i915_gem_gtt.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323
  1. /*
  2. * Copyright © 2010 Daniel Vetter
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <drm/drmP.h>
  25. #include <drm/i915_drm.h>
  26. #include "i915_drv.h"
  27. #include "i915_trace.h"
  28. #include "intel_drv.h"
  29. #define GEN6_PPGTT_PD_ENTRIES 512
  30. #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
  31. typedef uint64_t gen8_gtt_pte_t;
  32. typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
  33. /* PPGTT stuff */
  34. #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
  35. #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
  36. #define GEN6_PDE_VALID (1 << 0)
  37. /* gen6+ has bit 11-4 for physical addr bit 39-32 */
  38. #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  39. #define GEN6_PTE_VALID (1 << 0)
  40. #define GEN6_PTE_UNCACHED (1 << 1)
  41. #define HSW_PTE_UNCACHED (0)
  42. #define GEN6_PTE_CACHE_LLC (2 << 1)
  43. #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
  44. #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  45. #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
  46. /* Cacheability Control is a 4-bit value. The low three bits are stored in *
  47. * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
  48. */
  49. #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
  50. (((bits) & 0x8) << (11 - 3)))
  51. #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
  52. #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
  53. #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
  54. #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
  55. #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
  56. #define GEN8_LEGACY_PDPS 4
  57. #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
  58. #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
  59. #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
  60. #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
  61. static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
  62. enum i915_cache_level level,
  63. bool valid)
  64. {
  65. gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
  66. pte |= addr;
  67. if (level != I915_CACHE_NONE)
  68. pte |= PPAT_CACHED_INDEX;
  69. else
  70. pte |= PPAT_UNCACHED_INDEX;
  71. return pte;
  72. }
  73. static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
  74. enum i915_cache_level level,
  75. bool valid)
  76. {
  77. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  78. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  79. switch (level) {
  80. case I915_CACHE_L3_LLC:
  81. case I915_CACHE_LLC:
  82. pte |= GEN6_PTE_CACHE_LLC;
  83. break;
  84. case I915_CACHE_NONE:
  85. pte |= GEN6_PTE_UNCACHED;
  86. break;
  87. default:
  88. WARN_ON(1);
  89. }
  90. return pte;
  91. }
  92. static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
  93. enum i915_cache_level level,
  94. bool valid)
  95. {
  96. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  97. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  98. switch (level) {
  99. case I915_CACHE_L3_LLC:
  100. pte |= GEN7_PTE_CACHE_L3_LLC;
  101. break;
  102. case I915_CACHE_LLC:
  103. pte |= GEN6_PTE_CACHE_LLC;
  104. break;
  105. case I915_CACHE_NONE:
  106. pte |= GEN6_PTE_UNCACHED;
  107. break;
  108. default:
  109. WARN_ON(1);
  110. }
  111. return pte;
  112. }
  113. #define BYT_PTE_WRITEABLE (1 << 1)
  114. #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
  115. static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
  116. enum i915_cache_level level,
  117. bool valid)
  118. {
  119. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  120. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  121. /* Mark the page as writeable. Other platforms don't have a
  122. * setting for read-only/writable, so this matches that behavior.
  123. */
  124. pte |= BYT_PTE_WRITEABLE;
  125. if (level != I915_CACHE_NONE)
  126. pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
  127. return pte;
  128. }
  129. static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
  130. enum i915_cache_level level,
  131. bool valid)
  132. {
  133. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  134. pte |= HSW_PTE_ADDR_ENCODE(addr);
  135. if (level != I915_CACHE_NONE)
  136. pte |= HSW_WB_LLC_AGE3;
  137. return pte;
  138. }
  139. static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
  140. enum i915_cache_level level,
  141. bool valid)
  142. {
  143. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  144. pte |= HSW_PTE_ADDR_ENCODE(addr);
  145. switch (level) {
  146. case I915_CACHE_NONE:
  147. break;
  148. case I915_CACHE_WT:
  149. pte |= HSW_WT_ELLC_LLC_AGE0;
  150. break;
  151. default:
  152. pte |= HSW_WB_ELLC_LLC_AGE0;
  153. break;
  154. }
  155. return pte;
  156. }
  157. static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
  158. {
  159. struct i915_hw_ppgtt *ppgtt =
  160. container_of(vm, struct i915_hw_ppgtt, base);
  161. int i, j;
  162. for (i = 0; i < ppgtt->num_pd_pages ; i++) {
  163. if (ppgtt->pd_dma_addr[i]) {
  164. pci_unmap_page(ppgtt->base.dev->pdev,
  165. ppgtt->pd_dma_addr[i],
  166. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  167. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  168. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  169. if (addr)
  170. pci_unmap_page(ppgtt->base.dev->pdev,
  171. addr,
  172. PAGE_SIZE,
  173. PCI_DMA_BIDIRECTIONAL);
  174. }
  175. }
  176. kfree(ppgtt->gen8_pt_dma_addr[i]);
  177. }
  178. __free_pages(ppgtt->gen8_pt_pages, ppgtt->num_pt_pages << PAGE_SHIFT);
  179. __free_pages(ppgtt->pd_pages, ppgtt->num_pd_pages << PAGE_SHIFT);
  180. }
  181. /**
  182. * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
  183. * net effect resembling a 2-level page table in normal x86 terms. Each PDP
  184. * represents 1GB of memory
  185. * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
  186. *
  187. * TODO: Do something with the size parameter
  188. **/
  189. static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
  190. {
  191. struct page *pt_pages;
  192. int i, j, ret = -ENOMEM;
  193. const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
  194. const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
  195. if (size % (1<<30))
  196. DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
  197. /* FIXME: split allocation into smaller pieces. For now we only ever do
  198. * this once, but with full PPGTT, the multiple contiguous allocations
  199. * will be bad.
