vmx.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "vmx.h"
  20. #include "segment_descriptor.h"
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/profile.h>
  26. #include <linux/sched.h>
  27. #include <asm/io.h>
  28. #include <asm/desc.h>
  29. MODULE_AUTHOR("Qumranet");
  30. MODULE_LICENSE("GPL");
  31. struct vmcs {
  32. u32 revision_id;
  33. u32 abort;
  34. char data[0];
  35. };
  36. struct vcpu_vmx {
  37. struct kvm_vcpu vcpu;
  38. int launched;
  39. struct kvm_msr_entry *guest_msrs;
  40. struct kvm_msr_entry *host_msrs;
  41. int nmsrs;
  42. int save_nmsrs;
  43. int msr_offset_efer;
  44. #ifdef CONFIG_X86_64
  45. int msr_offset_kernel_gs_base;
  46. #endif
  47. struct vmcs *vmcs;
  48. struct {
  49. int loaded;
  50. u16 fs_sel, gs_sel, ldt_sel;
  51. int fs_gs_ldt_reload_needed;
  52. }host_state;
  53. };
  54. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  55. {
  56. return container_of(vcpu, struct vcpu_vmx, vcpu);
  57. }
  58. static int init_rmode_tss(struct kvm *kvm);
  59. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  60. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  61. static struct page *vmx_io_bitmap_a;
  62. static struct page *vmx_io_bitmap_b;
  63. #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
  64. static struct vmcs_config {
  65. int size;
  66. int order;
  67. u32 revision_id;
  68. u32 pin_based_exec_ctrl;
  69. u32 cpu_based_exec_ctrl;
  70. u32 vmexit_ctrl;
  71. u32 vmentry_ctrl;
  72. } vmcs_config;
  73. #define VMX_SEGMENT_FIELD(seg) \
  74. [VCPU_SREG_##seg] = { \
  75. .selector = GUEST_##seg##_SELECTOR, \
  76. .base = GUEST_##seg##_BASE, \
  77. .limit = GUEST_##seg##_LIMIT, \
  78. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  79. }
  80. static struct kvm_vmx_segment_field {
  81. unsigned selector;
  82. unsigned base;
  83. unsigned limit;
  84. unsigned ar_bytes;
  85. } kvm_vmx_segment_fields[] = {
  86. VMX_SEGMENT_FIELD(CS),
  87. VMX_SEGMENT_FIELD(DS),
  88. VMX_SEGMENT_FIELD(ES),
  89. VMX_SEGMENT_FIELD(FS),
  90. VMX_SEGMENT_FIELD(GS),
  91. VMX_SEGMENT_FIELD(SS),
  92. VMX_SEGMENT_FIELD(TR),
  93. VMX_SEGMENT_FIELD(LDTR),
  94. };
  95. /*
  96. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  97. * away by decrementing the array size.
  98. */
  99. static const u32 vmx_msr_index[] = {
  100. #ifdef CONFIG_X86_64
  101. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  102. #endif
  103. MSR_EFER, MSR_K6_STAR,
  104. };
  105. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  106. static void load_msrs(struct kvm_msr_entry *e, int n)
  107. {
  108. int i;
  109. for (i = 0; i < n; ++i)
  110. wrmsrl(e[i].index, e[i].data);
  111. }
  112. static void save_msrs(struct kvm_msr_entry *e, int n)
  113. {
  114. int i;
  115. for (i = 0; i < n; ++i)
  116. rdmsrl(e[i].index, e[i].data);
  117. }
  118. static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
  119. {
  120. return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
  121. }
  122. static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
  123. {
  124. int efer_offset = vmx->msr_offset_efer;
  125. return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
  126. msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  127. }
  128. static inline int is_page_fault(u32 intr_info)
  129. {
  130. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  131. INTR_INFO_VALID_MASK)) ==
  132. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  133. }
  134. static inline int is_no_device(u32 intr_info)
  135. {
  136. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  137. INTR_INFO_VALID_MASK)) ==
  138. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  139. }
  140. static inline int is_external_interrupt(u32 intr_info)
  141. {
  142. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  143. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  144. }
  145. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  146. {
  147. int i;
  148. for (i = 0; i < vmx->nmsrs; ++i)
  149. if (vmx->guest_msrs[i].index == msr)
  150. return i;
  151. return -1;
  152. }
  153. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  154. {
  155. int i;
  156. i = __find_msr_index(vmx, msr);
  157. if (i >= 0)
  158. return &vmx->guest_msrs[i];
  159. return NULL;
  160. }
  161. static void vmcs_clear(struct vmcs *vmcs)
  162. {
  163. u64 phys_addr = __pa(vmcs);
  164. u8 error;
  165. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  166. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  167. : "cc", "memory");
  168. if (error)
  169. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  170. vmcs, phys_addr);
  171. }
  172. static void __vcpu_clear(void *arg)
  173. {
  174. struct vcpu_vmx *vmx = arg;
  175. int cpu = raw_smp_processor_id();
  176. if (vmx->vcpu.cpu == cpu)
  177. vmcs_clear(vmx->vmcs);
  178. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  179. per_cpu(current_vmcs, cpu) = NULL;
  180. rdtscll(vmx->vcpu.host_tsc);
  181. }
  182. static void vcpu_clear(struct vcpu_vmx *vmx)
  183. {
  184. if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
  185. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
  186. vmx, 0, 1);
  187. else
  188. __vcpu_clear(vmx);
  189. vmx->launched = 0;
  190. }
  191. static unsigned long vmcs_readl(unsigned long field)
  192. {
  193. unsigned long value;
  194. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  195. : "=a"(value) : "d"(field) : "cc");
  196. return value;
  197. }
  198. static u16 vmcs_read16(unsigned long field)
  199. {
  200. return vmcs_readl(field);
  201. }
  202. static u32 vmcs_read32(unsigned long field)
  203. {
  204. return vmcs_readl(field);
  205. }
  206. static u64 vmcs_read64(unsigned long field)
  207. {
  208. #ifdef CONFIG_X86_64
  209. return vmcs_readl(field);
  210. #else
  211. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  212. #endif
  213. }
  214. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  215. {
  216. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  217. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  218. dump_stack();
  219. }
  220. static void vmcs_writel(unsigned long field, unsigned long value)
  221. {
  222. u8 error;
  223. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  224. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  225. if (unlikely(error))
  226. vmwrite_error(field, value);
  227. }
  228. static void vmcs_write16(unsigned long field, u16 value)
  229. {
  230. vmcs_writel(field, value);
  231. }
  232. static void vmcs_write32(unsigned long field, u32 value)
  233. {
  234. vmcs_writel(field, value);
  235. }
  236. static void vmcs_write64(unsigned long field, u64 value)
  237. {
  238. #ifdef CONFIG_X86_64
  239. vmcs_writel(field, value);
  240. #else
  241. vmcs_writel(field, value);
  242. asm volatile ("");
  243. vmcs_writel(field+1, value >> 32);
  244. #endif
  245. }
  246. static void vmcs_clear_bits(unsigned long field, u32 mask)
  247. {
  248. vmcs_writel(field, vmcs_readl(field) & ~mask);
  249. }
  250. static void vmcs_set_bits(unsigned long field, u32 mask)
  251. {
  252. vmcs_writel(field, vmcs_readl(field) | mask);
  253. }
  254. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  255. {
  256. u32 eb;
  257. eb = 1u << PF_VECTOR;
  258. if (!vcpu->fpu_active)
  259. eb |= 1u << NM_VECTOR;
  260. if (vcpu->guest_debug.enabled)
  261. eb |= 1u << 1;
  262. if (vcpu->rmode.active)
  263. eb = ~0;
  264. vmcs_write32(EXCEPTION_BITMAP, eb);
  265. }
  266. static void reload_tss(void)
  267. {
  268. #ifndef CONFIG_X86_64
  269. /*
  270. * VT restores TR but not its size. Useless.
  271. */
  272. struct descriptor_table gdt;
  273. struct segment_descriptor *descs;
  274. get_gdt(&gdt);
  275. descs = (void *)gdt.base;
  276. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  277. load_TR_desc();
  278. #endif
  279. }
  280. static void load_transition_efer(struct vcpu_vmx *vmx)
  281. {
  282. u64 trans_efer;
  283. int efer_offset = vmx->msr_offset_efer;
  284. trans_efer = vmx->host_msrs[efer_offset].data;
  285. trans_efer &= ~EFER_SAVE_RESTORE_BITS;
  286. trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  287. wrmsrl(MSR_EFER, trans_efer);
  288. vmx->vcpu.stat.efer_reload++;
  289. }
  290. static void vmx_save_host_state(struct vcpu_vmx *vmx)
  291. {
  292. if (vmx->host_state.loaded)
  293. return;
  294. vmx->host_state.loaded = 1;
  295. /*
  296. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  297. * allow segment selectors with cpl > 0 or ti == 1.
