sh_eth.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mdio-bitbang.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/phy.h>
  30. #include <linux/cache.h>
  31. #include <linux/io.h>
  32. #include "sh_eth.h"
  33. /* There is CPU dependent code */
  34. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  35. #define SH_ETH_HAS_TSU 1
  36. static void sh_eth_chip_reset(struct net_device *ndev)
  37. {
  38. /* reset device */
  39. ctrl_outl(ARSTR_ARSTR, ARSTR);
  40. mdelay(1);
  41. }
  42. static void sh_eth_reset(struct net_device *ndev)
  43. {
  44. u32 ioaddr = ndev->base_addr;
  45. int cnt = 100;
  46. ctrl_outl(EDSR_ENALL, ioaddr + EDSR);
  47. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  48. while (cnt > 0) {
  49. if (!(ctrl_inl(ioaddr + EDMR) & 0x3))
  50. break;
  51. mdelay(1);
  52. cnt--;
  53. }
  54. if (cnt < 0)
  55. printk(KERN_ERR "Device reset fail\n");
  56. /* Table Init */
  57. ctrl_outl(0x0, ioaddr + TDLAR);
  58. ctrl_outl(0x0, ioaddr + TDFAR);
  59. ctrl_outl(0x0, ioaddr + TDFXR);
  60. ctrl_outl(0x0, ioaddr + TDFFR);
  61. ctrl_outl(0x0, ioaddr + RDLAR);
  62. ctrl_outl(0x0, ioaddr + RDFAR);
  63. ctrl_outl(0x0, ioaddr + RDFXR);
  64. ctrl_outl(0x0, ioaddr + RDFFR);
  65. }
  66. static void sh_eth_set_duplex(struct net_device *ndev)
  67. {
  68. struct sh_eth_private *mdp = netdev_priv(ndev);
  69. u32 ioaddr = ndev->base_addr;
  70. if (mdp->duplex) /* Full */
  71. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
  72. else /* Half */
  73. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
  74. }
  75. static void sh_eth_set_rate(struct net_device *ndev)
  76. {
  77. struct sh_eth_private *mdp = netdev_priv(ndev);
  78. u32 ioaddr = ndev->base_addr;
  79. switch (mdp->speed) {
  80. case 10: /* 10BASE */
  81. ctrl_outl(GECMR_10, ioaddr + GECMR);
  82. break;
  83. case 100:/* 100BASE */
  84. ctrl_outl(GECMR_100, ioaddr + GECMR);
  85. break;
  86. case 1000: /* 1000BASE */
  87. ctrl_outl(GECMR_1000, ioaddr + GECMR);
  88. break;
  89. default:
  90. break;
  91. }
  92. }
  93. /* sh7763 */
  94. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  95. .chip_reset = sh_eth_chip_reset,
  96. .set_duplex = sh_eth_set_duplex,
  97. .set_rate = sh_eth_set_rate,
  98. .ecsr_value = ECSR_ICD | ECSR_MPD,
  99. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  100. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  101. .tx_check = EESR_TC1 | EESR_FTC,
  102. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  103. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  104. EESR_ECI,
  105. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  106. EESR_TFE,
  107. .apr = 1,
  108. .mpr = 1,
  109. .tpauser = 1,
  110. .bculr = 1,
  111. .hw_swap = 1,
  112. .rpadir = 1,
  113. .no_trimd = 1,
  114. .no_ade = 1,
  115. };
  116. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  117. #define SH_ETH_RESET_DEFAULT 1
  118. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  119. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  120. .apr = 1,
  121. .mpr = 1,
  122. .tpauser = 1,
  123. .hw_swap = 1,
  124. };
  125. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  126. #define SH_ETH_RESET_DEFAULT 1
  127. #define SH_ETH_HAS_TSU 1
  128. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  129. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  130. };
  131. #endif
  132. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  133. {
  134. if (!cd->ecsr_value)
  135. cd->ecsr_value = DEFAULT_ECSR_INIT;
  136. if (!cd->ecsipr_value)
  137. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  138. if (!cd->fcftr_value)
  139. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  140. DEFAULT_FIFO_F_D_RFD;
  141. if (!cd->fdr_value)
  142. cd->fdr_value = DEFAULT_FDR_INIT;
  143. if (!cd->rmcr_value)
  144. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  145. if (!cd->tx_check)
  146. cd->tx_check = DEFAULT_TX_CHECK;
  147. if (!cd->eesr_err_check)
  148. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  149. if (!cd->tx_error_check)
  150. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  151. }
  152. #if defined(SH_ETH_RESET_DEFAULT)
  153. /* Chip Reset */
  154. static void sh_eth_reset(struct net_device *ndev)
  155. {
  156. u32 ioaddr = ndev->base_addr;
  157. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  158. mdelay(3);
  159. ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
  160. }
  161. #endif
  162. #if defined(CONFIG_CPU_SH4)
  163. static void sh_eth_set_receive_align(struct sk_buff *skb)
  164. {
  165. int reserve;
  166. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  167. if (reserve)
  168. skb_reserve(skb, reserve);
  169. }
  170. #else
  171. static void sh_eth_set_receive_align(struct sk_buff *skb)
  172. {
  173. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  174. }
  175. #endif
  176. /* CPU <-> EDMAC endian convert */
  177. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  178. {
  179. switch (mdp->edmac_endian) {
  180. case EDMAC_LITTLE_ENDIAN:
  181. return cpu_to_le32(x);
  182. case EDMAC_BIG_ENDIAN:
  183. return cpu_to_be32(x);
  184. }
  185. return x;
  186. }
  187. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  188. {
  189. switch (mdp->edmac_endian) {
  190. case EDMAC_LITTLE_ENDIAN:
  191. return le32_to_cpu(x);
  192. case EDMAC_BIG_ENDIAN:
  193. return be32_to_cpu(x);
  194. }
  195. return x;
  196. }
  197. /*
  198. * Program the hardware MAC address from dev->dev_addr.
