rx.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2011 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/socket.h>
  11. #include <linux/in.h>
  12. #include <linux/slab.h>
  13. #include <linux/ip.h>
  14. #include <linux/tcp.h>
  15. #include <linux/udp.h>
  16. #include <linux/prefetch.h>
  17. #include <linux/moduleparam.h>
  18. #include <linux/iommu.h>
  19. #include <net/ip.h>
  20. #include <net/checksum.h>
  21. #include "net_driver.h"
  22. #include "efx.h"
  23. #include "nic.h"
  24. #include "selftest.h"
  25. #include "workarounds.h"
  26. /* Preferred number of descriptors to fill at once */
  27. #define EFX_RX_PREFERRED_BATCH 8U
  28. /* Number of RX buffers to recycle pages for. When creating the RX page recycle
  29. * ring, this number is divided by the number of buffers per page to calculate
  30. * the number of pages to store in the RX page recycle ring.
  31. */
  32. #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
  33. #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
  34. /* Size of buffer allocated for skb header area. */
  35. #define EFX_SKB_HEADERS 128u
  36. /* This is the percentage fill level below which new RX descriptors
  37. * will be added to the RX descriptor ring.
  38. */
  39. static unsigned int rx_refill_threshold;
  40. /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
  41. #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
  42. EFX_RX_USR_BUF_SIZE)
  43. /*
  44. * RX maximum head room required.
  45. *
  46. * This must be at least 1 to prevent overflow, plus one packet-worth
  47. * to allow pipelined receives.
  48. */
  49. #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
  50. static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
  51. {
  52. return page_address(buf->page) + buf->page_offset;
  53. }
  54. static inline u32 efx_rx_buf_hash(const u8 *eh)
  55. {
  56. /* The ethernet header is always directly after any hash. */
  57. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
  58. return __le32_to_cpup((const __le32 *)(eh - 4));
  59. #else
  60. const u8 *data = eh - 4;
  61. return (u32)data[0] |
  62. (u32)data[1] << 8 |
  63. (u32)data[2] << 16 |
  64. (u32)data[3] << 24;
  65. #endif
  66. }
  67. static inline struct efx_rx_buffer *
  68. efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
  69. {
  70. if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
  71. return efx_rx_buffer(rx_queue, 0);
  72. else
  73. return rx_buf + 1;
  74. }
  75. static inline void efx_sync_rx_buffer(struct efx_nic *efx,
  76. struct efx_rx_buffer *rx_buf,
  77. unsigned int len)
  78. {
  79. dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
  80. DMA_FROM_DEVICE);
  81. }
  82. void efx_rx_config_page_split(struct efx_nic *efx)
  83. {
  84. efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + NET_IP_ALIGN,
  85. EFX_RX_BUF_ALIGNMENT);
  86. efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
  87. ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
  88. efx->rx_page_buf_step);
  89. efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
  90. efx->rx_bufs_per_page;
  91. efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
  92. efx->rx_bufs_per_page);
  93. }
  94. /* Check the RX page recycle ring for a page that can be reused. */
  95. static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
  96. {
  97. struct efx_nic *efx = rx_queue->efx;
  98. struct page *page;
  99. struct efx_rx_page_state *state;
  100. unsigned index;
  101. index = rx_queue->page_remove & rx_queue->page_ptr_mask;
  102. page = rx_queue->page_ring[index];
  103. if (page == NULL)
  104. return NULL;
  105. rx_queue->page_ring[index] = NULL;
  106. /* page_remove cannot exceed page_add. */
  107. if (rx_queue->page_remove != rx_queue->page_add)
  108. ++rx_queue->page_remove;
  109. /* If page_count is 1 then we hold the only reference to this page. */
  110. if (page_count(page) == 1) {
  111. ++rx_queue->page_recycle_count;
  112. return page;
  113. } else {
  114. state = page_address(page);
  115. dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
  116. PAGE_SIZE << efx->rx_buffer_order,
  117. DMA_FROM_DEVICE);
  118. put_page(page);
  119. ++rx_queue->page_recycle_failed;
  120. }
  121. return NULL;
  122. }
  123. /**
  124. * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
  125. *
  126. * @rx_queue: Efx RX queue
  127. *
  128. * This allocates a batch of pages, maps them for DMA, and populates
  129. * struct efx_rx_buffers for each one. Return a negative error code or
  130. * 0 on success. If a single page can be used for multiple buffers,
  131. * then the page will either be inserted fully, or not at all.
