kvm_main.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include <linux/sysdev.h>
  36. #include <linux/cpu.h>
  37. #include <linux/fs.h>
  38. #include <linux/mount.h>
  39. #include "x86_emulate.h"
  40. #include "segment_descriptor.h"
  41. MODULE_AUTHOR("Qumranet");
  42. MODULE_LICENSE("GPL");
  43. static DEFINE_SPINLOCK(kvm_lock);
  44. static LIST_HEAD(vm_list);
  45. struct kvm_arch_ops *kvm_arch_ops;
  46. struct kvm_stat kvm_stat;
  47. EXPORT_SYMBOL_GPL(kvm_stat);
  48. static struct kvm_stats_debugfs_item {
  49. const char *name;
  50. u32 *data;
  51. struct dentry *dentry;
  52. } debugfs_entries[] = {
  53. { "pf_fixed", &kvm_stat.pf_fixed },
  54. { "pf_guest", &kvm_stat.pf_guest },
  55. { "tlb_flush", &kvm_stat.tlb_flush },
  56. { "invlpg", &kvm_stat.invlpg },
  57. { "exits", &kvm_stat.exits },
  58. { "io_exits", &kvm_stat.io_exits },
  59. { "mmio_exits", &kvm_stat.mmio_exits },
  60. { "signal_exits", &kvm_stat.signal_exits },
  61. { "irq_window", &kvm_stat.irq_window_exits },
  62. { "halt_exits", &kvm_stat.halt_exits },
  63. { "request_irq", &kvm_stat.request_irq_exits },
  64. { "irq_exits", &kvm_stat.irq_exits },
  65. { NULL, NULL }
  66. };
  67. static struct dentry *debugfs_dir;
  68. #define KVMFS_MAGIC 0x19700426
  69. struct vfsmount *kvmfs_mnt;
  70. #define MAX_IO_MSRS 256
  71. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  72. #define LMSW_GUEST_MASK 0x0eULL
  73. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  74. #define CR8_RESEVED_BITS (~0x0fULL)
  75. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  76. #ifdef CONFIG_X86_64
  77. // LDT or TSS descriptor in the GDT. 16 bytes.
  78. struct segment_descriptor_64 {
  79. struct segment_descriptor s;
  80. u32 base_higher;
  81. u32 pad_zero;
  82. };
  83. #endif
  84. unsigned long segment_base(u16 selector)
  85. {
  86. struct descriptor_table gdt;
  87. struct segment_descriptor *d;
  88. unsigned long table_base;
  89. typedef unsigned long ul;
  90. unsigned long v;
  91. if (selector == 0)
  92. return 0;
  93. asm ("sgdt %0" : "=m"(gdt));
  94. table_base = gdt.base;
  95. if (selector & 4) { /* from ldt */
  96. u16 ldt_selector;
  97. asm ("sldt %0" : "=g"(ldt_selector));
  98. table_base = segment_base(ldt_selector);
  99. }
  100. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  101. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  102. #ifdef CONFIG_X86_64
  103. if (d->system == 0
  104. && (d->type == 2 || d->type == 9 || d->type == 11))
  105. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  106. #endif
  107. return v;
  108. }
  109. EXPORT_SYMBOL_GPL(segment_base);
  110. static inline int valid_vcpu(int n)
  111. {
  112. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  113. }
  114. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  115. void *dest)
  116. {
  117. unsigned char *host_buf = dest;
  118. unsigned long req_size = size;
  119. while (size) {
  120. hpa_t paddr;
  121. unsigned now;
  122. unsigned offset;
  123. hva_t guest_buf;
  124. paddr = gva_to_hpa(vcpu, addr);
  125. if (is_error_hpa(paddr))
  126. break;
  127. guest_buf = (hva_t)kmap_atomic(
  128. pfn_to_page(paddr >> PAGE_SHIFT),
  129. KM_USER0);
  130. offset = addr & ~PAGE_MASK;
  131. guest_buf |= offset;
  132. now = min(size, PAGE_SIZE - offset);
  133. memcpy(host_buf, (void*)guest_buf, now);
  134. host_buf += now;
  135. addr += now;
  136. size -= now;
  137. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  138. }
  139. return req_size - size;
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_read_guest);
  142. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  143. void *data)
  144. {
  145. unsigned char *host_buf = data;
  146. unsigned long req_size = size;
  147. while (size) {
  148. hpa_t paddr;
  149. unsigned now;
  150. unsigned offset;
  151. hva_t guest_buf;
  152. paddr = gva_to_hpa(vcpu, addr);
  153. if (is_error_hpa(paddr))
  154. break;
  155. guest_buf = (hva_t)kmap_atomic(
  156. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  157. offset = addr & ~PAGE_MASK;
  158. guest_buf |= offset;
  159. now = min(size, PAGE_SIZE - offset);
  160. memcpy((void*)guest_buf, host_buf, now);
  161. host_buf += now;
  162. addr += now;
  163. size -= now;
  164. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  165. }
  166. return req_size - size;
  167. }
  168. EXPORT_SYMBOL_GPL(kvm_write_guest);
  169. static int vcpu_slot(struct kvm_vcpu *vcpu)
  170. {
  171. return vcpu - vcpu->kvm->vcpus;
  172. }
  173. /*
  174. * Switches to specified vcpu, until a matching vcpu_put()
  175. */
  176. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  177. {
  178. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  179. mutex_lock(&vcpu->mutex);
  180. if (unlikely(!vcpu->vmcs)) {
  181. mutex_unlock(&vcpu->mutex);
  182. return NULL;
  183. }
  184. return kvm_arch_ops->vcpu_load(vcpu);
  185. }
  186. static void vcpu_put(struct kvm_vcpu *vcpu)
  187. {
  188. kvm_arch_ops->vcpu_put(vcpu);
  189. mutex_unlock(&vcpu->mutex);
  190. }
  191. static int kvm_dev_open(struct inode *inode, struct file *filp)
  192. {
  193. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  194. int i;
  195. if (!kvm)
  196. return -ENOMEM;
  197. spin_lock_init(&kvm->lock);
  198. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  199. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  200. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  201. mutex_init(&vcpu->mutex);
  202. vcpu->cpu = -1;
  203. vcpu->kvm = kvm;
  204. vcpu->mmu.root_hpa = INVALID_PAGE;
  205. INIT_LIST_HEAD(&vcpu->free_pages);
  206. spin_lock(&kvm_lock);
  207. list_add(&kvm->vm_list, &vm_list);
  208. spin_unlock(&kvm_lock);
  209. }
  210. filp->private_data = kvm;
  211. return 0;
  212. }
  213. /*
  214. * Free any memory in @free but not in @dont.
  215. */
  216. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  217. struct kvm_memory_slot *dont)
  218. {
  219. int i;
  220. if (!dont || free->phys_mem != dont->phys_mem)
  221. if (free->phys_mem) {
  222. for (i = 0; i < free->npages; ++i)
  223. if (free->phys_mem[i])
  224. __free_page(free->phys_mem[i]);
  225. vfree(free->phys_mem);
  226. }
  227. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  228. vfree(free->dirty_bitmap);
  229. free->phys_mem = NULL;
  230. free->npages = 0;
  231. free->dirty_bitmap = NULL;
  232. }
  233. static void kvm_free_physmem(struct kvm *kvm)
  234. {
  235. int i;
  236. for (i = 0; i < kvm->nmemslots; ++i)
  237. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  238. }
  239. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  240. {
  241. if (!vcpu_load(vcpu->kvm, vcpu_slot(vcpu)))
  242. return;
  243. kvm_mmu_destroy(vcpu);
  244. vcpu_put(vcpu);
  245. kvm_arch_ops->vcpu_free(vcpu);
  246. }
  247. static void kvm_free_vcpus(struct kvm *kvm)
  248. {
  249. unsigned int i;
  250. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  251. kvm_free_vcpu(&kvm->vcpus[i]);
  252. }
  253. static int kvm_dev_release(struct inode *inode, struct file *filp)
  254. {
  255. struct kvm *kvm = filp->private_data;
  256. spin_lock(&kvm_lock);
  257. list_del(&kvm->vm_list);
  258. spin_unlock(&kvm_lock);
  259. kvm_free_vcpus(kvm);
  260. kvm_free_physmem(kvm);
  261. kfree(kvm);
  262. return 0;
  263. }
  264. static void inject_gp(struct kvm_vcpu *vcpu)
  265. {
  266. kvm_arch_ops->inject_gp(vcpu, 0);
  267. }
  268. /*
  269. * Load the pae pdptrs. Return true is they are all valid.