  298. */
  299. vmx->host_state.ldt_sel = read_ldt();
  300. vmx->host_state.fs_gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  301. vmx->host_state.fs_sel = read_fs();
  302. if (!(vmx->host_state.fs_sel & 7))
  303. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  304. else {
  305. vmcs_write16(HOST_FS_SELECTOR, 0);
  306. vmx->host_state.fs_gs_ldt_reload_needed = 1;
  307. }
  308. vmx->host_state.gs_sel = read_gs();
  309. if (!(vmx->host_state.gs_sel & 7))
  310. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  311. else {
  312. vmcs_write16(HOST_GS_SELECTOR, 0);
  313. vmx->host_state.fs_gs_ldt_reload_needed = 1;
  314. }
  315. #ifdef CONFIG_X86_64
  316. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  317. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  318. #else
  319. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  320. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  321. #endif
  322. #ifdef CONFIG_X86_64
  323. if (is_long_mode(&vmx->vcpu)) {
  324. save_msrs(vmx->host_msrs +
  325. vmx->msr_offset_kernel_gs_base, 1);
  326. }
  327. #endif
  328. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  329. if (msr_efer_need_save_restore(vmx))
  330. load_transition_efer(vmx);
  331. }
  332. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  333. {
  334. unsigned long flags;
  335. if (!vmx->host_state.loaded)
  336. return;
  337. vmx->host_state.loaded = 0;
  338. if (vmx->host_state.fs_gs_ldt_reload_needed) {
  339. load_ldt(vmx->host_state.ldt_sel);
  340. load_fs(vmx->host_state.fs_sel);
  341. /*
  342. * If we have to reload gs, we must take care to
  343. * preserve our gs base.
  344. */
  345. local_irq_save(flags);
  346. load_gs(vmx->host_state.gs_sel);
  347. #ifdef CONFIG_X86_64
  348. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  349. #endif
  350. local_irq_restore(flags);
  351. reload_tss();
  352. }
  353. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  354. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  355. if (msr_efer_need_save_restore(vmx))
  356. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  357. }
  358. /*
  359. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  360. * vcpu mutex is already taken.
  361. */
  362. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  363. {
  364. struct vcpu_vmx *vmx = to_vmx(vcpu);
  365. u64 phys_addr = __pa(vmx->vmcs);
  366. u64 tsc_this, delta;
  367. if (vcpu->cpu != cpu)
  368. vcpu_clear(vmx);
  369. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  370. u8 error;
  371. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  372. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  373. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  374. : "cc");
  375. if (error)
  376. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  377. vmx->vmcs, phys_addr);
  378. }
  379. if (vcpu->cpu != cpu) {
  380. struct descriptor_table dt;
  381. unsigned long sysenter_esp;
  382. vcpu->cpu = cpu;
  383. /*
  384. * Linux uses per-cpu TSS and GDT, so set these when switching
  385. * processors.
  386. */
  387. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  388. get_gdt(&dt);
  389. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  390. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  391. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  392. /*
  393. * Make sure the time stamp counter is monotonous.
  394. */
  395. rdtscll(tsc_this);
  396. delta = vcpu->host_tsc - tsc_this;
  397. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  398. }
  399. }
  400. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  401. {
  402. vmx_load_host_state(to_vmx(vcpu));
  403. kvm_put_guest_fpu(vcpu);
  404. }
  405. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  406. {
  407. if (vcpu->fpu_active)
  408. return;
  409. vcpu->fpu_active = 1;
  410. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  411. if (vcpu->cr0 & X86_CR0_TS)
  412. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  413. update_exception_bitmap(vcpu);
  414. }
  415. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  416. {
  417. if (!vcpu->fpu_active)
  418. return;
  419. vcpu->fpu_active = 0;
  420. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  421. update_exception_bitmap(vcpu);
  422. }
  423. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  424. {
  425. vcpu_clear(to_vmx(vcpu));
  426. }
  427. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  428. {
  429. return vmcs_readl(GUEST_RFLAGS);
  430. }
  431. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  432. {
  433. vmcs_writel(GUEST_RFLAGS, rflags);
  434. }
  435. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  436. {
  437. unsigned long rip;
  438. u32 interruptibility;
  439. rip = vmcs_readl(GUEST_RIP);
  440. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  441. vmcs_writel(GUEST_RIP, rip);
  442. /*
  443. * We emulated an instruction, so temporary interrupt blocking
  444. * should be removed, if set.
  445. */
  446. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  447. if (interruptibility & 3)
  448. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  449. interruptibility & ~3);
  450. vcpu->interrupt_window_open = 1;
  451. }
  452. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  453. {
  454. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  455. vmcs_readl(GUEST_RIP));
  456. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  457. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  458. GP_VECTOR |
  459. INTR_TYPE_EXCEPTION |
  460. INTR_INFO_DELIEVER_CODE_MASK |
  461. INTR_INFO_VALID_MASK);
  462. }
  463. /*
  464. * Swap MSR entry in host/guest MSR entry array.
  465. */
  466. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  467. {
  468. struct kvm_msr_entry tmp;
  469. tmp = vmx->guest_msrs[to];
  470. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  471. vmx->guest_msrs[from] = tmp;
  472. tmp = vmx->host_msrs[to];
  473. vmx->host_msrs[to] = vmx->host_msrs[from];
  474. vmx->host_msrs[from] = tmp;
  475. }
  476. /*
  477. * Set up the vmcs to automatically save and restore system
  478. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  479. * mode, as fiddling with msrs is very expensive.
  480. */
  481. static void setup_msrs(struct vcpu_vmx *vmx)
  482. {
  483. int save_nmsrs;
  484. save_nmsrs = 0;
  485. #ifdef CONFIG_X86_64
  486. if (is_long_mode(&vmx->vcpu)) {
  487. int index;
  488. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  489. if (index >= 0)
  490. move_msr_up(vmx, index, save_nmsrs++);
  491. index = __find_msr_index(vmx, MSR_LSTAR);
  492. if (index >= 0)
  493. move_msr_up(vmx, index, save_nmsrs++);
  494. index = __find_msr_index(vmx, MSR_CSTAR);
  495. if (index >= 0)
  496. move_msr_up(vmx, index, save_nmsrs++);
  497. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  498. if (index >= 0)
  499. move_msr_up(vmx, index, save_nmsrs++);
  500. /*
  501. * MSR_K6_STAR is only needed on long mode guests, and only
  502. * if efer.sce is enabled.
  503. */
  504. index = __find_msr_index(vmx, MSR_K6_STAR);
  505. if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
  506. move_msr_up(vmx, index, save_nmsrs++);
  507. }
  508. #endif
  509. vmx->save_nmsrs = save_nmsrs;
  510. #ifdef CONFIG_X86_64
  511. vmx->msr_offset_kernel_gs_base =
  512. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  513. #endif
  514. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  515. }
  516. /*
  517. * reads and returns guest's timestamp counter "register"
  518. * guest_tsc = host_tsc + tsc_offset -- 21.3
  519. */
  520. static u64 guest_read_tsc(void)
  521. {
  522. u64 host_tsc, tsc_offset;
  523. rdtscll(host_tsc);
  524. tsc_offset = vmcs_read64(TSC_OFFSET);
  525. return host_tsc + tsc_offset;
  526. }
  527. /*
  528. * writes 'guest_tsc' into guest's timestamp counter "register"
  529. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  530. */
  531. static void guest_write_tsc(u64 guest_tsc)
  532. {
  533. u64 host_tsc;
  534. rdtscll(host_tsc);
  535. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  536. }
  537. /*
  538. * Reads an msr value (of 'msr_index') into 'pdata'.
  539. * Returns 0 on success, non-0 otherwise.
  540. * Assumes vcpu_load() was already called.
  541. */
  542. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  543. {
  544. u64 data;
  545. struct kvm_msr_entry *msr;
  546. if (!pdata) {
  547. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  548. return -EINVAL;
  549. }
  550. switch (msr_index) {
  551. #ifdef CONFIG_X86_64
  552. case MSR_FS_BASE:
  553. data = vmcs_readl(GUEST_FS_BASE);
  554. break;
  555. case MSR_GS_BASE:
  556. data = vmcs_readl(GUEST_GS_BASE);
  557. break;
  558. case MSR_EFER:
  559. return kvm_get_msr_common(vcpu, msr_index, pdata);
  560. #endif
  561. case MSR_IA32_TIME_STAMP_COUNTER:
  562. data = guest_read_tsc();
  563. break;
  564. case MSR_IA32_SYSENTER_CS:
  565. data = vmcs_read32(GUEST_SYSENTER_CS);
  566. break;
  567. case MSR_IA32_SYSENTER_EIP:
  568. data = vmcs_readl(GUEST_SYSENTER_EIP);
  569. break;
  570. case MSR_IA32_SYSENTER_ESP:
  571. data = vmcs_readl(GUEST_SYSENTER_ESP);
  572. break;
  573. default:
  574. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  575. if (msr) {
  576. data = msr->data;
  577. break;
  578. }
  579. return kvm_get_msr_common(vcpu, msr_index, pdata);
  580. }
  581. *pdata = data;
  582. return 0;
  583. }
  584. /*
  585. * Writes msr value into into the appropriate "register".