  200. */
  201. ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
  202. if (!ppgtt->pd_pages)
  203. return -ENOMEM;
  204. pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
  205. if (!pt_pages) {
  206. __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
  207. return -ENOMEM;
  208. }
  209. ppgtt->gen8_pt_pages = pt_pages;
  210. ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
  211. ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
  212. ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
  213. ppgtt->base.clear_range = NULL;
  214. ppgtt->base.insert_entries = NULL;
  215. ppgtt->base.cleanup = gen8_ppgtt_cleanup;
  216. BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
  217. /*
  218. * - Create a mapping for the page directories.
  219. * - For each page directory:
  220. * allocate space for page table mappings.
  221. * map each page table
  222. */
  223. for (i = 0; i < max_pdp; i++) {
  224. dma_addr_t temp;
  225. temp = pci_map_page(ppgtt->base.dev->pdev,
  226. &ppgtt->pd_pages[i], 0,
  227. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  228. if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
  229. goto err_out;
  230. ppgtt->pd_dma_addr[i] = temp;
  231. ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
  232. if (!ppgtt->gen8_pt_dma_addr[i])
  233. goto err_out;
  234. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  235. struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
  236. temp = pci_map_page(ppgtt->base.dev->pdev,
  237. p, 0, PAGE_SIZE,
  238. PCI_DMA_BIDIRECTIONAL);
  239. if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
  240. goto err_out;
  241. ppgtt->gen8_pt_dma_addr[i][j] = temp;
  242. }
  243. }
  244. DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
  245. ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
  246. DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
  247. ppgtt->num_pt_pages,
  248. (ppgtt->num_pt_pages - num_pt_pages) +
  249. size % (1<<30));
  250. return -ENOSYS; /* Not ready yet */
  251. err_out:
  252. ppgtt->base.cleanup(&ppgtt->base);
  253. return ret;
  254. }
  255. static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
  256. {
  257. struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
  258. gen6_gtt_pte_t __iomem *pd_addr;
  259. uint32_t pd_entry;
  260. int i;
  261. WARN_ON(ppgtt->pd_offset & 0x3f);
  262. pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
  263. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  264. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  265. dma_addr_t pt_addr;
  266. pt_addr = ppgtt->pt_dma_addr[i];
  267. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  268. pd_entry |= GEN6_PDE_VALID;
  269. writel(pd_entry, pd_addr + i);
  270. }
  271. readl(pd_addr);
  272. }
  273. static int gen6_ppgtt_enable(struct drm_device *dev)
  274. {
  275. drm_i915_private_t *dev_priv = dev->dev_private;
  276. uint32_t pd_offset;
  277. struct intel_ring_buffer *ring;
  278. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  279. int i;
  280. BUG_ON(ppgtt->pd_offset & 0x3f);
  281. gen6_write_pdes(ppgtt);
  282. pd_offset = ppgtt->pd_offset;
  283. pd_offset /= 64; /* in cachelines, */
  284. pd_offset <<= 16;
  285. if (INTEL_INFO(dev)->gen == 6) {
  286. uint32_t ecochk, gab_ctl, ecobits;
  287. ecobits = I915_READ(GAC_ECO_BITS);
  288. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
  289. ECOBITS_PPGTT_CACHE64B);
  290. gab_ctl = I915_READ(GAB_CTL);
  291. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  292. ecochk = I915_READ(GAM_ECOCHK);
  293. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  294. ECOCHK_PPGTT_CACHE64B);
  295. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  296. } else if (INTEL_INFO(dev)->gen >= 7) {
  297. uint32_t ecochk, ecobits;
  298. ecobits = I915_READ(GAC_ECO_BITS);
  299. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  300. ecochk = I915_READ(GAM_ECOCHK);
  301. if (IS_HASWELL(dev)) {
  302. ecochk |= ECOCHK_PPGTT_WB_HSW;
  303. } else {
  304. ecochk |= ECOCHK_PPGTT_LLC_IVB;
  305. ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
  306. }
  307. I915_WRITE(GAM_ECOCHK, ecochk);
  308. /* GFX_MODE is per-ring on gen7+ */
  309. }
  310. for_each_ring(ring, dev_priv, i) {
  311. if (INTEL_INFO(dev)->gen >= 7)
  312. I915_WRITE(RING_MODE_GEN7(ring),
