dm-table.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549
  1. /*
  2. * Copyright (C) 2001 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include <linux/module.h>
  9. #include <linux/vmalloc.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/namei.h>
  12. #include <linux/ctype.h>
  13. #include <linux/string.h>
  14. #include <linux/slab.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/mutex.h>
  17. #include <linux/delay.h>
  18. #include <linux/atomic.h>
  19. #define DM_MSG_PREFIX "table"
  20. #define MAX_DEPTH 16
  21. #define NODE_SIZE L1_CACHE_BYTES
  22. #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  23. #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  24. /*
  25. * The table has always exactly one reference from either mapped_device->map
  26. * or hash_cell->new_map. This reference is not counted in table->holders.
  27. * A pair of dm_create_table/dm_destroy_table functions is used for table
  28. * creation/destruction.
  29. *
  30. * Temporary references from the other code increase table->holders. A pair
  31. * of dm_table_get/dm_table_put functions is used to manipulate it.
  32. *
  33. * When the table is about to be destroyed, we wait for table->holders to
  34. * drop to zero.
  35. */
  36. struct dm_table {
  37. struct mapped_device *md;
  38. atomic_t holders;
  39. unsigned type;
  40. /* btree table */
  41. unsigned int depth;
  42. unsigned int counts[MAX_DEPTH]; /* in nodes */
  43. sector_t *index[MAX_DEPTH];
  44. unsigned int num_targets;
  45. unsigned int num_allocated;
  46. sector_t *highs;
  47. struct dm_target *targets;
  48. unsigned integrity_supported:1;
  49. unsigned singleton:1;
  50. /*
  51. * Indicates the rw permissions for the new logical
  52. * device. This should be a combination of FMODE_READ
  53. * and FMODE_WRITE.
  54. */
  55. fmode_t mode;
  56. /* a list of devices used by this table */
  57. struct list_head devices;
  58. /* events get handed up using this callback */
  59. void (*event_fn)(void *);
  60. void *event_context;
  61. struct dm_md_mempools *mempools;
  62. struct list_head target_callbacks;
  63. };
  64. /*
  65. * Similar to ceiling(log_size(n))
  66. */
  67. static unsigned int int_log(unsigned int n, unsigned int base)
  68. {
  69. int result = 0;
  70. while (n > 1) {
  71. n = dm_div_up(n, base);
  72. result++;
  73. }
  74. return result;
  75. }
  76. /*
  77. * Calculate the index of the child node of the n'th node k'th key.
  78. */
  79. static inline unsigned int get_child(unsigned int n, unsigned int k)
  80. {
  81. return (n * CHILDREN_PER_NODE) + k;
  82. }
  83. /*
  84. * Return the n'th node of level l from table t.
  85. */
  86. static inline sector_t *get_node(struct dm_table *t,
  87. unsigned int l, unsigned int n)
  88. {
  89. return t->index[l] + (n * KEYS_PER_NODE);
  90. }
  91. /*
  92. * Return the highest key that you could lookup from the n'th
  93. * node on level l of the btree.
  94. */
  95. static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
  96. {
  97. for (; l < t->depth - 1; l++)
  98. n = get_child(n, CHILDREN_PER_NODE - 1);
  99. if (n >= t->counts[l])
  100. return (sector_t) - 1;
  101. return get_node(t, l, n)[KEYS_PER_NODE - 1];
  102. }
  103. /*
  104. * Fills in a level of the btree based on the highs of the level
  105. * below it.
  106. */
  107. static int setup_btree_index(unsigned int l, struct dm_table *t)
  108. {
  109. unsigned int n, k;
  110. sector_t *node;
  111. for (n = 0U; n < t->counts[l]; n++) {
  112. node = get_node(t, l, n);
  113. for (k = 0U; k < KEYS_PER_NODE; k++)
  114. node[k] = high(t, l + 1, get_child(n, k));
  115. }
  116. return 0;
  117. }
  118. void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
  119. {
  120. unsigned long size;
  121. void *addr;
  122. /*
  123. * Check that we're not going to overflow.
  124. */
  125. if (nmemb > (ULONG_MAX / elem_size))
  126. return NULL;
  127. size = nmemb * elem_size;
  128. addr = vzalloc(size);
  129. return addr;
  130. }
  131. EXPORT_SYMBOL(dm_vcalloc);
  132. /*
  133. * highs, and targets are managed as dynamic arrays during a
  134. * table load.
  135. */
  136. static int alloc_targets(struct dm_table *t, unsigned int num)
  137. {
  138. sector_t *n_highs;
  139. struct dm_target *n_targets;
  140. int n = t->num_targets;
  141. /*
  142. * Allocate both the target array and offset array at once.
  143. * Append an empty entry to catch sectors beyond the end of
  144. * the device.