  270. */
  271. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  272. {
  273. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  274. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  275. int i;
  276. u64 pdpte;
  277. u64 *pdpt;
  278. int ret;
  279. struct kvm_memory_slot *memslot;
  280. spin_lock(&vcpu->kvm->lock);
  281. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  282. /* FIXME: !memslot - emulate? 0xff? */
  283. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  284. ret = 1;
  285. for (i = 0; i < 4; ++i) {
  286. pdpte = pdpt[offset + i];
  287. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  288. ret = 0;
  289. goto out;
  290. }
  291. }
  292. for (i = 0; i < 4; ++i)
  293. vcpu->pdptrs[i] = pdpt[offset + i];
  294. out:
  295. kunmap_atomic(pdpt, KM_USER0);
  296. spin_unlock(&vcpu->kvm->lock);
  297. return ret;
  298. }
  299. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  300. {
  301. if (cr0 & CR0_RESEVED_BITS) {
  302. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  303. cr0, vcpu->cr0);
  304. inject_gp(vcpu);
  305. return;
  306. }
  307. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  308. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  309. inject_gp(vcpu);
  310. return;
  311. }
  312. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  313. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  314. "and a clear PE flag\n");
  315. inject_gp(vcpu);
  316. return;
  317. }
  318. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  319. #ifdef CONFIG_X86_64
  320. if ((vcpu->shadow_efer & EFER_LME)) {
  321. int cs_db, cs_l;
  322. if (!is_pae(vcpu)) {
  323. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  324. "in long mode while PAE is disabled\n");
  325. inject_gp(vcpu);
  326. return;
  327. }
  328. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  329. if (cs_l) {
  330. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  331. "in long mode while CS.L == 1\n");
  332. inject_gp(vcpu);
  333. return;
  334. }
  335. } else
  336. #endif
  337. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  338. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  339. "reserved bits\n");
  340. inject_gp(vcpu);
  341. return;
  342. }
  343. }
  344. kvm_arch_ops->set_cr0(vcpu, cr0);
  345. vcpu->cr0 = cr0;
  346. spin_lock(&vcpu->kvm->lock);
  347. kvm_mmu_reset_context(vcpu);
  348. spin_unlock(&vcpu->kvm->lock);
  349. return;
  350. }
  351. EXPORT_SYMBOL_GPL(set_cr0);
  352. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  353. {
  354. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  355. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  356. }
  357. EXPORT_SYMBOL_GPL(lmsw);
  358. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  359. {
  360. if (cr4 & CR4_RESEVED_BITS) {
  361. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  362. inject_gp(vcpu);
  363. return;
  364. }
  365. if (is_long_mode(vcpu)) {
  366. if (!(cr4 & CR4_PAE_MASK)) {
  367. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  368. "in long mode\n");
  369. inject_gp(vcpu);
  370. return;
  371. }
  372. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  373. && !load_pdptrs(vcpu, vcpu->cr3)) {
  374. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  375. inject_gp(vcpu);
  376. }
  377. if (cr4 & CR4_VMXE_MASK) {
  378. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  379. inject_gp(vcpu);
  380. return;
  381. }
  382. kvm_arch_ops->set_cr4(vcpu, cr4);
  383. spin_lock(&vcpu->kvm->lock);
  384. kvm_mmu_reset_context(vcpu);
  385. spin_unlock(&vcpu->kvm->lock);
  386. }
  387. EXPORT_SYMBOL_GPL(set_cr4);
  388. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  389. {
  390. if (is_long_mode(vcpu)) {
  391. if (cr3 & CR3_L_MODE_RESEVED_BITS) {
  392. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  393. inject_gp(vcpu);
  394. return;
  395. }
  396. } else {
  397. if (cr3 & CR3_RESEVED_BITS) {
  398. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  399. inject_gp(vcpu);
  400. return;
  401. }
  402. if (is_paging(vcpu) && is_pae(vcpu) &&
  403. !load_pdptrs(vcpu, cr3)) {
  404. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  405. "reserved bits\n");
  406. inject_gp(vcpu);
  407. return;
  408. }
  409. }
  410. vcpu->cr3 = cr3;
  411. spin_lock(&vcpu->kvm->lock);
  412. /*
  413. * Does the new cr3 value map to physical memory? (Note, we
  414. * catch an invalid cr3 even in real-mode, because it would
  415. * cause trouble later on when we turn on paging anyway.)
  416. *
  417. * A real CPU would silently accept an invalid cr3 and would
  418. * attempt to use it - with largely undefined (and often hard
  419. * to debug) behavior on the guest side.
  420. */
  421. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  422. inject_gp(vcpu);
  423. else
  424. vcpu->mmu.new_cr3(vcpu);
  425. spin_unlock(&vcpu->kvm->lock);
  426. }
  427. EXPORT_SYMBOL_GPL(set_cr3);
  428. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  429. {
  430. if ( cr8 & CR8_RESEVED_BITS) {
  431. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  432. inject_gp(vcpu);
  433. return;
  434. }
  435. vcpu->cr8 = cr8;
  436. }
  437. EXPORT_SYMBOL_GPL(set_cr8);
  438. void fx_init(struct kvm_vcpu *vcpu)
  439. {
  440. struct __attribute__ ((__packed__)) fx_image_s {
  441. u16 control; //fcw
  442. u16 status; //fsw
  443. u16 tag; // ftw
  444. u16 opcode; //fop
  445. u64 ip; // fpu ip
  446. u64 operand;// fpu dp
  447. u32 mxcsr;
  448. u32 mxcsr_mask;
  449. } *fx_image;
  450. fx_save(vcpu->host_fx_image);
  451. fpu_init();
  452. fx_save(vcpu->guest_fx_image);
  453. fx_restore(vcpu->host_fx_image);
  454. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  455. fx_image->mxcsr = 0x1f80;
  456. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  457. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  458. }
  459. EXPORT_SYMBOL_GPL(fx_init);
  460. /*
  461. * Creates some virtual cpus. Good luck creating more than one.
  462. */
  463. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  464. {
  465. int r;
  466. struct kvm_vcpu *vcpu;
  467. r = -EINVAL;
  468. if (!valid_vcpu(n))
  469. goto out;
  470. vcpu = &kvm->vcpus[n];
  471. mutex_lock(&vcpu->mutex);
  472. if (vcpu->vmcs) {
  473. mutex_unlock(&vcpu->mutex);
  474. return -EEXIST;
  475. }
  476. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  477. FX_IMAGE_ALIGN);
  478. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  479. r = kvm_arch_ops->vcpu_create(vcpu);
  480. if (r < 0)
  481. goto out_free_vcpus;
  482. r = kvm_mmu_create(vcpu);
  483. if (r < 0)
  484. goto out_free_vcpus;
  485. kvm_arch_ops->vcpu_load(vcpu);
  486. r = kvm_mmu_setup(vcpu);
  487. if (r >= 0)
  488. r = kvm_arch_ops->vcpu_setup(vcpu);
  489. vcpu_put(vcpu);
  490. if (r < 0)
  491. goto out_free_vcpus;
  492. return 0;
  493. out_free_vcpus:
  494. kvm_free_vcpu(vcpu);
  495. mutex_unlock(&vcpu->mutex);
  496. out:
  497. return r;
  498. }
  499. /*
  500. * Allocate some memory and give it an address in the guest physical address
  501. * space.
  502. *
  503. * Discontiguous memory is allowed, mostly for framebuffers.