  313. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  314. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  315. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  316. }
  317. return 0;
  318. }
  319. /* PPGTT support for Sandybdrige/Gen6 and later */
  320. static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
  321. unsigned first_entry,
  322. unsigned num_entries,
  323. bool use_scratch)
  324. {
  325. struct i915_hw_ppgtt *ppgtt =
  326. container_of(vm, struct i915_hw_ppgtt, base);
  327. gen6_gtt_pte_t *pt_vaddr, scratch_pte;
  328. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  329. unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  330. unsigned last_pte, i;
  331. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
  332. while (num_entries) {
  333. last_pte = first_pte + num_entries;
  334. if (last_pte > I915_PPGTT_PT_ENTRIES)
  335. last_pte = I915_PPGTT_PT_ENTRIES;
  336. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  337. for (i = first_pte; i < last_pte; i++)
  338. pt_vaddr[i] = scratch_pte;
  339. kunmap_atomic(pt_vaddr);
  340. num_entries -= last_pte - first_pte;
  341. first_pte = 0;
  342. act_pt++;
  343. }
  344. }
  345. static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
  346. struct sg_table *pages,
  347. unsigned first_entry,
  348. enum i915_cache_level cache_level)
  349. {
  350. struct i915_hw_ppgtt *ppgtt =
  351. container_of(vm, struct i915_hw_ppgtt, base);
  352. gen6_gtt_pte_t *pt_vaddr;
  353. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  354. unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  355. struct sg_page_iter sg_iter;
  356. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  357. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  358. dma_addr_t page_addr;
  359. page_addr = sg_page_iter_dma_address(&sg_iter);
  360. pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
  361. if (++act_pte == I915_PPGTT_PT_ENTRIES) {
  362. kunmap_atomic(pt_vaddr);
  363. act_pt++;
  364. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  365. act_pte = 0;
  366. }
  367. }
  368. kunmap_atomic(pt_vaddr);
  369. }
  370. static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
  371. {
  372. struct i915_hw_ppgtt *ppgtt =
  373. container_of(vm, struct i915_hw_ppgtt, base);
  374. int i;
  375. drm_mm_takedown(&ppgtt->base.mm);
  376. if (ppgtt->pt_dma_addr) {
  377. for (i = 0; i < ppgtt->num_pd_entries; i++)
  378. pci_unmap_page(ppgtt->base.dev->pdev,
  379. ppgtt->pt_dma_addr[i],
  380. 4096, PCI_DMA_BIDIRECTIONAL);
  381. }
  382. kfree(ppgtt->pt_dma_addr);
  383. for (i = 0; i < ppgtt->num_pd_entries; i++)
  384. __free_page(ppgtt->pt_pages[i]);
  385. kfree(ppgtt->pt_pages);
  386. kfree(ppgtt);
  387. }
  388. static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
  389. {
  390. struct drm_device *dev = ppgtt->base.dev;
  391. struct drm_i915_private *dev_priv = dev->dev_private;
  392. unsigned first_pd_entry_in_global_pt;
  393. int i;
  394. int ret = -ENOMEM;
  395. /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
  396. * entries. For aliasing ppgtt support we just steal them at the end for
  397. * now. */
  398. first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
  399. ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
  400. ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
  401. ppgtt->enable = gen6_ppgtt_enable;
  402. ppgtt->base.clear_range = gen6_ppgtt_clear_range;
  403. ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
  404. ppgtt->base.cleanup = gen6_ppgtt_cleanup;
  405. ppgtt->base.scratch = dev_priv->gtt.base.scratch;
  406. ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
  407. GFP_KERNEL);
  408. if (!ppgtt->pt_pages)
  409. return -ENOMEM;
  410. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  411. ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
  412. if (!ppgtt->pt_pages[i])
  413. goto err_pt_alloc;
  414. }
  415. ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
  416. GFP_KERNEL);
  417. if (!ppgtt->pt_dma_addr)
  418. goto err_pt_alloc;
  419. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  420. dma_addr_t pt_addr;
  421. pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
  422. PCI_DMA_BIDIRECTIONAL);
  423. if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
  424. ret = -EIO;
  425. goto err_pd_pin;
  426. }
  427. ppgtt->pt_dma_addr[i] = pt_addr;
  428. }
  429. ppgtt->base.clear_range(&ppgtt->base, 0,
  430. ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