  199. */
  200. static void update_mac_address(struct net_device *ndev)
  201. {
  202. u32 ioaddr = ndev->base_addr;
  203. ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  204. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
  205. ioaddr + MAHR);
  206. ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
  207. ioaddr + MALR);
  208. }
  209. /*
  210. * Get MAC address from SuperH MAC address register
  211. *
  212. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  213. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  214. * When you want use this device, you must set MAC address in bootloader.
  215. *
  216. */
  217. static void read_mac_address(struct net_device *ndev)
  218. {
  219. u32 ioaddr = ndev->base_addr;
  220. ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24);
  221. ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF;
  222. ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF;
  223. ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF);
  224. ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF;
  225. ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF);
  226. }
  227. struct bb_info {
  228. struct mdiobb_ctrl ctrl;
  229. u32 addr;
  230. u32 mmd_msk;/* MMD */
  231. u32 mdo_msk;
  232. u32 mdi_msk;
  233. u32 mdc_msk;
  234. };
  235. /* PHY bit set */
  236. static void bb_set(u32 addr, u32 msk)
  237. {
  238. ctrl_outl(ctrl_inl(addr) | msk, addr);
  239. }
  240. /* PHY bit clear */
  241. static void bb_clr(u32 addr, u32 msk)
  242. {
  243. ctrl_outl((ctrl_inl(addr) & ~msk), addr);
  244. }
  245. /* PHY bit read */
  246. static int bb_read(u32 addr, u32 msk)
  247. {
  248. return (ctrl_inl(addr) & msk) != 0;
  249. }
  250. /* Data I/O pin control */
  251. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  252. {
  253. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  254. if (bit)
  255. bb_set(bitbang->addr, bitbang->mmd_msk);
  256. else
  257. bb_clr(bitbang->addr, bitbang->mmd_msk);
  258. }
  259. /* Set bit data*/
  260. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  261. {
  262. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  263. if (bit)
  264. bb_set(bitbang->addr, bitbang->mdo_msk);
  265. else
  266. bb_clr(bitbang->addr, bitbang->mdo_msk);
  267. }
  268. /* Get bit data*/
  269. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  270. {
  271. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  272. return bb_read(bitbang->addr, bitbang->mdi_msk);
  273. }
  274. /* MDC pin control */
  275. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  276. {
  277. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  278. if (bit)
  279. bb_set(bitbang->addr, bitbang->mdc_msk);
  280. else
  281. bb_clr(bitbang->addr, bitbang->mdc_msk);
  282. }
  283. /* mdio bus control struct */
  284. static struct mdiobb_ops bb_ops = {
  285. .owner = THIS_MODULE,
  286. .set_mdc = sh_mdc_ctrl,
  287. .set_mdio_dir = sh_mmd_ctrl,
  288. .set_mdio_data = sh_set_mdio,
  289. .get_mdio_data = sh_get_mdio,
  290. };
  291. /* free skb and descriptor buffer */
  292. static void sh_eth_ring_free(struct net_device *ndev)
  293. {
  294. struct sh_eth_private *mdp = netdev_priv(ndev);
  295. int i;
  296. /* Free Rx skb ringbuffer */
  297. if (mdp->rx_skbuff) {
  298. for (i = 0; i < RX_RING_SIZE; i++) {
  299. if (mdp->rx_skbuff[i])
  300. dev_kfree_skb(mdp->rx_skbuff[i]);
  301. }
  302. }
  303. kfree(mdp->rx_skbuff);
  304. /* Free Tx skb ringbuffer */
  305. if (mdp->tx_skbuff) {
  306. for (i = 0; i < TX_RING_SIZE; i++) {
  307. if (mdp->tx_skbuff[i])
  308. dev_kfree_skb(mdp->tx_skbuff[i]);
  309. }
  310. }
  311. kfree(mdp->tx_skbuff);
  312. }
  313. /* format skb and descriptor buffer */
  314. static void sh_eth_ring_format(struct net_device *ndev)
  315. {
  316. u32 ioaddr = ndev->base_addr;
  317. struct sh_eth_private *mdp = netdev_priv(ndev);
  318. int i;
  319. struct sk_buff *skb;
  320. struct sh_eth_rxdesc *rxdesc = NULL;
  321. struct sh_eth_txdesc *txdesc = NULL;
  322. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  323. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  324. mdp->cur_rx = mdp->cur_tx = 0;
  325. mdp->dirty_rx = mdp->dirty_tx = 0;
  326. memset(mdp->rx_ring, 0, rx_ringsize);
  327. /* build Rx ring buffer */
  328. for (i = 0; i < RX_RING_SIZE; i++) {
  329. /* skb */
  330. mdp->rx_skbuff[i] = NULL;
  331. skb = dev_alloc_skb(mdp->rx_buf_sz);
  332. mdp->rx_skbuff[i] = skb;
  333. if (skb == NULL)
  334. break;
  335. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  336. DMA_FROM_DEVICE);
  337. skb->dev = ndev; /* Mark as being used by this device. */
  338. sh_eth_set_receive_align(skb);
  339. /* RX descriptor */
  340. rxdesc = &mdp->rx_ring[i];
  341. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  342. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  343. /* The size of the buffer is 16 byte boundary. */
  344. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  345. /* Rx descriptor address set */
  346. if (i == 0) {
  347. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDLAR);
  348. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  349. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDFAR);
  350. #endif
  351. }
  352. }
  353. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  354. /* Mark the last entry as wrapping the ring. */
  355. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  356. memset(mdp->tx_ring, 0, tx_ringsize);
  357. /* build Tx ring buffer */
  358. for (i = 0; i < TX_RING_SIZE; i++) {
  359. mdp->tx_skbuff[i] = NULL;
  360. txdesc = &mdp->tx_ring[i];
  361. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  362. txdesc->buffer_length = 0;
  363. if (i == 0) {
  364. /* Tx descriptor address set */
  365. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDLAR);
  366. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  367. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDFAR);
  368. #endif
  369. }
  370. }
  371. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  372. }
  373. /* Get skb and descriptor buffer */
  374. static int sh_eth_ring_init(struct net_device *ndev)
  375. {
  376. struct sh_eth_private *mdp = netdev_priv(ndev);
  377. int rx_ringsize, tx_ringsize, ret = 0;
  378. /*
  379. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  380. * card needs room to do 8 byte alignment, +2 so we can reserve
  381. * the first 2 bytes, and +16 gets room for the status word from the
  382. * card.