  586. * Returns 0 on success, non-0 otherwise.
  587. * Assumes vcpu_load() was already called.
  588. */
  589. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  590. {
  591. struct vcpu_vmx *vmx = to_vmx(vcpu);
  592. struct kvm_msr_entry *msr;
  593. int ret = 0;
  594. switch (msr_index) {
  595. #ifdef CONFIG_X86_64
  596. case MSR_EFER:
  597. ret = kvm_set_msr_common(vcpu, msr_index, data);
  598. if (vmx->host_state.loaded)
  599. load_transition_efer(vmx);
  600. break;
  601. case MSR_FS_BASE:
  602. vmcs_writel(GUEST_FS_BASE, data);
  603. break;
  604. case MSR_GS_BASE:
  605. vmcs_writel(GUEST_GS_BASE, data);
  606. break;
  607. #endif
  608. case MSR_IA32_SYSENTER_CS:
  609. vmcs_write32(GUEST_SYSENTER_CS, data);
  610. break;
  611. case MSR_IA32_SYSENTER_EIP:
  612. vmcs_writel(GUEST_SYSENTER_EIP, data);
  613. break;
  614. case MSR_IA32_SYSENTER_ESP:
  615. vmcs_writel(GUEST_SYSENTER_ESP, data);
  616. break;
  617. case MSR_IA32_TIME_STAMP_COUNTER:
  618. guest_write_tsc(data);
  619. break;
  620. default:
  621. msr = find_msr_entry(vmx, msr_index);
  622. if (msr) {
  623. msr->data = data;
  624. if (vmx->host_state.loaded)
  625. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  626. break;
  627. }
  628. ret = kvm_set_msr_common(vcpu, msr_index, data);
  629. }
  630. return ret;
  631. }
  632. /*
  633. * Sync the rsp and rip registers into the vcpu structure. This allows
  634. * registers to be accessed by indexing vcpu->regs.
  635. */
  636. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  637. {
  638. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  639. vcpu->rip = vmcs_readl(GUEST_RIP);
  640. }
  641. /*
  642. * Syncs rsp and rip back into the vmcs. Should be called after possible
  643. * modification.
  644. */
  645. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  646. {
  647. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  648. vmcs_writel(GUEST_RIP, vcpu->rip);
  649. }
  650. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  651. {
  652. unsigned long dr7 = 0x400;
  653. int old_singlestep;
  654. old_singlestep = vcpu->guest_debug.singlestep;
  655. vcpu->guest_debug.enabled = dbg->enabled;
  656. if (vcpu->guest_debug.enabled) {
  657. int i;
  658. dr7 |= 0x200; /* exact */
  659. for (i = 0; i < 4; ++i) {
  660. if (!dbg->breakpoints[i].enabled)
  661. continue;
  662. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  663. dr7 |= 2 << (i*2); /* global enable */
  664. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  665. }
  666. vcpu->guest_debug.singlestep = dbg->singlestep;
  667. } else
  668. vcpu->guest_debug.singlestep = 0;
  669. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  670. unsigned long flags;
  671. flags = vmcs_readl(GUEST_RFLAGS);
  672. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  673. vmcs_writel(GUEST_RFLAGS, flags);
  674. }
  675. update_exception_bitmap(vcpu);
  676. vmcs_writel(GUEST_DR7, dr7);
  677. return 0;
  678. }
  679. static __init int cpu_has_kvm_support(void)
  680. {
  681. unsigned long ecx = cpuid_ecx(1);
  682. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  683. }
  684. static __init int vmx_disabled_by_bios(void)
  685. {
  686. u64 msr;
  687. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  688. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  689. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  690. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  691. /* locked but not enabled */
  692. }
  693. static void hardware_enable(void *garbage)
  694. {
  695. int cpu = raw_smp_processor_id();
  696. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  697. u64 old;
  698. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  699. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  700. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  701. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  702. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  703. /* enable and lock */
  704. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  705. MSR_IA32_FEATURE_CONTROL_LOCKED |
  706. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  707. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  708. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  709. : "memory", "cc");
  710. }
  711. static void hardware_disable(void *garbage)
  712. {
  713. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  714. }
  715. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  716. u32 msr, u32* result)
  717. {
  718. u32 vmx_msr_low, vmx_msr_high;
  719. u32 ctl = ctl_min | ctl_opt;
  720. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  721. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  722. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  723. /* Ensure minimum (required) set of control bits are supported. */
  724. if (ctl_min & ~ctl)
  725. return -EIO;
  726. *result = ctl;
  727. return 0;
  728. }
  729. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  730. {
  731. u32 vmx_msr_low, vmx_msr_high;
  732. u32 min, opt;
  733. u32 _pin_based_exec_control = 0;
  734. u32 _cpu_based_exec_control = 0;
  735. u32 _vmexit_control = 0;
  736. u32 _vmentry_control = 0;
  737. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  738. opt = 0;
  739. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  740. &_pin_based_exec_control) < 0)
  741. return -EIO;
  742. min = CPU_BASED_HLT_EXITING |
  743. #ifdef CONFIG_X86_64
  744. CPU_BASED_CR8_LOAD_EXITING |
  745. CPU_BASED_CR8_STORE_EXITING |
  746. #endif
  747. CPU_BASED_USE_IO_BITMAPS |
  748. CPU_BASED_MOV_DR_EXITING |
  749. CPU_BASED_USE_TSC_OFFSETING;
  750. opt = 0;
  751. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  752. &_cpu_based_exec_control) < 0)
  753. return -EIO;
  754. min = 0;
  755. #ifdef CONFIG_X86_64
  756. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  757. #endif
  758. opt = 0;
  759. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  760. &_vmexit_control) < 0)
  761. return -EIO;
  762. min = opt = 0;
  763. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  764. &_vmentry_control) < 0)
  765. return -EIO;
  766. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  767. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  768. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  769. return -EIO;
  770. #ifdef CONFIG_X86_64
  771. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  772. if (vmx_msr_high & (1u<<16))
  773. return -EIO;
  774. #endif
  775. /* Require Write-Back (WB) memory type for VMCS accesses. */
  776. if (((vmx_msr_high >> 18) & 15) != 6)
  777. return -EIO;
  778. vmcs_conf->size = vmx_msr_high & 0x1fff;
  779. vmcs_conf->order = get_order(vmcs_config.size);
  780. vmcs_conf->revision_id = vmx_msr_low;
  781. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  782. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  783. vmcs_conf->vmexit_ctrl = _vmexit_control;
  784. vmcs_conf->vmentry_ctrl = _vmentry_control;
  785. return 0;
  786. }
  787. static struct vmcs *alloc_vmcs_cpu(int cpu)
  788. {
  789. int node = cpu_to_node(cpu);
  790. struct page *pages;
  791. struct vmcs *vmcs;
  792. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  793. if (!pages)
  794. return NULL;
  795. vmcs = page_address(pages);
  796. memset(vmcs, 0, vmcs_config.size);
  797. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  798. return vmcs;
  799. }
  800. static struct vmcs *alloc_vmcs(void)
  801. {
  802. return alloc_vmcs_cpu(raw_smp_processor_id());
  803. }
  804. static void free_vmcs(struct vmcs *vmcs)
  805. {
  806. free_pages((unsigned long)vmcs, vmcs_config.order);
  807. }
  808. static void free_kvm_area(void)
  809. {
  810. int cpu;
  811. for_each_online_cpu(cpu)
  812. free_vmcs(per_cpu(vmxarea, cpu));
  813. }
  814. static __init int alloc_kvm_area(void)
  815. {
  816. int cpu;
  817. for_each_online_cpu(cpu) {
  818. struct vmcs *vmcs;
  819. vmcs = alloc_vmcs_cpu(cpu);
  820. if (!vmcs) {
  821. free_kvm_area();
  822. return -ENOMEM;
  823. }
  824. per_cpu(vmxarea, cpu) = vmcs;
  825. }
  826. return 0;
  827. }
  828. static __init int hardware_setup(void)
  829. {
  830. if (setup_vmcs_config(&vmcs_config) < 0)
  831. return -EIO;
  832. return alloc_kvm_area();
  833. }
  834. static __exit void hardware_unsetup(void)
  835. {
  836. free_kvm_area();
  837. }
  838. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  839. {
  840. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  841. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  842. vmcs_write16(sf->selector, save->selector);
  843. vmcs_writel(sf->base, save->base);
