intel_dp.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
  41. #define IS_PCH_eDP(i) ((i)->is_pch_edp)
  42. struct intel_dp {
  43. struct intel_encoder base;
  44. uint32_t output_reg;
  45. uint32_t DP;
  46. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  47. bool has_audio;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[4];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. };
  56. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  57. {
  58. return container_of(enc_to_intel_encoder(encoder), struct intel_dp, base);
  59. }
  60. static void intel_dp_link_train(struct intel_dp *intel_dp);
  61. static void intel_dp_link_down(struct intel_dp *intel_dp);
  62. void
  63. intel_edp_link_config (struct intel_encoder *intel_encoder,
  64. int *lane_num, int *link_bw)
  65. {
  66. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  67. *lane_num = intel_dp->lane_count;
  68. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  69. *link_bw = 162000;
  70. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  71. *link_bw = 270000;
  72. }
  73. static int
  74. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  75. {
  76. int max_lane_count = 4;
  77. if (intel_dp->dpcd[0] >= 0x11) {
  78. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  79. switch (max_lane_count) {
  80. case 1: case 2: case 4:
  81. break;
  82. default:
  83. max_lane_count = 4;
  84. }
  85. }
  86. return max_lane_count;
  87. }
  88. static int
  89. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  90. {
  91. int max_link_bw = intel_dp->dpcd[1];
  92. switch (max_link_bw) {
  93. case DP_LINK_BW_1_62:
  94. case DP_LINK_BW_2_7:
  95. break;
  96. default:
  97. max_link_bw = DP_LINK_BW_1_62;
  98. break;
  99. }
  100. return max_link_bw;
  101. }
  102. static int
  103. intel_dp_link_clock(uint8_t link_bw)
  104. {
  105. if (link_bw == DP_LINK_BW_2_7)
  106. return 270000;
  107. else
  108. return 162000;
  109. }
  110. /* I think this is a fiction */
  111. static int
  112. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  113. {
  114. struct drm_i915_private *dev_priv = dev->dev_private;
  115. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  116. return (pixel_clock * dev_priv->edp_bpp) / 8;
  117. else
  118. return pixel_clock * 3;
  119. }
  120. static int
  121. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  122. {
  123. return (max_link_clock * max_lanes * 8) / 10;
  124. }
  125. static int
  126. intel_dp_mode_valid(struct drm_connector *connector,
  127. struct drm_display_mode *mode)
  128. {
  129. struct drm_encoder *encoder = intel_attached_encoder(connector);
  130. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  131. struct drm_device *dev = connector->dev;
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  134. int max_lanes = intel_dp_max_lane_count(intel_dp);
  135. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  136. dev_priv->panel_fixed_mode) {
  137. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  138. return MODE_PANEL;
  139. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  140. return MODE_PANEL;
  141. }
  142. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  143. which are outside spec tolerances but somehow work by magic */
  144. if (!IS_eDP(intel_dp) &&
  145. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  146. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  147. return MODE_CLOCK_HIGH;
  148. if (mode->clock < 10000)
  149. return MODE_CLOCK_LOW;
  150. return MODE_OK;
  151. }
  152. static uint32_t
  153. pack_aux(uint8_t *src, int src_bytes)
  154. {
  155. int i;
  156. uint32_t v = 0;
  157. if (src_bytes > 4)
  158. src_bytes = 4;
  159. for (i = 0; i < src_bytes; i++)
  160. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  161. return v;
  162. }
  163. static void
  164. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  165. {
  166. int i;
  167. if (dst_bytes > 4)
  168. dst_bytes = 4;
  169. for (i = 0; i < dst_bytes; i++)
  170. dst[i] = src >> ((3-i) * 8);
  171. }
  172. /* hrawclock is 1/4 the FSB frequency */
  173. static int
  174. intel_hrawclk(struct drm_device *dev)
  175. {
  176. struct drm_i915_private *dev_priv = dev->dev_private;
  177. uint32_t clkcfg;
  178. clkcfg = I915_READ(CLKCFG);
  179. switch (clkcfg & CLKCFG_FSB_MASK) {
  180. case CLKCFG_FSB_400:
  181. return 100;
  182. case CLKCFG_FSB_533:
  183. return 133;
  184. case CLKCFG_FSB_667:
  185. return 166;
  186. case CLKCFG_FSB_800:
  187. return 200;
  188. case CLKCFG_FSB_1067:
  189. return 266;
  190. case CLKCFG_FSB_1333:
  191. return 333;
  192. /* these two are just a guess; one of them might be right */
  193. case CLKCFG_FSB_1600:
  194. case CLKCFG_FSB_1600_ALT:
  195. return 400;
  196. default:
  197. return 133;
  198. }
  199. }
  200. static int
  201. intel_dp_aux_ch(struct intel_dp *intel_dp,
  202. uint8_t *send, int send_bytes,
  203. uint8_t *recv, int recv_size)
  204. {
  205. uint32_t output_reg = intel_dp->output_reg;
  206. struct drm_device *dev = intel_dp->base.enc.dev;
  207. struct drm_i915_private *dev_priv = dev->dev_private;
  208. uint32_t ch_ctl = output_reg + 0x10;
  209. uint32_t ch_data = ch_ctl + 4;
  210. int i;
  211. int recv_bytes;
  212. uint32_t ctl;
  213. uint32_t status;
  214. uint32_t aux_clock_divider;
  215. int try, precharge;
  216. /* The clock divider is based off the hrawclk,
  217. * and would like to run at 2MHz. So, take the
  218. * hrawclk value and divide by 2 and use that
  219. */
  220. if (IS_eDP(intel_dp)) {
  221. if (IS_GEN6(dev))
  222. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  223. else
  224. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  225. } else if (HAS_PCH_SPLIT(dev))
  226. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  227. else
  228. aux_clock_divider = intel_hrawclk(dev) / 2;
  229. if (IS_GEN6(dev))
  230. precharge = 3;
  231. else
  232. precharge = 5;
  233. /* Must try at least 3 times according to DP spec */
  234. for (try = 0; try < 5; try++) {
  235. /* Load the send data into the aux channel data registers */
  236. for (i = 0; i < send_bytes; i += 4) {
  237. uint32_t d = pack_aux(send + i, send_bytes - i);
  238. I915_WRITE(ch_data + i, d);
  239. }
  240. ctl = (DP_AUX_CH_CTL_SEND_BUSY |
  241. DP_AUX_CH_CTL_TIME_OUT_400us |
  242. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  243. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  244. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  245. DP_AUX_CH_CTL_DONE |
  246. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  247. DP_AUX_CH_CTL_RECEIVE_ERROR);
  248. /* Send the command and wait for it to complete */
  249. I915_WRITE(ch_ctl, ctl);
  250. (void) I915_READ(ch_ctl);
  251. for (;;) {
  252. udelay(100);
  253. status = I915_READ(ch_ctl);
  254. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  255. break;
  256. }
  257. /* Clear done status and any errors */
  258. I915_WRITE(ch_ctl, (status |
  259. DP_AUX_CH_CTL_DONE |
  260. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  261. DP_AUX_CH_CTL_RECEIVE_ERROR));
  262. (void) I915_READ(ch_ctl);
  263. if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
  264. break;
  265. }
  266. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  267. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  268. return -EBUSY;
  269. }
  270. /* Check for timeout or receive error.