  145. */
  146. n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
  147. sizeof(sector_t));
  148. if (!n_highs)
  149. return -ENOMEM;
  150. n_targets = (struct dm_target *) (n_highs + num);
  151. if (n) {
  152. memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
  153. memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
  154. }
  155. memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
  156. vfree(t->highs);
  157. t->num_allocated = num;
  158. t->highs = n_highs;
  159. t->targets = n_targets;
  160. return 0;
  161. }
  162. int dm_table_create(struct dm_table **result, fmode_t mode,
  163. unsigned num_targets, struct mapped_device *md)
  164. {
  165. struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
  166. if (!t)
  167. return -ENOMEM;
  168. INIT_LIST_HEAD(&t->devices);
  169. INIT_LIST_HEAD(&t->target_callbacks);
  170. atomic_set(&t->holders, 0);
  171. if (!num_targets)
  172. num_targets = KEYS_PER_NODE;
  173. num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
  174. if (alloc_targets(t, num_targets)) {
  175. kfree(t);
  176. t = NULL;
  177. return -ENOMEM;
  178. }
  179. t->mode = mode;
  180. t->md = md;
  181. *result = t;
  182. return 0;
  183. }
  184. static void free_devices(struct list_head *devices)
  185. {
  186. struct list_head *tmp, *next;
  187. list_for_each_safe(tmp, next, devices) {
  188. struct dm_dev_internal *dd =
  189. list_entry(tmp, struct dm_dev_internal, list);
  190. DMWARN("dm_table_destroy: dm_put_device call missing for %s",
  191. dd->dm_dev.name);
  192. kfree(dd);
  193. }
  194. }
  195. void dm_table_destroy(struct dm_table *t)
  196. {
  197. unsigned int i;
  198. if (!t)
  199. return;
  200. while (atomic_read(&t->holders))
  201. msleep(1);
  202. smp_mb();
  203. /* free the indexes */
  204. if (t->depth >= 2)
  205. vfree(t->index[t->depth - 2]);
  206. /* free the targets */
  207. for (i = 0; i < t->num_targets; i++) {
  208. struct dm_target *tgt = t->targets + i;
  209. if (tgt->type->dtr)
  210. tgt->type->dtr(tgt);
  211. dm_put_target_type(tgt->type);
  212. }
  213. vfree(t->highs);
  214. /* free the device list */
  215. if (t->devices.next != &t->devices)
  216. free_devices(&t->devices);
  217. dm_free_md_mempools(t->mempools);
  218. kfree(t);
  219. }
  220. void dm_table_get(struct dm_table *t)
  221. {
  222. atomic_inc(&t->holders);
  223. }
  224. EXPORT_SYMBOL(dm_table_get);
  225. void dm_table_put(struct dm_table *t)
  226. {
  227. if (!t)
  228. return;
  229. smp_mb__before_atomic_dec();
  230. atomic_dec(&t->holders);
  231. }
  232. EXPORT_SYMBOL(dm_table_put);
  233. /*
  234. * Checks to see if we need to extend highs or targets.
  235. */
  236. static inline int check_space(struct dm_table *t)
  237. {
  238. if (t->num_targets >= t->num_allocated)
  239. return alloc_targets(t, t->num_allocated * 2);
  240. return 0;
  241. }
  242. /*
  243. * See if we've already got a device in the list.
  244. */
  245. static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
  246. {
  247. struct dm_dev_internal *dd;
  248. list_for_each_entry (dd, l, list)
  249. if (dd->dm_dev.bdev->bd_dev == dev)
  250. return dd;
  251. return NULL;
  252. }
  253. /*
  254. * Open a device so we can use it as a map destination.
  255. */
  256. static int open_dev(struct dm_dev_internal *d, dev_t dev,
  257. struct mapped_device *md)
  258. {
  259. static char *_claim_ptr = "I belong to device-mapper";
  260. struct block_device *bdev;
  261. int r;
  262. BUG_ON(d->dm_dev.bdev);
  263. bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
  264. if (IS_ERR(bdev))
  265. return PTR_ERR(bdev);
  266. r = bd_link_disk_holder(bdev, dm_disk(md));
  267. if (r) {
  268. blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
  269. return r;
  270. }
  271. d->dm_dev.bdev = bdev;
  272. return 0;
  273. }
  274. /*
  275. * Close a device that we've been using.
  276. */
  277. static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
  278. {
  279. if (!d->dm_dev.bdev)
  280. return;
  281. bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
  282. blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
  283. d->dm_dev.bdev = NULL;
  284. }
  285. /*
  286. * If possible, this checks an area of a destination device is invalid.
  287. */
  288. static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
  289. sector_t start, sector_t len, void *data)
  290. {
  291. struct request_queue *q;
  292. struct queue_limits *limits = data;
  293. struct block_device *bdev = dev->bdev;
  294. sector_t dev_size =
  295. i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
  296. unsigned short logical_block_size_sectors =
  297. limits->logical_block_size >> SECTOR_SHIFT;
  298. char b[BDEVNAME_SIZE];
  299. /*
  300. * Some devices exist without request functions,
  301. * such as loop devices not yet bound to backing files.
  302. * Forbid the use of such devices.
  303. */
  304. q = bdev_get_queue(bdev);
  305. if (!q || !q->make_request_fn) {
  306. DMWARN("%s: %s is not yet initialised: "
  307. "start=%llu, len=%llu, dev_size=%llu",
  308. dm_device_name(ti->table->md), bdevname(bdev, b),
  309. (unsigned long long)start,
  310. (unsigned long long)len,
  311. (unsigned long long)dev_size);
  312. return 1;
  313. }
  314. if (!dev_size)
  315. return 0;
  316. if ((start >= dev_size) || (start + len > dev_size)) {
  317. DMWARN("%s: %s too small for target: "
  318. "start=%llu, len=%llu, dev_size=%llu",
  319. dm_device_name(ti->table->md), bdevname(bdev, b),
  320. (unsigned long long)start,
  321. (unsigned long long)len,
  322. (unsigned long long)dev_size);
  323. return 1;
  324. }
  325. if (logical_block_size_sectors <= 1)
  326. return 0;
  327. if (start & (logical_block_size_sectors - 1)) {
  328. DMWARN("%s: start=%llu not aligned to h/w "
  329. "logical block size %u of %s",
  330. dm_device_name(ti->table->md),
  331. (unsigned long long)start,
  332. limits->logical_block_size, bdevname(bdev, b));
  333. return 1;
  334. }
  335. if (len & (logical_block_size_sectors - 1)) {
  336. DMWARN("%s: len=%llu not aligned to h/w "
  337. "logical block size %u of %s",
  338. dm_device_name(ti->table->md),
  339. (unsigned long long)len,
  340. limits->logical_block_size, bdevname(bdev, b));
  341. return 1;
  342. }
  343. return 0;
  344. }
  345. /*
  346. * This upgrades the mode on an already open dm_dev, being
  347. * careful to leave things as they were if we fail to reopen the
  348. * device and not to touch the existing bdev field in case
  349. * it is accessed concurrently inside dm_table_any_congested().