  844. vmcs_write32(sf->limit, save->limit);
  845. vmcs_write32(sf->ar_bytes, save->ar);
  846. } else {
  847. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  848. << AR_DPL_SHIFT;
  849. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  850. }
  851. }
  852. static void enter_pmode(struct kvm_vcpu *vcpu)
  853. {
  854. unsigned long flags;
  855. vcpu->rmode.active = 0;
  856. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  857. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  858. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  859. flags = vmcs_readl(GUEST_RFLAGS);
  860. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  861. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  862. vmcs_writel(GUEST_RFLAGS, flags);
  863. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  864. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  865. update_exception_bitmap(vcpu);
  866. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  867. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  868. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  869. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  870. vmcs_write16(GUEST_SS_SELECTOR, 0);
  871. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  872. vmcs_write16(GUEST_CS_SELECTOR,
  873. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  874. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  875. }
  876. static int rmode_tss_base(struct kvm* kvm)
  877. {
  878. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  879. return base_gfn << PAGE_SHIFT;
  880. }
  881. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  882. {
  883. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  884. save->selector = vmcs_read16(sf->selector);
  885. save->base = vmcs_readl(sf->base);
  886. save->limit = vmcs_read32(sf->limit);
  887. save->ar = vmcs_read32(sf->ar_bytes);
  888. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  889. vmcs_write32(sf->limit, 0xffff);
  890. vmcs_write32(sf->ar_bytes, 0xf3);
  891. }
  892. static void enter_rmode(struct kvm_vcpu *vcpu)
  893. {
  894. unsigned long flags;
  895. vcpu->rmode.active = 1;
  896. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  897. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  898. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  899. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  900. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  901. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  902. flags = vmcs_readl(GUEST_RFLAGS);
  903. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  904. flags |= IOPL_MASK | X86_EFLAGS_VM;
  905. vmcs_writel(GUEST_RFLAGS, flags);
  906. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  907. update_exception_bitmap(vcpu);
  908. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  909. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  910. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  911. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  912. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  913. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  914. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  915. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  916. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  917. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  918. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  919. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  920. init_rmode_tss(vcpu->kvm);
  921. }
  922. #ifdef CONFIG_X86_64
  923. static void enter_lmode(struct kvm_vcpu *vcpu)
  924. {
  925. u32 guest_tr_ar;
  926. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  927. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  928. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  929. __FUNCTION__);
  930. vmcs_write32(GUEST_TR_AR_BYTES,
  931. (guest_tr_ar & ~AR_TYPE_MASK)
  932. | AR_TYPE_BUSY_64_TSS);
  933. }
  934. vcpu->shadow_efer |= EFER_LMA;
  935. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  936. vmcs_write32(VM_ENTRY_CONTROLS,
  937. vmcs_read32(VM_ENTRY_CONTROLS)
  938. | VM_ENTRY_CONTROLS_IA32E_MASK);
  939. }
  940. static void exit_lmode(struct kvm_vcpu *vcpu)
  941. {
  942. vcpu->shadow_efer &= ~EFER_LMA;
  943. vmcs_write32(VM_ENTRY_CONTROLS,
  944. vmcs_read32(VM_ENTRY_CONTROLS)
  945. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  946. }
  947. #endif
  948. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  949. {
  950. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  951. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  952. }
  953. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  954. {
  955. vmx_fpu_deactivate(vcpu);
  956. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  957. enter_pmode(vcpu);
  958. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  959. enter_rmode(vcpu);
  960. #ifdef CONFIG_X86_64
  961. if (vcpu->shadow_efer & EFER_LME) {
  962. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  963. enter_lmode(vcpu);
  964. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  965. exit_lmode(vcpu);
  966. }
  967. #endif
  968. vmcs_writel(CR0_READ_SHADOW, cr0);
  969. vmcs_writel(GUEST_CR0,
  970. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  971. vcpu->cr0 = cr0;
  972. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  973. vmx_fpu_activate(vcpu);
  974. }
  975. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  976. {
  977. vmcs_writel(GUEST_CR3, cr3);
  978. if (vcpu->cr0 & X86_CR0_PE)
  979. vmx_fpu_deactivate(vcpu);
  980. }
  981. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  982. {
  983. vmcs_writel(CR4_READ_SHADOW, cr4);
  984. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  985. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  986. vcpu->cr4 = cr4;
  987. }
  988. #ifdef CONFIG_X86_64
  989. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  990. {
  991. struct vcpu_vmx *vmx = to_vmx(vcpu);
  992. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  993. vcpu->shadow_efer = efer;
  994. if (efer & EFER_LMA) {
  995. vmcs_write32(VM_ENTRY_CONTROLS,
  996. vmcs_read32(VM_ENTRY_CONTROLS) |
  997. VM_ENTRY_CONTROLS_IA32E_MASK);
  998. msr->data = efer;
  999. } else {
  1000. vmcs_write32(VM_ENTRY_CONTROLS,
  1001. vmcs_read32(VM_ENTRY_CONTROLS) &
  1002. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  1003. msr->data = efer & ~EFER_LME;
  1004. }
  1005. setup_msrs(vmx);
  1006. }
  1007. #endif
  1008. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1009. {
  1010. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1011. return vmcs_readl(sf->base);
  1012. }
  1013. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1014. struct kvm_segment *var, int seg)
  1015. {
  1016. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1017. u32 ar;
  1018. var->base = vmcs_readl(sf->base);
  1019. var->limit = vmcs_read32(sf->limit);
  1020. var->selector = vmcs_read16(sf->selector);
  1021. ar = vmcs_read32(sf->ar_bytes);
  1022. if (ar & AR_UNUSABLE_MASK)
  1023. ar = 0;
  1024. var->type = ar & 15;
  1025. var->s = (ar >> 4) & 1;
  1026. var->dpl = (ar >> 5) & 3;
  1027. var->present = (ar >> 7) & 1;
  1028. var->avl = (ar >> 12) & 1;
  1029. var->l = (ar >> 13) & 1;
  1030. var->db = (ar >> 14) & 1;
  1031. var->g = (ar >> 15) & 1;
  1032. var->unusable = (ar >> 16) & 1;
  1033. }
  1034. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1035. {
  1036. u32 ar;
  1037. if (var->unusable)
  1038. ar = 1 << 16;
  1039. else {
  1040. ar = var->type & 15;
  1041. ar |= (var->s & 1) << 4;
  1042. ar |= (var->dpl & 3) << 5;
  1043. ar |= (var->present & 1) << 7;
  1044. ar |= (var->avl & 1) << 12;
  1045. ar |= (var->l & 1) << 13;
  1046. ar |= (var->db & 1) << 14;
  1047. ar |= (var->g & 1) << 15;
  1048. }
  1049. if (ar == 0) /* a 0 value means unusable */
  1050. ar = AR_UNUSABLE_MASK;
  1051. return ar;
  1052. }
  1053. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1054. struct kvm_segment *var, int seg)
  1055. {
  1056. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1057. u32 ar;
  1058. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  1059. vcpu->rmode.tr.selector = var->selector;
  1060. vcpu->rmode.tr.base = var->base;
  1061. vcpu->rmode.tr.limit = var->limit;
  1062. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  1063. return;
  1064. }
  1065. vmcs_writel(sf->base, var->base);
  1066. vmcs_write32(sf->limit, var->limit);
  1067. vmcs_write16(sf->selector, var->selector);
  1068. if (vcpu->rmode.active && var->s) {
  1069. /*
  1070. * Hack real-mode segments into vm86 compatibility.