  271. * Timeouts occur when the sink is not connected
  272. */
  273. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  274. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  275. return -EIO;
  276. }
  277. /* Timeouts occur when the device isn't connected, so they're
  278. * "normal" -- don't fill the kernel log with these */
  279. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  280. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  281. return -ETIMEDOUT;
  282. }
  283. /* Unload any bytes sent back from the other side */
  284. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  285. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  286. if (recv_bytes > recv_size)
  287. recv_bytes = recv_size;
  288. for (i = 0; i < recv_bytes; i += 4) {
  289. uint32_t d = I915_READ(ch_data + i);
  290. unpack_aux(d, recv + i, recv_bytes - i);
  291. }
  292. return recv_bytes;
  293. }
  294. /* Write data to the aux channel in native mode */
  295. static int
  296. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  297. uint16_t address, uint8_t *send, int send_bytes)
  298. {
  299. int ret;
  300. uint8_t msg[20];
  301. int msg_bytes;
  302. uint8_t ack;
  303. if (send_bytes > 16)
  304. return -1;
  305. msg[0] = AUX_NATIVE_WRITE << 4;
  306. msg[1] = address >> 8;
  307. msg[2] = address & 0xff;
  308. msg[3] = send_bytes - 1;
  309. memcpy(&msg[4], send, send_bytes);
  310. msg_bytes = send_bytes + 4;
  311. for (;;) {
  312. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  313. if (ret < 0)
  314. return ret;
  315. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  316. break;
  317. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  318. udelay(100);
  319. else
  320. return -EIO;
  321. }
  322. return send_bytes;
  323. }
  324. /* Write a single byte to the aux channel in native mode */
  325. static int
  326. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  327. uint16_t address, uint8_t byte)
  328. {
  329. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  330. }
  331. /* read bytes from a native aux channel */
  332. static int
  333. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  334. uint16_t address, uint8_t *recv, int recv_bytes)
  335. {
  336. uint8_t msg[4];
  337. int msg_bytes;
  338. uint8_t reply[20];
  339. int reply_bytes;
  340. uint8_t ack;
  341. int ret;
  342. msg[0] = AUX_NATIVE_READ << 4;
  343. msg[1] = address >> 8;
  344. msg[2] = address & 0xff;
  345. msg[3] = recv_bytes - 1;
  346. msg_bytes = 4;
  347. reply_bytes = recv_bytes + 1;
  348. for (;;) {
  349. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  350. reply, reply_bytes);
  351. if (ret == 0)
  352. return -EPROTO;
  353. if (ret < 0)
  354. return ret;
  355. ack = reply[0];
  356. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  357. memcpy(recv, reply + 1, ret - 1);
  358. return ret - 1;
  359. }
  360. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  361. udelay(100);
  362. else
  363. return -EIO;
  364. }
  365. }
  366. static int
  367. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  368. uint8_t write_byte, uint8_t *read_byte)
  369. {
  370. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  371. struct intel_dp *intel_dp = container_of(adapter,
  372. struct intel_dp,
  373. adapter);
  374. uint16_t address = algo_data->address;
  375. uint8_t msg[5];
  376. uint8_t reply[2];
  377. int msg_bytes;
  378. int reply_bytes;
  379. int ret;
  380. /* Set up the command byte */
  381. if (mode & MODE_I2C_READ)
  382. msg[0] = AUX_I2C_READ << 4;
  383. else
  384. msg[0] = AUX_I2C_WRITE << 4;
  385. if (!(mode & MODE_I2C_STOP))
  386. msg[0] |= AUX_I2C_MOT << 4;
  387. msg[1] = address >> 8;
  388. msg[2] = address;
  389. switch (mode) {
  390. case MODE_I2C_WRITE:
  391. msg[3] = 0;
  392. msg[4] = write_byte;
  393. msg_bytes = 5;
  394. reply_bytes = 1;
  395. break;
  396. case MODE_I2C_READ:
  397. msg[3] = 0;
  398. msg_bytes = 4;
  399. reply_bytes = 2;
  400. break;
  401. default:
  402. msg_bytes = 3;
  403. reply_bytes = 1;
  404. break;
  405. }
  406. for (;;) {
  407. ret = intel_dp_aux_ch(intel_dp,
  408. msg, msg_bytes,
  409. reply, reply_bytes);
  410. if (ret < 0) {
  411. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  412. return ret;
  413. }
  414. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  415. case AUX_I2C_REPLY_ACK:
  416. if (mode == MODE_I2C_READ) {
  417. *read_byte = reply[1];
  418. }
  419. return reply_bytes - 1;
  420. case AUX_I2C_REPLY_NACK:
  421. DRM_DEBUG_KMS("aux_ch nack\n");
  422. return -EREMOTEIO;
  423. case AUX_I2C_REPLY_DEFER:
  424. DRM_DEBUG_KMS("aux_ch defer\n");
  425. udelay(100);
  426. break;
  427. default:
  428. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  429. return -EREMOTEIO;
  430. }
  431. }
  432. }
  433. static int
  434. intel_dp_i2c_init(struct intel_dp *intel_dp,
  435. struct intel_connector *intel_connector, const char *name)
  436. {
  437. DRM_DEBUG_KMS("i2c_init %s\n", name);
  438. intel_dp->algo.running = false;
