_sync && !(*async_cfqq)) {
  2576. cfqq->ref++;
  2577. *async_cfqq = cfqq;
  2578. }
  2579. cfqq->ref++;
  2580. return cfqq;
  2581. }
  2582. /*
  2583. * We drop cfq io contexts lazily, so we may find a dead one.
  2584. */
  2585. static void
  2586. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2587. struct cfq_io_context *cic)
  2588. {
  2589. unsigned long flags;
  2590. WARN_ON(!list_empty(&cic->queue_list));
  2591. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2592. spin_lock_irqsave(&ioc->lock, flags);
  2593. BUG_ON(rcu_dereference_check(ioc->ioc_data,
  2594. lockdep_is_held(&ioc->lock)) == cic);
  2595. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2596. hlist_del_rcu(&cic->cic_list);
  2597. spin_unlock_irqrestore(&ioc->lock, flags);
  2598. cfq_cic_free(cic);
  2599. }
  2600. static struct cfq_io_context *
  2601. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2602. {
  2603. struct cfq_io_context *cic;
  2604. unsigned long flags;
  2605. if (unlikely(!ioc))
  2606. return NULL;
  2607. rcu_read_lock();
  2608. /*
  2609. * we maintain a last-hit cache, to avoid browsing over the tree
  2610. */
  2611. cic = rcu_dereference(ioc->ioc_data);
  2612. if (cic && cic->key == cfqd) {
  2613. rcu_read_unlock();
  2614. return cic;
  2615. }
  2616. do {
  2617. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2618. rcu_read_unlock();
  2619. if (!cic)
  2620. break;
  2621. if (unlikely(cic->key != cfqd)) {
  2622. cfq_drop_dead_cic(cfqd, ioc, cic);
  2623. rcu_read_lock();
  2624. continue;
  2625. }
  2626. spin_lock_irqsave(&ioc->lock, flags);
  2627. rcu_assign_pointer(ioc->ioc_data, cic);
  2628. spin_unlock_irqrestore(&ioc->lock, flags);
  2629. break;
  2630. } while (1);
  2631. return cic;
  2632. }
  2633. /*
  2634. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2635. * the process specific cfq io context when entered from the block layer.
  2636. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2637. */
  2638. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2639. struct cfq_io_context *cic, gfp_t gfp_mask)
  2640. {
  2641. unsigned long flags;
  2642. int ret;
  2643. ret = radix_tree_preload(gfp_mask);
  2644. if (!ret) {
  2645. cic->ioc = ioc;
  2646. cic->key = cfqd;
  2647. spin_lock_irqsave(&ioc->lock, flags);
  2648. ret = radix_tree_insert(&ioc->radix_root,
  2649. cfqd->cic_index, cic);
  2650. if (!ret)
  2651. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2652. spin_unlock_irqrestore(&ioc->lock, flags);
  2653. radix_tree_preload_end();
  2654. if (!ret) {
  2655. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2656. list_add(&cic->queue_list, &cfqd->cic_list);
  2657. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2658. }
  2659. }
  2660. if (ret)
  2661. printk(KERN_ERR "cfq: cic link failed!\n");
  2662. return ret;
  2663. }
  2664. /*
  2665. * Setup general io context and cfq io context. There can be several cfq
  2666. * io contexts per general io context, if this process is doing io to more
  2667. * than one device managed by cfq.