  350. */
  351. static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
  352. struct mapped_device *md)
  353. {
  354. int r;
  355. struct dm_dev_internal dd_new, dd_old;
  356. dd_new = dd_old = *dd;
  357. dd_new.dm_dev.mode |= new_mode;
  358. dd_new.dm_dev.bdev = NULL;
  359. r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
  360. if (r)
  361. return r;
  362. dd->dm_dev.mode |= new_mode;
  363. close_dev(&dd_old, md);
  364. return 0;
  365. }
  366. /*
  367. * Add a device to the list, or just increment the usage count if
  368. * it's already present.
  369. */
  370. int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
  371. struct dm_dev **result)
  372. {
  373. int r;
  374. dev_t uninitialized_var(dev);
  375. struct dm_dev_internal *dd;
  376. unsigned int major, minor;
  377. struct dm_table *t = ti->table;
  378. BUG_ON(!t);
  379. if (sscanf(path, "%u:%u", &major, &minor) == 2) {
  380. /* Extract the major/minor numbers */
  381. dev = MKDEV(major, minor);
  382. if (MAJOR(dev) != major || MINOR(dev) != minor)
  383. return -EOVERFLOW;
  384. } else {
  385. /* convert the path to a device */
  386. struct block_device *bdev = lookup_bdev(path);
  387. if (IS_ERR(bdev))
  388. return PTR_ERR(bdev);
  389. dev = bdev->bd_dev;
  390. bdput(bdev);
  391. }
  392. dd = find_device(&t->devices, dev);
  393. if (!dd) {
  394. dd = kmalloc(sizeof(*dd), GFP_KERNEL);
  395. if (!dd)
  396. return -ENOMEM;
  397. dd->dm_dev.mode = mode;
  398. dd->dm_dev.bdev = NULL;
  399. if ((r = open_dev(dd, dev, t->md))) {
  400. kfree(dd);
  401. return r;
  402. }
  403. format_dev_t(dd->dm_dev.name, dev);
  404. atomic_set(&dd->count, 0);
  405. list_add(&dd->list, &t->devices);
  406. } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
  407. r = upgrade_mode(dd, mode, t->md);
  408. if (r)
  409. return r;
  410. }
  411. atomic_inc(&dd->count);
  412. *result = &dd->dm_dev;
  413. return 0;
  414. }
  415. EXPORT_SYMBOL(dm_get_device);
  416. int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
  417. sector_t start, sector_t len, void *data)
  418. {
  419. struct queue_limits *limits = data;
  420. struct block_device *bdev = dev->bdev;
  421. struct request_queue *q = bdev_get_queue(bdev);
  422. char b[BDEVNAME_SIZE];
  423. if (unlikely(!q)) {
  424. DMWARN("%s: Cannot set limits for nonexistent device %s",
  425. dm_device_name(ti->table->md), bdevname(bdev, b));
  426. return 0;
  427. }
  428. if (bdev_stack_limits(limits, bdev, start) < 0)
  429. DMWARN("%s: adding target device %s caused an alignment inconsistency: "
  430. "physical_block_size=%u, logical_block_size=%u, "
  431. "alignment_offset=%u, start=%llu",
  432. dm_device_name(ti->table->md), bdevname(bdev, b),
  433. q->limits.physical_block_size,
  434. q->limits.logical_block_size,
  435. q->limits.alignment_offset,
  436. (unsigned long long) start << SECTOR_SHIFT);
  437. /*
  438. * Check if merge fn is supported.
  439. * If not we'll force DM to use PAGE_SIZE or
  440. * smaller I/O, just to be safe.
  441. */
  442. if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
  443. blk_limits_max_hw_sectors(limits,
  444. (unsigned int) (PAGE_SIZE >> 9));
  445. return 0;
  446. }
  447. EXPORT_SYMBOL_GPL(dm_set_device_limits);
  448. /*
  449. * Decrement a device's use count and remove it if necessary.
  450. */
  451. void dm_put_device(struct dm_target *ti, struct dm_dev *d)
  452. {
  453. struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
  454. dm_dev);
  455. if (atomic_dec_and_test(&dd->count)) {
  456. close_dev(dd, ti->table->md);
  457. list_del(&dd->list);
  458. kfree(dd);
  459. }
  460. }
  461. EXPORT_SYMBOL(dm_put_device);
  462. /*
  463. * Checks to see if the target joins onto the end of the table.
  464. */
  465. static int adjoin(struct dm_table *table, struct dm_target *ti)
  466. {
  467. struct dm_target *prev;
  468. if (!table->num_targets)
  469. return !ti->begin;
  470. prev = &table->targets[table->num_targets - 1];
  471. return (ti->begin == (prev->begin + prev->len));
  472. }
  473. /*
  474. * Used to dynamically allocate the arg array.
  475. */
  476. static char **realloc_argv(unsigned *array_size, char **old_argv)
  477. {
  478. char **argv;
  479. unsigned new_size;
  480. new_size = *array_size ? *array_size * 2 : 64;
  481. argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
  482. if (argv) {
  483. memcpy(argv, old_argv, *array_size * sizeof(*argv));
  484. *array_size = new_size;
  485. }
  486. kfree(old_argv);
  487. return argv;
  488. }
  489. /*
  490. * Destructively splits up the argument list to pass to ctr.