  439. intel_dp->algo.address = 0;
  440. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  441. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  442. intel_dp->adapter.owner = THIS_MODULE;
  443. intel_dp->adapter.class = I2C_CLASS_DDC;
  444. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  445. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  446. intel_dp->adapter.algo_data = &intel_dp->algo;
  447. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  448. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  449. }
  450. static bool
  451. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  452. struct drm_display_mode *adjusted_mode)
  453. {
  454. struct drm_device *dev = encoder->dev;
  455. struct drm_i915_private *dev_priv = dev->dev_private;
  456. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  457. int lane_count, clock;
  458. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  459. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  460. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  461. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  462. dev_priv->panel_fixed_mode) {
  463. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  464. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  465. mode, adjusted_mode);
  466. /*
  467. * the mode->clock is used to calculate the Data&Link M/N
  468. * of the pipe. For the eDP the fixed clock should be used.
  469. */
  470. mode->clock = dev_priv->panel_fixed_mode->clock;
  471. }
  472. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  473. for (clock = 0; clock <= max_clock; clock++) {
  474. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  475. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  476. <= link_avail) {
  477. intel_dp->link_bw = bws[clock];
  478. intel_dp->lane_count = lane_count;
  479. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  480. DRM_DEBUG_KMS("Display port link bw %02x lane "
  481. "count %d clock %d\n",
  482. intel_dp->link_bw, intel_dp->lane_count,
  483. adjusted_mode->clock);
  484. return true;
  485. }
  486. }
  487. }
  488. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  489. /* okay we failed just pick the highest */
  490. intel_dp->lane_count = max_lane_count;
  491. intel_dp->link_bw = bws[max_clock];
  492. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  493. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  494. "count %d clock %d\n",
  495. intel_dp->link_bw, intel_dp->lane_count,
  496. adjusted_mode->clock);
  497. return true;
  498. }
  499. return false;
  500. }
  501. struct intel_dp_m_n {
  502. uint32_t tu;
  503. uint32_t gmch_m;
  504. uint32_t gmch_n;
  505. uint32_t link_m;
  506. uint32_t link_n;
  507. };
  508. static void
  509. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  510. {
  511. while (*num > 0xffffff || *den > 0xffffff) {
  512. *num >>= 1;
  513. *den >>= 1;
  514. }
  515. }
  516. static void
  517. intel_dp_compute_m_n(int bpp,
  518. int nlanes,
  519. int pixel_clock,
  520. int link_clock,
  521. struct intel_dp_m_n *m_n)
  522. {
  523. m_n->tu = 64;
  524. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  525. m_n->gmch_n = link_clock * nlanes;
  526. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  527. m_n->link_m = pixel_clock;
  528. m_n->link_n = link_clock;
  529. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  530. }
  531. bool intel_pch_has_edp(struct drm_crtc *crtc)
  532. {
  533. struct drm_device *dev = crtc->dev;
  534. struct drm_mode_config *mode_config = &dev->mode_config;
  535. struct drm_encoder *encoder;
  536. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  537. struct intel_dp *intel_dp;
  538. if (encoder->crtc != crtc)
  539. continue;
  540. intel_dp = enc_to_intel_dp(encoder);
  541. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  542. return intel_dp->is_pch_edp;
  543. }
  544. return false;
  545. }
  546. void
  547. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  548. struct drm_display_mode *adjusted_mode)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. struct drm_mode_config *mode_config = &dev->mode_config;
  552. struct drm_encoder *encoder;
  553. struct drm_i915_private *dev_priv = dev->dev_private;
  554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  555. int lane_count = 4, bpp = 24;
  556. struct intel_dp_m_n m_n;
  557. /*
  558. * Find the lane count in the intel_encoder private
  559. */
  560. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  561. struct intel_dp *intel_dp;
  562. if (encoder->crtc != crtc)
  563. continue;
  564. intel_dp = enc_to_intel_dp(encoder);
  565. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  566. lane_count = intel_dp->lane_count;
  567. if (IS_PCH_eDP(intel_dp))
  568. bpp = dev_priv->edp_bpp;
  569. break;
  570. }
  571. }
  572. /*
  573. * Compute the GMCH and Link ratios. The '3' here is
  574. * the number of bytes_per_pixel post-LUT, which we always
  575. * set up for 8-bits of R/G/B, or 3 bytes total.