  2668. */
  2669. static struct cfq_io_context *
  2670. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2671. {
  2672. struct io_context *ioc = NULL;
  2673. struct cfq_io_context *cic;
  2674. might_sleep_if(gfp_mask & __GFP_WAIT);
  2675. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2676. if (!ioc)
  2677. return NULL;
  2678. cic = cfq_cic_lookup(cfqd, ioc);
  2679. if (cic)
  2680. goto out;
  2681. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2682. if (cic == NULL)
  2683. goto err;
  2684. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2685. goto err_free;
  2686. out:
  2687. smp_read_barrier_depends();
  2688. if (unlikely(ioc->ioprio_changed))
  2689. cfq_ioc_set_ioprio(ioc);
  2690. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2691. if (unlikely(ioc->cgroup_changed))
  2692. cfq_ioc_set_cgroup(ioc);
  2693. #endif
  2694. return cic;
  2695. err_free:
  2696. cfq_cic_free(cic);
  2697. err:
  2698. put_io_context(ioc);
  2699. return NULL;
  2700. }
  2701. static void
  2702. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2703. {
  2704. unsigned long elapsed = jiffies - ttime->last_end_request;
  2705. elapsed = min(elapsed, 2UL * slice_idle);
  2706. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2707. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2708. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2709. }
  2710. static void
  2711. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2712. struct cfq_io_context *cic)
  2713. {
  2714. if (cfq_cfqq_sync(cfqq))
  2715. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2716. }
  2717. static void
  2718. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2719. struct request *rq)
  2720. {
  2721. sector_t sdist = 0;
  2722. sector_t n_sec = blk_rq_sectors(rq);
  2723. if (cfqq->last_request_pos) {
  2724. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2725. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2726. else
  2727. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2728. }
  2729. cfqq->seek_history <<= 1;
  2730. if (blk_queue_nonrot(cfqd->queue))
  2731. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2732. else
  2733. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2734. }
  2735. /*
  2736. * Disable idle window if the process thinks too long or seeks so much that
  2737. * it doesn't matter
  2738. */
  2739. static void
  2740. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2741. struct cfq_io_context *cic)
  2742. {
  2743. int old_idle, enable_idle;
  2744. /*
  2745. * Don't idle for async or idle io prio class
  2746. */
  2747. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2748. return;
  2749. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2750. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2751. cfq_mark_cfqq_deep(cfqq);
  2752. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2753. enable_idle = 0;
  2754. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2755. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2756. enable_idle = 0;
  2757. else if (sample_valid(cic->ttime.ttime_samples)) {
  2758. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2759. enable_idle = 0;
  2760. else
  2761. enable_idle = 1;
  2762. }
  2763. if (old_idle != enable_idle) {
  2764. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2765. if (enable_idle)
  2766. cfq_mark_cfqq_idle_window(cfqq);
  2767. else
  2768. cfq_clear_cfqq_idle_window(cfqq);
  2769. }
  2770. }
  2771. /*
  2772. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2773. * no or if we aren't sure, a 1 will cause a preempt.
  2774. */
  2775. static bool
  2776. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2777. struct request *rq)
  2778. {
  2779. struct cfq_queue *cfqq;
  2780. cfqq = cfqd->active_queue;
  2781. if (!cfqq)
  2782. return false;
  2783. if (cfq_class_idle(new_cfqq))
  2784. return false;
  2785. if (cfq_class_idle(cfqq))
  2786. return true;
  2787. /*
  2788. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2789. */
  2790. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2791. return false;
  2792. /*
  2793. * if the new request is sync, but the currently running queue is
  2794. * not, let the sync request have priority.
  2795. */
  2796. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2797. return true;
  2798. if (new_cfqq->cfqg != cfqq->cfqg)
  2799. return false;
  2800. if (cfq_slice_used(cfqq))
  2801. return true;
  2802. /* Allow preemption only if we are idling on sync-noidle tree */
  2803. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2804. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2805. new_cfqq->service_tree->count == 2 &&
  2806. RB_EMPTY_ROOT(&cfqq->sort_list))
  2807. return true;
  2808. /*
  2809. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2810. */
  2811. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2812. return true;
  2813. /* An idle queue should not be idle now for some reason */
  2814. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2815. return true;
  2816. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2817. return false;
  2818. /*
  2819. * if this request is as-good as one we would expect from the
  2820. * current cfqq, let it preempt
  2821. */
  2822. if (cfq_rq_close(cfqd, cfqq, rq))
  2823. return true;
  2824. return false;
  2825. }
  2826. /*
  2827. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2828. * let it have half of its nominal slice.
  2829. */
  2830. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2831. {
  2832. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2833. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2834. cfq_slice_expired(cfqd, 1);
  2835. /*
  2836. * workload type is changed, don't save slice, otherwise preempt
  2837. * doesn't happen
  2838. */
  2839. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2840. cfqq->cfqg->saved_workload_slice = 0;
  2841. /*
  2842. * Put the new queue at the front of the of the current list,
  2843. * so we know that it will be selected next.