  491. */
  492. int dm_split_args(int *argc, char ***argvp, char *input)
  493. {
  494. char *start, *end = input, *out, **argv = NULL;
  495. unsigned array_size = 0;
  496. *argc = 0;
  497. if (!input) {
  498. *argvp = NULL;
  499. return 0;
  500. }
  501. argv = realloc_argv(&array_size, argv);
  502. if (!argv)
  503. return -ENOMEM;
  504. while (1) {
  505. /* Skip whitespace */
  506. start = skip_spaces(end);
  507. if (!*start)
  508. break; /* success, we hit the end */
  509. /* 'out' is used to remove any back-quotes */
  510. end = out = start;
  511. while (*end) {
  512. /* Everything apart from '\0' can be quoted */
  513. if (*end == '\\' && *(end + 1)) {
  514. *out++ = *(end + 1);
  515. end += 2;
  516. continue;
  517. }
  518. if (isspace(*end))
  519. break; /* end of token */
  520. *out++ = *end++;
  521. }
  522. /* have we already filled the array ? */
  523. if ((*argc + 1) > array_size) {
  524. argv = realloc_argv(&array_size, argv);
  525. if (!argv)
  526. return -ENOMEM;
  527. }
  528. /* we know this is whitespace */
  529. if (*end)
  530. end++;
  531. /* terminate the string and put it in the array */
  532. *out = '\0';
  533. argv[*argc] = start;
  534. (*argc)++;
  535. }
  536. *argvp = argv;
  537. return 0;
  538. }
  539. /*
  540. * Impose necessary and sufficient conditions on a devices's table such
  541. * that any incoming bio which respects its logical_block_size can be
  542. * processed successfully. If it falls across the boundary between
  543. * two or more targets, the size of each piece it gets split into must
  544. * be compatible with the logical_block_size of the target processing it.
  545. */
  546. static int validate_hardware_logical_block_alignment(struct dm_table *table,
  547. struct queue_limits *limits)
  548. {
  549. /*
  550. * This function uses arithmetic modulo the logical_block_size
  551. * (in units of 512-byte sectors).
  552. */
  553. unsigned short device_logical_block_size_sects =
  554. limits->logical_block_size >> SECTOR_SHIFT;
  555. /*
  556. * Offset of the start of the next table entry, mod logical_block_size.
  557. */
  558. unsigned short next_target_start = 0;
  559. /*
  560. * Given an aligned bio that extends beyond the end of a
  561. * target, how many sectors must the next target handle?
  562. */
  563. unsigned short remaining = 0;
  564. struct dm_target *uninitialized_var(ti);
  565. struct queue_limits ti_limits;
  566. unsigned i = 0;
  567. /*
  568. * Check each entry in the table in turn.
  569. */
  570. while (i < dm_table_get_num_targets(table)) {
  571. ti = dm_table_get_target(table, i++);
  572. blk_set_default_limits(&ti_limits);
  573. /* combine all target devices' limits */
  574. if (ti->type->iterate_devices)
  575. ti->type->iterate_devices(ti, dm_set_device_limits,
  576. &ti_limits);
  577. /*
  578. * If the remaining sectors fall entirely within this
  579. * table entry are they compatible with its logical_block_size?
  580. */
  581. if (remaining < ti->len &&
  582. remaining & ((ti_limits.logical_block_size >>
  583. SECTOR_SHIFT) - 1))
  584. break; /* Error */
  585. next_target_start =
  586. (unsigned short) ((next_target_start + ti->len) &
  587. (device_logical_block_size_sects - 1));
  588. remaining = next_target_start ?
  589. device_logical_block_size_sects - next_target_start : 0;
  590. }
  591. if (remaining) {
  592. DMWARN("%s: table line %u (start sect %llu len %llu) "
  593. "not aligned to h/w logical block size %u",
  594. dm_device_name(table->md), i,
  595. (unsigned long long) ti->begin,
  596. (unsigned long long) ti->len,
  597. limits->logical_block_size);
  598. return -EINVAL;
  599. }
  600. return 0;
  601. }
  602. int dm_table_add_target(struct dm_table *t, const char *type,
  603. sector_t start, sector_t len, char *params)
  604. {
  605. int r = -EINVAL, argc;
  606. char **argv;
  607. struct dm_target *tgt;
  608. if (t->singleton) {
  609. DMERR("%s: target type %s must appear alone in table",
  610. dm_device_name(t->md), t->targets->type->name);
  611. return -EINVAL;
  612. }
  613. if ((r = check_space(t)))
  614. return r;
  615. tgt = t->targets + t->num_targets;
  616. memset(tgt, 0, sizeof(*tgt));
  617. if (!len) {
  618. DMERR("%s: zero-length target", dm_device_name(t->md));
  619. return -EINVAL;
  620. }
  621. tgt->type = dm_get_target_type(type);
  622. if (!tgt->type) {
  623. DMERR("%s: %s: unknown target type", dm_device_name(t->md),
  624. type);
  625. return -EINVAL;
  626. }
  627. if (dm_target_needs_singleton(tgt->type)) {
  628. if (t->num_targets) {
  629. DMERR("%s: target type %s must appear alone in table",
  630. dm_device_name(t->md), type);
  631. return -EINVAL;
  632. }
  633. t->singleton = 1;
  634. }
  635. tgt->table = t;
  636. tgt->begin = start;
  637. tgt->len = len;
  638. tgt->error = "Unknown error";
  639. /*
  640. * Does this target adjoin the previous one ?