  576. */
  577. intel_dp_compute_m_n(bpp, lane_count,
  578. mode->clock, adjusted_mode->clock, &m_n);
  579. if (HAS_PCH_SPLIT(dev)) {
  580. if (intel_crtc->pipe == 0) {
  581. I915_WRITE(TRANSA_DATA_M1,
  582. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  583. m_n.gmch_m);
  584. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  585. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  586. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  587. } else {
  588. I915_WRITE(TRANSB_DATA_M1,
  589. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  590. m_n.gmch_m);
  591. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  592. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  593. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  594. }
  595. } else {
  596. if (intel_crtc->pipe == 0) {
  597. I915_WRITE(PIPEA_GMCH_DATA_M,
  598. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  599. m_n.gmch_m);
  600. I915_WRITE(PIPEA_GMCH_DATA_N,
  601. m_n.gmch_n);
  602. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  603. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  604. } else {
  605. I915_WRITE(PIPEB_GMCH_DATA_M,
  606. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  607. m_n.gmch_m);
  608. I915_WRITE(PIPEB_GMCH_DATA_N,
  609. m_n.gmch_n);
  610. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  611. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  612. }
  613. }
  614. }
  615. static void
  616. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  617. struct drm_display_mode *adjusted_mode)
  618. {
  619. struct drm_device *dev = encoder->dev;
  620. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  621. struct drm_crtc *crtc = intel_dp->base.enc.crtc;
  622. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  623. intel_dp->DP = (DP_VOLTAGE_0_4 |
  624. DP_PRE_EMPHASIS_0);
  625. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  626. intel_dp->DP |= DP_SYNC_HS_HIGH;
  627. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  628. intel_dp->DP |= DP_SYNC_VS_HIGH;
  629. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  630. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  631. else
  632. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  633. switch (intel_dp->lane_count) {
  634. case 1:
  635. intel_dp->DP |= DP_PORT_WIDTH_1;
  636. break;
  637. case 2:
  638. intel_dp->DP |= DP_PORT_WIDTH_2;
  639. break;
  640. case 4:
  641. intel_dp->DP |= DP_PORT_WIDTH_4;
  642. break;
  643. }
  644. if (intel_dp->has_audio)
  645. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  646. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  647. intel_dp->link_configuration[0] = intel_dp->link_bw;
  648. intel_dp->link_configuration[1] = intel_dp->lane_count;
  649. /*
  650. * Check for DPCD version > 1.1 and enhanced framing support
  651. */
  652. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  653. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  654. intel_dp->DP |= DP_ENHANCED_FRAMING;
  655. }
  656. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  657. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  658. intel_dp->DP |= DP_PIPEB_SELECT;
  659. if (IS_eDP(intel_dp)) {
  660. /* don't miss out required setting for eDP */
  661. intel_dp->DP |= DP_PLL_ENABLE;
  662. if (adjusted_mode->clock < 200000)
  663. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  664. else
  665. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  666. }
  667. }
  668. static void ironlake_edp_panel_on (struct drm_device *dev)
  669. {
  670. struct drm_i915_private *dev_priv = dev->dev_private;
  671. u32 pp;
  672. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  673. return;
  674. pp = I915_READ(PCH_PP_CONTROL);
  675. /* ILK workaround: disable reset around power sequence */
  676. pp &= ~PANEL_POWER_RESET;
  677. I915_WRITE(PCH_PP_CONTROL, pp);
  678. POSTING_READ(PCH_PP_CONTROL);
  679. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  680. I915_WRITE(PCH_PP_CONTROL, pp);
  681. if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000, 10))
  682. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  683. I915_READ(PCH_PP_STATUS));
  684. pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
  685. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  686. I915_WRITE(PCH_PP_CONTROL, pp);
  687. POSTING_READ(PCH_PP_CONTROL);
  688. }
  689. static void ironlake_edp_panel_off (struct drm_device *dev)
  690. {
  691. struct drm_i915_private *dev_priv = dev->dev_private;
  692. u32 pp;
  693. pp = I915_READ(PCH_PP_CONTROL);
  694. /* ILK workaround: disable reset around power sequence */
  695. pp &= ~PANEL_POWER_RESET;
  696. I915_WRITE(PCH_PP_CONTROL, pp);
  697. POSTING_READ(PCH_PP_CONTROL);
  698. pp &= ~POWER_TARGET_ON;
  699. I915_WRITE(PCH_PP_CONTROL, pp);
  700. if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000, 10))
  701. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  702. I915_READ(PCH_PP_STATUS));
  703. /* Make sure VDD is enabled so DP AUX will work */
  704. pp |= EDP_FORCE_VDD | PANEL_POWER_RESET; /* restore panel reset bit */
  705. I915_WRITE(PCH_PP_CONTROL, pp);
  706. POSTING_READ(PCH_PP_CONTROL);
  707. }
  708. static void ironlake_edp_backlight_on (struct drm_device *dev)
  709. {
  710. struct drm_i915_private *dev_priv = dev->dev_private;
  711. u32 pp;
  712. DRM_DEBUG_KMS("\n");
  713. pp = I915_READ(PCH_PP_CONTROL);
  714. pp |= EDP_BLC_ENABLE;
  715. I915_WRITE(PCH_PP_CONTROL, pp);
  716. }
  717. static void ironlake_edp_backlight_off (struct drm_device *dev)
  718. {
  719. struct drm_i915_private *dev_priv = dev->dev_private;
  720. u32 pp;
  721. DRM_DEBUG_KMS("\n");
  722. pp = I915_READ(PCH_PP_CONTROL);
  723. pp &= ~EDP_BLC_ENABLE;
  724. I915_WRITE(PCH_PP_CONTROL, pp);
  725. }
  726. static void
  727. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  728. {
  729. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  730. struct drm_device *dev = encoder->dev;
  731. struct drm_i915_private *dev_priv = dev->dev_private;
  732. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  733. if (mode != DRM_MODE_DPMS_ON) {
  734. if (dp_reg & DP_PORT_EN) {
  735. intel_dp_link_down(intel_dp);
  736. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  737. ironlake_edp_backlight_off(dev);
  738. ironlake_edp_panel_off(dev);
  739. }
  740. }
  741. } else {
  742. if (!(dp_reg & DP_PORT_EN)) {
  743. intel_dp_link_train(intel_dp);
  744. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  745. ironlake_edp_panel_on(dev);
  746. ironlake_edp_backlight_on(dev);
  747. }
  748. }
  749. }
  750. intel_dp->dpms_mode = mode;
  751. }
  752. /*
  753. * Fetch AUX CH registers 0x202 - 0x207 which contain
  754. * link status information
  755. */
  756. static bool
  757. intel_dp_get_link_status(struct intel_dp *intel_dp,
  758. uint8_t link_status[DP_LINK_STATUS_SIZE])
  759. {
  760. int ret;
  761. ret = intel_dp_aux_native_read(intel_dp,
  762. DP_LANE0_1_STATUS,
  763. link_status, DP_LINK_STATUS_SIZE);
  764. if (ret != DP_LINK_STATUS_SIZE)
  765. return false;
  766. return true;
  767. }
  768. static uint8_t
  769. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  770. int r)
  771. {
  772. return link_status[r - DP_LANE0_1_STATUS];
  773. }
  774. static uint8_t
  775. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  776. int lane)
  777. {
  778. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  779. int s = ((lane & 1) ?