  1071. */
  1072. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1073. vmcs_writel(sf->base, 0xf0000);
  1074. ar = 0xf3;
  1075. } else
  1076. ar = vmx_segment_access_rights(var);
  1077. vmcs_write32(sf->ar_bytes, ar);
  1078. }
  1079. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1080. {
  1081. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1082. *db = (ar >> 14) & 1;
  1083. *l = (ar >> 13) & 1;
  1084. }
  1085. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1086. {
  1087. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1088. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1089. }
  1090. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1091. {
  1092. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1093. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1094. }
  1095. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1096. {
  1097. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1098. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1099. }
  1100. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1101. {
  1102. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1103. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1104. }
  1105. static int init_rmode_tss(struct kvm* kvm)
  1106. {
  1107. struct page *p1, *p2, *p3;
  1108. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1109. char *page;
  1110. p1 = gfn_to_page(kvm, fn++);
  1111. p2 = gfn_to_page(kvm, fn++);
  1112. p3 = gfn_to_page(kvm, fn);
  1113. if (!p1 || !p2 || !p3) {
  1114. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  1115. return 0;
  1116. }
  1117. page = kmap_atomic(p1, KM_USER0);
  1118. clear_page(page);
  1119. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1120. kunmap_atomic(page, KM_USER0);
  1121. page = kmap_atomic(p2, KM_USER0);
  1122. clear_page(page);
  1123. kunmap_atomic(page, KM_USER0);
  1124. page = kmap_atomic(p3, KM_USER0);
  1125. clear_page(page);
  1126. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  1127. kunmap_atomic(page, KM_USER0);
  1128. return 1;
  1129. }
  1130. static void seg_setup(int seg)
  1131. {
  1132. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1133. vmcs_write16(sf->selector, 0);
  1134. vmcs_writel(sf->base, 0);
  1135. vmcs_write32(sf->limit, 0xffff);
  1136. vmcs_write32(sf->ar_bytes, 0x93);
  1137. }
  1138. /*
  1139. * Sets up the vmcs for emulated real mode.
  1140. */
  1141. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1142. {
  1143. u32 host_sysenter_cs;
  1144. u32 junk;
  1145. unsigned long a;
  1146. struct descriptor_table dt;
  1147. int i;
  1148. int ret = 0;
  1149. unsigned long kvm_vmx_return;
  1150. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1151. ret = -ENOMEM;
  1152. goto out;
  1153. }
  1154. vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1155. vmx->vcpu.cr8 = 0;
  1156. vmx->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1157. if (vmx->vcpu.vcpu_id == 0)
  1158. vmx->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
  1159. fx_init(&vmx->vcpu);
  1160. /*
  1161. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1162. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1163. */
  1164. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1165. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1166. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1167. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1168. seg_setup(VCPU_SREG_DS);
  1169. seg_setup(VCPU_SREG_ES);
  1170. seg_setup(VCPU_SREG_FS);
  1171. seg_setup(VCPU_SREG_GS);
  1172. seg_setup(VCPU_SREG_SS);
  1173. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1174. vmcs_writel(GUEST_TR_BASE, 0);
  1175. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1176. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1177. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1178. vmcs_writel(GUEST_LDTR_BASE, 0);
  1179. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1180. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1181. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1182. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1183. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1184. vmcs_writel(GUEST_RFLAGS, 0x02);
  1185. vmcs_writel(GUEST_RIP, 0xfff0);
  1186. vmcs_writel(GUEST_RSP, 0);
  1187. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1188. vmcs_writel(GUEST_DR7, 0x400);
  1189. vmcs_writel(GUEST_GDTR_BASE, 0);
  1190. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1191. vmcs_writel(GUEST_IDTR_BASE, 0);
  1192. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1193. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1194. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1195. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1196. /* I/O */
  1197. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1198. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1199. guest_write_tsc(0);
  1200. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1201. /* Special registers */
  1202. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1203. /* Control */
  1204. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1205. vmcs_config.pin_based_exec_ctrl);
  1206. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1207. vmcs_config.cpu_based_exec_ctrl);
  1208. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1209. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1210. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1211. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1212. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1213. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1214. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1215. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1216. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1217. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1218. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1219. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1220. #ifdef CONFIG_X86_64
  1221. rdmsrl(MSR_FS_BASE, a);
  1222. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1223. rdmsrl(MSR_GS_BASE, a);
  1224. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1225. #else
  1226. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1227. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1228. #endif
  1229. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1230. get_idt(&dt);
  1231. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1232. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1233. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1234. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1235. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1236. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1237. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1238. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1239. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1240. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1241. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1242. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1243. for (i = 0; i < NR_VMX_MSR; ++i) {
  1244. u32 index = vmx_msr_index[i];
  1245. u32 data_low, data_high;
  1246. u64 data;
  1247. int j = vmx->nmsrs;
  1248. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1249. continue;
  1250. if (wrmsr_safe(index, data_low, data_high) < 0)
  1251. continue;
  1252. data = data_low | ((u64)data_high << 32);
  1253. vmx->host_msrs[j].index = index;
  1254. vmx->host_msrs[j].reserved = 0;
  1255. vmx->host_msrs[j].data = data;
  1256. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1257. ++vmx->nmsrs;
  1258. }
  1259. setup_msrs(vmx);
  1260. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1261. /* 22.2.1, 20.8.1 */
  1262. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1263. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1264. #ifdef CONFIG_X86_64
  1265. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1266. vmcs_writel(TPR_THRESHOLD, 0);
  1267. #endif
  1268. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1269. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1270. vmx->vcpu.cr0 = 0x60000010;
  1271. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
  1272. vmx_set_cr4(&vmx->vcpu, 0);
  1273. #ifdef CONFIG_X86_64
  1274. vmx_set_efer(&vmx->vcpu, 0);
  1275. #endif
  1276. vmx_fpu_activate(&vmx->vcpu);
  1277. update_exception_bitmap(&vmx->vcpu);
  1278. return 0;
  1279. out:
  1280. return ret;
  1281. }
  1282. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1283. {
  1284. u16 ent[2];
  1285. u16 cs;
  1286. u16 ip;
  1287. unsigned long flags;
  1288. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1289. u16 sp = vmcs_readl(GUEST_RSP);
  1290. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1291. if (sp > ss_limit || sp < 6 ) {
  1292. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1293. __FUNCTION__,
  1294. vmcs_readl(GUEST_RSP),
  1295. vmcs_readl(GUEST_SS_BASE),
  1296. vmcs_read32(GUEST_SS_LIMIT));
  1297. return;
  1298. }
  1299. if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
  1300. X86EMUL_CONTINUE) {
  1301. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1302. return;
  1303. }
  1304. flags = vmcs_readl(GUEST_RFLAGS);
  1305. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1306. ip = vmcs_readl(GUEST_RIP);
  1307. if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
  1308. emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
  1309. emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
  1310. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1311. return;
  1312. }
  1313. vmcs_writel(GUEST_RFLAGS, flags &
  1314. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1315. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1316. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1317. vmcs_writel(GUEST_RIP, ent[0]);
  1318. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1319. }
  1320. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1321. {
  1322. int word_index = __ffs(vcpu->irq_summary);
  1323. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1324. int irq = word_index * BITS_PER_LONG + bit_index;
  1325. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1326. if (!vcpu->irq_pending[word_index])
  1327. clear_bit(word_index, &vcpu->irq_summary);
  1328. if (vcpu->rmode.active) {
  1329. inject_rmode_irq(vcpu, irq);
  1330. return;
  1331. }
  1332. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1333. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1334. }
  1335. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1336. struct kvm_run *kvm_run)
  1337. {
  1338. u32 cpu_based_vm_exec_control;
  1339. vcpu->interrupt_window_open =
  1340. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1341. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1342. if (vcpu->interrupt_window_open &&
  1343. vcpu->irq_summary &&
  1344. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1345. /*
  1346. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1347. */
  1348. kvm_do_inject_irq(vcpu);
  1349. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1350. if (!vcpu->interrupt_window_open &&
  1351. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1352. /*
  1353. * Interrupts blocked. Wait for unblock.
  1354. */
  1355. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1356. else
  1357. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1358. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1359. }
  1360. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1361. {
  1362. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1363. set_debugreg(dbg->bp[0], 0);
  1364. set_debugreg(dbg->bp[1], 1);
  1365. set_debugreg(dbg->bp[2], 2);
  1366. set_debugreg(dbg->bp[3], 3);
  1367. if (dbg->singlestep) {
  1368. unsigned long flags;
  1369. flags = vmcs_readl(GUEST_RFLAGS);
  1370. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1371. vmcs_writel(GUEST_RFLAGS, flags);
  1372. }
  1373. }
  1374. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1375. int vec, u32 err_code)
  1376. {
  1377. if (!vcpu->rmode.active)
  1378. return 0;
  1379. /*
  1380. * Instruction with address size override prefix opcode 0x67
  1381. * Cause the #SS fault with 0 error code in VM86 mode.