  641. */
  642. if (!adjoin(t, tgt)) {
  643. tgt->error = "Gap in table";
  644. r = -EINVAL;
  645. goto bad;
  646. }
  647. r = dm_split_args(&argc, &argv, params);
  648. if (r) {
  649. tgt->error = "couldn't split parameters (insufficient memory)";
  650. goto bad;
  651. }
  652. r = tgt->type->ctr(tgt, argc, argv);
  653. kfree(argv);
  654. if (r)
  655. goto bad;
  656. t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
  657. if (!tgt->num_discard_requests && tgt->discards_supported)
  658. DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
  659. dm_device_name(t->md), type);
  660. return 0;
  661. bad:
  662. DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
  663. dm_put_target_type(tgt->type);
  664. return r;
  665. }
  666. /*
  667. * Target argument parsing helpers.
  668. */
  669. static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
  670. unsigned *value, char **error, unsigned grouped)
  671. {
  672. const char *arg_str = dm_shift_arg(arg_set);
  673. if (!arg_str ||
  674. (sscanf(arg_str, "%u", value) != 1) ||
  675. (*value < arg->min) ||
  676. (*value > arg->max) ||
  677. (grouped && arg_set->argc < *value)) {
  678. *error = arg->error;
  679. return -EINVAL;
  680. }
  681. return 0;
  682. }
  683. int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
  684. unsigned *value, char **error)
  685. {
  686. return validate_next_arg(arg, arg_set, value, error, 0);
  687. }
  688. EXPORT_SYMBOL(dm_read_arg);
  689. int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
  690. unsigned *value, char **error)
  691. {
  692. return validate_next_arg(arg, arg_set, value, error, 1);
  693. }
  694. EXPORT_SYMBOL(dm_read_arg_group);
  695. const char *dm_shift_arg(struct dm_arg_set *as)
  696. {
  697. char *r;
  698. if (as->argc) {
  699. as->argc--;
  700. r = *as->argv;
  701. as->argv++;
  702. return r;
  703. }
  704. return NULL;
  705. }
  706. EXPORT_SYMBOL(dm_shift_arg);
  707. void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
  708. {
  709. BUG_ON(as->argc < num_args);
  710. as->argc -= num_args;
  711. as->argv += num_args;
  712. }
  713. EXPORT_SYMBOL(dm_consume_args);
  714. static int dm_table_set_type(struct dm_table *t)
  715. {
  716. unsigned i;
  717. unsigned bio_based = 0, request_based = 0;
  718. struct dm_target *tgt;
  719. struct dm_dev_internal *dd;
  720. struct list_head *devices;
  721. for (i = 0; i < t->num_targets; i++) {
  722. tgt = t->targets + i;
  723. if (dm_target_request_based(tgt))
  724. request_based = 1;
  725. else
  726. bio_based = 1;
  727. if (bio_based && request_based) {
  728. DMWARN("Inconsistent table: different target types"
  729. " can't be mixed up");
  730. return -EINVAL;
  731. }
  732. }
  733. if (bio_based) {
  734. /* We must use this table as bio-based */
  735. t->type = DM_TYPE_BIO_BASED;
  736. return 0;
  737. }
  738. BUG_ON(!request_based); /* No targets in this table */
  739. /* Non-request-stackable devices can't be used for request-based dm */
  740. devices = dm_table_get_devices(t);
  741. list_for_each_entry(dd, devices, list) {
  742. if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
  743. DMWARN("table load rejected: including"
  744. " non-request-stackable devices");
  745. return -EINVAL;
  746. }
  747. }
  748. /*
  749. * Request-based dm supports only tables that have a single target now.
  750. * To support multiple targets, request splitting support is needed,
  751. * and that needs lots of changes in the block-layer.
  752. * (e.g. request completion process for partial completion.)
  753. */
  754. if (t->num_targets > 1) {
  755. DMWARN("Request-based dm doesn't support multiple targets yet");
  756. return -EINVAL;
  757. }
  758. t->type = DM_TYPE_REQUEST_BASED;
  759. return 0;
  760. }
  761. unsigned dm_table_get_type(struct dm_table *t)
  762. {
  763. return t->type;
  764. }
  765. bool dm_table_request_based(struct dm_table *t)
  766. {
  767. return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
  768. }
  769. int dm_table_alloc_md_mempools(struct dm_table *t)
  770. {
  771. unsigned type = dm_table_get_type(t);
  772. if (unlikely(type == DM_TYPE_NONE)) {
  773. DMWARN("no table type is set, can't allocate mempools");
  774. return -EINVAL;
  775. }
  776. t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
  777. if (!t->mempools)
  778. return -ENOMEM;
  779. return 0;
  780. }
  781. void dm_table_free_md_mempools(struct dm_table *t)
  782. {
  783. dm_free_md_mempools(t->mempools);
  784. t->mempools = NULL;
  785. }
  786. struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
  787. {
  788. return t->mempools;
  789. }
  790. static int setup_indexes(struct dm_table *t)
  791. {
  792. int i;
  793. unsigned int total = 0;
  794. sector_t *indexes;
  795. /* allocate the space for *all* the indexes */
  796. for (i = t->depth - 2; i >= 0; i--) {
  797. t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
  798. total += t->counts[i];
  799. }
  800. indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
  801. if (!indexes)
  802. return -ENOMEM;
  803. /* set up internal nodes, bottom-up */
  804. for (i = t->depth - 2; i >= 0; i--) {
  805. t->index[i] = indexes;
  806. indexes += (KEYS_PER_NODE * t->counts[i]);
  807. setup_btree_index(i, t);
  808. }
  809. return 0;
  810. }
  811. /*
  812. * Builds the btree to index the map.