  2844. */
  2845. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2846. cfq_service_tree_add(cfqd, cfqq, 1);
  2847. cfqq->slice_end = 0;
  2848. cfq_mark_cfqq_slice_new(cfqq);
  2849. }
  2850. /*
  2851. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2852. * something we should do about it
  2853. */
  2854. static void
  2855. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2856. struct request *rq)
  2857. {
  2858. struct cfq_io_context *cic = RQ_CIC(rq);
  2859. cfqd->rq_queued++;
  2860. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2861. cfq_update_io_seektime(cfqd, cfqq, rq);
  2862. cfq_update_idle_window(cfqd, cfqq, cic);
  2863. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2864. if (cfqq == cfqd->active_queue) {
  2865. /*
  2866. * Remember that we saw a request from this process, but
  2867. * don't start queuing just yet. Otherwise we risk seeing lots
  2868. * of tiny requests, because we disrupt the normal plugging
  2869. * and merging. If the request is already larger than a single
  2870. * page, let it rip immediately. For that case we assume that
  2871. * merging is already done. Ditto for a busy system that
  2872. * has other work pending, don't risk delaying until the
  2873. * idle timer unplug to continue working.
  2874. */
  2875. if (cfq_cfqq_wait_request(cfqq)) {
  2876. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2877. cfqd->busy_queues > 1) {
  2878. cfq_del_timer(cfqd, cfqq);
  2879. cfq_clear_cfqq_wait_request(cfqq);
  2880. __blk_run_queue(cfqd->queue);
  2881. } else {
  2882. cfq_blkiocg_update_idle_time_stats(
  2883. &cfqq->cfqg->blkg);
  2884. cfq_mark_cfqq_must_dispatch(cfqq);
  2885. }
  2886. }
  2887. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2888. /*
  2889. * not the active queue - expire current slice if it is
  2890. * idle and has expired it's mean thinktime or this new queue
  2891. * has some old slice time left and is of higher priority or
  2892. * this new queue is RT and the current one is BE
  2893. */
  2894. cfq_preempt_queue(cfqd, cfqq);
  2895. __blk_run_queue(cfqd->queue);
  2896. }
  2897. }
  2898. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2899. {
  2900. struct cfq_data *cfqd = q->elevator->elevator_data;
  2901. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2902. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2903. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2904. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2905. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2906. cfq_add_rq_rb(rq);
  2907. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2908. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2909. rq_is_sync(rq));
  2910. cfq_rq_enqueued(cfqd, cfqq, rq);
  2911. }
  2912. /*
  2913. * Update hw_tag based on peak queue depth over 50 samples under
  2914. * sufficient load.
  2915. */
  2916. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2917. {
  2918. struct cfq_queue *cfqq = cfqd->active_queue;
  2919. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2920. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2921. if (cfqd->hw_tag == 1)
  2922. return;
  2923. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2924. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2925. return;
  2926. /*
  2927. * If active queue hasn't enough requests and can idle, cfq might not
  2928. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2929. * case
  2930. */
  2931. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2932. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2933. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2934. return;
  2935. if (cfqd->hw_tag_samples++ < 50)
  2936. return;
  2937. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2938. cfqd->hw_tag = 1;
  2939. else
  2940. cfqd->hw_tag = 0;
  2941. }
  2942. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2943. {
  2944. struct cfq_io_context *cic = cfqd->active_cic;
  2945. /* If the queue already has requests, don't wait */
  2946. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2947. return false;
  2948. /* If there are other queues in the group, don't wait */
  2949. if (cfqq->cfqg->nr_cfqq > 1)
  2950. return false;
  2951. if (cfq_slice_used(cfqq))
  2952. return true;
  2953. /* if slice left is less than think time, wait busy */
  2954. if (cic && sample_valid(cic->ttime.ttime_samples)
  2955. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  2956. return true;
  2957. /*
  2958. * If think times is less than a jiffy than ttime_mean=0 and above
  2959. * will not be true. It might happen that slice has not expired yet
  2960. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2961. * case where think time is less than a jiffy, mark the queue wait
  2962. * busy if only 1 jiffy is left in the slice.
  2963. */
  2964. if (cfqq->slice_end - jiffies == 1)
  2965. return true;
  2966. return false;
  2967. }
  2968. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2969. {
  2970. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2971. struct cfq_data *cfqd = cfqq->cfqd;
  2972. const int sync = rq_is_sync(rq);
  2973. unsigned long now;
  2974. now = jiffies;
  2975. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2976. !!(rq->cmd_flags & REQ_NOIDLE));
  2977. cfq_update_hw_tag(cfqd);
  2978. WARN_ON(!cfqd->rq_in_driver);
  2979. WARN_ON(!cfqq->dispatched);
  2980. cfqd->rq_in_driver--;
  2981. cfqq->dispatched--;
  2982. (RQ_CFQG(rq))->dispatched--;
  2983. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2984. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2985. rq_data_dir(rq), rq_is_sync(rq));
  2986. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2987. if (sync) {
  2988. RQ_CIC(rq)->ttime.last_end_request = now;
  2989. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2990. cfqd->last_delayed_sync = now;
  2991. }
  2992. /*
  2993. * If this is the active queue, check if it needs to be expired,
  2994. * or if we want to idle in case it has no pending requests.