  383. */
  384. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  385. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  386. /* Allocate RX and TX skb rings */
  387. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  388. GFP_KERNEL);
  389. if (!mdp->rx_skbuff) {
  390. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  391. ret = -ENOMEM;
  392. return ret;
  393. }
  394. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  395. GFP_KERNEL);
  396. if (!mdp->tx_skbuff) {
  397. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  398. ret = -ENOMEM;
  399. goto skb_ring_free;
  400. }
  401. /* Allocate all Rx descriptors. */
  402. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  403. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  404. GFP_KERNEL);
  405. if (!mdp->rx_ring) {
  406. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  407. rx_ringsize);
  408. ret = -ENOMEM;
  409. goto desc_ring_free;
  410. }
  411. mdp->dirty_rx = 0;
  412. /* Allocate all Tx descriptors. */
  413. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  414. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  415. GFP_KERNEL);
  416. if (!mdp->tx_ring) {
  417. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  418. tx_ringsize);
  419. ret = -ENOMEM;
  420. goto desc_ring_free;
  421. }
  422. return ret;
  423. desc_ring_free:
  424. /* free DMA buffer */
  425. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  426. skb_ring_free:
  427. /* Free Rx and Tx skb ring buffer */
  428. sh_eth_ring_free(ndev);
  429. return ret;
  430. }
  431. static int sh_eth_dev_init(struct net_device *ndev)
  432. {
  433. int ret = 0;
  434. struct sh_eth_private *mdp = netdev_priv(ndev);
  435. u32 ioaddr = ndev->base_addr;
  436. u_int32_t rx_int_var, tx_int_var;
  437. u32 val;
  438. /* Soft Reset */
  439. sh_eth_reset(ndev);
  440. /* Descriptor format */
  441. sh_eth_ring_format(ndev);
  442. if (mdp->cd->rpadir)
  443. ctrl_outl(mdp->cd->rpadir_value, ioaddr + RPADIR);
  444. /* all sh_eth int mask */
  445. ctrl_outl(0, ioaddr + EESIPR);
  446. #if defined(__LITTLE_ENDIAN__)
  447. if (mdp->cd->hw_swap)
  448. ctrl_outl(EDMR_EL, ioaddr + EDMR);
  449. else
  450. #endif
  451. ctrl_outl(0, ioaddr + EDMR);
  452. /* FIFO size set */
  453. ctrl_outl(mdp->cd->fdr_value, ioaddr + FDR);
  454. ctrl_outl(0, ioaddr + TFTR);
  455. /* Frame recv control */
  456. ctrl_outl(mdp->cd->rmcr_value, ioaddr + RMCR);
  457. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  458. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  459. ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER);
  460. if (mdp->cd->bculr)
  461. ctrl_outl(0x800, ioaddr + BCULR); /* Burst sycle set */
  462. ctrl_outl(mdp->cd->fcftr_value, ioaddr + FCFTR);
  463. if (!mdp->cd->no_trimd)
  464. ctrl_outl(0, ioaddr + TRIMD);
  465. /* Recv frame limit set register */
  466. ctrl_outl(RFLR_VALUE, ioaddr + RFLR);
  467. ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR);
  468. ctrl_outl(mdp->cd->eesipr_value, ioaddr + EESIPR);
  469. /* PAUSE Prohibition */
  470. val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) |
  471. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  472. ctrl_outl(val, ioaddr + ECMR);
  473. if (mdp->cd->set_rate)
  474. mdp->cd->set_rate(ndev);
  475. /* E-MAC Status Register clear */
  476. ctrl_outl(mdp->cd->ecsr_value, ioaddr + ECSR);
  477. /* E-MAC Interrupt Enable register */
  478. ctrl_outl(mdp->cd->ecsipr_value, ioaddr + ECSIPR);
  479. /* Set MAC address */
  480. update_mac_address(ndev);
  481. /* mask reset */
  482. if (mdp->cd->apr)
  483. ctrl_outl(APR_AP, ioaddr + APR);
  484. if (mdp->cd->mpr)
  485. ctrl_outl(MPR_MP, ioaddr + MPR);
  486. if (mdp->cd->tpauser)
  487. ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
  488. /* Setting the Rx mode will start the Rx process. */
  489. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  490. netif_start_queue(ndev);
  491. return ret;
  492. }
  493. /* free Tx skb function */
  494. static int sh_eth_txfree(struct net_device *ndev)
  495. {
  496. struct sh_eth_private *mdp = netdev_priv(ndev);
  497. struct sh_eth_txdesc *txdesc;
  498. int freeNum = 0;
  499. int entry = 0;
  500. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  501. entry = mdp->dirty_tx % TX_RING_SIZE;
  502. txdesc = &mdp->tx_ring[entry];
  503. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  504. break;
  505. /* Free the original skb. */
  506. if (mdp->tx_skbuff[entry]) {
  507. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  508. mdp->tx_skbuff[entry] = NULL;
  509. freeNum++;
  510. }
  511. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  512. if (entry >= TX_RING_SIZE - 1)
  513. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  514. mdp->stats.tx_packets++;
  515. mdp->stats.tx_bytes += txdesc->buffer_length;
  516. }
  517. return freeNum;
  518. }
  519. /* Packet receive function */
  520. static int sh_eth_rx(struct net_device *ndev)