  813. */
  814. static int dm_table_build_index(struct dm_table *t)
  815. {
  816. int r = 0;
  817. unsigned int leaf_nodes;
  818. /* how many indexes will the btree have ? */
  819. leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
  820. t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
  821. /* leaf layer has already been set up */
  822. t->counts[t->depth - 1] = leaf_nodes;
  823. t->index[t->depth - 1] = t->highs;
  824. if (t->depth >= 2)
  825. r = setup_indexes(t);
  826. return r;
  827. }
  828. /*
  829. * Get a disk whose integrity profile reflects the table's profile.
  830. * If %match_all is true, all devices' profiles must match.
  831. * If %match_all is false, all devices must at least have an
  832. * allocated integrity profile; but uninitialized is ok.
  833. * Returns NULL if integrity support was inconsistent or unavailable.
  834. */
  835. static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
  836. bool match_all)
  837. {
  838. struct list_head *devices = dm_table_get_devices(t);
  839. struct dm_dev_internal *dd = NULL;
  840. struct gendisk *prev_disk = NULL, *template_disk = NULL;
  841. list_for_each_entry(dd, devices, list) {
  842. template_disk = dd->dm_dev.bdev->bd_disk;
  843. if (!blk_get_integrity(template_disk))
  844. goto no_integrity;
  845. if (!match_all && !blk_integrity_is_initialized(template_disk))
  846. continue; /* skip uninitialized profiles */
  847. else if (prev_disk &&
  848. blk_integrity_compare(prev_disk, template_disk) < 0)
  849. goto no_integrity;
  850. prev_disk = template_disk;
  851. }
  852. return template_disk;
  853. no_integrity:
  854. if (prev_disk)
  855. DMWARN("%s: integrity not set: %s and %s profile mismatch",
  856. dm_device_name(t->md),
  857. prev_disk->disk_name,
  858. template_disk->disk_name);
  859. return NULL;
  860. }
  861. /*
  862. * Register the mapped device for blk_integrity support if
  863. * the underlying devices have an integrity profile. But all devices
  864. * may not have matching profiles (checking all devices isn't reliable
  865. * during table load because this table may use other DM device(s) which
  866. * must be resumed before they will have an initialized integity profile).
  867. * Stacked DM devices force a 2 stage integrity profile validation:
  868. * 1 - during load, validate all initialized integrity profiles match
  869. * 2 - during resume, validate all integrity profiles match
  870. */
  871. static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
  872. {
  873. struct gendisk *template_disk = NULL;
  874. template_disk = dm_table_get_integrity_disk(t, false);
  875. if (!template_disk)
  876. return 0;
  877. if (!blk_integrity_is_initialized(dm_disk(md))) {
  878. t->integrity_supported = 1;
  879. return blk_integrity_register(dm_disk(md), NULL);
  880. }
  881. /*
  882. * If DM device already has an initalized integrity
  883. * profile the new profile should not conflict.
  884. */
  885. if (blk_integrity_is_initialized(template_disk) &&
  886. blk_integrity_compare(dm_disk(md), template_disk) < 0) {
  887. DMWARN("%s: conflict with existing integrity profile: "
  888. "%s profile mismatch",
  889. dm_device_name(t->md),
  890. template_disk->disk_name);
  891. return 1;
  892. }
  893. /* Preserve existing initialized integrity profile */
  894. t->integrity_supported = 1;
  895. return 0;
  896. }
  897. /*
  898. * Prepares the table for use by building the indices,
  899. * setting the type, and allocating mempools.
  900. */
  901. int dm_table_complete(struct dm_table *t)
  902. {
  903. int r;
  904. r = dm_table_set_type(t);
  905. if (r) {
  906. DMERR("unable to set table type");
  907. return r;
  908. }
  909. r = dm_table_build_index(t);
  910. if (r) {
  911. DMERR("unable to build btrees");
  912. return r;
  913. }
  914. r = dm_table_prealloc_integrity(t, t->md);
  915. if (r) {
  916. DMERR("could not register integrity profile.");
  917. return r;
  918. }
  919. r = dm_table_alloc_md_mempools(t);
  920. if (r)
  921. DMERR("unable to allocate mempools");
  922. return r;
  923. }
  924. static DEFINE_MUTEX(_event_lock);
  925. void dm_table_event_callback(struct dm_table *t,
  926. void (*fn)(void *), void *context)
  927. {
  928. mutex_lock(&_event_lock);
  929. t->event_fn = fn;
  930. t->event_context = context;
  931. mutex_unlock(&_event_lock);
  932. }
  933. void dm_table_event(struct dm_table *t)
  934. {
  935. /*
  936. * You can no longer call dm_table_event() from interrupt
  937. * context, use a bottom half instead.
  938. */
  939. BUG_ON(in_interrupt());
  940. mutex_lock(&_event_lock);
  941. if (t->event_fn)
  942. t->event_fn(t->event_context);
  943. mutex_unlock(&_event_lock);
  944. }
  945. EXPORT_SYMBOL(dm_table_event);
  946. sector_t dm_table_get_size(struct dm_table *t)
  947. {
  948. return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
  949. }
  950. EXPORT_SYMBOL(dm_table_get_size);
  951. struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
  952. {
  953. if (index >= t->num_targets)
  954. return NULL;
  955. return t->targets + index;
  956. }
  957. /*
  958. * Search the btree for the correct target.
  959. *
  960. * Caller should check returned pointer with dm_target_is_valid()
  961. * to trap I/O beyond end of device.
  962. */
  963. struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
  964. {
  965. unsigned int l, n = 0, k = 0;
  966. sector_t *node;
  967. for (l = 0; l < t->depth; l++) {
  968. n = get_child(n, k);
  969. node = get_node(t, l, n);
  970. for (k = 0; k < KEYS_PER_NODE; k++)
  971. if (node[k] >= sector)
  972. break;
  973. }
  974. return &t->targets[(KEYS_PER_NODE * n) + k];
  975. }
  976. /*
  977. * Establish the new table's queue_limits and validate them.