  504. */
  505. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  506. struct kvm_memory_region *mem)
  507. {
  508. int r;
  509. gfn_t base_gfn;
  510. unsigned long npages;
  511. unsigned long i;
  512. struct kvm_memory_slot *memslot;
  513. struct kvm_memory_slot old, new;
  514. int memory_config_version;
  515. r = -EINVAL;
  516. /* General sanity checks */
  517. if (mem->memory_size & (PAGE_SIZE - 1))
  518. goto out;
  519. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  520. goto out;
  521. if (mem->slot >= KVM_MEMORY_SLOTS)
  522. goto out;
  523. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  524. goto out;
  525. memslot = &kvm->memslots[mem->slot];
  526. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  527. npages = mem->memory_size >> PAGE_SHIFT;
  528. if (!npages)
  529. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  530. raced:
  531. spin_lock(&kvm->lock);
  532. memory_config_version = kvm->memory_config_version;
  533. new = old = *memslot;
  534. new.base_gfn = base_gfn;
  535. new.npages = npages;
  536. new.flags = mem->flags;
  537. /* Disallow changing a memory slot's size. */
  538. r = -EINVAL;
  539. if (npages && old.npages && npages != old.npages)
  540. goto out_unlock;
  541. /* Check for overlaps */
  542. r = -EEXIST;
  543. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  544. struct kvm_memory_slot *s = &kvm->memslots[i];
  545. if (s == memslot)
  546. continue;
  547. if (!((base_gfn + npages <= s->base_gfn) ||
  548. (base_gfn >= s->base_gfn + s->npages)))
  549. goto out_unlock;
  550. }
  551. /*
  552. * Do memory allocations outside lock. memory_config_version will
  553. * detect any races.
  554. */
  555. spin_unlock(&kvm->lock);
  556. /* Deallocate if slot is being removed */
  557. if (!npages)
  558. new.phys_mem = NULL;
  559. /* Free page dirty bitmap if unneeded */
  560. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  561. new.dirty_bitmap = NULL;
  562. r = -ENOMEM;
  563. /* Allocate if a slot is being created */
  564. if (npages && !new.phys_mem) {
  565. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  566. if (!new.phys_mem)
  567. goto out_free;
  568. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  569. for (i = 0; i < npages; ++i) {
  570. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  571. | __GFP_ZERO);
  572. if (!new.phys_mem[i])
  573. goto out_free;
  574. set_page_private(new.phys_mem[i],0);
  575. }
  576. }
  577. /* Allocate page dirty bitmap if needed */
  578. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  579. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  580. new.dirty_bitmap = vmalloc(dirty_bytes);
  581. if (!new.dirty_bitmap)
  582. goto out_free;
  583. memset(new.dirty_bitmap, 0, dirty_bytes);
  584. }
  585. spin_lock(&kvm->lock);
  586. if (memory_config_version != kvm->memory_config_version) {
  587. spin_unlock(&kvm->lock);
  588. kvm_free_physmem_slot(&new, &old);
  589. goto raced;
  590. }
  591. r = -EAGAIN;
  592. if (kvm->busy)
  593. goto out_unlock;
  594. if (mem->slot >= kvm->nmemslots)
  595. kvm->nmemslots = mem->slot + 1;
  596. *memslot = new;
  597. ++kvm->memory_config_version;
  598. spin_unlock(&kvm->lock);
  599. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  600. struct kvm_vcpu *vcpu;
  601. vcpu = vcpu_load(kvm, i);
  602. if (!vcpu)
  603. continue;
  604. kvm_mmu_reset_context(vcpu);
  605. vcpu_put(vcpu);
  606. }
  607. kvm_free_physmem_slot(&old, &new);
  608. return 0;
  609. out_unlock:
  610. spin_unlock(&kvm->lock);
  611. out_free:
  612. kvm_free_physmem_slot(&new, &old);
  613. out:
  614. return r;
  615. }
  616. static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  617. {
  618. spin_lock(&vcpu->kvm->lock);
  619. kvm_mmu_slot_remove_write_access(vcpu, slot);
  620. spin_unlock(&vcpu->kvm->lock);
  621. }
  622. /*
  623. * Get (and clear) the dirty memory log for a memory slot.
  624. */
  625. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  626. struct kvm_dirty_log *log)
  627. {
  628. struct kvm_memory_slot *memslot;
  629. int r, i;
  630. int n;
  631. int cleared;
  632. unsigned long any = 0;
  633. spin_lock(&kvm->lock);
  634. /*
  635. * Prevent changes to guest memory configuration even while the lock
  636. * is not taken.
  637. */
  638. ++kvm->busy;
  639. spin_unlock(&kvm->lock);
  640. r = -EINVAL;
  641. if (log->slot >= KVM_MEMORY_SLOTS)
  642. goto out;
  643. memslot = &kvm->memslots[log->slot];
  644. r = -ENOENT;
  645. if (!memslot->dirty_bitmap)
  646. goto out;
  647. n = ALIGN(memslot->npages, 8) / 8;
  648. for (i = 0; !any && i < n; ++i)
  649. any = memslot->dirty_bitmap[i];
  650. r = -EFAULT;
  651. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  652. goto out;
  653. if (any) {
  654. cleared = 0;
  655. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  656. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  657. if (!vcpu)
  658. continue;
  659. if (!cleared) {
  660. do_remove_write_access(vcpu, log->slot);
  661. memset(memslot->dirty_bitmap, 0, n);
  662. cleared = 1;
  663. }
  664. kvm_arch_ops->tlb_flush(vcpu);
  665. vcpu_put(vcpu);
  666. }
  667. }
  668. r = 0;
  669. out:
  670. spin_lock(&kvm->lock);
  671. --kvm->busy;
  672. spin_unlock(&kvm->lock);
  673. return r;
  674. }
  675. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  676. {
  677. int i;
  678. for (i = 0; i < kvm->nmemslots; ++i) {
  679. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  680. if (gfn >= memslot->base_gfn
  681. && gfn < memslot->base_gfn + memslot->npages)
  682. return memslot;
  683. }
  684. return NULL;
  685. }
  686. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  687. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  688. {
  689. int i;
  690. struct kvm_memory_slot *memslot = NULL;
  691. unsigned long rel_gfn;
  692. for (i = 0; i < kvm->nmemslots; ++i) {
  693. memslot = &kvm->memslots[i];
  694. if (gfn >= memslot->base_gfn
  695. && gfn < memslot->base_gfn + memslot->npages) {
  696. if (!memslot || !memslot->dirty_bitmap)
  697. return;
  698. rel_gfn = gfn - memslot->base_gfn;
  699. /* avoid RMW */
  700. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  701. set_bit(rel_gfn, memslot->dirty_bitmap);
  702. return;
  703. }
  704. }
  705. }
  706. static int emulator_read_std(unsigned long addr,
  707. unsigned long *val,
  708. unsigned int bytes,
  709. struct x86_emulate_ctxt *ctxt)
  710. {
  711. struct kvm_vcpu *vcpu = ctxt->vcpu;
  712. void *data = val;
  713. while (bytes) {
  714. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  715. unsigned offset = addr & (PAGE_SIZE-1);
  716. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  717. unsigned long pfn;
  718. struct kvm_memory_slot *memslot;
  719. void *page;
  720. if (gpa == UNMAPPED_GVA)
  721. return X86EMUL_PROPAGATE_FAULT;
  722. pfn = gpa >> PAGE_SHIFT;
  723. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  724. if (!memslot)
  725. return X86EMUL_UNHANDLEABLE;
  726. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  727. memcpy(data, page + offset, tocopy);
  728. kunmap_atomic(page, KM_USER0);
  729. bytes -= tocopy;
  730. data += tocopy;
  731. addr += tocopy;
  732. }
  733. return X86EMUL_CONTINUE;
  734. }
  735. static int emulator_write_std(unsigned long addr,
  736. unsigned long val,
  737. unsigned int bytes,
  738. struct x86_emulate_ctxt *ctxt)
  739. {
  740. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  741. addr, bytes);
  742. return X86EMUL_UNHANDLEABLE;
  743. }
  744. static int emulator_read_emulated(unsigned long addr,
  745. unsigned long *val,
  746. unsigned int bytes,
  747. struct x86_emulate_ctxt *ctxt)
  748. {
  749. struct kvm_vcpu *vcpu = ctxt->vcpu;