  521. {
  522. struct sh_eth_private *mdp = netdev_priv(ndev);
  523. struct sh_eth_rxdesc *rxdesc;
  524. int entry = mdp->cur_rx % RX_RING_SIZE;
  525. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  526. struct sk_buff *skb;
  527. u16 pkt_len = 0;
  528. u32 desc_status;
  529. rxdesc = &mdp->rx_ring[entry];
  530. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  531. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  532. pkt_len = rxdesc->frame_length;
  533. if (--boguscnt < 0)
  534. break;
  535. if (!(desc_status & RDFEND))
  536. mdp->stats.rx_length_errors++;
  537. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  538. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  539. mdp->stats.rx_errors++;
  540. if (desc_status & RD_RFS1)
  541. mdp->stats.rx_crc_errors++;
  542. if (desc_status & RD_RFS2)
  543. mdp->stats.rx_frame_errors++;
  544. if (desc_status & RD_RFS3)
  545. mdp->stats.rx_length_errors++;
  546. if (desc_status & RD_RFS4)
  547. mdp->stats.rx_length_errors++;
  548. if (desc_status & RD_RFS6)
  549. mdp->stats.rx_missed_errors++;
  550. if (desc_status & RD_RFS10)
  551. mdp->stats.rx_over_errors++;
  552. } else {
  553. if (!mdp->cd->hw_swap)
  554. sh_eth_soft_swap(
  555. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  556. pkt_len + 2);
  557. skb = mdp->rx_skbuff[entry];
  558. mdp->rx_skbuff[entry] = NULL;
  559. skb_put(skb, pkt_len);
  560. skb->protocol = eth_type_trans(skb, ndev);
  561. netif_rx(skb);
  562. mdp->stats.rx_packets++;
  563. mdp->stats.rx_bytes += pkt_len;
  564. }
  565. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  566. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  567. rxdesc = &mdp->rx_ring[entry];
  568. }
  569. /* Refill the Rx ring buffers. */
  570. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  571. entry = mdp->dirty_rx % RX_RING_SIZE;
  572. rxdesc = &mdp->rx_ring[entry];
  573. /* The size of the buffer is 16 byte boundary. */
  574. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  575. if (mdp->rx_skbuff[entry] == NULL) {
  576. skb = dev_alloc_skb(mdp->rx_buf_sz);
  577. mdp->rx_skbuff[entry] = skb;
  578. if (skb == NULL)
  579. break; /* Better luck next round. */
  580. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  581. DMA_FROM_DEVICE);
  582. skb->dev = ndev;
  583. sh_eth_set_receive_align(skb);
  584. skb->ip_summed = CHECKSUM_NONE;
  585. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  586. }
  587. if (entry >= RX_RING_SIZE - 1)
  588. rxdesc->status |=
  589. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  590. else
  591. rxdesc->status |=
  592. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  593. }
  594. /* Restart Rx engine if stopped. */
  595. /* If we don't need to check status, don't. -KDU */
  596. if (!(ctrl_inl(ndev->base_addr + EDRRR) & EDRRR_R))
  597. ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);
  598. return 0;
  599. }
  600. /* error control function */
  601. static void sh_eth_error(struct net_device *ndev, int intr_status)
  602. {
  603. struct sh_eth_private *mdp = netdev_priv(ndev);
  604. u32 ioaddr = ndev->base_addr;
  605. u32 felic_stat;
  606. u32 link_stat;
  607. u32 mask;
  608. if (intr_status & EESR_ECI) {
  609. felic_stat = ctrl_inl(ioaddr + ECSR);
  610. ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */
  611. if (felic_stat & ECSR_ICD)
  612. mdp->stats.tx_carrier_errors++;
  613. if (felic_stat & ECSR_LCHNG) {
  614. /* Link Changed */
  615. if (mdp->cd->no_psr) {
  616. if (mdp->link == PHY_DOWN)
  617. link_stat = 0;
  618. else
  619. link_stat = PHY_ST_LINK;
  620. } else {
  621. link_stat = (ctrl_inl(ioaddr + PSR));
  622. }
  623. if (!(link_stat & PHY_ST_LINK)) {
  624. /* Link Down : disable tx and rx */
  625. ctrl_outl(ctrl_inl(ioaddr + ECMR) &
  626. ~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
  627. } else {
  628. /* Link Up */
  629. ctrl_outl(ctrl_inl(ioaddr + EESIPR) &
  630. ~DMAC_M_ECI, ioaddr + EESIPR);
  631. /*clear int */
  632. ctrl_outl(ctrl_inl(ioaddr + ECSR),
  633. ioaddr + ECSR);
  634. ctrl_outl(ctrl_inl(ioaddr + EESIPR) |
  635. DMAC_M_ECI, ioaddr + EESIPR);
  636. /* enable tx and rx */
  637. ctrl_outl(ctrl_inl(ioaddr + ECMR) |
  638. (ECMR_RE | ECMR_TE), ioaddr + ECMR);
  639. }
  640. }
  641. }
  642. if (intr_status & EESR_TWB) {
  643. /* Write buck end. unused write back interrupt */
  644. if (intr_status & EESR_TABT) /* Transmit Abort int */
  645. mdp->stats.tx_aborted_errors++;
  646. }
  647. if (intr_status & EESR_RABT) {
  648. /* Receive Abort int */
  649. if (intr_status & EESR_RFRMER) {
  650. /* Receive Frame Overflow int */
  651. mdp->stats.rx_frame_errors++;
  652. dev_err(&ndev->dev, "Receive Frame Overflow\n");
  653. }
  654. }
  655. if (!mdp->cd->no_ade) {
  656. if (intr_status & EESR_ADE && intr_status & EESR_TDE &&
  657. intr_status & EESR_TFE)
  658. mdp->stats.tx_fifo_errors++;
  659. }