  780. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  781. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  782. uint8_t l = intel_dp_link_status(link_status, i);
  783. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  784. }
  785. static uint8_t
  786. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  787. int lane)
  788. {
  789. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  790. int s = ((lane & 1) ?
  791. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  792. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  793. uint8_t l = intel_dp_link_status(link_status, i);
  794. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  795. }
  796. #if 0
  797. static char *voltage_names[] = {
  798. "0.4V", "0.6V", "0.8V", "1.2V"
  799. };
  800. static char *pre_emph_names[] = {
  801. "0dB", "3.5dB", "6dB", "9.5dB"
  802. };
  803. static char *link_train_names[] = {
  804. "pattern 1", "pattern 2", "idle", "off"
  805. };
  806. #endif
  807. /*
  808. * These are source-specific values; current Intel hardware supports
  809. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  810. */
  811. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  812. static uint8_t
  813. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  814. {
  815. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  816. case DP_TRAIN_VOLTAGE_SWING_400:
  817. return DP_TRAIN_PRE_EMPHASIS_6;
  818. case DP_TRAIN_VOLTAGE_SWING_600:
  819. return DP_TRAIN_PRE_EMPHASIS_6;
  820. case DP_TRAIN_VOLTAGE_SWING_800:
  821. return DP_TRAIN_PRE_EMPHASIS_3_5;
  822. case DP_TRAIN_VOLTAGE_SWING_1200:
  823. default:
  824. return DP_TRAIN_PRE_EMPHASIS_0;
  825. }
  826. }
  827. static void
  828. intel_get_adjust_train(struct intel_dp *intel_dp,
  829. uint8_t link_status[DP_LINK_STATUS_SIZE],
  830. int lane_count,
  831. uint8_t train_set[4])
  832. {
  833. uint8_t v = 0;
  834. uint8_t p = 0;
  835. int lane;
  836. for (lane = 0; lane < lane_count; lane++) {
  837. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  838. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  839. if (this_v > v)
  840. v = this_v;
  841. if (this_p > p)
  842. p = this_p;
  843. }
  844. if (v >= I830_DP_VOLTAGE_MAX)
  845. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  846. if (p >= intel_dp_pre_emphasis_max(v))
  847. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  848. for (lane = 0; lane < 4; lane++)
  849. train_set[lane] = v | p;
  850. }
  851. static uint32_t
  852. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  853. {
  854. uint32_t signal_levels = 0;
  855. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  856. case DP_TRAIN_VOLTAGE_SWING_400:
  857. default:
  858. signal_levels |= DP_VOLTAGE_0_4;
  859. break;
  860. case DP_TRAIN_VOLTAGE_SWING_600:
  861. signal_levels |= DP_VOLTAGE_0_6;
  862. break;
  863. case DP_TRAIN_VOLTAGE_SWING_800:
  864. signal_levels |= DP_VOLTAGE_0_8;
  865. break;
  866. case DP_TRAIN_VOLTAGE_SWING_1200:
  867. signal_levels |= DP_VOLTAGE_1_2;
  868. break;
  869. }
  870. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  871. case DP_TRAIN_PRE_EMPHASIS_0:
  872. default:
  873. signal_levels |= DP_PRE_EMPHASIS_0;
  874. break;
  875. case DP_TRAIN_PRE_EMPHASIS_3_5:
  876. signal_levels |= DP_PRE_EMPHASIS_3_5;
  877. break;
  878. case DP_TRAIN_PRE_EMPHASIS_6:
  879. signal_levels |= DP_PRE_EMPHASIS_6;
  880. break;
  881. case DP_TRAIN_PRE_EMPHASIS_9_5:
  882. signal_levels |= DP_PRE_EMPHASIS_9_5;
  883. break;
  884. }
  885. return signal_levels;
  886. }
  887. /* Gen6's DP voltage swing and pre-emphasis control */
  888. static uint32_t
  889. intel_gen6_edp_signal_levels(uint8_t train_set)
  890. {
  891. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  892. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  893. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  894. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  895. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  896. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  897. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  898. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  899. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  900. default:
  901. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  902. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  903. }
  904. }
  905. static uint8_t
  906. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  907. int lane)
  908. {
  909. int i = DP_LANE0_1_STATUS + (lane >> 1);
  910. int s = (lane & 1) * 4;
  911. uint8_t l = intel_dp_link_status(link_status, i);
  912. return (l >> s) & 0xf;
  913. }
  914. /* Check for clock recovery is done on all channels */
  915. static bool
  916. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  917. {
  918. int lane;
  919. uint8_t lane_status;
  920. for (lane = 0; lane < lane_count; lane++) {
  921. lane_status = intel_get_lane_status(link_status, lane);
  922. if ((lane_status & DP_LANE_CR_DONE) == 0)
  923. return false;
  924. }
  925. return true;
  926. }
  927. /* Check to see if channel eq is done on all channels */
  928. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  929. DP_LANE_CHANNEL_EQ_DONE|\
  930. DP_LANE_SYMBOL_LOCKED)
  931. static bool
  932. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  933. {
  934. uint8_t lane_align;
  935. uint8_t lane_status;
  936. int lane;
  937. lane_align = intel_dp_link_status(link_status,
  938. DP_LANE_ALIGN_STATUS_UPDATED);
  939. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  940. return false;