  750. if (vcpu->mmio_read_completed) {
  751. memcpy(val, vcpu->mmio_data, bytes);
  752. vcpu->mmio_read_completed = 0;
  753. return X86EMUL_CONTINUE;
  754. } else if (emulator_read_std(addr, val, bytes, ctxt)
  755. == X86EMUL_CONTINUE)
  756. return X86EMUL_CONTINUE;
  757. else {
  758. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  759. if (gpa == UNMAPPED_GVA)
  760. return X86EMUL_PROPAGATE_FAULT;
  761. vcpu->mmio_needed = 1;
  762. vcpu->mmio_phys_addr = gpa;
  763. vcpu->mmio_size = bytes;
  764. vcpu->mmio_is_write = 0;
  765. return X86EMUL_UNHANDLEABLE;
  766. }
  767. }
  768. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  769. unsigned long val, int bytes)
  770. {
  771. struct kvm_memory_slot *m;
  772. struct page *page;
  773. void *virt;
  774. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  775. return 0;
  776. m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
  777. if (!m)
  778. return 0;
  779. page = gfn_to_page(m, gpa >> PAGE_SHIFT);
  780. kvm_mmu_pre_write(vcpu, gpa, bytes);
  781. virt = kmap_atomic(page, KM_USER0);
  782. memcpy(virt + offset_in_page(gpa), &val, bytes);
  783. kunmap_atomic(virt, KM_USER0);
  784. kvm_mmu_post_write(vcpu, gpa, bytes);
  785. return 1;
  786. }
  787. static int emulator_write_emulated(unsigned long addr,
  788. unsigned long val,
  789. unsigned int bytes,
  790. struct x86_emulate_ctxt *ctxt)
  791. {
  792. struct kvm_vcpu *vcpu = ctxt->vcpu;
  793. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  794. if (gpa == UNMAPPED_GVA)
  795. return X86EMUL_PROPAGATE_FAULT;
  796. if (emulator_write_phys(vcpu, gpa, val, bytes))
  797. return X86EMUL_CONTINUE;
  798. vcpu->mmio_needed = 1;
  799. vcpu->mmio_phys_addr = gpa;
  800. vcpu->mmio_size = bytes;
  801. vcpu->mmio_is_write = 1;
  802. memcpy(vcpu->mmio_data, &val, bytes);
  803. return X86EMUL_CONTINUE;
  804. }
  805. static int emulator_cmpxchg_emulated(unsigned long addr,
  806. unsigned long old,
  807. unsigned long new,
  808. unsigned int bytes,
  809. struct x86_emulate_ctxt *ctxt)
  810. {
  811. static int reported;
  812. if (!reported) {
  813. reported = 1;
  814. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  815. }
  816. return emulator_write_emulated(addr, new, bytes, ctxt);
  817. }
  818. #ifdef CONFIG_X86_32
  819. static int emulator_cmpxchg8b_emulated(unsigned long addr,
  820. unsigned long old_lo,
  821. unsigned long old_hi,
  822. unsigned long new_lo,
  823. unsigned long new_hi,
  824. struct x86_emulate_ctxt *ctxt)
  825. {
  826. static int reported;
  827. int r;
  828. if (!reported) {
  829. reported = 1;
  830. printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
  831. }
  832. r = emulator_write_emulated(addr, new_lo, 4, ctxt);
  833. if (r != X86EMUL_CONTINUE)
  834. return r;
  835. return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
  836. }
  837. #endif
  838. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  839. {
  840. return kvm_arch_ops->get_segment_base(vcpu, seg);
  841. }
  842. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  843. {
  844. return X86EMUL_CONTINUE;
  845. }
  846. int emulate_clts(struct kvm_vcpu *vcpu)
  847. {
  848. unsigned long cr0;
  849. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  850. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  851. kvm_arch_ops->set_cr0(vcpu, cr0);
  852. return X86EMUL_CONTINUE;
  853. }
  854. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  855. {
  856. struct kvm_vcpu *vcpu = ctxt->vcpu;
  857. switch (dr) {
  858. case 0 ... 3:
  859. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  860. return X86EMUL_CONTINUE;
  861. default:
  862. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  863. __FUNCTION__, dr);
  864. return X86EMUL_UNHANDLEABLE;
  865. }
  866. }
  867. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  868. {
  869. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  870. int exception;
  871. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  872. if (exception) {
  873. /* FIXME: better handling */
  874. return X86EMUL_UNHANDLEABLE;
  875. }
  876. return X86EMUL_CONTINUE;
  877. }
  878. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  879. {
  880. static int reported;
  881. u8 opcodes[4];
  882. unsigned long rip = ctxt->vcpu->rip;
  883. unsigned long rip_linear;
  884. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  885. if (reported)
  886. return;
  887. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  888. printk(KERN_ERR "emulation failed but !mmio_needed?"
  889. " rip %lx %02x %02x %02x %02x\n",
  890. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  891. reported = 1;
  892. }
  893. struct x86_emulate_ops emulate_ops = {
  894. .read_std = emulator_read_std,
  895. .write_std = emulator_write_std,
  896. .read_emulated = emulator_read_emulated,
  897. .write_emulated = emulator_write_emulated,
  898. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  899. #ifdef CONFIG_X86_32
  900. .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
  901. #endif
  902. };
  903. int emulate_instruction(struct kvm_vcpu *vcpu,
  904. struct kvm_run *run,
  905. unsigned long cr2,
  906. u16 error_code)
  907. {
  908. struct x86_emulate_ctxt emulate_ctxt;
  909. int r;
  910. int cs_db, cs_l;
  911. kvm_arch_ops->cache_regs(vcpu);
  912. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  913. emulate_ctxt.vcpu = vcpu;
  914. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  915. emulate_ctxt.cr2 = cr2;
  916. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  917. ? X86EMUL_MODE_REAL : cs_l
  918. ? X86EMUL_MODE_PROT64 : cs_db
  919. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  920. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  921. emulate_ctxt.cs_base = 0;
  922. emulate_ctxt.ds_base = 0;
  923. emulate_ctxt.es_base = 0;
  924. emulate_ctxt.ss_base = 0;
  925. } else {
  926. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  927. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  928. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  929. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  930. }
  931. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  932. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  933. vcpu->mmio_is_write = 0;
  934. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  935. if ((r || vcpu->mmio_is_write) && run) {
  936. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  937. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  938. run->mmio.len = vcpu->mmio_size;
  939. run->mmio.is_write = vcpu->mmio_is_write;
  940. }
  941. if (r) {
  942. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  943. return EMULATE_DONE;
  944. if (!vcpu->mmio_needed) {
  945. report_emulation_failure(&emulate_ctxt);
  946. return EMULATE_FAIL;
  947. }
  948. return EMULATE_DO_MMIO;
  949. }
  950. kvm_arch_ops->decache_regs(vcpu);
  951. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  952. if (vcpu->mmio_is_write)
  953. return EMULATE_DO_MMIO;
  954. return EMULATE_DONE;
  955. }
  956. EXPORT_SYMBOL_GPL(emulate_instruction);
  957. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  958. {
  959. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  960. kvm_arch_ops->decache_regs(vcpu);
  961. ret = -KVM_EINVAL;
  962. #ifdef CONFIG_X86_64
  963. if (is_long_mode(vcpu)) {
  964. nr = vcpu->regs[VCPU_REGS_RAX];
  965. a0 = vcpu->regs[VCPU_REGS_RDI];
  966. a1 = vcpu->regs[VCPU_REGS_RSI];
  967. a2 = vcpu->regs[VCPU_REGS_RDX];
  968. a3 = vcpu->regs[VCPU_REGS_RCX];
  969. a4 = vcpu->regs[VCPU_REGS_R8];
  970. a5 = vcpu->regs[VCPU_REGS_R9];
  971. } else
  972. #endif
  973. {