  660. if (intr_status & EESR_RDE) {
  661. /* Receive Descriptor Empty int */
  662. mdp->stats.rx_over_errors++;
  663. if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R)
  664. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  665. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  666. }
  667. if (intr_status & EESR_RFE) {
  668. /* Receive FIFO Overflow int */
  669. mdp->stats.rx_fifo_errors++;
  670. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  671. }
  672. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  673. if (mdp->cd->no_ade)
  674. mask &= ~EESR_ADE;
  675. if (intr_status & mask) {
  676. /* Tx error */
  677. u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR);
  678. /* dmesg */
  679. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  680. intr_status, mdp->cur_tx);
  681. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  682. mdp->dirty_tx, (u32) ndev->state, edtrr);
  683. /* dirty buffer free */
  684. sh_eth_txfree(ndev);
  685. /* SH7712 BUG */
  686. if (edtrr ^ EDTRR_TRNS) {
  687. /* tx dma start */
  688. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  689. }
  690. /* wakeup */
  691. netif_wake_queue(ndev);
  692. }
  693. }
  694. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  695. {
  696. struct net_device *ndev = netdev;
  697. struct sh_eth_private *mdp = netdev_priv(ndev);
  698. struct sh_eth_cpu_data *cd = mdp->cd;
  699. irqreturn_t ret = IRQ_NONE;
  700. u32 ioaddr, boguscnt = RX_RING_SIZE;
  701. u32 intr_status = 0;
  702. ioaddr = ndev->base_addr;
  703. spin_lock(&mdp->lock);
  704. /* Get interrpt stat */
  705. intr_status = ctrl_inl(ioaddr + EESR);
  706. /* Clear interrupt */
  707. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  708. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  709. cd->tx_check | cd->eesr_err_check)) {
  710. ctrl_outl(intr_status, ioaddr + EESR);
  711. ret = IRQ_HANDLED;
  712. } else
  713. goto other_irq;
  714. if (intr_status & (EESR_FRC | /* Frame recv*/
  715. EESR_RMAF | /* Multi cast address recv*/
  716. EESR_RRF | /* Bit frame recv */
  717. EESR_RTLF | /* Long frame recv*/
  718. EESR_RTSF | /* short frame recv */
  719. EESR_PRE | /* PHY-LSI recv error */
  720. EESR_CERF)){ /* recv frame CRC error */
  721. sh_eth_rx(ndev);
  722. }
  723. /* Tx Check */
  724. if (intr_status & cd->tx_check) {
  725. sh_eth_txfree(ndev);
  726. netif_wake_queue(ndev);
  727. }
  728. if (intr_status & cd->eesr_err_check)
  729. sh_eth_error(ndev, intr_status);
  730. if (--boguscnt < 0) {
  731. printk(KERN_WARNING
  732. "%s: Too much work at interrupt, status=0x%4.4x.\n",
  733. ndev->name, intr_status);
  734. }
  735. other_irq:
  736. spin_unlock(&mdp->lock);
  737. return ret;
  738. }
  739. static void sh_eth_timer(unsigned long data)
  740. {
  741. struct net_device *ndev = (struct net_device *)data;
  742. struct sh_eth_private *mdp = netdev_priv(ndev);
  743. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  744. }
  745. /* PHY state control function */
  746. static void sh_eth_adjust_link(struct net_device *ndev)
  747. {
  748. struct sh_eth_private *mdp = netdev_priv(ndev);
  749. struct phy_device *phydev = mdp->phydev;
  750. u32 ioaddr = ndev->base_addr;
  751. int new_state = 0;
  752. if (phydev->link != PHY_DOWN) {
  753. if (phydev->duplex != mdp->duplex) {
  754. new_state = 1;
  755. mdp->duplex = phydev->duplex;
  756. if (mdp->cd->set_duplex)
  757. mdp->cd->set_duplex(ndev);
  758. }
  759. if (phydev->speed != mdp->speed) {
  760. new_state = 1;
  761. mdp->speed = phydev->speed;
  762. if (mdp->cd->set_rate)
  763. mdp->cd->set_rate(ndev);
  764. }
  765. if (mdp->link == PHY_DOWN) {
  766. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF)
  767. | ECMR_DM, ioaddr + ECMR);
  768. new_state = 1;
  769. mdp->link = phydev->link;
  770. }
  771. } else if (mdp->link) {
  772. new_state = 1;
  773. mdp->link = PHY_DOWN;
  774. mdp->speed = 0;
  775. mdp->duplex = -1;
  776. }
  777. if (new_state)
  778. phy_print_status(phydev);
  779. }
  780. /* PHY init function */
  781. static int sh_eth_phy_init(struct net_device *ndev)
  782. {
  783. struct sh_eth_private *mdp = netdev_priv(ndev);
  784. char phy_id[BUS_ID_SIZE];
  785. struct phy_device *phydev = NULL;
  786. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  787. mdp->mii_bus->id , mdp->phy_id);
  788. mdp->link = PHY_DOWN;
  789. mdp->speed = 0;
  790. mdp->duplex = -1;
  791. /* Try connect to PHY */
  792. phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link,
  793. 0, PHY_INTERFACE_MODE_MII);
  794. if (IS_ERR(phydev)) {
  795. dev_err(&ndev->dev, "phy_connect failed\n");
  796. return PTR_ERR(phydev);
  797. }
  798. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  799. phydev->addr, phydev->drv->name);
  800. mdp->phydev = phydev;
  801. return 0;
  802. }
  803. /* PHY control start function */
  804. static int sh_eth_phy_start(struct net_device *ndev)
  805. {