  431. ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
  432. return 0;
  433. err_pd_pin:
  434. if (ppgtt->pt_dma_addr) {
  435. for (i--; i >= 0; i--)
  436. pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
  437. 4096, PCI_DMA_BIDIRECTIONAL);
  438. }
  439. err_pt_alloc:
  440. kfree(ppgtt->pt_dma_addr);
  441. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  442. if (ppgtt->pt_pages[i])
  443. __free_page(ppgtt->pt_pages[i]);
  444. }
  445. kfree(ppgtt->pt_pages);
  446. return ret;
  447. }
  448. static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
  449. {
  450. struct drm_i915_private *dev_priv = dev->dev_private;
  451. struct i915_hw_ppgtt *ppgtt;
  452. int ret;
  453. ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
  454. if (!ppgtt)
  455. return -ENOMEM;
  456. ppgtt->base.dev = dev;
  457. if (INTEL_INFO(dev)->gen < 8)
  458. ret = gen6_ppgtt_init(ppgtt);
  459. else if (IS_GEN8(dev))
  460. ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
  461. else
  462. BUG();
  463. if (ret)
  464. kfree(ppgtt);
  465. else {
  466. dev_priv->mm.aliasing_ppgtt = ppgtt;
  467. drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
  468. ppgtt->base.total);
  469. }
  470. return ret;
  471. }
  472. void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
  473. {
  474. struct drm_i915_private *dev_priv = dev->dev_private;
  475. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  476. if (!ppgtt)
  477. return;
  478. ppgtt->base.cleanup(&ppgtt->base);
  479. dev_priv->mm.aliasing_ppgtt = NULL;
  480. }
  481. void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
  482. struct drm_i915_gem_object *obj,
  483. enum i915_cache_level cache_level)
  484. {
  485. ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
  486. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  487. cache_level);
  488. }
  489. void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
  490. struct drm_i915_gem_object *obj)
  491. {
  492. ppgtt->base.clear_range(&ppgtt->base,
  493. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  494. obj->base.size >> PAGE_SHIFT,
  495. true);
  496. }
  497. extern int intel_iommu_gfx_mapped;
  498. /* Certain Gen5 chipsets require require idling the GPU before
  499. * unmapping anything from the GTT when VT-d is enabled.
  500. */
  501. static inline bool needs_idle_maps(struct drm_device *dev)
  502. {
  503. #ifdef CONFIG_INTEL_IOMMU
  504. /* Query intel_iommu to see if we need the workaround. Presumably that
  505. * was loaded first.
  506. */
  507. if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
  508. return true;
  509. #endif
  510. return false;
  511. }
  512. static bool do_idling(struct drm_i915_private *dev_priv)
  513. {
  514. bool ret = dev_priv->mm.interruptible;
  515. if (unlikely(dev_priv->gtt.do_idle_maps)) {
  516. dev_priv->mm.interruptible = false;
  517. if (i915_gpu_idle(dev_priv->dev)) {
  518. DRM_ERROR("Couldn't idle GPU\n");
  519. /* Wait a bit, in hopes it avoids the hang */
  520. udelay(10);
  521. }
  522. }
  523. return ret;
  524. }
  525. static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
  526. {
  527. if (unlikely(dev_priv->gtt.do_idle_maps))
  528. dev_priv->mm.interruptible = interruptible;
  529. }
  530. void i915_check_and_clear_faults(struct drm_device *dev)
  531. {
  532. struct drm_i915_private *dev_priv = dev->dev_private;
  533. struct intel_ring_buffer *ring;
  534. int i;
  535. if (INTEL_INFO(dev)->gen < 6)
  536. return;
  537. for_each_ring(ring, dev_priv, i) {
  538. u32 fault_reg;
  539. fault_reg = I915_READ(RING_FAULT_REG(ring));
  540. if (fault_reg & RING_FAULT_VALID) {
  541. DRM_DEBUG_DRIVER("Unexpected fault\n"
  542. "\tAddr: 0x%08lx\\n"
  543. "\tAddress space: %s\n"
  544. "\tSource ID: %d\n"
  545. "\tType: %d\n",
  546. fault_reg & PAGE_MASK,
  547. fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
  548. RING_FAULT_SRCID(fault_reg),
  549. RING_FAULT_FAULT_TYPE(fault_reg));
  550. I915_WRITE(RING_FAULT_REG(ring),
  551. fault_reg & ~RING_FAULT_VALID);
  552. }
  553. }
  554. POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
  555. }
  556. void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
  557. {
  558. struct drm_i915_private *dev_priv = dev->dev_private;
  559. /* Don't bother messing with faults pre GEN6 as we have little
  560. * documentation supporting that it's a good idea.