  1382. */
  1383. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1384. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1385. return 1;
  1386. return 0;
  1387. }
  1388. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1389. {
  1390. u32 intr_info, error_code;
  1391. unsigned long cr2, rip;
  1392. u32 vect_info;
  1393. enum emulation_result er;
  1394. int r;
  1395. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1396. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1397. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1398. !is_page_fault(intr_info)) {
  1399. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1400. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1401. }
  1402. if (is_external_interrupt(vect_info)) {
  1403. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1404. set_bit(irq, vcpu->irq_pending);
  1405. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1406. }
  1407. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1408. asm ("int $2");
  1409. return 1;
  1410. }
  1411. if (is_no_device(intr_info)) {
  1412. vmx_fpu_activate(vcpu);
  1413. return 1;
  1414. }
  1415. error_code = 0;
  1416. rip = vmcs_readl(GUEST_RIP);
  1417. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1418. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1419. if (is_page_fault(intr_info)) {
  1420. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1421. mutex_lock(&vcpu->kvm->lock);
  1422. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1423. if (r < 0) {
  1424. mutex_unlock(&vcpu->kvm->lock);
  1425. return r;
  1426. }
  1427. if (!r) {
  1428. mutex_unlock(&vcpu->kvm->lock);
  1429. return 1;
  1430. }
  1431. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1432. mutex_unlock(&vcpu->kvm->lock);
  1433. switch (er) {
  1434. case EMULATE_DONE:
  1435. return 1;
  1436. case EMULATE_DO_MMIO:
  1437. ++vcpu->stat.mmio_exits;
  1438. return 0;
  1439. case EMULATE_FAIL:
  1440. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1441. break;
  1442. default:
  1443. BUG();
  1444. }
  1445. }
  1446. if (vcpu->rmode.active &&
  1447. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1448. error_code)) {
  1449. if (vcpu->halt_request) {
  1450. vcpu->halt_request = 0;
  1451. return kvm_emulate_halt(vcpu);
  1452. }
  1453. return 1;
  1454. }
  1455. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1456. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1457. return 0;
  1458. }
  1459. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1460. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1461. kvm_run->ex.error_code = error_code;
  1462. return 0;
  1463. }
  1464. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1465. struct kvm_run *kvm_run)
  1466. {
  1467. ++vcpu->stat.irq_exits;
  1468. return 1;
  1469. }
  1470. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1471. {
  1472. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1473. return 0;
  1474. }
  1475. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1476. {
  1477. u64 inst;
  1478. gva_t rip;
  1479. int countr_size;
  1480. int i;
  1481. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1482. countr_size = 2;
  1483. } else {
  1484. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1485. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1486. (cs_ar & AR_DB_MASK) ? 4: 2;
  1487. }
  1488. rip = vmcs_readl(GUEST_RIP);
  1489. if (countr_size != 8)
  1490. rip += vmcs_readl(GUEST_CS_BASE);
  1491. if (emulator_read_std(rip, &inst, sizeof(inst), vcpu) !=
  1492. X86EMUL_CONTINUE)
  1493. return 0;
  1494. for (i = 0; i < sizeof(inst); i++) {
  1495. switch (((u8*)&inst)[i]) {
  1496. case 0xf0:
  1497. case 0xf2:
  1498. case 0xf3:
  1499. case 0x2e:
  1500. case 0x36:
  1501. case 0x3e:
  1502. case 0x26:
  1503. case 0x64:
  1504. case 0x65:
  1505. case 0x66:
  1506. break;
  1507. case 0x67:
  1508. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1509. default:
  1510. goto done;
  1511. }
  1512. }
  1513. return 0;
  1514. done:
  1515. countr_size *= 8;
  1516. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1517. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1518. return 1;
  1519. }
  1520. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1521. {
  1522. u64 exit_qualification;
  1523. int size, down, in, string, rep;
  1524. unsigned port;
  1525. unsigned long count;
  1526. gva_t address;
  1527. ++vcpu->stat.io_exits;
  1528. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1529. in = (exit_qualification & 8) != 0;
  1530. size = (exit_qualification & 7) + 1;
  1531. string = (exit_qualification & 16) != 0;
  1532. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1533. count = 1;
  1534. rep = (exit_qualification & 32) != 0;
  1535. port = exit_qualification >> 16;
  1536. address = 0;
  1537. if (string) {
  1538. if (rep && !get_io_count(vcpu, &count))
  1539. return 1;
  1540. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1541. }
  1542. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1543. address, rep, port);
  1544. }
  1545. static void
  1546. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1547. {
  1548. /*
  1549. * Patch in the VMCALL instruction:
  1550. */
  1551. hypercall[0] = 0x0f;
  1552. hypercall[1] = 0x01;
  1553. hypercall[2] = 0xc1;
  1554. hypercall[3] = 0xc3;
  1555. }
  1556. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1557. {
  1558. u64 exit_qualification;
  1559. int cr;
  1560. int reg;
  1561. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1562. cr = exit_qualification & 15;
  1563. reg = (exit_qualification >> 8) & 15;
  1564. switch ((exit_qualification >> 4) & 3) {
  1565. case 0: /* mov to cr */
  1566. switch (cr) {
  1567. case 0:
  1568. vcpu_load_rsp_rip(vcpu);
  1569. set_cr0(vcpu, vcpu->regs[reg]);
  1570. skip_emulated_instruction(vcpu);
  1571. return 1;
  1572. case 3:
  1573. vcpu_load_rsp_rip(vcpu);
  1574. set_cr3(vcpu, vcpu->regs[reg]);
  1575. skip_emulated_instruction(vcpu);
  1576. return 1;
  1577. case 4:
  1578. vcpu_load_rsp_rip(vcpu);
  1579. set_cr4(vcpu, vcpu->regs[reg]);
  1580. skip_emulated_instruction(vcpu);
  1581. return 1;
  1582. case 8:
  1583. vcpu_load_rsp_rip(vcpu);
  1584. set_cr8(vcpu, vcpu->regs[reg]);
  1585. skip_emulated_instruction(vcpu);
  1586. return 1;
  1587. };
  1588. break;
  1589. case 2: /* clts */
  1590. vcpu_load_rsp_rip(vcpu);
  1591. vmx_fpu_deactivate(vcpu);
  1592. vcpu->cr0 &= ~X86_CR0_TS;
  1593. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1594. vmx_fpu_activate(vcpu);
  1595. skip_emulated_instruction(vcpu);
  1596. return 1;
  1597. case 1: /*mov from cr*/
  1598. switch (cr) {
  1599. case 3:
  1600. vcpu_load_rsp_rip(vcpu);
  1601. vcpu->regs[reg] = vcpu->cr3;
  1602. vcpu_put_rsp_rip(vcpu);
  1603. skip_emulated_instruction(vcpu);
  1604. return 1;
  1605. case 8:
  1606. vcpu_load_rsp_rip(vcpu);
  1607. vcpu->regs[reg] = vcpu->cr8;
  1608. vcpu_put_rsp_rip(vcpu);
  1609. skip_emulated_instruction(vcpu);
  1610. return 1;
  1611. }
  1612. break;
  1613. case 3: /* lmsw */
  1614. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1615. skip_emulated_instruction(vcpu);
  1616. return 1;
  1617. default:
  1618. break;
  1619. }
  1620. kvm_run->exit_reason = 0;
  1621. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1622. (int)(exit_qualification >> 4) & 3, cr);
  1623. return 0;
  1624. }
  1625. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1626. {
  1627. u64 exit_qualification;
  1628. unsigned long val;
  1629. int dr, reg;
  1630. /*
  1631. * FIXME: this code assumes the host is debugging the guest.
  1632. * need to deal with guest debugging itself too.
  1633. */
  1634. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1635. dr = exit_qualification & 7;
  1636. reg = (exit_qualification >> 8) & 15;
  1637. vcpu_load_rsp_rip(vcpu);
  1638. if (exit_qualification & 16) {
  1639. /* mov from dr */
  1640. switch (dr) {
  1641. case 6:
  1642. val = 0xffff0ff0;
  1643. break;
  1644. case 7:
  1645. val = 0x400;
  1646. break;
  1647. default:
  1648. val = 0;
  1649. }
  1650. vcpu->regs[reg] = val;
  1651. } else {
  1652. /* mov to dr */
  1653. }
  1654. vcpu_put_rsp_rip(vcpu);
  1655. skip_emulated_instruction(vcpu);
  1656. return 1;
  1657. }
  1658. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1659. {
  1660. kvm_emulate_cpuid(vcpu);
  1661. return 1;
  1662. }
  1663. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1664. {
  1665. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1666. u64 data;
  1667. if (vmx_get_msr(vcpu, ecx, &data)) {
  1668. vmx_inject_gp(vcpu, 0);
  1669. return 1;
  1670. }
  1671. /* FIXME: handling of bits 32:63 of rax, rdx */
  1672. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1673. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1674. skip_emulated_instruction(vcpu);
  1675. return 1;
  1676. }
  1677. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1678. {
  1679. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1680. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1681. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1682. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1683. vmx_inject_gp(vcpu, 0);
  1684. return 1;
  1685. }
  1686. skip_emulated_instruction(vcpu);
  1687. return 1;
  1688. }
  1689. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1690. struct kvm_run *kvm_run)
  1691. {
  1692. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1693. kvm_run->cr8 = vcpu->cr8;
  1694. kvm_run->apic_base = vcpu->apic_base;
  1695. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1696. vcpu->irq_summary == 0);
  1697. }
  1698. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1699. struct kvm_run *kvm_run)
  1700. {
  1701. /*
  1702. * If the user space waits to inject interrupts, exit as soon as
  1703. * possible
  1704. */
  1705. if (kvm_run->request_interrupt_window &&
  1706. !vcpu->irq_summary) {
  1707. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1708. ++vcpu->stat.irq_window_exits;
  1709. return 0;
  1710. }
  1711. return 1;
  1712. }
  1713. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1714. {
  1715. skip_emulated_instruction(vcpu);
  1716. return kvm_emulate_halt(vcpu);
  1717. }
  1718. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1719. {
  1720. skip_emulated_instruction(vcpu);
  1721. return kvm_hypercall(vcpu, kvm_run);
  1722. }
  1723. /*
  1724. * The exit handlers return 1 if the exit was handled fully and guest execution
  1725. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1726. * to be done to userspace and return 0.