  974. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  975. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  976. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  977. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  978. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  979. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  980. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  981. }
  982. switch (nr) {
  983. default:
  984. ;
  985. }
  986. vcpu->regs[VCPU_REGS_RAX] = ret;
  987. kvm_arch_ops->cache_regs(vcpu);
  988. return 1;
  989. }
  990. EXPORT_SYMBOL_GPL(kvm_hypercall);
  991. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  992. {
  993. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  994. }
  995. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  996. {
  997. struct descriptor_table dt = { limit, base };
  998. kvm_arch_ops->set_gdt(vcpu, &dt);
  999. }
  1000. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1001. {
  1002. struct descriptor_table dt = { limit, base };
  1003. kvm_arch_ops->set_idt(vcpu, &dt);
  1004. }
  1005. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1006. unsigned long *rflags)
  1007. {
  1008. lmsw(vcpu, msw);
  1009. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1010. }
  1011. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1012. {
  1013. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1014. switch (cr) {
  1015. case 0:
  1016. return vcpu->cr0;
  1017. case 2:
  1018. return vcpu->cr2;
  1019. case 3:
  1020. return vcpu->cr3;
  1021. case 4:
  1022. return vcpu->cr4;
  1023. default:
  1024. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1025. return 0;
  1026. }
  1027. }
  1028. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1029. unsigned long *rflags)
  1030. {
  1031. switch (cr) {
  1032. case 0:
  1033. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1034. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1035. break;
  1036. case 2:
  1037. vcpu->cr2 = val;
  1038. break;
  1039. case 3:
  1040. set_cr3(vcpu, val);
  1041. break;
  1042. case 4:
  1043. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1044. break;
  1045. default:
  1046. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1047. }
  1048. }
  1049. /*
  1050. * Register the para guest with the host:
  1051. */
  1052. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1053. {
  1054. struct kvm_vcpu_para_state *para_state;
  1055. hpa_t para_state_hpa, hypercall_hpa;
  1056. struct page *para_state_page;
  1057. unsigned char *hypercall;
  1058. gpa_t hypercall_gpa;
  1059. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1060. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1061. /*
  1062. * Needs to be page aligned:
  1063. */
  1064. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1065. goto err_gp;
  1066. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1067. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1068. if (is_error_hpa(para_state_hpa))
  1069. goto err_gp;
  1070. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1071. para_state = kmap_atomic(para_state_page, KM_USER0);
  1072. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1073. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1074. para_state->host_version = KVM_PARA_API_VERSION;
  1075. /*
  1076. * We cannot support guests that try to register themselves
  1077. * with a newer API version than the host supports:
  1078. */
  1079. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1080. para_state->ret = -KVM_EINVAL;
  1081. goto err_kunmap_skip;
  1082. }
  1083. hypercall_gpa = para_state->hypercall_gpa;
  1084. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1085. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1086. if (is_error_hpa(hypercall_hpa)) {
  1087. para_state->ret = -KVM_EINVAL;
  1088. goto err_kunmap_skip;
  1089. }
  1090. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1091. vcpu->para_state_page = para_state_page;
  1092. vcpu->para_state_gpa = para_state_gpa;
  1093. vcpu->hypercall_gpa = hypercall_gpa;
  1094. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1095. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1096. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1097. kunmap_atomic(hypercall, KM_USER1);
  1098. para_state->ret = 0;
  1099. err_kunmap_skip:
  1100. kunmap_atomic(para_state, KM_USER0);
  1101. return 0;
  1102. err_gp:
  1103. return 1;
  1104. }
  1105. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1106. {
  1107. u64 data;
  1108. switch (msr) {
  1109. case 0xc0010010: /* SYSCFG */
  1110. case 0xc0010015: /* HWCR */
  1111. case MSR_IA32_PLATFORM_ID:
  1112. case MSR_IA32_P5_MC_ADDR:
  1113. case MSR_IA32_P5_MC_TYPE:
  1114. case MSR_IA32_MC0_CTL:
  1115. case MSR_IA32_MCG_STATUS:
  1116. case MSR_IA32_MCG_CAP:
  1117. case MSR_IA32_MC0_MISC:
  1118. case MSR_IA32_MC0_MISC+4:
  1119. case MSR_IA32_MC0_MISC+8:
  1120. case MSR_IA32_MC0_MISC+12:
  1121. case MSR_IA32_MC0_MISC+16:
  1122. case MSR_IA32_UCODE_REV:
  1123. case MSR_IA32_PERF_STATUS:
  1124. /* MTRR registers */
  1125. case 0xfe:
  1126. case 0x200 ... 0x2ff:
  1127. data = 0;
  1128. break;
  1129. case 0xcd: /* fsb frequency */
  1130. data = 3;
  1131. break;
  1132. case MSR_IA32_APICBASE:
  1133. data = vcpu->apic_base;
  1134. break;
  1135. case MSR_IA32_MISC_ENABLE:
  1136. data = vcpu->ia32_misc_enable_msr;
  1137. break;
  1138. #ifdef CONFIG_X86_64
  1139. case MSR_EFER:
  1140. data = vcpu->shadow_efer;
  1141. break;
  1142. #endif
  1143. default:
  1144. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1145. return 1;
  1146. }
  1147. *pdata = data;
  1148. return 0;
  1149. }
  1150. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1151. /*
  1152. * Reads an msr value (of 'msr_index') into 'pdata'.
  1153. * Returns 0 on success, non-0 otherwise.
  1154. * Assumes vcpu_load() was already called.
  1155. */
  1156. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1157. {
  1158. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1159. }
  1160. #ifdef CONFIG_X86_64
  1161. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1162. {
  1163. if (efer & EFER_RESERVED_BITS) {
  1164. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1165. efer);
  1166. inject_gp(vcpu);
  1167. return;
  1168. }
  1169. if (is_paging(vcpu)
  1170. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1171. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1172. inject_gp(vcpu);
  1173. return;
  1174. }
  1175. kvm_arch_ops->set_efer(vcpu, efer);
  1176. efer &= ~EFER_LMA;
  1177. efer |= vcpu->shadow_efer & EFER_LMA;
  1178. vcpu->shadow_efer = efer;
  1179. }
  1180. #endif
  1181. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1182. {
  1183. switch (msr) {
  1184. #ifdef CONFIG_X86_64
  1185. case MSR_EFER:
  1186. set_efer(vcpu, data);
  1187. break;
  1188. #endif
  1189. case MSR_IA32_MC0_STATUS:
  1190. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1191. __FUNCTION__, data);
  1192. break;
  1193. case MSR_IA32_UCODE_REV:
  1194. case MSR_IA32_UCODE_WRITE:
  1195. case 0x200 ... 0x2ff: /* MTRRs */
  1196. break;
  1197. case MSR_IA32_APICBASE:
  1198. vcpu->apic_base = data;
  1199. break;
  1200. case MSR_IA32_MISC_ENABLE:
  1201. vcpu->ia32_misc_enable_msr = data;
  1202. break;
  1203. /*
  1204. * This is the 'probe whether the host is KVM' logic:
  1205. */
  1206. case MSR_KVM_API_MAGIC:
  1207. return vcpu_register_para(vcpu, data);
  1208. default:
  1209. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1210. return 1;
  1211. }
  1212. return 0;
  1213. }
  1214. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1215. /*
  1216. * Writes msr value into into the appropriate "register".
  1217. * Returns 0 on success, non-0 otherwise.
  1218. * Assumes vcpu_load() was already called.