  561. */
  562. if (INTEL_INFO(dev)->gen < 6)
  563. return;
  564. i915_check_and_clear_faults(dev);
  565. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  566. dev_priv->gtt.base.start / PAGE_SIZE,
  567. dev_priv->gtt.base.total / PAGE_SIZE,
  568. false);
  569. }
  570. void i915_gem_restore_gtt_mappings(struct drm_device *dev)
  571. {
  572. struct drm_i915_private *dev_priv = dev->dev_private;
  573. struct drm_i915_gem_object *obj;
  574. i915_check_and_clear_faults(dev);
  575. /* First fill our portion of the GTT with scratch pages */
  576. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  577. dev_priv->gtt.base.start / PAGE_SIZE,
  578. dev_priv->gtt.base.total / PAGE_SIZE,
  579. true);
  580. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  581. i915_gem_clflush_object(obj, obj->pin_display);
  582. i915_gem_gtt_bind_object(obj, obj->cache_level);
  583. }
  584. i915_gem_chipset_flush(dev);
  585. }
  586. int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
  587. {
  588. if (obj->has_dma_mapping)
  589. return 0;
  590. if (!dma_map_sg(&obj->base.dev->pdev->dev,
  591. obj->pages->sgl, obj->pages->nents,
  592. PCI_DMA_BIDIRECTIONAL))
  593. return -ENOSPC;
  594. return 0;
  595. }
  596. static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
  597. {
  598. #ifdef writeq
  599. writeq(pte, addr);
  600. #else
  601. iowrite32((u32)pte, addr);
  602. iowrite32(pte >> 32, addr + 4);
  603. #endif
  604. }
  605. static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
  606. struct sg_table *st,
  607. unsigned int first_entry,
  608. enum i915_cache_level level)
  609. {
  610. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  611. gen8_gtt_pte_t __iomem *gtt_entries =
  612. (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  613. int i = 0;
  614. struct sg_page_iter sg_iter;
  615. dma_addr_t addr;
  616. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  617. addr = sg_dma_address(sg_iter.sg) +
  618. (sg_iter.sg_pgoffset << PAGE_SHIFT);
  619. gen8_set_pte(&gtt_entries[i],
  620. gen8_pte_encode(addr, level, true));
  621. i++;
  622. }
  623. /*
  624. * XXX: This serves as a posting read to make sure that the PTE has
  625. * actually been updated. There is some concern that even though
  626. * registers and PTEs are within the same BAR that they are potentially
  627. * of NUMA access patterns. Therefore, even with the way we assume
  628. * hardware should work, we must keep this posting read for paranoia.
  629. */
  630. if (i != 0)
  631. WARN_ON(readq(&gtt_entries[i-1])
  632. != gen8_pte_encode(addr, level, true));
  633. #if 0 /* TODO: Still needed on GEN8? */
  634. /* This next bit makes the above posting read even more important. We
  635. * want to flush the TLBs only after we're certain all the PTE updates
  636. * have finished.
  637. */
  638. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  639. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  640. #endif
  641. }
  642. /*
  643. * Binds an object into the global gtt with the specified cache level. The object
  644. * will be accessible to the GPU via commands whose operands reference offsets
  645. * within the global GTT as well as accessible by the GPU through the GMADR
  646. * mapped BAR (dev_priv->mm.gtt->gtt).
  647. */
  648. static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
  649. struct sg_table *st,
  650. unsigned int first_entry,
  651. enum i915_cache_level level)
  652. {
  653. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  654. gen6_gtt_pte_t __iomem *gtt_entries =
  655. (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  656. int i = 0;
  657. struct sg_page_iter sg_iter;
  658. dma_addr_t addr;
  659. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  660. addr = sg_page_iter_dma_address(&sg_iter);
  661. iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
  662. i++;
  663. }
  664. /* XXX: This serves as a posting read to make sure that the PTE has
  665. * actually been updated. There is some concern that even though
  666. * registers and PTEs are within the same BAR that they are potentially
  667. * of NUMA access patterns. Therefore, even with the way we assume
  668. * hardware should work, we must keep this posting read for paranoia.
  669. */
  670. if (i != 0)
  671. WARN_ON(readl(&gtt_entries[i-1]) !=
  672. vm->pte_encode(addr, level, true));
  673. /* This next bit makes the above posting read even more important. We
  674. * want to flush the TLBs only after we're certain all the PTE updates
  675. * have finished.
  676. */
  677. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  678. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  679. }
  680. static void gen8_ggtt_clear_range(struct i915_address_space *vm,
  681. unsigned int first_entry,
  682. unsigned int num_entries,
  683. bool use_scratch)
  684. {
  685. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  686. gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
  687. (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  688. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  689. int i;
  690. if (WARN(num_entries > max_entries,
  691. "First entry = %d; Num entries = %d (max=%d)\n",
  692. first_entry, num_entries, max_entries))
  693. num_entries = max_entries;
  694. scratch_pte = gen8_pte_encode(vm->scratch.addr,
  695. I915_CACHE_LLC,
  696. use_scratch);
  697. for (i = 0; i < num_entries; i++)
  698. gen8_set_pte(&gtt_base[i], scratch_pte);
  699. readl(gtt_base);
  700. }
  701. static void gen6_ggtt_clear_range(struct i915_address_space *vm,
  702. unsigned int first_entry,
  703. unsigned int num_entries,
  704. bool use_scratch)
  705. {
  706. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  707. gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
  708. (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  709. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  710. int i;
  711. if (WARN(num_entries > max_entries,
  712. "First entry = %d; Num entries = %d (max=%d)\n",
  713. first_entry, num_entries, max_entries))
  714. num_entries = max_entries;
  715. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
  716. for (i = 0; i < num_entries; i++)
  717. iowrite32(scratch_pte, &gtt_base[i]);
  718. readl(gtt_base);
  719. }
  720. static void i915_ggtt_insert_entries(struct i915_address_space *vm,
  721. struct sg_table *st,
  722. unsigned int pg_start,
  723. enum i915_cache_level cache_level)
  724. {
  725. unsigned int flags = (cache_level == I915_CACHE_NONE) ?