  806. struct sh_eth_private *mdp = netdev_priv(ndev);
  807. int ret;
  808. ret = sh_eth_phy_init(ndev);
  809. if (ret)
  810. return ret;
  811. /* reset phy - this also wakes it from PDOWN */
  812. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  813. phy_start(mdp->phydev);
  814. return 0;
  815. }
  816. /* network device open function */
  817. static int sh_eth_open(struct net_device *ndev)
  818. {
  819. int ret = 0;
  820. struct sh_eth_private *mdp = netdev_priv(ndev);
  821. ret = request_irq(ndev->irq, &sh_eth_interrupt,
  822. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || defined(CONFIG_CPU_SUBTYPE_SH7764)
  823. IRQF_SHARED,
  824. #else
  825. 0,
  826. #endif
  827. ndev->name, ndev);
  828. if (ret) {
  829. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  830. return ret;
  831. }
  832. /* Descriptor set */
  833. ret = sh_eth_ring_init(ndev);
  834. if (ret)
  835. goto out_free_irq;
  836. /* device init */
  837. ret = sh_eth_dev_init(ndev);
  838. if (ret)
  839. goto out_free_irq;
  840. /* PHY control start*/
  841. ret = sh_eth_phy_start(ndev);
  842. if (ret)
  843. goto out_free_irq;
  844. /* Set the timer to check for link beat. */
  845. init_timer(&mdp->timer);
  846. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  847. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  848. return ret;
  849. out_free_irq:
  850. free_irq(ndev->irq, ndev);
  851. return ret;
  852. }
  853. /* Timeout function */
  854. static void sh_eth_tx_timeout(struct net_device *ndev)
  855. {
  856. struct sh_eth_private *mdp = netdev_priv(ndev);
  857. u32 ioaddr = ndev->base_addr;
  858. struct sh_eth_rxdesc *rxdesc;
  859. int i;
  860. netif_stop_queue(ndev);
  861. /* worning message out. */
  862. printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
  863. " resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR));
  864. /* tx_errors count up */
  865. mdp->stats.tx_errors++;
  866. /* timer off */
  867. del_timer_sync(&mdp->timer);
  868. /* Free all the skbuffs in the Rx queue. */
  869. for (i = 0; i < RX_RING_SIZE; i++) {
  870. rxdesc = &mdp->rx_ring[i];
  871. rxdesc->status = 0;
  872. rxdesc->addr = 0xBADF00D0;
  873. if (mdp->rx_skbuff[i])
  874. dev_kfree_skb(mdp->rx_skbuff[i]);
  875. mdp->rx_skbuff[i] = NULL;
  876. }
  877. for (i = 0; i < TX_RING_SIZE; i++) {
  878. if (mdp->tx_skbuff[i])
  879. dev_kfree_skb(mdp->tx_skbuff[i]);
  880. mdp->tx_skbuff[i] = NULL;
  881. }
  882. /* device init */
  883. sh_eth_dev_init(ndev);
  884. /* timer on */
  885. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  886. add_timer(&mdp->timer);
  887. }
  888. /* Packet transmit function */
  889. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  890. {
  891. struct sh_eth_private *mdp = netdev_priv(ndev);
  892. struct sh_eth_txdesc *txdesc;
  893. u32 entry;
  894. unsigned long flags;
  895. spin_lock_irqsave(&mdp->lock, flags);
  896. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  897. if (!sh_eth_txfree(ndev)) {
  898. netif_stop_queue(ndev);
  899. spin_unlock_irqrestore(&mdp->lock, flags);
  900. return 1;
  901. }
  902. }
  903. spin_unlock_irqrestore(&mdp->lock, flags);
  904. entry = mdp->cur_tx % TX_RING_SIZE;
  905. mdp->tx_skbuff[entry] = skb;
  906. txdesc = &mdp->tx_ring[entry];
  907. txdesc->addr = virt_to_phys(skb->data);
  908. /* soft swap. */
  909. if (!mdp->cd->hw_swap)
  910. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  911. skb->len + 2);
  912. /* write back */
  913. __flush_purge_region(skb->data, skb->len);
  914. if (skb->len < ETHERSMALL)
  915. txdesc->buffer_length = ETHERSMALL;
  916. else
  917. txdesc->buffer_length = skb->len;
  918. if (entry >= TX_RING_SIZE - 1)
  919. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  920. else
  921. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  922. mdp->cur_tx++;
  923. if (!(ctrl_inl(ndev->base_addr + EDTRR) & EDTRR_TRNS))
  924. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  925. ndev->trans_start = jiffies;
  926. return 0;
  927. }
  928. /* device close function */
  929. static int sh_eth_close(struct net_device *ndev)
  930. {
  931. struct sh_eth_private *mdp = netdev_priv(ndev);
  932. u32 ioaddr = ndev->base_addr;
  933. int ringsize;
  934. netif_stop_queue(ndev);
  935. /* Disable interrupts by clearing the interrupt mask. */
  936. ctrl_outl(0x0000, ioaddr + EESIPR);
  937. /* Stop the chip's Tx and Rx processes. */
  938. ctrl_outl(0, ioaddr + EDTRR);
  939. ctrl_outl(0, ioaddr + EDRRR);
  940. /* PHY Disconnect */
  941. if (mdp->phydev) {
  942. phy_stop(mdp->phydev);
  943. phy_disconnect(mdp->phydev);
  944. }
  945. free_irq(ndev->irq, ndev);
  946. del_timer_sync(&mdp->timer);
  947. /* Free all the skbuffs in the Rx queue. */
  948. sh_eth_ring_free(ndev);
  949. /* free DMA buffer */
  950. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  951. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  952. /* free DMA buffer */