  941. for (lane = 0; lane < lane_count; lane++) {
  942. lane_status = intel_get_lane_status(link_status, lane);
  943. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  944. return false;
  945. }
  946. return true;
  947. }
  948. static bool
  949. intel_dp_set_link_train(struct intel_dp *intel_dp,
  950. uint32_t dp_reg_value,
  951. uint8_t dp_train_pat,
  952. uint8_t train_set[4],
  953. bool first)
  954. {
  955. struct drm_device *dev = intel_dp->base.enc.dev;
  956. struct drm_i915_private *dev_priv = dev->dev_private;
  957. int ret;
  958. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  959. POSTING_READ(intel_dp->output_reg);
  960. if (first)
  961. intel_wait_for_vblank(dev);
  962. intel_dp_aux_native_write_1(intel_dp,
  963. DP_TRAINING_PATTERN_SET,
  964. dp_train_pat);
  965. ret = intel_dp_aux_native_write(intel_dp,
  966. DP_TRAINING_LANE0_SET, train_set, 4);
  967. if (ret != 4)
  968. return false;
  969. return true;
  970. }
  971. static void
  972. intel_dp_link_train(struct intel_dp *intel_dp)
  973. {
  974. struct drm_device *dev = intel_dp->base.enc.dev;
  975. struct drm_i915_private *dev_priv = dev->dev_private;
  976. uint8_t train_set[4];
  977. uint8_t link_status[DP_LINK_STATUS_SIZE];
  978. int i;
  979. uint8_t voltage;
  980. bool clock_recovery = false;
  981. bool channel_eq = false;
  982. bool first = true;
  983. int tries;
  984. u32 reg;
  985. uint32_t DP = intel_dp->DP;
  986. /* Write the link configuration data */
  987. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  988. intel_dp->link_configuration,
  989. DP_LINK_CONFIGURATION_SIZE);
  990. DP |= DP_PORT_EN;
  991. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  992. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  993. else
  994. DP &= ~DP_LINK_TRAIN_MASK;
  995. memset(train_set, 0, 4);
  996. voltage = 0xff;
  997. tries = 0;
  998. clock_recovery = false;
  999. for (;;) {
  1000. /* Use train_set[0] to set the voltage and pre emphasis values */
  1001. uint32_t signal_levels;
  1002. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1003. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1004. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1005. } else {
  1006. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1007. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1008. }
  1009. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1010. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1011. else
  1012. reg = DP | DP_LINK_TRAIN_PAT_1;
  1013. if (!intel_dp_set_link_train(intel_dp, reg,
  1014. DP_TRAINING_PATTERN_1, train_set, first))
  1015. break;
  1016. first = false;
  1017. /* Set training pattern 1 */
  1018. udelay(100);
  1019. if (!intel_dp_get_link_status(intel_dp, link_status))
  1020. break;
  1021. if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1022. clock_recovery = true;
  1023. break;
  1024. }
  1025. /* Check to see if we've tried the max voltage */
  1026. for (i = 0; i < intel_dp->lane_count; i++)
  1027. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1028. break;
  1029. if (i == intel_dp->lane_count)
  1030. break;
  1031. /* Check to see if we've tried the same voltage 5 times */
  1032. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1033. ++tries;
  1034. if (tries == 5)
  1035. break;
  1036. } else
  1037. tries = 0;
  1038. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1039. /* Compute new train_set as requested by target */
  1040. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1041. }
  1042. /* channel equalization */
  1043. tries = 0;
  1044. channel_eq = false;
  1045. for (;;) {
  1046. /* Use train_set[0] to set the voltage and pre emphasis values */
  1047. uint32_t signal_levels;
  1048. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1049. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1050. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1051. } else {
  1052. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1053. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1054. }
  1055. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1056. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1057. else
  1058. reg = DP | DP_LINK_TRAIN_PAT_2;
  1059. /* channel eq pattern */
  1060. if (!intel_dp_set_link_train(intel_dp, reg,
  1061. DP_TRAINING_PATTERN_2, train_set,
  1062. false))
  1063. break;
  1064. udelay(400);
  1065. if (!intel_dp_get_link_status(intel_dp, link_status))
  1066. break;
  1067. if (intel_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1068. channel_eq = true;
  1069. break;
  1070. }
  1071. /* Try 5 times */
  1072. if (tries > 5)
  1073. break;
  1074. /* Compute new train_set as requested by target */
  1075. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1076. ++tries;
  1077. }
  1078. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1079. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1080. else
  1081. reg = DP | DP_LINK_TRAIN_OFF;
  1082. I915_WRITE(intel_dp->output_reg, reg);
  1083. POSTING_READ(intel_dp->output_reg);
  1084. intel_dp_aux_native_write_1(intel_dp,
  1085. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1086. }
  1087. static void
  1088. intel_dp_link_down(struct intel_dp *intel_dp)
  1089. {
  1090. struct drm_device *dev = intel_dp->base.enc.dev;
  1091. struct drm_i915_private *dev_priv = dev->dev_private;
  1092. uint32_t DP = intel_dp->DP;
  1093. DRM_DEBUG_KMS("\n");
  1094. if (IS_eDP(intel_dp)) {
  1095. DP &= ~DP_PLL_ENABLE;
  1096. I915_WRITE(intel_dp->output_reg, DP);