  2995. */
  2996. if (cfqd->active_queue == cfqq) {
  2997. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2998. if (cfq_cfqq_slice_new(cfqq)) {
  2999. cfq_set_prio_slice(cfqd, cfqq);
  3000. cfq_clear_cfqq_slice_new(cfqq);
  3001. }
  3002. /*
  3003. * Should we wait for next request to come in before we expire
  3004. * the queue.
  3005. */
  3006. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3007. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3008. if (!cfqd->cfq_slice_idle)
  3009. extend_sl = cfqd->cfq_group_idle;
  3010. cfqq->slice_end = jiffies + extend_sl;
  3011. cfq_mark_cfqq_wait_busy(cfqq);
  3012. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3013. }
  3014. /*
  3015. * Idling is not enabled on:
  3016. * - expired queues
  3017. * - idle-priority queues
  3018. * - async queues
  3019. * - queues with still some requests queued
  3020. * - when there is a close cooperator
  3021. */
  3022. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3023. cfq_slice_expired(cfqd, 1);
  3024. else if (sync && cfqq_empty &&
  3025. !cfq_close_cooperator(cfqd, cfqq)) {
  3026. cfq_arm_slice_timer(cfqd);
  3027. }
  3028. }
  3029. if (!cfqd->rq_in_driver)
  3030. cfq_schedule_dispatch(cfqd);
  3031. }
  3032. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3033. {
  3034. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3035. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3036. return ELV_MQUEUE_MUST;
  3037. }
  3038. return ELV_MQUEUE_MAY;
  3039. }
  3040. static int cfq_may_queue(struct request_queue *q, int rw)
  3041. {
  3042. struct cfq_data *cfqd = q->elevator->elevator_data;
  3043. struct task_struct *tsk = current;
  3044. struct cfq_io_context *cic;
  3045. struct cfq_queue *cfqq;
  3046. /*
  3047. * don't force setup of a queue from here, as a call to may_queue
  3048. * does not necessarily imply that a request actually will be queued.
  3049. * so just lookup a possibly existing queue, or return 'may queue'
  3050. * if that fails
  3051. */
  3052. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3053. if (!cic)
  3054. return ELV_MQUEUE_MAY;
  3055. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3056. if (cfqq) {
  3057. cfq_init_prio_data(cfqq, cic->ioc);
  3058. return __cfq_may_queue(cfqq);
  3059. }
  3060. return ELV_MQUEUE_MAY;
  3061. }
  3062. /*
  3063. * queue lock held here
  3064. */
  3065. static void cfq_put_request(struct request *rq)
  3066. {
  3067. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3068. if (cfqq) {
  3069. const int rw = rq_data_dir(rq);
  3070. BUG_ON(!cfqq->allocated[rw]);
  3071. cfqq->allocated[rw]--;
  3072. put_io_context(RQ_CIC(rq)->ioc);
  3073. rq->elevator_private[0] = NULL;
  3074. rq->elevator_private[1] = NULL;
  3075. /* Put down rq reference on cfqg */
  3076. cfq_put_cfqg(RQ_CFQG(rq));
  3077. rq->elevator_private[2] = NULL;
  3078. cfq_put_queue(cfqq);
  3079. }
  3080. }
  3081. static struct cfq_queue *
  3082. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3083. struct cfq_queue *cfqq)
  3084. {
  3085. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3086. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3087. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3088. cfq_put_queue(cfqq);
  3089. return cic_to_cfqq(cic, 1);
  3090. }
  3091. /*
  3092. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3093. * was the last process referring to said cfqq.
  3094. */
  3095. static struct cfq_queue *
  3096. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3097. {
  3098. if (cfqq_process_refs(cfqq) == 1) {
  3099. cfqq->pid = current->pid;
  3100. cfq_clear_cfqq_coop(cfqq);
  3101. cfq_clear_cfqq_split_coop(cfqq);
  3102. return cfqq;
  3103. }
  3104. cic_set_cfqq(cic, NULL, 1);
  3105. cfq_put_cooperator(cfqq);
  3106. cfq_put_queue(cfqq);
  3107. return NULL;
  3108. }
  3109. /*
  3110. * Allocate cfq data structures associated with this request.