  953. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  954. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  955. return 0;
  956. }
  957. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  958. {
  959. struct sh_eth_private *mdp = netdev_priv(ndev);
  960. u32 ioaddr = ndev->base_addr;
  961. mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR);
  962. ctrl_outl(0, ioaddr + TROCR); /* (write clear) */
  963. mdp->stats.collisions += ctrl_inl(ioaddr + CDCR);
  964. ctrl_outl(0, ioaddr + CDCR); /* (write clear) */
  965. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR);
  966. ctrl_outl(0, ioaddr + LCCR); /* (write clear) */
  967. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  968. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CERCR);/* CERCR */
  969. ctrl_outl(0, ioaddr + CERCR); /* (write clear) */
  970. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CEECR);/* CEECR */
  971. ctrl_outl(0, ioaddr + CEECR); /* (write clear) */
  972. #else
  973. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR);
  974. ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */
  975. #endif
  976. return &mdp->stats;
  977. }
  978. /* ioctl to device funciotn*/
  979. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  980. int cmd)
  981. {
  982. struct sh_eth_private *mdp = netdev_priv(ndev);
  983. struct phy_device *phydev = mdp->phydev;
  984. if (!netif_running(ndev))
  985. return -EINVAL;
  986. if (!phydev)
  987. return -ENODEV;
  988. return phy_mii_ioctl(phydev, if_mii(rq), cmd);
  989. }
  990. #if defined(SH_ETH_HAS_TSU)
  991. /* Multicast reception directions set */
  992. static void sh_eth_set_multicast_list(struct net_device *ndev)
  993. {
  994. u32 ioaddr = ndev->base_addr;
  995. if (ndev->flags & IFF_PROMISC) {
  996. /* Set promiscuous. */
  997. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
  998. ioaddr + ECMR);
  999. } else {
  1000. /* Normal, unicast/broadcast-only mode. */
  1001. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
  1002. ioaddr + ECMR);
  1003. }
  1004. }
  1005. /* SuperH's TSU register init function */
  1006. static void sh_eth_tsu_init(u32 ioaddr)
  1007. {
  1008. ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */
  1009. ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */
  1010. ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */
  1011. ctrl_outl(0xc, ioaddr + TSU_BSYSL0);
  1012. ctrl_outl(0xc, ioaddr + TSU_BSYSL1);
  1013. ctrl_outl(0, ioaddr + TSU_PRISL0);
  1014. ctrl_outl(0, ioaddr + TSU_PRISL1);
  1015. ctrl_outl(0, ioaddr + TSU_FWSL0);
  1016. ctrl_outl(0, ioaddr + TSU_FWSL1);
  1017. ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
  1018. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  1019. ctrl_outl(0, ioaddr + TSU_QTAG0); /* Disable QTAG(0->1) */
  1020. ctrl_outl(0, ioaddr + TSU_QTAG1); /* Disable QTAG(1->0) */
  1021. #else
  1022. ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */
  1023. ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */
  1024. #endif
  1025. ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */
  1026. ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */
  1027. ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */
  1028. ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1029. ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */
  1030. ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */
  1031. ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */
  1032. }
  1033. #endif /* SH_ETH_HAS_TSU */
  1034. /* MDIO bus release function */
  1035. static int sh_mdio_release(struct net_device *ndev)
  1036. {
  1037. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1038. /* unregister mdio bus */
  1039. mdiobus_unregister(bus);
  1040. /* remove mdio bus info from net_device */
  1041. dev_set_drvdata(&ndev->dev, NULL);
  1042. /* free bitbang info */
  1043. free_mdio_bitbang(bus);
  1044. return 0;
  1045. }
  1046. /* MDIO bus init function */
  1047. static int sh_mdio_init(struct net_device *ndev, int id)
  1048. {
  1049. int ret, i;
  1050. struct bb_info *bitbang;
  1051. struct sh_eth_private *mdp = netdev_priv(ndev);
  1052. /* create bit control struct for PHY */
  1053. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1054. if (!bitbang) {
  1055. ret = -ENOMEM;
  1056. goto out;
  1057. }
  1058. /* bitbang init */
  1059. bitbang->addr = ndev->base_addr + PIR;
  1060. bitbang->mdi_msk = 0x08;
  1061. bitbang->mdo_msk = 0x04;
  1062. bitbang->mmd_msk = 0x02;/* MMD */
  1063. bitbang->mdc_msk = 0x01;
  1064. bitbang->ctrl.ops = &bb_ops;
  1065. /* MII contorller setting */
  1066. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1067. if (!mdp->mii_bus) {
  1068. ret = -ENOMEM;
  1069. goto out_free_bitbang;
  1070. }
  1071. /* Hook up MII support for ethtool */
  1072. mdp->mii_bus->name = "sh_mii";
  1073. mdp->mii_bus->parent = &ndev->dev;
  1074. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
  1075. /* PHY IRQ */