  726. AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
  727. intel_gtt_insert_sg_entries(st, pg_start, flags);
  728. }
  729. static void i915_ggtt_clear_range(struct i915_address_space *vm,
  730. unsigned int first_entry,
  731. unsigned int num_entries,
  732. bool unused)
  733. {
  734. intel_gtt_clear_range(first_entry, num_entries);
  735. }
  736. void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
  737. enum i915_cache_level cache_level)
  738. {
  739. struct drm_device *dev = obj->base.dev;
  740. struct drm_i915_private *dev_priv = dev->dev_private;
  741. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  742. dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
  743. entry,
  744. cache_level);
  745. obj->has_global_gtt_mapping = 1;
  746. }
  747. void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
  748. {
  749. struct drm_device *dev = obj->base.dev;
  750. struct drm_i915_private *dev_priv = dev->dev_private;
  751. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  752. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  753. entry,
  754. obj->base.size >> PAGE_SHIFT,
  755. true);
  756. obj->has_global_gtt_mapping = 0;
  757. }
  758. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
  759. {
  760. struct drm_device *dev = obj->base.dev;
  761. struct drm_i915_private *dev_priv = dev->dev_private;
  762. bool interruptible;
  763. interruptible = do_idling(dev_priv);
  764. if (!obj->has_dma_mapping)
  765. dma_unmap_sg(&dev->pdev->dev,
  766. obj->pages->sgl, obj->pages->nents,
  767. PCI_DMA_BIDIRECTIONAL);
  768. undo_idling(dev_priv, interruptible);
  769. }
  770. static void i915_gtt_color_adjust(struct drm_mm_node *node,
  771. unsigned long color,
  772. unsigned long *start,
  773. unsigned long *end)
  774. {
  775. if (node->color != color)
  776. *start += 4096;
  777. if (!list_empty(&node->node_list)) {
  778. node = list_entry(node->node_list.next,
  779. struct drm_mm_node,
  780. node_list);
  781. if (node->allocated && node->color != color)
  782. *end -= 4096;
  783. }
  784. }
  785. void i915_gem_setup_global_gtt(struct drm_device *dev,
  786. unsigned long start,
  787. unsigned long mappable_end,
  788. unsigned long end)
  789. {
  790. /* Let GEM Manage all of the aperture.
  791. *
  792. * However, leave one page at the end still bound to the scratch page.
  793. * There are a number of places where the hardware apparently prefetches
  794. * past the end of the object, and we've seen multiple hangs with the
  795. * GPU head pointer stuck in a batchbuffer bound at the last page of the
  796. * aperture. One page should be enough to keep any prefetching inside
  797. * of the aperture.
  798. */
  799. struct drm_i915_private *dev_priv = dev->dev_private;
  800. struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
  801. struct drm_mm_node *entry;
  802. struct drm_i915_gem_object *obj;
  803. unsigned long hole_start, hole_end;
  804. BUG_ON(mappable_end > end);
  805. /* Subtract the guard page ... */
  806. drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
  807. if (!HAS_LLC(dev))
  808. dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
  809. /* Mark any preallocated objects as occupied */
  810. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  811. struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
  812. int ret;
  813. DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
  814. i915_gem_obj_ggtt_offset(obj), obj->base.size);
  815. WARN_ON(i915_gem_obj_ggtt_bound(obj));
  816. ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
  817. if (ret)
  818. DRM_DEBUG_KMS("Reservation failed\n");
  819. obj->has_global_gtt_mapping = 1;
  820. list_add(&vma->vma_link, &obj->vma_list);
  821. }
  822. dev_priv->gtt.base.start = start;
  823. dev_priv->gtt.base.total = end - start;
  824. /* Clear any non-preallocated blocks */
  825. drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
  826. const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
  827. DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
  828. hole_start, hole_end);
  829. ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
  830. }
  831. /* And finally clear the reserved guard page */
  832. ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
  833. }
  834. static bool
  835. intel_enable_ppgtt(struct drm_device *dev)
  836. {
  837. if (i915_enable_ppgtt >= 0)
  838. return i915_enable_ppgtt;
  839. #ifdef CONFIG_INTEL_IOMMU
  840. /* Disable ppgtt on SNB if VT-d is on. */
  841. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  842. return false;
  843. #endif
  844. return true;
  845. }
  846. void i915_gem_init_global_gtt(struct drm_device *dev)
  847. {
  848. struct drm_i915_private *dev_priv = dev->dev_private;
  849. unsigned long gtt_size, mappable_size;
  850. gtt_size = dev_priv->gtt.base.total;
  851. mappable_size = dev_priv->gtt.mappable_end;
  852. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  853. int ret;
  854. if (INTEL_INFO(dev)->gen <= 7) {