  3111. */
  3112. static int
  3113. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3114. {
  3115. struct cfq_data *cfqd = q->elevator->elevator_data;
  3116. struct cfq_io_context *cic;
  3117. const int rw = rq_data_dir(rq);
  3118. const bool is_sync = rq_is_sync(rq);
  3119. struct cfq_queue *cfqq;
  3120. unsigned long flags;
  3121. might_sleep_if(gfp_mask & __GFP_WAIT);
  3122. cic = cfq_get_io_context(cfqd, gfp_mask);
  3123. spin_lock_irqsave(q->queue_lock, flags);
  3124. if (!cic)
  3125. goto queue_fail;
  3126. new_queue:
  3127. cfqq = cic_to_cfqq(cic, is_sync);
  3128. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3129. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3130. cic_set_cfqq(cic, cfqq, is_sync);
  3131. } else {
  3132. /*
  3133. * If the queue was seeky for too long, break it apart.
  3134. */
  3135. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3136. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3137. cfqq = split_cfqq(cic, cfqq);
  3138. if (!cfqq)
  3139. goto new_queue;
  3140. }
  3141. /*
  3142. * Check to see if this queue is scheduled to merge with
  3143. * another, closely cooperating queue. The merging of
  3144. * queues happens here as it must be done in process context.
  3145. * The reference on new_cfqq was taken in merge_cfqqs.
  3146. */
  3147. if (cfqq->new_cfqq)
  3148. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3149. }
  3150. cfqq->allocated[rw]++;
  3151. cfqq->ref++;
  3152. rq->elevator_private[0] = cic;
  3153. rq->elevator_private[1] = cfqq;
  3154. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3155. spin_unlock_irqrestore(q->queue_lock, flags);
  3156. return 0;
  3157. queue_fail:
  3158. cfq_schedule_dispatch(cfqd);
  3159. spin_unlock_irqrestore(q->queue_lock, flags);
  3160. cfq_log(cfqd, "set_request fail");
  3161. return 1;
  3162. }
  3163. static void cfq_kick_queue(struct work_struct *work)
  3164. {
  3165. struct cfq_data *cfqd =
  3166. container_of(work, struct cfq_data, unplug_work);
  3167. struct request_queue *q = cfqd->queue;
  3168. spin_lock_irq(q->queue_lock);
  3169. __blk_run_queue(cfqd->queue);
  3170. spin_unlock_irq(q->queue_lock);
  3171. }
  3172. /*
  3173. * Timer running if the active_queue is currently idling inside its time slice
  3174. */
  3175. static void cfq_idle_slice_timer(unsigned long data)
  3176. {
  3177. struct cfq_data *cfqd = (struct cfq_data *) data;
  3178. struct cfq_queue *cfqq;
  3179. unsigned long flags;
  3180. int timed_out = 1;
  3181. cfq_log(cfqd, "idle timer fired");
  3182. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3183. cfqq = cfqd->active_queue;
  3184. if (cfqq) {
  3185. timed_out = 0;
  3186. /*
  3187. * We saw a request before the queue expired, let it through
  3188. */
  3189. if (cfq_cfqq_must_dispatch(cfqq))
  3190. goto out_kick;
  3191. /*
  3192. * expired
  3193. */
  3194. if (cfq_slice_used(cfqq))
  3195. goto expire;
  3196. /*
  3197. * only expire and reinvoke request handler, if there are
  3198. * other queues with pending requests
  3199. */
  3200. if (!cfqd->busy_queues)
  3201. goto out_cont;
  3202. /*
  3203. * not expired and it has a request pending, let it dispatch
  3204. */
  3205. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3206. goto out_kick;
  3207. /*
  3208. * Queue depth flag is reset only when the idle didn't succeed
  3209. */
  3210. cfq_clear_cfqq_deep(cfqq);
  3211. }
  3212. expire:
  3213. cfq_slice_expired(cfqd, timed_out);
  3214. out_kick:
  3215. cfq_schedule_dispatch(cfqd);
  3216. out_cont:
  3217. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3218. }
  3219. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3220. {
  3221. del_timer_sync(&cfqd->idle_slice_timer);
  3222. cancel_work_sync(&cfqd->unplug_work);
  3223. }
  3224. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3225. {
  3226. int i;
  3227. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3228. if (cfqd->async_cfqq[0][i])
  3229. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3230. if (cfqd->async_cfqq[1][i])
  3231. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3232. }
  3233. if (cfqd->async_idle_cfqq)
  3234. cfq_put_queue(cfqd->async_idle_cfqq);
  3235. }
  3236. static void cfq_exit_queue(struct elevator_queue *e)
  3237. {
  3238. struct cfq_data *cfqd = e->elevator_data;
  3239. struct request_queue *q = cfqd->queue;
  3240. bool wait = false;
  3241. cfq_shutdown_timer_wq(cfqd);
  3242. spin_lock_irq(q->queue_lock);
  3243. if (cfqd->active_queue)
  3244. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3245. while (!list_empty(&cfqd->cic_list)) {
  3246. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3247. struct cfq_io_context,
  3248. queue_list);
  3249. __cfq_exit_single_io_context(cfqd, cic);
  3250. }
  3251. cfq_put_async_queues(cfqd);
  3252. cfq_release_cfq_groups(cfqd);
  3253. /*
  3254. * If there are groups which we could not unlink from blkcg list,
  3255. * wait for a rcu period for them to be freed.