  1097. POSTING_READ(intel_dp->output_reg);
  1098. udelay(100);
  1099. }
  1100. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
  1101. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1102. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1103. POSTING_READ(intel_dp->output_reg);
  1104. } else {
  1105. DP &= ~DP_LINK_TRAIN_MASK;
  1106. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1107. POSTING_READ(intel_dp->output_reg);
  1108. }
  1109. udelay(17000);
  1110. if (IS_eDP(intel_dp))
  1111. DP |= DP_LINK_TRAIN_OFF;
  1112. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1113. POSTING_READ(intel_dp->output_reg);
  1114. }
  1115. /*
  1116. * According to DP spec
  1117. * 5.1.2:
  1118. * 1. Read DPCD
  1119. * 2. Configure link according to Receiver Capabilities
  1120. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1121. * 4. Check link status on receipt of hot-plug interrupt
  1122. */
  1123. static void
  1124. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1125. {
  1126. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1127. if (!intel_dp->base.enc.crtc)
  1128. return;
  1129. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1130. intel_dp_link_down(intel_dp);
  1131. return;
  1132. }
  1133. if (!intel_channel_eq_ok(link_status, intel_dp->lane_count))
  1134. intel_dp_link_train(intel_dp);
  1135. }
  1136. static enum drm_connector_status
  1137. ironlake_dp_detect(struct drm_connector *connector)
  1138. {
  1139. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1140. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1141. enum drm_connector_status status;
  1142. status = connector_status_disconnected;
  1143. if (intel_dp_aux_native_read(intel_dp,
  1144. 0x000, intel_dp->dpcd,
  1145. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1146. {
  1147. if (intel_dp->dpcd[0] != 0)
  1148. status = connector_status_connected;
  1149. }
  1150. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1151. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1152. return status;
  1153. }
  1154. /**
  1155. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1156. *
  1157. * \return true if DP port is connected.
  1158. * \return false if DP port is disconnected.
  1159. */
  1160. static enum drm_connector_status
  1161. intel_dp_detect(struct drm_connector *connector)
  1162. {
  1163. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1164. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1165. struct drm_device *dev = intel_dp->base.enc.dev;
  1166. struct drm_i915_private *dev_priv = dev->dev_private;
  1167. uint32_t temp, bit;
  1168. enum drm_connector_status status;
  1169. intel_dp->has_audio = false;
  1170. if (HAS_PCH_SPLIT(dev))
  1171. return ironlake_dp_detect(connector);
  1172. switch (intel_dp->output_reg) {
  1173. case DP_B:
  1174. bit = DPB_HOTPLUG_INT_STATUS;
  1175. break;
  1176. case DP_C:
  1177. bit = DPC_HOTPLUG_INT_STATUS;
  1178. break;
  1179. case DP_D:
  1180. bit = DPD_HOTPLUG_INT_STATUS;
  1181. break;
  1182. default:
  1183. return connector_status_unknown;
  1184. }
  1185. temp = I915_READ(PORT_HOTPLUG_STAT);
  1186. if ((temp & bit) == 0)
  1187. return connector_status_disconnected;
  1188. status = connector_status_disconnected;
  1189. if (intel_dp_aux_native_read(intel_dp,
  1190. 0x000, intel_dp->dpcd,
  1191. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1192. {
  1193. if (intel_dp->dpcd[0] != 0)
  1194. status = connector_status_connected;
  1195. }
  1196. return status;
  1197. }
  1198. static int intel_dp_get_modes(struct drm_connector *connector)
  1199. {
  1200. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1201. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1202. struct drm_device *dev = intel_dp->base.enc.dev;
  1203. struct drm_i915_private *dev_priv = dev->dev_private;
  1204. int ret;
  1205. /* We should parse the EDID data and find out if it has an audio sink
  1206. */
  1207. ret = intel_ddc_get_modes(connector, intel_dp->base.ddc_bus);
  1208. if (ret) {
  1209. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  1210. !dev_priv->panel_fixed_mode) {
  1211. struct drm_display_mode *newmode;
  1212. list_for_each_entry(newmode, &connector->probed_modes,
  1213. head) {
  1214. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1215. dev_priv->panel_fixed_mode =
  1216. drm_mode_duplicate(dev, newmode);
  1217. break;
  1218. }
  1219. }
  1220. }
  1221. return ret;
  1222. }
  1223. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1224. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  1225. if (dev_priv->panel_fixed_mode != NULL) {
  1226. struct drm_display_mode *mode;
  1227. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1228. drm_mode_probed_add(connector, mode);
  1229. return 1;
  1230. }
  1231. }
  1232. return 0;
  1233. }
  1234. static void
  1235. intel_dp_destroy (struct drm_connector *connector)
  1236. {
  1237. drm_sysfs_connector_remove(connector);
  1238. drm_connector_cleanup(connector);
  1239. kfree(connector);
  1240. }
  1241. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1242. .dpms = intel_dp_dpms,
  1243. .mode_fixup = intel_dp_mode_fixup,
  1244. .prepare = intel_encoder_prepare,
  1245. .mode_set = intel_dp_mode_set,
  1246. .commit = intel_encoder_commit,
  1247. };
  1248. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1249. .dpms = drm_helper_connector_dpms,
  1250. .detect = intel_dp_detect,
  1251. .fill_modes = drm_helper_probe_single_connector_modes,
  1252. .destroy = intel_dp_destroy,
  1253. };