  1076. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1077. if (!mdp->mii_bus->irq) {
  1078. ret = -ENOMEM;
  1079. goto out_free_bus;
  1080. }
  1081. for (i = 0; i < PHY_MAX_ADDR; i++)
  1082. mdp->mii_bus->irq[i] = PHY_POLL;
  1083. /* regist mdio bus */
  1084. ret = mdiobus_register(mdp->mii_bus);
  1085. if (ret)
  1086. goto out_free_irq;
  1087. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1088. return 0;
  1089. out_free_irq:
  1090. kfree(mdp->mii_bus->irq);
  1091. out_free_bus:
  1092. free_mdio_bitbang(mdp->mii_bus);
  1093. out_free_bitbang:
  1094. kfree(bitbang);
  1095. out:
  1096. return ret;
  1097. }
  1098. static const struct net_device_ops sh_eth_netdev_ops = {
  1099. .ndo_open = sh_eth_open,
  1100. .ndo_stop = sh_eth_close,
  1101. .ndo_start_xmit = sh_eth_start_xmit,
  1102. .ndo_get_stats = sh_eth_get_stats,
  1103. #if defined(SH_ETH_HAS_TSU)
  1104. .ndo_set_multicast_list = sh_eth_set_multicast_list,
  1105. #endif
  1106. .ndo_tx_timeout = sh_eth_tx_timeout,
  1107. .ndo_do_ioctl = sh_eth_do_ioctl,
  1108. .ndo_validate_addr = eth_validate_addr,
  1109. .ndo_set_mac_address = eth_mac_addr,
  1110. .ndo_change_mtu = eth_change_mtu,
  1111. };
  1112. static int sh_eth_drv_probe(struct platform_device *pdev)
  1113. {
  1114. int ret, i, devno = 0;
  1115. struct resource *res;
  1116. struct net_device *ndev = NULL;
  1117. struct sh_eth_private *mdp;
  1118. struct sh_eth_plat_data *pd;
  1119. /* get base addr */
  1120. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1121. if (unlikely(res == NULL)) {
  1122. dev_err(&pdev->dev, "invalid resource\n");
  1123. ret = -EINVAL;
  1124. goto out;
  1125. }
  1126. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1127. if (!ndev) {
  1128. dev_err(&pdev->dev, "Could not allocate device.\n");
  1129. ret = -ENOMEM;
  1130. goto out;
  1131. }
  1132. /* The sh Ether-specific entries in the device structure. */
  1133. ndev->base_addr = res->start;
  1134. devno = pdev->id;
  1135. if (devno < 0)
  1136. devno = 0;
  1137. ndev->dma = -1;
  1138. ret = platform_get_irq(pdev, 0);
  1139. if (ret < 0) {
  1140. ret = -ENODEV;
  1141. goto out_release;
  1142. }
  1143. ndev->irq = ret;
  1144. SET_NETDEV_DEV(ndev, &pdev->dev);
  1145. /* Fill in the fields of the device structure with ethernet values. */
  1146. ether_setup(ndev);
  1147. mdp = netdev_priv(ndev);
  1148. spin_lock_init(&mdp->lock);
  1149. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1150. /* get PHY ID */
  1151. mdp->phy_id = pd->phy;
  1152. /* EDMAC endian */
  1153. mdp->edmac_endian = pd->edmac_endian;
  1154. /* set cpu data */
  1155. mdp->cd = &sh_eth_my_cpu_data;
  1156. sh_eth_set_default_cpu_data(mdp->cd);
  1157. /* set function */
  1158. ndev->netdev_ops = &sh_eth_netdev_ops;
  1159. ndev->watchdog_timeo = TX_TIMEOUT;
  1160. mdp->post_rx = POST_RX >> (devno << 1);
  1161. mdp->post_fw = POST_FW >> (devno << 1);
  1162. /* read and set MAC address */
  1163. read_mac_address(ndev);
  1164. /* First device only init */
  1165. if (!devno) {
  1166. if (mdp->cd->chip_reset)
  1167. mdp->cd->chip_reset(ndev);
  1168. #if defined(SH_ETH_HAS_TSU)
  1169. /* TSU init (Init only)*/
  1170. sh_eth_tsu_init(SH_TSU_ADDR);
  1171. #endif
  1172. }
  1173. /* network device register */
  1174. ret = register_netdev(ndev);
  1175. if (ret)
  1176. goto out_release;
  1177. /* mdio bus init */
  1178. ret = sh_mdio_init(ndev, pdev->id);
  1179. if (ret)
  1180. goto out_unregister;
  1181. /* pritnt device infomation */
  1182. pr_info("Base address at 0x%x, ",
  1183. (u32)ndev->base_addr);
  1184. for (i = 0; i < 5; i++)
  1185. printk("%02X:", ndev->dev_addr[i]);
  1186. printk("%02X, IRQ %d.\n", ndev->dev_addr[i], ndev->irq);
  1187. platform_set_drvdata(pdev, ndev);
  1188. return ret;
  1189. out_unregister:
  1190. unregister_netdev(ndev);
  1191. out_release:
  1192. /* net_dev free */
  1193. if (ndev)
  1194. free_netdev(ndev);
  1195. out:
  1196. return ret;
  1197. }
  1198. static int sh_eth_drv_remove(struct platform_device *pdev)
  1199. {
  1200. struct net_device *ndev = platform_get_drvdata(pdev);
  1201. sh_mdio_release(ndev);
  1202. unregister_netdev(ndev);
  1203. flush_scheduled_work();
  1204. free_netdev(ndev);
  1205. platform_set_drvdata(pdev, NULL);
  1206. return 0;
  1207. }
  1208. static struct platform_driver sh_eth_driver = {
  1209. .probe = sh_eth_drv_probe,
  1210. .remove = sh_eth_drv_remove,
  1211. .driver = {
  1212. .name = CARDNAME,
  1213. },
  1214. };
  1215. static int __init sh_eth_init(void)
  1216. {
  1217. return platform_driver_register(&sh_eth_driver);
  1218. }
  1219. static void __exit sh_eth_cleanup(void)
  1220. {
  1221. platform_driver_unregister(&sh_eth_driver);
  1222. }
  1223. module_init(sh_eth_init);
  1224. module_exit(sh_eth_cleanup);
  1225. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1226. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1227. MODULE_LICENSE("GPL v2");