  1219. */
  1220. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1221. {
  1222. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1223. }
  1224. void kvm_resched(struct kvm_vcpu *vcpu)
  1225. {
  1226. vcpu_put(vcpu);
  1227. cond_resched();
  1228. /* Cannot fail - no vcpu unplug yet. */
  1229. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  1230. }
  1231. EXPORT_SYMBOL_GPL(kvm_resched);
  1232. void load_msrs(struct vmx_msr_entry *e, int n)
  1233. {
  1234. int i;
  1235. for (i = 0; i < n; ++i)
  1236. wrmsrl(e[i].index, e[i].data);
  1237. }
  1238. EXPORT_SYMBOL_GPL(load_msrs);
  1239. void save_msrs(struct vmx_msr_entry *e, int n)
  1240. {
  1241. int i;
  1242. for (i = 0; i < n; ++i)
  1243. rdmsrl(e[i].index, e[i].data);
  1244. }
  1245. EXPORT_SYMBOL_GPL(save_msrs);
  1246. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  1247. {
  1248. struct kvm_vcpu *vcpu;
  1249. int r;
  1250. if (!valid_vcpu(kvm_run->vcpu))
  1251. return -EINVAL;
  1252. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  1253. if (!vcpu)
  1254. return -ENOENT;
  1255. /* re-sync apic's tpr */
  1256. vcpu->cr8 = kvm_run->cr8;
  1257. if (kvm_run->emulated) {
  1258. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1259. kvm_run->emulated = 0;
  1260. }
  1261. if (kvm_run->mmio_completed) {
  1262. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1263. vcpu->mmio_read_completed = 1;
  1264. }
  1265. vcpu->mmio_needed = 0;
  1266. r = kvm_arch_ops->run(vcpu, kvm_run);
  1267. vcpu_put(vcpu);
  1268. return r;
  1269. }
  1270. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1271. {
  1272. struct kvm_vcpu *vcpu;
  1273. if (!valid_vcpu(regs->vcpu))
  1274. return -EINVAL;
  1275. vcpu = vcpu_load(kvm, regs->vcpu);
  1276. if (!vcpu)
  1277. return -ENOENT;
  1278. kvm_arch_ops->cache_regs(vcpu);
  1279. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1280. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1281. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1282. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1283. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1284. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1285. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1286. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1287. #ifdef CONFIG_X86_64
  1288. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1289. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1290. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1291. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1292. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1293. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1294. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1295. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1296. #endif
  1297. regs->rip = vcpu->rip;
  1298. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1299. /*
  1300. * Don't leak debug flags in case they were set for guest debugging
  1301. */
  1302. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1303. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1304. vcpu_put(vcpu);
  1305. return 0;
  1306. }
  1307. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1308. {
  1309. struct kvm_vcpu *vcpu;
  1310. if (!valid_vcpu(regs->vcpu))
  1311. return -EINVAL;
  1312. vcpu = vcpu_load(kvm, regs->vcpu);
  1313. if (!vcpu)
  1314. return -ENOENT;
  1315. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1316. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1317. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1318. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1319. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1320. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1321. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1322. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1323. #ifdef CONFIG_X86_64
  1324. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1325. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1326. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1327. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1328. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1329. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1330. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1331. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1332. #endif
  1333. vcpu->rip = regs->rip;
  1334. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1335. kvm_arch_ops->decache_regs(vcpu);
  1336. vcpu_put(vcpu);
  1337. return 0;
  1338. }
  1339. static void get_segment(struct kvm_vcpu *vcpu,
  1340. struct kvm_segment *var, int seg)
  1341. {
  1342. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1343. }
  1344. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1345. {
  1346. struct kvm_vcpu *vcpu;
  1347. struct descriptor_table dt;
  1348. if (!valid_vcpu(sregs->vcpu))
  1349. return -EINVAL;
  1350. vcpu = vcpu_load(kvm, sregs->vcpu);
  1351. if (!vcpu)
  1352. return -ENOENT;
  1353. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1354. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1355. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1356. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1357. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1358. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1359. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1360. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1361. kvm_arch_ops->get_idt(vcpu, &dt);
  1362. sregs->idt.limit = dt.limit;
  1363. sregs->idt.base = dt.base;
  1364. kvm_arch_ops->get_gdt(vcpu, &dt);
  1365. sregs->gdt.limit = dt.limit;
  1366. sregs->gdt.base = dt.base;
  1367. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1368. sregs->cr0 = vcpu->cr0;
  1369. sregs->cr2 = vcpu->cr2;
  1370. sregs->cr3 = vcpu->cr3;
  1371. sregs->cr4 = vcpu->cr4;
  1372. sregs->cr8 = vcpu->cr8;
  1373. sregs->efer = vcpu->shadow_efer;
  1374. sregs->apic_base = vcpu->apic_base;
  1375. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1376. sizeof sregs->interrupt_bitmap);
  1377. vcpu_put(vcpu);
  1378. return 0;
  1379. }
  1380. static void set_segment(struct kvm_vcpu *vcpu,
  1381. struct kvm_segment *var, int seg)
  1382. {
  1383. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1384. }
  1385. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1386. {
  1387. struct kvm_vcpu *vcpu;
  1388. int mmu_reset_needed = 0;
  1389. int i;
  1390. struct descriptor_table dt;
  1391. if (!valid_vcpu(sregs->vcpu))
  1392. return -EINVAL;
  1393. vcpu = vcpu_load(kvm, sregs->vcpu);
  1394. if (!vcpu)
  1395. return -ENOENT;
  1396. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1397. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1398. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1399. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1400. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1401. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1402. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1403. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1404. dt.limit = sregs->idt.limit;
  1405. dt.base = sregs->idt.base;
  1406. kvm_arch_ops->set_idt(vcpu, &dt);
  1407. dt.limit = sregs->gdt.limit;
  1408. dt.base = sregs->gdt.base;
  1409. kvm_arch_ops->set_gdt(vcpu, &dt);
  1410. vcpu->cr2 = sregs->cr2;
  1411. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1412. vcpu->cr3 = sregs->cr3;
  1413. vcpu->cr8 = sregs->cr8;
  1414. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1415. #ifdef CONFIG_X86_64
  1416. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1417. #endif
  1418. vcpu->apic_base = sregs->apic_base;
  1419. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1420. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1421. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1422. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1423. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1424. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1425. load_pdptrs(vcpu, vcpu->cr3);
  1426. if (mmu_reset_needed)
  1427. kvm_mmu_reset_context(vcpu);
  1428. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1429. sizeof vcpu->irq_pending);
  1430. vcpu->irq_summary = 0;
  1431. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1432. if (vcpu->irq_pending[i])
  1433. __set_bit(i, &vcpu->irq_summary);
  1434. vcpu_put(vcpu);
  1435. return 0;
  1436. }
  1437. /*
  1438. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1439. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1440. *
  1441. * This list is modified at module load time to reflect the
  1442. * capabilities of the host cpu.
  1443. */
  1444. static u32 msrs_to_save[] = {
  1445. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1446. MSR_K6_STAR,
  1447. #ifdef CONFIG_X86_64
  1448. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1449. #endif
  1450. MSR_IA32_TIME_STAMP_COUNTER,
  1451. };
  1452. static unsigned num_msrs_to_save;
  1453. static u32 emulated_msrs[] = {
  1454. MSR_IA32_MISC_ENABLE,
  1455. };
  1456. static __init void kvm_init_msr_list(void)
  1457. {
  1458. u32 dummy[2];
  1459. unsigned i, j;
  1460. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1461. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1462. continue;
  1463. if (j < i)
  1464. msrs_to_save[j] = msrs_to_save[i];
  1465. j++;
  1466. }
  1467. num_msrs_to_save = j;
  1468. }
  1469. /*
  1470. * Adapt set_msr() to msr_io()'s calling convention
  1471. */
  1472. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1473. {
  1474. return set_msr(vcpu, index, *data);
  1475. }
  1476. /*
  1477. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1478. *
  1479. * @return number of msrs set successfully.
  1480. */
  1481. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1482. struct kvm_msr_entry *entries,
  1483. int (*do_msr)(struct kvm_vcpu *vcpu,
  1484. unsigned index, u64 *data))
  1485. {
  1486. struct kvm_vcpu *vcpu;
  1487. int i;
  1488. if (!valid_vcpu(msrs->vcpu))
  1489. return -EINVAL;
  1490. vcpu = vcpu_load(kvm, msrs->vcpu);
  1491. if (!vcpu)
  1492. return -ENOENT;
  1493. for (i = 0; i < msrs->nmsrs; ++i)
  1494. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1495. break;
  1496. vcpu_put(vcpu);
  1497. return i;
  1498. }
  1499. /*
  1500. * Read or write a bunch of msrs. Parameters are user addresses.
  1501. *
  1502. * @return number of msrs set successfully.
  1503. */
  1504. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1505. int (*do_msr)(struct kvm_vcpu *vcpu,
  1506. unsigned index, u64 *data),
  1507. int writeback)
  1508. {
  1509. struct kvm_msrs msrs;
  1510. struct kvm_msr_entry *entries;
  1511. int r, n;
  1512. unsigned size;
  1513. r = -EFAULT;
  1514. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1515. goto out;
  1516. r = -E2BIG;
  1517. if (msrs.nmsrs >= MAX_IO_MSRS)
  1518. goto out;
  1519. r = -ENOMEM;
  1520. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1521. entries = vmalloc(size);
  1522. if (!entries)
  1523. goto out;
  1524. r = -EFAULT;
  1525. if (copy_from_user(entries, user_msrs->entries, size))
  1526. goto out_free;
  1527. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1528. if (r < 0)
  1529. goto out_free;
  1530. r = -EFAULT;
  1531. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1532. goto out_free;
  1533. r = n;
  1534. out_free:
  1535. vfree(entries);
  1536. out:
  1537. return r;
  1538. }
  1539. /*
  1540. * Translate a guest virtual address to a guest physical address.