  978. */
  979. int dm_calculate_queue_limits(struct dm_table *table,
  980. struct queue_limits *limits)
  981. {
  982. struct dm_target *uninitialized_var(ti);
  983. struct queue_limits ti_limits;
  984. unsigned i = 0;
  985. blk_set_default_limits(limits);
  986. while (i < dm_table_get_num_targets(table)) {
  987. blk_set_default_limits(&ti_limits);
  988. ti = dm_table_get_target(table, i++);
  989. if (!ti->type->iterate_devices)
  990. goto combine_limits;
  991. /*
  992. * Combine queue limits of all the devices this target uses.
  993. */
  994. ti->type->iterate_devices(ti, dm_set_device_limits,
  995. &ti_limits);
  996. /* Set I/O hints portion of queue limits */
  997. if (ti->type->io_hints)
  998. ti->type->io_hints(ti, &ti_limits);
  999. /*
  1000. * Check each device area is consistent with the target's
  1001. * overall queue limits.
  1002. */
  1003. if (ti->type->iterate_devices(ti, device_area_is_invalid,
  1004. &ti_limits))
  1005. return -EINVAL;
  1006. combine_limits:
  1007. /*
  1008. * Merge this target's queue limits into the overall limits
  1009. * for the table.
  1010. */
  1011. if (blk_stack_limits(limits, &ti_limits, 0) < 0)
  1012. DMWARN("%s: adding target device "
  1013. "(start sect %llu len %llu) "
  1014. "caused an alignment inconsistency",
  1015. dm_device_name(table->md),
  1016. (unsigned long long) ti->begin,
  1017. (unsigned long long) ti->len);
  1018. }
  1019. return validate_hardware_logical_block_alignment(table, limits);
  1020. }
  1021. /*
  1022. * Set the integrity profile for this device if all devices used have
  1023. * matching profiles. We're quite deep in the resume path but still
  1024. * don't know if all devices (particularly DM devices this device
  1025. * may be stacked on) have matching profiles. Even if the profiles
  1026. * don't match we have no way to fail (to resume) at this point.
  1027. */
  1028. static void dm_table_set_integrity(struct dm_table *t)
  1029. {
  1030. struct gendisk *template_disk = NULL;
  1031. if (!blk_get_integrity(dm_disk(t->md)))
  1032. return;
  1033. template_disk = dm_table_get_integrity_disk(t, true);
  1034. if (template_disk)
  1035. blk_integrity_register(dm_disk(t->md),
  1036. blk_get_integrity(template_disk));
  1037. else if (blk_integrity_is_initialized(dm_disk(t->md)))
  1038. DMWARN("%s: device no longer has a valid integrity profile",
  1039. dm_device_name(t->md));
  1040. else
  1041. DMWARN("%s: unable to establish an integrity profile",
  1042. dm_device_name(t->md));
  1043. }
  1044. static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
  1045. sector_t start, sector_t len, void *data)
  1046. {
  1047. unsigned flush = (*(unsigned *)data);
  1048. struct request_queue *q = bdev_get_queue(dev->bdev);
  1049. return q && (q->flush_flags & flush);
  1050. }
  1051. static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
  1052. {
  1053. struct dm_target *ti;
  1054. unsigned i = 0;
  1055. /*
  1056. * Require at least one underlying device to support flushes.
  1057. * t->devices includes internal dm devices such as mirror logs
  1058. * so we need to use iterate_devices here, which targets
  1059. * supporting flushes must provide.
  1060. */
  1061. while (i < dm_table_get_num_targets(t)) {
  1062. ti = dm_table_get_target(t, i++);
  1063. if (!ti->num_flush_requests)
  1064. continue;
  1065. if (ti->type->iterate_devices &&
  1066. ti->type->iterate_devices(ti, device_flush_capable, &flush))
  1067. return 1;
  1068. }
  1069. return 0;
  1070. }
  1071. static bool dm_table_discard_zeroes_data(struct dm_table *t)
  1072. {
  1073. struct dm_target *ti;
  1074. unsigned i = 0;
  1075. /* Ensure that all targets supports discard_zeroes_data. */
  1076. while (i < dm_table_get_num_targets(t)) {
  1077. ti = dm_table_get_target(t, i++);
  1078. if (ti->discard_zeroes_data_unsupported)
  1079. return 0;
  1080. }
  1081. return 1;
  1082. }
  1083. static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
  1084. sector_t start, sector_t len, void *data)
  1085. {
  1086. struct request_queue *q = bdev_get_queue(dev->bdev);
  1087. return q && blk_queue_nonrot(q);
  1088. }
  1089. static bool dm_table_is_nonrot(struct dm_table *t)
  1090. {
  1091. struct dm_target *ti;
  1092. unsigned i = 0;
  1093. /* Ensure that all underlying device are non-rotational. */
  1094. while (i < dm_table_get_num_targets(t)) {
  1095. ti = dm_table_get_target(t, i++);
  1096. if (!ti->type->iterate_devices ||
  1097. !ti->type->iterate_devices(ti, device_is_nonrot, NULL))
  1098. return 0;
  1099. }
  1100. return 1;
  1101. }
  1102. void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
  1103. struct queue_limits *limits)
  1104. {
  1105. unsigned flush = 0;
  1106. /*
  1107. * Copy table's limits to the DM device's request_queue
  1108. */
  1109. q->limits = *limits;
  1110. if (!dm_table_supports_discards(t))
  1111. queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
  1112. else
  1113. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
  1114. if (dm_table_supports_flush(t, REQ_FLUSH)) {
  1115. flush |= REQ_FLUSH;
  1116. if (dm_table_supports_flush(t, REQ_FUA))
  1117. flush |= REQ_FUA;
  1118. }
  1119. blk_queue_flush(q, flush);
  1120. if (!dm_table_discard_zeroes_data(t))
  1121. q->limits.discard_zeroes_data = 0;
  1122. if (dm_table_is_nonrot(t))
  1123. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
  1124. else
  1125. queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
  1126. dm_table_set_integrity(t);
  1127. /*
  1128. * QUEUE_FLAG_STACKABLE must be set after all queue settings are
  1129. * visible to other CPUs because, once the flag is set, incoming bios
  1130. * are processed by request-based dm, which refers to the queue
  1131. * settings.