  855. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  856. * aperture accordingly when using aliasing ppgtt. */
  857. gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
  858. }
  859. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  860. ret = i915_gem_init_aliasing_ppgtt(dev);
  861. if (!ret)
  862. return;
  863. DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
  864. drm_mm_takedown(&dev_priv->gtt.base.mm);
  865. gtt_size += GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
  866. }
  867. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  868. }
  869. static int setup_scratch_page(struct drm_device *dev)
  870. {
  871. struct drm_i915_private *dev_priv = dev->dev_private;
  872. struct page *page;
  873. dma_addr_t dma_addr;
  874. page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  875. if (page == NULL)
  876. return -ENOMEM;
  877. get_page(page);
  878. set_pages_uc(page, 1);
  879. #ifdef CONFIG_INTEL_IOMMU
  880. dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
  881. PCI_DMA_BIDIRECTIONAL);
  882. if (pci_dma_mapping_error(dev->pdev, dma_addr))
  883. return -EINVAL;
  884. #else
  885. dma_addr = page_to_phys(page);
  886. #endif
  887. dev_priv->gtt.base.scratch.page = page;
  888. dev_priv->gtt.base.scratch.addr = dma_addr;
  889. return 0;
  890. }
  891. static void teardown_scratch_page(struct drm_device *dev)
  892. {
  893. struct drm_i915_private *dev_priv = dev->dev_private;
  894. struct page *page = dev_priv->gtt.base.scratch.page;
  895. set_pages_wb(page, 1);
  896. pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
  897. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  898. put_page(page);
  899. __free_page(page);
  900. }
  901. static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
  902. {
  903. snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
  904. snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
  905. return snb_gmch_ctl << 20;
  906. }
  907. static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
  908. {
  909. bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
  910. bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
  911. if (bdw_gmch_ctl)
  912. bdw_gmch_ctl = 1 << bdw_gmch_ctl;
  913. return bdw_gmch_ctl << 20;
  914. }
  915. static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
  916. {
  917. snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
  918. snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
  919. return snb_gmch_ctl << 25; /* 32 MB units */
  920. }
  921. static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
  922. {
  923. bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
  924. bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
  925. return bdw_gmch_ctl << 25; /* 32 MB units */
  926. }
  927. static int ggtt_probe_common(struct drm_device *dev,
  928. size_t gtt_size)
  929. {
  930. struct drm_i915_private *dev_priv = dev->dev_private;
  931. phys_addr_t gtt_bus_addr;
  932. int ret;
  933. /* For Modern GENs the PTEs and register space are split in the BAR */
  934. gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
  935. (pci_resource_len(dev->pdev, 0) / 2);
  936. dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
  937. if (!dev_priv->gtt.gsm) {
  938. DRM_ERROR("Failed to map the gtt page table\n");
  939. return -ENOMEM;
  940. }
  941. ret = setup_scratch_page(dev);
  942. if (ret) {
  943. DRM_ERROR("Scratch setup failed\n");
  944. /* iounmap will also get called at remove, but meh */
  945. iounmap(dev_priv->gtt.gsm);
  946. }
  947. return ret;
  948. }
  949. /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
  950. * bits. When using advanced contexts each context stores its own PAT, but
  951. * writing this data shouldn't be harmful even in those cases. */
  952. static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
  953. {
  954. #define GEN8_PPAT_UC (0<<0)
  955. #define GEN8_PPAT_WC (1<<0)
  956. #define GEN8_PPAT_WT (2<<0)
  957. #define GEN8_PPAT_WB (3<<0)
  958. #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
  959. /* FIXME(BDW): Bspec is completely confused about cache control bits. */
  960. #define GEN8_PPAT_LLC (1<<2)
  961. #define GEN8_PPAT_LLCELLC (2<<2)
  962. #define GEN8_PPAT_LLCeLLC (3<<2)
  963. #define GEN8_PPAT_AGE(x) (x<<4)
  964. #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
  965. uint64_t pat;
  966. pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
  967. GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
  968. GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
  969. GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
  970. GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
  971. GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
  972. GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
  973. GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
  974. /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
  975. * write would work. */
  976. I915_WRITE(GEN8_PRIVATE_PAT, pat);