  1541. */
  1542. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1543. {
  1544. unsigned long vaddr = tr->linear_address;
  1545. struct kvm_vcpu *vcpu;
  1546. gpa_t gpa;
  1547. vcpu = vcpu_load(kvm, tr->vcpu);
  1548. if (!vcpu)
  1549. return -ENOENT;
  1550. spin_lock(&kvm->lock);
  1551. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1552. tr->physical_address = gpa;
  1553. tr->valid = gpa != UNMAPPED_GVA;
  1554. tr->writeable = 1;
  1555. tr->usermode = 0;
  1556. spin_unlock(&kvm->lock);
  1557. vcpu_put(vcpu);
  1558. return 0;
  1559. }
  1560. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1561. {
  1562. struct kvm_vcpu *vcpu;
  1563. if (!valid_vcpu(irq->vcpu))
  1564. return -EINVAL;
  1565. if (irq->irq < 0 || irq->irq >= 256)
  1566. return -EINVAL;
  1567. vcpu = vcpu_load(kvm, irq->vcpu);
  1568. if (!vcpu)
  1569. return -ENOENT;
  1570. set_bit(irq->irq, vcpu->irq_pending);
  1571. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1572. vcpu_put(vcpu);
  1573. return 0;
  1574. }
  1575. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1576. struct kvm_debug_guest *dbg)
  1577. {
  1578. struct kvm_vcpu *vcpu;
  1579. int r;
  1580. if (!valid_vcpu(dbg->vcpu))
  1581. return -EINVAL;
  1582. vcpu = vcpu_load(kvm, dbg->vcpu);
  1583. if (!vcpu)
  1584. return -ENOENT;
  1585. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1586. vcpu_put(vcpu);
  1587. return r;
  1588. }
  1589. static long kvm_dev_ioctl(struct file *filp,
  1590. unsigned int ioctl, unsigned long arg)
  1591. {
  1592. struct kvm *kvm = filp->private_data;
  1593. void __user *argp = (void __user *)arg;
  1594. int r = -EINVAL;
  1595. switch (ioctl) {
  1596. case KVM_GET_API_VERSION:
  1597. r = KVM_API_VERSION;
  1598. break;
  1599. case KVM_CREATE_VCPU:
  1600. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1601. if (r)
  1602. goto out;
  1603. break;
  1604. case KVM_RUN: {
  1605. struct kvm_run kvm_run;
  1606. r = -EFAULT;
  1607. if (copy_from_user(&kvm_run, argp, sizeof kvm_run))
  1608. goto out;
  1609. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1610. if (r < 0 && r != -EINTR)
  1611. goto out;
  1612. if (copy_to_user(argp, &kvm_run, sizeof kvm_run)) {
  1613. r = -EFAULT;
  1614. goto out;
  1615. }
  1616. break;
  1617. }
  1618. case KVM_GET_REGS: {
  1619. struct kvm_regs kvm_regs;
  1620. r = -EFAULT;
  1621. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1622. goto out;
  1623. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1624. if (r)
  1625. goto out;
  1626. r = -EFAULT;
  1627. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  1628. goto out;
  1629. r = 0;
  1630. break;
  1631. }
  1632. case KVM_SET_REGS: {
  1633. struct kvm_regs kvm_regs;
  1634. r = -EFAULT;
  1635. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1636. goto out;
  1637. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1638. if (r)
  1639. goto out;
  1640. r = 0;
  1641. break;
  1642. }
  1643. case KVM_GET_SREGS: {
  1644. struct kvm_sregs kvm_sregs;
  1645. r = -EFAULT;
  1646. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1647. goto out;
  1648. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1649. if (r)
  1650. goto out;
  1651. r = -EFAULT;
  1652. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  1653. goto out;
  1654. r = 0;
  1655. break;
  1656. }
  1657. case KVM_SET_SREGS: {
  1658. struct kvm_sregs kvm_sregs;
  1659. r = -EFAULT;
  1660. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1661. goto out;
  1662. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1663. if (r)
  1664. goto out;
  1665. r = 0;
  1666. break;
  1667. }
  1668. case KVM_TRANSLATE: {
  1669. struct kvm_translation tr;
  1670. r = -EFAULT;
  1671. if (copy_from_user(&tr, argp, sizeof tr))
  1672. goto out;
  1673. r = kvm_dev_ioctl_translate(kvm, &tr);
  1674. if (r)
  1675. goto out;
  1676. r = -EFAULT;
  1677. if (copy_to_user(argp, &tr, sizeof tr))
  1678. goto out;
  1679. r = 0;
  1680. break;
  1681. }
  1682. case KVM_INTERRUPT: {
  1683. struct kvm_interrupt irq;
  1684. r = -EFAULT;
  1685. if (copy_from_user(&irq, argp, sizeof irq))
  1686. goto out;
  1687. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1688. if (r)
  1689. goto out;
  1690. r = 0;
  1691. break;
  1692. }
  1693. case KVM_DEBUG_GUEST: {
  1694. struct kvm_debug_guest dbg;
  1695. r = -EFAULT;
  1696. if (copy_from_user(&dbg, argp, sizeof dbg))
  1697. goto out;
  1698. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1699. if (r)
  1700. goto out;
  1701. r = 0;
  1702. break;
  1703. }
  1704. case KVM_SET_MEMORY_REGION: {
  1705. struct kvm_memory_region kvm_mem;
  1706. r = -EFAULT;
  1707. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1708. goto out;
  1709. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1710. if (r)
  1711. goto out;
  1712. break;
  1713. }
  1714. case KVM_GET_DIRTY_LOG: {
  1715. struct kvm_dirty_log log;
  1716. r = -EFAULT;
  1717. if (copy_from_user(&log, argp, sizeof log))
  1718. goto out;
  1719. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1720. if (r)
  1721. goto out;
  1722. break;
  1723. }
  1724. case KVM_GET_MSRS:
  1725. r = msr_io(kvm, argp, get_msr, 1);
  1726. break;
  1727. case KVM_SET_MSRS:
  1728. r = msr_io(kvm, argp, do_set_msr, 0);
  1729. break;
  1730. case KVM_GET_MSR_INDEX_LIST: {
  1731. struct kvm_msr_list __user *user_msr_list = argp;
  1732. struct kvm_msr_list msr_list;
  1733. unsigned n;
  1734. r = -EFAULT;
  1735. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1736. goto out;
  1737. n = msr_list.nmsrs;
  1738. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1739. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1740. goto out;
  1741. r = -E2BIG;
  1742. if (n < num_msrs_to_save)
  1743. goto out;
  1744. r = -EFAULT;
  1745. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1746. num_msrs_to_save * sizeof(u32)))
  1747. goto out;
  1748. if (copy_to_user(user_msr_list->indices
  1749. + num_msrs_to_save * sizeof(u32),
  1750. &emulated_msrs,
  1751. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1752. goto out;
  1753. r = 0;
  1754. break;
  1755. }
  1756. default:
  1757. ;
  1758. }
  1759. out:
  1760. return r;
  1761. }
  1762. static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
  1763. unsigned long address,
  1764. int *type)
  1765. {
  1766. struct kvm *kvm = vma->vm_file->private_data;
  1767. unsigned long pgoff;
  1768. struct kvm_memory_slot *slot;
  1769. struct page *page;
  1770. *type = VM_FAULT_MINOR;
  1771. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1772. slot = gfn_to_memslot(kvm, pgoff);
  1773. if (!slot)
  1774. return NOPAGE_SIGBUS;
  1775. page = gfn_to_page(slot, pgoff);
  1776. if (!page)
  1777. return NOPAGE_SIGBUS;
  1778. get_page(page);
  1779. return page;
  1780. }
  1781. static struct vm_operations_struct kvm_dev_vm_ops = {
  1782. .nopage = kvm_dev_nopage,
  1783. };
  1784. static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
  1785. {
  1786. vma->vm_ops = &kvm_dev_vm_ops;
  1787. return 0;
  1788. }
  1789. static struct file_operations kvm_chardev_ops = {
  1790. .open = kvm_dev_open,
  1791. .release = kvm_dev_release,
  1792. .unlocked_ioctl = kvm_dev_ioctl,
  1793. .compat_ioctl = kvm_dev_ioctl,
  1794. .mmap = kvm_dev_mmap,
  1795. };
  1796. static struct miscdevice kvm_dev = {
  1797. MISC_DYNAMIC_MINOR,
  1798. "kvm",
  1799. &kvm_chardev_ops,
  1800. };
  1801. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1802. void *v)
  1803. {
  1804. if (val == SYS_RESTART) {
  1805. /*
  1806. * Some (well, at least mine) BIOSes hang on reboot if
  1807. * in vmx root mode.