  1132. * Until the flag set, bios are passed to bio-based dm and queued to
  1133. * md->deferred where queue settings are not needed yet.
  1134. * Those bios are passed to request-based dm at the resume time.
  1135. */
  1136. smp_mb();
  1137. if (dm_table_request_based(t))
  1138. queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
  1139. }
  1140. unsigned int dm_table_get_num_targets(struct dm_table *t)
  1141. {
  1142. return t->num_targets;
  1143. }
  1144. struct list_head *dm_table_get_devices(struct dm_table *t)
  1145. {
  1146. return &t->devices;
  1147. }
  1148. fmode_t dm_table_get_mode(struct dm_table *t)
  1149. {
  1150. return t->mode;
  1151. }
  1152. EXPORT_SYMBOL(dm_table_get_mode);
  1153. static void suspend_targets(struct dm_table *t, unsigned postsuspend)
  1154. {
  1155. int i = t->num_targets;
  1156. struct dm_target *ti = t->targets;
  1157. while (i--) {
  1158. if (postsuspend) {
  1159. if (ti->type->postsuspend)
  1160. ti->type->postsuspend(ti);
  1161. } else if (ti->type->presuspend)
  1162. ti->type->presuspend(ti);
  1163. ti++;
  1164. }
  1165. }
  1166. void dm_table_presuspend_targets(struct dm_table *t)
  1167. {
  1168. if (!t)
  1169. return;
  1170. suspend_targets(t, 0);
  1171. }
  1172. void dm_table_postsuspend_targets(struct dm_table *t)
  1173. {
  1174. if (!t)
  1175. return;
  1176. suspend_targets(t, 1);
  1177. }
  1178. int dm_table_resume_targets(struct dm_table *t)
  1179. {
  1180. int i, r = 0;
  1181. for (i = 0; i < t->num_targets; i++) {
  1182. struct dm_target *ti = t->targets + i;
  1183. if (!ti->type->preresume)
  1184. continue;
  1185. r = ti->type->preresume(ti);
  1186. if (r)
  1187. return r;
  1188. }
  1189. for (i = 0; i < t->num_targets; i++) {
  1190. struct dm_target *ti = t->targets + i;
  1191. if (ti->type->resume)
  1192. ti->type->resume(ti);
  1193. }
  1194. return 0;
  1195. }
  1196. void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
  1197. {
  1198. list_add(&cb->list, &t->target_callbacks);
  1199. }
  1200. EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
  1201. int dm_table_any_congested(struct dm_table *t, int bdi_bits)
  1202. {
  1203. struct dm_dev_internal *dd;
  1204. struct list_head *devices = dm_table_get_devices(t);
  1205. struct dm_target_callbacks *cb;
  1206. int r = 0;
  1207. list_for_each_entry(dd, devices, list) {
  1208. struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
  1209. char b[BDEVNAME_SIZE];
  1210. if (likely(q))
  1211. r |= bdi_congested(&q->backing_dev_info, bdi_bits);
  1212. else
  1213. DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
  1214. dm_device_name(t->md),
  1215. bdevname(dd->dm_dev.bdev, b));
  1216. }
  1217. list_for_each_entry(cb, &t->target_callbacks, list)
  1218. if (cb->congested_fn)
  1219. r |= cb->congested_fn(cb, bdi_bits);
  1220. return r;
  1221. }
  1222. int dm_table_any_busy_target(struct dm_table *t)
  1223. {
  1224. unsigned i;
  1225. struct dm_target *ti;
  1226. for (i = 0; i < t->num_targets; i++) {
  1227. ti = t->targets + i;
  1228. if (ti->type->busy && ti->type->busy(ti))
  1229. return 1;
  1230. }
  1231. return 0;
  1232. }
  1233. struct mapped_device *dm_table_get_md(struct dm_table *t)
  1234. {
  1235. return t->md;
  1236. }
  1237. EXPORT_SYMBOL(dm_table_get_md);
  1238. static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
  1239. sector_t start, sector_t len, void *data)
  1240. {
  1241. struct request_queue *q = bdev_get_queue(dev->bdev);
  1242. return q && blk_queue_discard(q);
  1243. }
  1244. bool dm_table_supports_discards(struct dm_table *t)
  1245. {
  1246. struct dm_target *ti;
  1247. unsigned i = 0;
  1248. /*
  1249. * Unless any target used by the table set discards_supported,
  1250. * require at least one underlying device to support discards.
  1251. * t->devices includes internal dm devices such as mirror logs
  1252. * so we need to use iterate_devices here, which targets
  1253. * supporting discard selectively must provide.
  1254. */
  1255. while (i < dm_table_get_num_targets(t)) {
  1256. ti = dm_table_get_target(t, i++);
  1257. if (!ti->num_discard_requests)
  1258. continue;
  1259. if (ti->discards_supported)
  1260. return 1;
  1261. if (ti->type->iterate_devices &&
  1262. ti->type->iterate_devices(ti, device_discard_capable, NULL))
  1263. return 1;
  1264. }
  1265. return 0;
  1266. }