  3256. */
  3257. if (cfqd->nr_blkcg_linked_grps)
  3258. wait = true;
  3259. spin_unlock_irq(q->queue_lock);
  3260. cfq_shutdown_timer_wq(cfqd);
  3261. spin_lock(&cic_index_lock);
  3262. ida_remove(&cic_index_ida, cfqd->cic_index);
  3263. spin_unlock(&cic_index_lock);
  3264. /*
  3265. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3266. * Do this wait only if there are other unlinked groups out
  3267. * there. This can happen if cgroup deletion path claimed the
  3268. * responsibility of cleaning up a group before queue cleanup code
  3269. * get to the group.
  3270. *
  3271. * Do not call synchronize_rcu() unconditionally as there are drivers
  3272. * which create/delete request queue hundreds of times during scan/boot
  3273. * and synchronize_rcu() can take significant time and slow down boot.
  3274. */
  3275. if (wait)
  3276. synchronize_rcu();
  3277. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3278. /* Free up per cpu stats for root group */
  3279. free_percpu(cfqd->root_group.blkg.stats_cpu);
  3280. #endif
  3281. kfree(cfqd);
  3282. }
  3283. static int cfq_alloc_cic_index(void)
  3284. {
  3285. int index, error;
  3286. do {
  3287. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3288. return -ENOMEM;
  3289. spin_lock(&cic_index_lock);
  3290. error = ida_get_new(&cic_index_ida, &index);
  3291. spin_unlock(&cic_index_lock);
  3292. if (error && error != -EAGAIN)
  3293. return error;
  3294. } while (error);
  3295. return index;
  3296. }
  3297. static void *cfq_init_queue(struct request_queue *q)
  3298. {
  3299. struct cfq_data *cfqd;
  3300. int i, j;
  3301. struct cfq_group *cfqg;
  3302. struct cfq_rb_root *st;
  3303. i = cfq_alloc_cic_index();
  3304. if (i < 0)
  3305. return NULL;
  3306. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3307. if (!cfqd) {
  3308. spin_lock(&cic_index_lock);
  3309. ida_remove(&cic_index_ida, i);
  3310. spin_unlock(&cic_index_lock);
  3311. return NULL;
  3312. }
  3313. /*
  3314. * Don't need take queue_lock in the routine, since we are
  3315. * initializing the ioscheduler, and nobody is using cfqd
  3316. */
  3317. cfqd->cic_index = i;
  3318. /* Init root service tree */
  3319. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3320. /* Init root group */
  3321. cfqg = &cfqd->root_group;
  3322. for_each_cfqg_st(cfqg, i, j, st)
  3323. *st = CFQ_RB_ROOT;
  3324. RB_CLEAR_NODE(&cfqg->rb_node);
  3325. /* Give preference to root group over other groups */
  3326. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3327. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3328. /*
  3329. * Set root group reference to 2. One reference will be dropped when
  3330. * all groups on cfqd->cfqg_list are being deleted during queue exit.
  3331. * Other reference will remain there as we don't want to delete this
  3332. * group as it is statically allocated and gets destroyed when
  3333. * throtl_data goes away.