  1254. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1255. .get_modes = intel_dp_get_modes,
  1256. .mode_valid = intel_dp_mode_valid,
  1257. .best_encoder = intel_attached_encoder,
  1258. };
  1259. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1260. .destroy = intel_encoder_destroy,
  1261. };
  1262. void
  1263. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1264. {
  1265. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1266. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1267. intel_dp_check_link_status(intel_dp);
  1268. }
  1269. /* Return which DP Port should be selected for Transcoder DP control */
  1270. int
  1271. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1272. {
  1273. struct drm_device *dev = crtc->dev;
  1274. struct drm_mode_config *mode_config = &dev->mode_config;
  1275. struct drm_encoder *encoder;
  1276. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1277. struct intel_dp *intel_dp;
  1278. if (encoder->crtc != crtc)
  1279. continue;
  1280. intel_dp = enc_to_intel_dp(encoder);
  1281. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1282. return intel_dp->output_reg;
  1283. }
  1284. return -1;
  1285. }
  1286. /* check the VBT to see whether the eDP is on DP-D port */
  1287. bool intel_dpd_is_edp(struct drm_device *dev)
  1288. {
  1289. struct drm_i915_private *dev_priv = dev->dev_private;
  1290. struct child_device_config *p_child;
  1291. int i;
  1292. if (!dev_priv->child_dev_num)
  1293. return false;
  1294. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1295. p_child = dev_priv->child_dev + i;
  1296. if (p_child->dvo_port == PORT_IDPD &&
  1297. p_child->device_type == DEVICE_TYPE_eDP)
  1298. return true;
  1299. }
  1300. return false;
  1301. }
  1302. void
  1303. intel_dp_init(struct drm_device *dev, int output_reg)
  1304. {
  1305. struct drm_i915_private *dev_priv = dev->dev_private;
  1306. struct drm_connector *connector;
  1307. struct intel_dp *intel_dp;
  1308. struct intel_encoder *intel_encoder;
  1309. struct intel_connector *intel_connector;
  1310. const char *name = NULL;
  1311. int type;
  1312. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1313. if (!intel_dp)
  1314. return;
  1315. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1316. if (!intel_connector) {
  1317. kfree(intel_dp);
  1318. return;
  1319. }
  1320. intel_encoder = &intel_dp->base;
  1321. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1322. if (intel_dpd_is_edp(dev))
  1323. intel_dp->is_pch_edp = true;
  1324. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1325. type = DRM_MODE_CONNECTOR_eDP;
  1326. intel_encoder->type = INTEL_OUTPUT_EDP;
  1327. } else {
  1328. type = DRM_MODE_CONNECTOR_DisplayPort;
  1329. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1330. }
  1331. connector = &intel_connector->base;
  1332. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1333. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1334. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1335. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1336. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1337. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1338. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1339. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1340. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1341. if (IS_eDP(intel_dp))
  1342. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1343. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1344. connector->interlace_allowed = true;
  1345. connector->doublescan_allowed = 0;
  1346. intel_dp->output_reg = output_reg;
  1347. intel_dp->has_audio = false;
  1348. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1349. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1350. DRM_MODE_ENCODER_TMDS);
  1351. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1352. drm_mode_connector_attach_encoder(&intel_connector->base,
  1353. &intel_encoder->enc);
  1354. drm_sysfs_connector_add(connector);
  1355. /* Set up the DDC bus. */
  1356. switch (output_reg) {
  1357. case DP_A:
  1358. name = "DPDDC-A";
  1359. break;
  1360. case DP_B:
  1361. case PCH_DP_B:
  1362. dev_priv->hotplug_supported_mask |=
  1363. HDMIB_HOTPLUG_INT_STATUS;
  1364. name = "DPDDC-B";
  1365. break;
  1366. case DP_C:
  1367. case PCH_DP_C:
  1368. dev_priv->hotplug_supported_mask |=
  1369. HDMIC_HOTPLUG_INT_STATUS;
  1370. name = "DPDDC-C";
  1371. break;
  1372. case DP_D:
  1373. case PCH_DP_D:
  1374. dev_priv->hotplug_supported_mask |=
  1375. HDMID_HOTPLUG_INT_STATUS;
  1376. name = "DPDDC-D";
  1377. break;
  1378. }
  1379. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1380. intel_encoder->ddc_bus = &intel_dp->adapter;
  1381. intel_encoder->hot_plug = intel_dp_hot_plug;
  1382. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1383. /* initialize panel mode from VBT if available for eDP */
  1384. if (dev_priv->lfp_lvds_vbt_mode) {
  1385. dev_priv->panel_fixed_mode =
  1386. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1387. if (dev_priv->panel_fixed_mode) {
  1388. dev_priv->panel_fixed_mode->type |=
  1389. DRM_MODE_TYPE_PREFERRED;
  1390. }
  1391. }
  1392. }
  1393. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1394. * 0xd. Failure to do so will result in spurious interrupts being
  1395. * generated on the port when a cable is not attached.
  1396. */
  1397. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1398. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1399. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1400. }
  1401. }