  1808. */
  1809. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1810. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  1811. }
  1812. return NOTIFY_OK;
  1813. }
  1814. static struct notifier_block kvm_reboot_notifier = {
  1815. .notifier_call = kvm_reboot,
  1816. .priority = 0,
  1817. };
  1818. /*
  1819. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  1820. * cached on it.
  1821. */
  1822. static void decache_vcpus_on_cpu(int cpu)
  1823. {
  1824. struct kvm *vm;
  1825. struct kvm_vcpu *vcpu;
  1826. int i;
  1827. spin_lock(&kvm_lock);
  1828. list_for_each_entry(vm, &vm_list, vm_list)
  1829. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1830. vcpu = &vm->vcpus[i];
  1831. /*
  1832. * If the vcpu is locked, then it is running on some
  1833. * other cpu and therefore it is not cached on the
  1834. * cpu in question.
  1835. *
  1836. * If it's not locked, check the last cpu it executed
  1837. * on.
  1838. */
  1839. if (mutex_trylock(&vcpu->mutex)) {
  1840. if (vcpu->cpu == cpu) {
  1841. kvm_arch_ops->vcpu_decache(vcpu);
  1842. vcpu->cpu = -1;
  1843. }
  1844. mutex_unlock(&vcpu->mutex);
  1845. }
  1846. }
  1847. spin_unlock(&kvm_lock);
  1848. }
  1849. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1850. void *v)
  1851. {
  1852. int cpu = (long)v;
  1853. switch (val) {
  1854. case CPU_DOWN_PREPARE:
  1855. case CPU_UP_CANCELED:
  1856. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1857. cpu);
  1858. decache_vcpus_on_cpu(cpu);
  1859. smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
  1860. NULL, 0, 1);
  1861. break;
  1862. case CPU_ONLINE:
  1863. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1864. cpu);
  1865. smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
  1866. NULL, 0, 1);
  1867. break;
  1868. }
  1869. return NOTIFY_OK;
  1870. }
  1871. static struct notifier_block kvm_cpu_notifier = {
  1872. .notifier_call = kvm_cpu_hotplug,
  1873. .priority = 20, /* must be > scheduler priority */
  1874. };
  1875. static __init void kvm_init_debug(void)
  1876. {
  1877. struct kvm_stats_debugfs_item *p;
  1878. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1879. for (p = debugfs_entries; p->name; ++p)
  1880. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1881. p->data);
  1882. }
  1883. static void kvm_exit_debug(void)
  1884. {
  1885. struct kvm_stats_debugfs_item *p;
  1886. for (p = debugfs_entries; p->name; ++p)
  1887. debugfs_remove(p->dentry);
  1888. debugfs_remove(debugfs_dir);
  1889. }
  1890. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1891. {
  1892. decache_vcpus_on_cpu(raw_smp_processor_id());
  1893. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  1894. return 0;
  1895. }
  1896. static int kvm_resume(struct sys_device *dev)
  1897. {
  1898. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  1899. return 0;
  1900. }
  1901. static struct sysdev_class kvm_sysdev_class = {
  1902. set_kset_name("kvm"),
  1903. .suspend = kvm_suspend,
  1904. .resume = kvm_resume,
  1905. };
  1906. static struct sys_device kvm_sysdev = {
  1907. .id = 0,
  1908. .cls = &kvm_sysdev_class,
  1909. };
  1910. hpa_t bad_page_address;
  1911. static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
  1912. const char *dev_name, void *data, struct vfsmount *mnt)
  1913. {
  1914. return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_MAGIC, mnt);
  1915. }
  1916. static struct file_system_type kvm_fs_type = {
  1917. .name = "kvmfs",
  1918. .get_sb = kvmfs_get_sb,
  1919. .kill_sb = kill_anon_super,
  1920. };
  1921. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  1922. {
  1923. int r;
  1924. if (kvm_arch_ops) {
  1925. printk(KERN_ERR "kvm: already loaded the other module\n");
  1926. return -EEXIST;
  1927. }
  1928. if (!ops->cpu_has_kvm_support()) {
  1929. printk(KERN_ERR "kvm: no hardware support\n");
  1930. return -EOPNOTSUPP;
  1931. }
  1932. if (ops->disabled_by_bios()) {
  1933. printk(KERN_ERR "kvm: disabled by bios\n");
  1934. return -EOPNOTSUPP;
  1935. }
  1936. kvm_arch_ops = ops;
  1937. r = kvm_arch_ops->hardware_setup();
  1938. if (r < 0)
  1939. return r;
  1940. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  1941. r = register_cpu_notifier(&kvm_cpu_notifier);
  1942. if (r)
  1943. goto out_free_1;
  1944. register_reboot_notifier(&kvm_reboot_notifier);
  1945. r = sysdev_class_register(&kvm_sysdev_class);
  1946. if (r)
  1947. goto out_free_2;
  1948. r = sysdev_register(&kvm_sysdev);
  1949. if (r)
  1950. goto out_free_3;
  1951. kvm_chardev_ops.owner = module;
  1952. r = misc_register(&kvm_dev);
  1953. if (r) {
  1954. printk (KERN_ERR "kvm: misc device register failed\n");
  1955. goto out_free;
  1956. }
  1957. return r;
  1958. out_free:
  1959. sysdev_unregister(&kvm_sysdev);
  1960. out_free_3:
  1961. sysdev_class_unregister(&kvm_sysdev_class);
  1962. out_free_2:
  1963. unregister_reboot_notifier(&kvm_reboot_notifier);
  1964. unregister_cpu_notifier(&kvm_cpu_notifier);
  1965. out_free_1:
  1966. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  1967. kvm_arch_ops->hardware_unsetup();
  1968. return r;
  1969. }
  1970. void kvm_exit_arch(void)
  1971. {
  1972. misc_deregister(&kvm_dev);
  1973. sysdev_unregister(&kvm_sysdev);
  1974. sysdev_class_unregister(&kvm_sysdev_class);
  1975. unregister_reboot_notifier(&kvm_reboot_notifier);
  1976. unregister_cpu_notifier(&kvm_cpu_notifier);
  1977. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  1978. kvm_arch_ops->hardware_unsetup();
  1979. kvm_arch_ops = NULL;
  1980. }
  1981. static __init int kvm_init(void)
  1982. {
  1983. static struct page *bad_page;
  1984. int r;
  1985. r = register_filesystem(&kvm_fs_type);
  1986. if (r)
  1987. goto out3;
  1988. kvmfs_mnt = kern_mount(&kvm_fs_type);
  1989. r = PTR_ERR(kvmfs_mnt);
  1990. if (IS_ERR(kvmfs_mnt))
  1991. goto out2;
  1992. kvm_init_debug();
  1993. kvm_init_msr_list();
  1994. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  1995. r = -ENOMEM;
  1996. goto out;
  1997. }
  1998. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  1999. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2000. return r;
  2001. out:
  2002. kvm_exit_debug();
  2003. mntput(kvmfs_mnt);
  2004. out2:
  2005. unregister_filesystem(&kvm_fs_type);
  2006. out3:
  2007. return r;
  2008. }
  2009. static __exit void kvm_exit(void)
  2010. {
  2011. kvm_exit_debug();
  2012. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2013. mntput(kvmfs_mnt);
  2014. unregister_filesystem(&kvm_fs_type);
  2015. }
  2016. module_init(kvm_init)
  2017. module_exit(kvm_exit)
  2018. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2019. EXPORT_SYMBOL_GPL(kvm_exit_arch);