  1727. */
  1728. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1729. struct kvm_run *kvm_run) = {
  1730. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1731. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1732. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1733. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1734. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1735. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1736. [EXIT_REASON_CPUID] = handle_cpuid,
  1737. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1738. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1739. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1740. [EXIT_REASON_HLT] = handle_halt,
  1741. [EXIT_REASON_VMCALL] = handle_vmcall,
  1742. };
  1743. static const int kvm_vmx_max_exit_handlers =
  1744. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1745. /*
  1746. * The guest has exited. See if we can fix it or if we need userspace
  1747. * assistance.
  1748. */
  1749. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1750. {
  1751. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1752. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1753. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1754. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1755. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1756. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1757. if (exit_reason < kvm_vmx_max_exit_handlers
  1758. && kvm_vmx_exit_handlers[exit_reason])
  1759. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1760. else {
  1761. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1762. kvm_run->hw.hardware_exit_reason = exit_reason;
  1763. }
  1764. return 0;
  1765. }
  1766. /*
  1767. * Check if userspace requested an interrupt window, and that the
  1768. * interrupt window is open.
  1769. *
  1770. * No need to exit to userspace if we already have an interrupt queued.
  1771. */
  1772. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1773. struct kvm_run *kvm_run)
  1774. {
  1775. return (!vcpu->irq_summary &&
  1776. kvm_run->request_interrupt_window &&
  1777. vcpu->interrupt_window_open &&
  1778. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1779. }
  1780. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1781. {
  1782. }
  1783. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1784. {
  1785. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1786. u8 fail;
  1787. int r;
  1788. preempted:
  1789. if (vcpu->guest_debug.enabled)
  1790. kvm_guest_debug_pre(vcpu);
  1791. again:
  1792. r = kvm_mmu_reload(vcpu);
  1793. if (unlikely(r))
  1794. goto out;
  1795. preempt_disable();
  1796. if (!vcpu->mmio_read_completed)
  1797. do_interrupt_requests(vcpu, kvm_run);
  1798. vmx_save_host_state(vmx);
  1799. kvm_load_guest_fpu(vcpu);
  1800. /*
  1801. * Loading guest fpu may have cleared host cr0.ts
  1802. */
  1803. vmcs_writel(HOST_CR0, read_cr0());
  1804. local_irq_disable();
  1805. vcpu->guest_mode = 1;
  1806. if (vcpu->requests)
  1807. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1808. vmx_flush_tlb(vcpu);
  1809. asm (
  1810. /* Store host registers */
  1811. #ifdef CONFIG_X86_64
  1812. "push %%rax; push %%rbx; push %%rdx;"
  1813. "push %%rsi; push %%rdi; push %%rbp;"
  1814. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1815. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1816. "push %%rcx \n\t"
  1817. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1818. #else
  1819. "pusha; push %%ecx \n\t"
  1820. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1821. #endif
  1822. /* Check if vmlaunch of vmresume is needed */
  1823. "cmp $0, %1 \n\t"
  1824. /* Load guest registers. Don't clobber flags. */
  1825. #ifdef CONFIG_X86_64
  1826. "mov %c[cr2](%3), %%rax \n\t"
  1827. "mov %%rax, %%cr2 \n\t"
  1828. "mov %c[rax](%3), %%rax \n\t"
  1829. "mov %c[rbx](%3), %%rbx \n\t"
  1830. "mov %c[rdx](%3), %%rdx \n\t"
  1831. "mov %c[rsi](%3), %%rsi \n\t"
  1832. "mov %c[rdi](%3), %%rdi \n\t"
  1833. "mov %c[rbp](%3), %%rbp \n\t"
  1834. "mov %c[r8](%3), %%r8 \n\t"
  1835. "mov %c[r9](%3), %%r9 \n\t"
  1836. "mov %c[r10](%3), %%r10 \n\t"
  1837. "mov %c[r11](%3), %%r11 \n\t"
  1838. "mov %c[r12](%3), %%r12 \n\t"
  1839. "mov %c[r13](%3), %%r13 \n\t"
  1840. "mov %c[r14](%3), %%r14 \n\t"
  1841. "mov %c[r15](%3), %%r15 \n\t"
  1842. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1843. #else
  1844. "mov %c[cr2](%3), %%eax \n\t"
  1845. "mov %%eax, %%cr2 \n\t"
  1846. "mov %c[rax](%3), %%eax \n\t"
  1847. "mov %c[rbx](%3), %%ebx \n\t"
  1848. "mov %c[rdx](%3), %%edx \n\t"
  1849. "mov %c[rsi](%3), %%esi \n\t"
  1850. "mov %c[rdi](%3), %%edi \n\t"
  1851. "mov %c[rbp](%3), %%ebp \n\t"
  1852. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1853. #endif
  1854. /* Enter guest mode */
  1855. "jne .Llaunched \n\t"
  1856. ASM_VMX_VMLAUNCH "\n\t"
  1857. "jmp .Lkvm_vmx_return \n\t"
  1858. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1859. ".Lkvm_vmx_return: "
  1860. /* Save guest registers, load host registers, keep flags */
  1861. #ifdef CONFIG_X86_64
  1862. "xchg %3, (%%rsp) \n\t"
  1863. "mov %%rax, %c[rax](%3) \n\t"
  1864. "mov %%rbx, %c[rbx](%3) \n\t"
  1865. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1866. "mov %%rdx, %c[rdx](%3) \n\t"
  1867. "mov %%rsi, %c[rsi](%3) \n\t"
  1868. "mov %%rdi, %c[rdi](%3) \n\t"
  1869. "mov %%rbp, %c[rbp](%3) \n\t"
  1870. "mov %%r8, %c[r8](%3) \n\t"
  1871. "mov %%r9, %c[r9](%3) \n\t"
  1872. "mov %%r10, %c[r10](%3) \n\t"
  1873. "mov %%r11, %c[r11](%3) \n\t"
  1874. "mov %%r12, %c[r12](%3) \n\t"
  1875. "mov %%r13, %c[r13](%3) \n\t"
  1876. "mov %%r14, %c[r14](%3) \n\t"
  1877. "mov %%r15, %c[r15](%3) \n\t"
  1878. "mov %%cr2, %%rax \n\t"
  1879. "mov %%rax, %c[cr2](%3) \n\t"
  1880. "mov (%%rsp), %3 \n\t"
  1881. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1882. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1883. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1884. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1885. #else
  1886. "xchg %3, (%%esp) \n\t"
  1887. "mov %%eax, %c[rax](%3) \n\t"
  1888. "mov %%ebx, %c[rbx](%3) \n\t"
  1889. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1890. "mov %%edx, %c[rdx](%3) \n\t"
  1891. "mov %%esi, %c[rsi](%3) \n\t"
  1892. "mov %%edi, %c[rdi](%3) \n\t"
  1893. "mov %%ebp, %c[rbp](%3) \n\t"
  1894. "mov %%cr2, %%eax \n\t"
  1895. "mov %%eax, %c[cr2](%3) \n\t"
  1896. "mov (%%esp), %3 \n\t"
  1897. "pop %%ecx; popa \n\t"
  1898. #endif
  1899. "setbe %0 \n\t"
  1900. : "=q" (fail)
  1901. : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
  1902. "c"(vcpu),
  1903. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1904. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1905. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1906. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1907. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1908. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1909. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1910. #ifdef CONFIG_X86_64
  1911. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1912. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1913. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1914. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1915. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1916. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1917. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1918. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1919. #endif