  3334. */
  3335. cfqg->ref = 2;
  3336. if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
  3337. kfree(cfqg);
  3338. kfree(cfqd);
  3339. return NULL;
  3340. }
  3341. rcu_read_lock();
  3342. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3343. (void *)cfqd, 0);
  3344. rcu_read_unlock();
  3345. cfqd->nr_blkcg_linked_grps++;
  3346. /* Add group on cfqd->cfqg_list */
  3347. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  3348. #endif
  3349. /*
  3350. * Not strictly needed (since RB_ROOT just clears the node and we
  3351. * zeroed cfqd on alloc), but better be safe in case someone decides
  3352. * to add magic to the rb code
  3353. */
  3354. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3355. cfqd->prio_trees[i] = RB_ROOT;
  3356. /*
  3357. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3358. * Grab a permanent reference to it, so that the normal code flow
  3359. * will not attempt to free it.
  3360. */
  3361. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3362. cfqd->oom_cfqq.ref++;
  3363. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3364. INIT_LIST_HEAD(&cfqd->cic_list);
  3365. cfqd->queue = q;
  3366. init_timer(&cfqd->idle_slice_timer);
  3367. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3368. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3369. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3370. cfqd->cfq_quantum = cfq_quantum;
  3371. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3372. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3373. cfqd->cfq_back_max = cfq_back_max;
  3374. cfqd->cfq_back_penalty = cfq_back_penalty;
  3375. cfqd->cfq_slice[0] = cfq_slice_async;
  3376. cfqd->cfq_slice[1] = cfq_slice_sync;
  3377. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3378. cfqd->cfq_slice_idle = cfq_slice_idle;
  3379. cfqd->cfq_group_idle = cfq_group_idle;
  3380. cfqd->cfq_latency = 1;
  3381. cfqd->hw_tag = -1;
  3382. /*
  3383. * we optimistically start assuming sync ops weren't delayed in last
  3384. * second, in order to have larger depth for async operations.
  3385. */
  3386. cfqd->last_delayed_sync = jiffies - HZ;
  3387. return cfqd;
  3388. }
  3389. static void cfq_slab_kill(void)
  3390. {
  3391. /*
  3392. * Caller already ensured that pending RCU callbacks are completed,
  3393. * so we should have no busy allocations at this point.
  3394. */
  3395. if (cfq_pool)
  3396. kmem_cache_destroy(cfq_pool);
  3397. if (cfq_ioc_pool)
  3398. kmem_cache_destroy(cfq_ioc_pool);
  3399. }
  3400. static int __init cfq_slab_setup(void)
  3401. {
  3402. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3403. if (!cfq_pool)
  3404. goto fail;
  3405. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3406. if (!cfq_ioc_pool)
  3407. goto fail;
  3408. return 0;
  3409. fail:
  3410. cfq_slab_kill();
  3411. return -ENOMEM;
  3412. }
  3413. /*
  3414. * sysfs parts below -->
  3415. */
  3416. static ssize_t
  3417. cfq_var_show(unsigned int var, char *page)
  3418. {
  3419. return sprintf(page, "%d\n", var);
  3420. }
  3421. static ssize_t
  3422. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3423. {
  3424. char *p = (char *) page;
  3425. *var = simple_strtoul(p, &p, 10);
  3426. return count;
  3427. }
  3428. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3429. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3430. { \
  3431. struct cfq_data *cfqd = e->elevator_data; \
  3432. unsigned int __data = __VAR; \
  3433. if (__CONV) \
  3434. __data = jiffies_to_msecs(__data); \
  3435. return cfq_var_show(__data, (page)); \
  3436. }
  3437. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3438. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3439. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3440. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3441. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3442. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3443. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3444. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3445. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3446. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3447. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3448. #undef SHOW_FUNCTION
  3449. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3450. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3451. { \
  3452. struct cfq_data *cfqd = e->elevator_data; \