  977. I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
  978. }
  979. static int gen8_gmch_probe(struct drm_device *dev,
  980. size_t *gtt_total,
  981. size_t *stolen,
  982. phys_addr_t *mappable_base,
  983. unsigned long *mappable_end)
  984. {
  985. struct drm_i915_private *dev_priv = dev->dev_private;
  986. unsigned int gtt_size;
  987. u16 snb_gmch_ctl;
  988. int ret;
  989. /* TODO: We're not aware of mappable constraints on gen8 yet */
  990. *mappable_base = pci_resource_start(dev->pdev, 2);
  991. *mappable_end = pci_resource_len(dev->pdev, 2);
  992. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
  993. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
  994. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  995. *stolen = gen8_get_stolen_size(snb_gmch_ctl);
  996. gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
  997. *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
  998. gen8_setup_private_ppat(dev_priv);
  999. ret = ggtt_probe_common(dev, gtt_size);
  1000. dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
  1001. dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
  1002. return ret;
  1003. }
  1004. static int gen6_gmch_probe(struct drm_device *dev,
  1005. size_t *gtt_total,
  1006. size_t *stolen,
  1007. phys_addr_t *mappable_base,
  1008. unsigned long *mappable_end)
  1009. {
  1010. struct drm_i915_private *dev_priv = dev->dev_private;
  1011. unsigned int gtt_size;
  1012. u16 snb_gmch_ctl;
  1013. int ret;
  1014. *mappable_base = pci_resource_start(dev->pdev, 2);
  1015. *mappable_end = pci_resource_len(dev->pdev, 2);
  1016. /* 64/512MB is the current min/max we actually know of, but this is just
  1017. * a coarse sanity check.
  1018. */
  1019. if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
  1020. DRM_ERROR("Unknown GMADR size (%lx)\n",
  1021. dev_priv->gtt.mappable_end);
  1022. return -ENXIO;
  1023. }
  1024. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
  1025. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
  1026. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1027. *stolen = gen6_get_stolen_size(snb_gmch_ctl);
  1028. gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
  1029. *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
  1030. ret = ggtt_probe_common(dev, gtt_size);
  1031. dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
  1032. dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
  1033. return ret;
  1034. }
  1035. static void gen6_gmch_remove(struct i915_address_space *vm)
  1036. {
  1037. struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
  1038. iounmap(gtt->gsm);
  1039. teardown_scratch_page(vm->dev);
  1040. }
  1041. static int i915_gmch_probe(struct drm_device *dev,
  1042. size_t *gtt_total,
  1043. size_t *stolen,
  1044. phys_addr_t *mappable_base,
  1045. unsigned long *mappable_end)
  1046. {
  1047. struct drm_i915_private *dev_priv = dev->dev_private;
  1048. int ret;
  1049. ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
  1050. if (!ret) {
  1051. DRM_ERROR("failed to set up gmch\n");
  1052. return -EIO;
  1053. }
  1054. intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
  1055. dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
  1056. dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
  1057. dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
  1058. return 0;
  1059. }
  1060. static void i915_gmch_remove(struct i915_address_space *vm)
  1061. {
  1062. intel_gmch_remove();
  1063. }
  1064. int i915_gem_gtt_init(struct drm_device *dev)
  1065. {
  1066. struct drm_i915_private *dev_priv = dev->dev_private;
  1067. struct i915_gtt *gtt = &dev_priv->gtt;
  1068. int ret;
  1069. if (INTEL_INFO(dev)->gen <= 5) {
  1070. gtt->gtt_probe = i915_gmch_probe;
  1071. gtt->base.cleanup = i915_gmch_remove;
  1072. } else if (INTEL_INFO(dev)->gen < 8) {
  1073. gtt->gtt_probe = gen6_gmch_probe;
  1074. gtt->base.cleanup = gen6_gmch_remove;
  1075. if (IS_HASWELL(dev) && dev_priv->ellc_size)
  1076. gtt->base.pte_encode = iris_pte_encode;
  1077. else if (IS_HASWELL(dev))
  1078. gtt->base.pte_encode = hsw_pte_encode;
  1079. else if (IS_VALLEYVIEW(dev))
  1080. gtt->base.pte_encode = byt_pte_encode;
  1081. else if (INTEL_INFO(dev)->gen >= 7)
  1082. gtt->base.pte_encode = ivb_pte_encode;
  1083. else
  1084. gtt->base.pte_encode = snb_pte_encode;
  1085. } else {
  1086. dev_priv->gtt.gtt_probe = gen8_gmch_probe;
  1087. dev_priv->gtt.base.cleanup = gen6_gmch_remove;
  1088. }
  1089. ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
  1090. &gtt->mappable_base, &gtt->mappable_end);
  1091. if (ret)
  1092. return ret;
  1093. gtt->base.dev = dev;
  1094. /* GMADR is the PCI mmio aperture into the global GTT. */
  1095. DRM_INFO("Memory usable by graphics device = %zdM\n",
  1096. gtt->base.total >> 20);
  1097. DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
  1098. DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
  1099. return 0;
  1100. }