  1920. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1921. : "cc", "memory" );
  1922. vcpu->guest_mode = 0;
  1923. local_irq_enable();
  1924. ++vcpu->stat.exits;
  1925. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1926. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1927. vmx->launched = 1;
  1928. preempt_enable();
  1929. if (unlikely(fail)) {
  1930. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1931. kvm_run->fail_entry.hardware_entry_failure_reason
  1932. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1933. r = 0;
  1934. goto out;
  1935. }
  1936. /*
  1937. * Profile KVM exit RIPs:
  1938. */
  1939. if (unlikely(prof_on == KVM_PROFILING))
  1940. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1941. r = kvm_handle_exit(kvm_run, vcpu);
  1942. if (r > 0) {
  1943. /* Give scheduler a change to reschedule. */
  1944. if (signal_pending(current)) {
  1945. r = -EINTR;
  1946. kvm_run->exit_reason = KVM_EXIT_INTR;
  1947. ++vcpu->stat.signal_exits;
  1948. goto out;
  1949. }
  1950. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1951. r = -EINTR;
  1952. kvm_run->exit_reason = KVM_EXIT_INTR;
  1953. ++vcpu->stat.request_irq_exits;
  1954. goto out;
  1955. }
  1956. if (!need_resched()) {
  1957. ++vcpu->stat.light_exits;
  1958. goto again;
  1959. }
  1960. }
  1961. out:
  1962. if (r > 0) {
  1963. kvm_resched(vcpu);
  1964. goto preempted;
  1965. }
  1966. post_kvm_run_save(vcpu, kvm_run);
  1967. return r;
  1968. }
  1969. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1970. unsigned long addr,
  1971. u32 err_code)
  1972. {
  1973. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1974. ++vcpu->stat.pf_guest;
  1975. if (is_page_fault(vect_info)) {
  1976. printk(KERN_DEBUG "inject_page_fault: "
  1977. "double fault 0x%lx @ 0x%lx\n",
  1978. addr, vmcs_readl(GUEST_RIP));
  1979. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1980. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1981. DF_VECTOR |
  1982. INTR_TYPE_EXCEPTION |
  1983. INTR_INFO_DELIEVER_CODE_MASK |
  1984. INTR_INFO_VALID_MASK);
  1985. return;
  1986. }
  1987. vcpu->cr2 = addr;
  1988. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1989. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1990. PF_VECTOR |
  1991. INTR_TYPE_EXCEPTION |
  1992. INTR_INFO_DELIEVER_CODE_MASK |
  1993. INTR_INFO_VALID_MASK);
  1994. }
  1995. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1996. {
  1997. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1998. if (vmx->vmcs) {
  1999. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2000. free_vmcs(vmx->vmcs);
  2001. vmx->vmcs = NULL;
  2002. }
  2003. }
  2004. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2005. {
  2006. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2007. vmx_free_vmcs(vcpu);
  2008. kfree(vmx->host_msrs);
  2009. kfree(vmx->guest_msrs);
  2010. kvm_vcpu_uninit(vcpu);
  2011. kfree(vmx);
  2012. }
  2013. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2014. {
  2015. int err;
  2016. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2017. int cpu;
  2018. if (!vmx)
  2019. return ERR_PTR(-ENOMEM);
  2020. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2021. if (err)
  2022. goto free_vcpu;
  2023. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2024. if (!vmx->guest_msrs) {
  2025. err = -ENOMEM;
  2026. goto uninit_vcpu;
  2027. }
  2028. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2029. if (!vmx->host_msrs)
  2030. goto free_guest_msrs;
  2031. vmx->vmcs = alloc_vmcs();
  2032. if (!vmx->vmcs)
  2033. goto free_msrs;
  2034. vmcs_clear(vmx->vmcs);
  2035. cpu = get_cpu();
  2036. vmx_vcpu_load(&vmx->vcpu, cpu);
  2037. err = vmx_vcpu_setup(vmx);
  2038. vmx_vcpu_put(&vmx->vcpu);
  2039. put_cpu();
  2040. if (err)
  2041. goto free_vmcs;
  2042. return &vmx->vcpu;
  2043. free_vmcs:
  2044. free_vmcs(vmx->vmcs);
  2045. free_msrs:
  2046. kfree(vmx->host_msrs);
  2047. free_guest_msrs:
  2048. kfree(vmx->guest_msrs);
  2049. uninit_vcpu:
  2050. kvm_vcpu_uninit(&vmx->vcpu);
  2051. free_vcpu:
  2052. kfree(vmx);
  2053. return ERR_PTR(err);
  2054. }
  2055. static void __init vmx_check_processor_compat(void *rtn)
  2056. {
  2057. struct vmcs_config vmcs_conf;
  2058. *(int *)rtn = 0;
  2059. if (setup_vmcs_config(&vmcs_conf) < 0)
  2060. *(int *)rtn = -EIO;
  2061. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2062. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2063. smp_processor_id());
  2064. *(int *)rtn = -EIO;
  2065. }
  2066. }
  2067. static struct kvm_arch_ops vmx_arch_ops = {
  2068. .cpu_has_kvm_support = cpu_has_kvm_support,
  2069. .disabled_by_bios = vmx_disabled_by_bios,
  2070. .hardware_setup = hardware_setup,
  2071. .hardware_unsetup = hardware_unsetup,
  2072. .check_processor_compatibility = vmx_check_processor_compat,
  2073. .hardware_enable = hardware_enable,
  2074. .hardware_disable = hardware_disable,
  2075. .vcpu_create = vmx_create_vcpu,
  2076. .vcpu_free = vmx_free_vcpu,
  2077. .vcpu_load = vmx_vcpu_load,
  2078. .vcpu_put = vmx_vcpu_put,
  2079. .vcpu_decache = vmx_vcpu_decache,
  2080. .set_guest_debug = set_guest_debug,
  2081. .get_msr = vmx_get_msr,
  2082. .set_msr = vmx_set_msr,
  2083. .get_segment_base = vmx_get_segment_base,
  2084. .get_segment = vmx_get_segment,
  2085. .set_segment = vmx_set_segment,
  2086. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2087. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2088. .set_cr0 = vmx_set_cr0,
  2089. .set_cr3 = vmx_set_cr3,
  2090. .set_cr4 = vmx_set_cr4,
  2091. #ifdef CONFIG_X86_64
  2092. .set_efer = vmx_set_efer,
  2093. #endif
  2094. .get_idt = vmx_get_idt,
  2095. .set_idt = vmx_set_idt,
  2096. .get_gdt = vmx_get_gdt,
  2097. .set_gdt = vmx_set_gdt,
  2098. .cache_regs = vcpu_load_rsp_rip,
  2099. .decache_regs = vcpu_put_rsp_rip,
  2100. .get_rflags = vmx_get_rflags,
  2101. .set_rflags = vmx_set_rflags,
  2102. .tlb_flush = vmx_flush_tlb,
  2103. .inject_page_fault = vmx_inject_page_fault,
  2104. .inject_gp = vmx_inject_gp,
  2105. .run = vmx_vcpu_run,
  2106. .skip_emulated_instruction = skip_emulated_instruction,
  2107. .patch_hypercall = vmx_patch_hypercall,
  2108. };
  2109. static int __init vmx_init(void)
  2110. {
  2111. void *iova;
  2112. int r;
  2113. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2114. if (!vmx_io_bitmap_a)
  2115. return -ENOMEM;
  2116. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2117. if (!vmx_io_bitmap_b) {
  2118. r = -ENOMEM;
  2119. goto out;
  2120. }
  2121. /*
  2122. * Allow direct access to the PC debug port (it is often used for I/O
  2123. * delays, but the vmexits simply slow things down).
  2124. */
  2125. iova = kmap(vmx_io_bitmap_a);
  2126. memset(iova, 0xff, PAGE_SIZE);
  2127. clear_bit(0x80, iova);
  2128. kunmap(vmx_io_bitmap_a);
  2129. iova = kmap(vmx_io_bitmap_b);
  2130. memset(iova, 0xff, PAGE_SIZE);
  2131. kunmap(vmx_io_bitmap_b);
  2132. r = kvm_init_arch(&vmx_arch_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2133. if (r)
  2134. goto out1;
  2135. return 0;
  2136. out1:
  2137. __free_page(vmx_io_bitmap_b);
  2138. out:
  2139. __free_page(vmx_io_bitmap_a);
  2140. return r;
  2141. }
  2142. static void __exit vmx_exit(void)
  2143. {
  2144. __free_page(vmx_io_bitmap_b);
  2145. __free_page(vmx_io_bitmap_a);
  2146. kvm_exit_arch();
  2147. }
  2148. module_init(vmx_init)
  2149. module_exit(vmx_exit)