  3453. unsigned int __data; \
  3454. int ret = cfq_var_store(&__data, (page), count); \
  3455. if (__data < (MIN)) \
  3456. __data = (MIN); \
  3457. else if (__data > (MAX)) \
  3458. __data = (MAX); \
  3459. if (__CONV) \
  3460. *(__PTR) = msecs_to_jiffies(__data); \
  3461. else \
  3462. *(__PTR) = __data; \
  3463. return ret; \
  3464. }
  3465. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3466. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3467. UINT_MAX, 1);
  3468. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3469. UINT_MAX, 1);
  3470. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3471. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3472. UINT_MAX, 0);
  3473. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3474. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3475. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3476. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3477. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3478. UINT_MAX, 0);
  3479. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3480. #undef STORE_FUNCTION
  3481. #define CFQ_ATTR(name) \
  3482. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3483. static struct elv_fs_entry cfq_attrs[] = {
  3484. CFQ_ATTR(quantum),
  3485. CFQ_ATTR(fifo_expire_sync),
  3486. CFQ_ATTR(fifo_expire_async),
  3487. CFQ_ATTR(back_seek_max),
  3488. CFQ_ATTR(back_seek_penalty),
  3489. CFQ_ATTR(slice_sync),
  3490. CFQ_ATTR(slice_async),
  3491. CFQ_ATTR(slice_async_rq),
  3492. CFQ_ATTR(slice_idle),
  3493. CFQ_ATTR(group_idle),
  3494. CFQ_ATTR(low_latency),
  3495. __ATTR_NULL
  3496. };
  3497. static struct elevator_type iosched_cfq = {
  3498. .ops = {
  3499. .elevator_merge_fn = cfq_merge,
  3500. .elevator_merged_fn = cfq_merged_request,
  3501. .elevator_merge_req_fn = cfq_merged_requests,
  3502. .elevator_allow_merge_fn = cfq_allow_merge,
  3503. .elevator_bio_merged_fn = cfq_bio_merged,
  3504. .elevator_dispatch_fn = cfq_dispatch_requests,
  3505. .elevator_add_req_fn = cfq_insert_request,
  3506. .elevator_activate_req_fn = cfq_activate_request,
  3507. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3508. .elevator_completed_req_fn = cfq_completed_request,
  3509. .elevator_former_req_fn = elv_rb_former_request,
  3510. .elevator_latter_req_fn = elv_rb_latter_request,
  3511. .elevator_set_req_fn = cfq_set_request,
  3512. .elevator_put_req_fn = cfq_put_request,
  3513. .elevator_may_queue_fn = cfq_may_queue,
  3514. .elevator_init_fn = cfq_init_queue,
  3515. .elevator_exit_fn = cfq_exit_queue,
  3516. .trim = cfq_free_io_context,
  3517. },
  3518. .elevator_attrs = cfq_attrs,
  3519. .elevator_name = "cfq",
  3520. .elevator_owner = THIS_MODULE,
  3521. };
  3522. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3523. static struct blkio_policy_type blkio_policy_cfq = {
  3524. .ops = {
  3525. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3526. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3527. },
  3528. .plid = BLKIO_POLICY_PROP,
  3529. };
  3530. #else
  3531. static struct blkio_policy_type blkio_policy_cfq;
  3532. #endif
  3533. static int __init cfq_init(void)
  3534. {
  3535. /*
  3536. * could be 0 on HZ < 1000 setups
  3537. */
  3538. if (!cfq_slice_async)
  3539. cfq_slice_async = 1;
  3540. if (!cfq_slice_idle)
  3541. cfq_slice_idle = 1;
  3542. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3543. if (!cfq_group_idle)
  3544. cfq_group_idle = 1;
  3545. #else
  3546. cfq_group_idle = 0;
  3547. #endif
  3548. if (cfq_slab_setup())
  3549. return -ENOMEM;
  3550. elv_register(&iosched_cfq);
  3551. blkio_policy_register(&blkio_policy_cfq);
  3552. return 0;
  3553. }
  3554. static void __exit cfq_exit(void)
  3555. {
  3556. DECLARE_COMPLETION_ONSTACK(all_gone);
  3557. blkio_policy_unregister(&blkio_policy_cfq);
  3558. elv_unregister(&iosched_cfq);
  3559. ioc_gone = &all_gone;
  3560. /* ioc_gone's update must be visible before reading ioc_count */
  3561. smp_wmb();
  3562. /*
  3563. * this also protects us from entering cfq_slab_kill() with
  3564. * pending RCU callbacks
  3565. */
  3566. if (elv_ioc_count_read(cfq_ioc_count))
  3567. wait_for_completion(&all_gone);
  3568. ida_destroy(&cic_index_ida);
  3569. cfq_slab_kill();
  3570. }
  3571. module_init(cfq_init);
  3572. module_exit(cfq_exit);
  3573. MODULE_AUTHOR("Jens Axboe");
  3574. MODULE_LICENSE("GPL");
  3575. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");