  132. */
  133. static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
  134. {
  135. struct efx_nic *efx = rx_queue->efx;
  136. struct efx_rx_buffer *rx_buf;
  137. struct page *page;
  138. unsigned int page_offset;
  139. struct efx_rx_page_state *state;
  140. dma_addr_t dma_addr;
  141. unsigned index, count;
  142. count = 0;
  143. do {
  144. page = efx_reuse_page(rx_queue);
  145. if (page == NULL) {
  146. page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
  147. efx->rx_buffer_order);
  148. if (unlikely(page == NULL))
  149. return -ENOMEM;
  150. dma_addr =
  151. dma_map_page(&efx->pci_dev->dev, page, 0,
  152. PAGE_SIZE << efx->rx_buffer_order,
  153. DMA_FROM_DEVICE);
  154. if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
  155. dma_addr))) {
  156. __free_pages(page, efx->rx_buffer_order);
  157. return -EIO;
  158. }
  159. state = page_address(page);
  160. state->dma_addr = dma_addr;
  161. } else {
  162. state = page_address(page);
  163. dma_addr = state->dma_addr;
  164. }
  165. dma_addr += sizeof(struct efx_rx_page_state);
  166. page_offset = sizeof(struct efx_rx_page_state);
  167. do {
  168. index = rx_queue->added_count & rx_queue->ptr_mask;
  169. rx_buf = efx_rx_buffer(rx_queue, index);
  170. rx_buf->dma_addr = dma_addr + NET_IP_ALIGN;
  171. rx_buf->page = page;
  172. rx_buf->page_offset = page_offset + NET_IP_ALIGN;
  173. rx_buf->len = efx->rx_dma_len;
  174. rx_buf->flags = 0;
  175. ++rx_queue->added_count;
  176. get_page(page);
  177. dma_addr += efx->rx_page_buf_step;
  178. page_offset += efx->rx_page_buf_step;
  179. } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
  180. rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
  181. } while (++count < efx->rx_pages_per_batch);
  182. return 0;
  183. }
  184. /* Unmap a DMA-mapped page. This function is only called for the final RX
  185. * buffer in a page.
  186. */
  187. static void efx_unmap_rx_buffer(struct efx_nic *efx,
  188. struct efx_rx_buffer *rx_buf)
  189. {
  190. struct page *page = rx_buf->page;
  191. if (page) {
  192. struct efx_rx_page_state *state = page_address(page);
  193. dma_unmap_page(&efx->pci_dev->dev,
  194. state->dma_addr,
  195. PAGE_SIZE << efx->rx_buffer_order,
  196. DMA_FROM_DEVICE);
  197. }
  198. }
  199. static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
  200. {
  201. if (rx_buf->page) {
  202. put_page(rx_buf->page);
  203. rx_buf->page = NULL;
  204. }
  205. }
  206. /* Attempt to recycle the page if there is an RX recycle ring; the page can
  207. * only be added if this is the final RX buffer, to prevent pages being used in
  208. * the descriptor ring and appearing in the recycle ring simultaneously.
  209. */
  210. static void efx_recycle_rx_page(struct efx_channel *channel,
  211. struct efx_rx_buffer *rx_buf)
  212. {
  213. struct page *page = rx_buf->page;
  214. struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
  215. struct efx_nic *efx = rx_queue->efx;
  216. unsigned index;
  217. /* Only recycle the page after processing the final buffer. */
  218. if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
  219. return;
  220. index = rx_queue->page_add & rx_queue->page_ptr_mask;
  221. if (rx_queue->page_ring[index] == NULL) {
  222. unsigned read_index = rx_queue->page_remove &
  223. rx_queue->page_ptr_mask;
  224. /* The next slot in the recycle ring is available, but
  225. * increment page_remove if the read pointer currently
  226. * points here.
  227. */
  228. if (read_index == index)
  229. ++rx_queue->page_remove;
  230. rx_queue->page_ring[index] = page;
  231. ++rx_queue->page_add;
  232. return;
  233. }
  234. ++rx_queue->page_recycle_full;
  235. efx_unmap_rx_buffer(efx, rx_buf);
  236. put_page(rx_buf->page);
  237. }
  238. static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
  239. struct efx_rx_buffer *rx_buf)
  240. {
  241. /* Release the page reference we hold for the buffer. */
  242. if (rx_buf->page)
  243. put_page(rx_buf->page);
  244. /* If this is the last buffer in a page, unmap and free it. */
  245. if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
  246. efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
  247. efx_free_rx_buffer(rx_buf);
  248. }
  249. rx_buf->page = NULL;
  250. }
  251. /* Recycle the pages that are used by buffers that have just been received. */
  252. static void efx_recycle_rx_pages(struct efx_channel *channel,
  253. struct efx_rx_buffer *rx_buf,
  254. unsigned int n_frags)
  255. {
  256. struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
  257. do {
  258. efx_recycle_rx_page(channel, rx_buf);
  259. rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
  260. } while (--n_frags);
  261. }
  262. static void efx_discard_rx_packet(struct efx_channel *channel,
  263. struct efx_rx_buffer *rx_buf,
  264. unsigned int n_frags)
  265. {
  266. struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
  267. efx_recycle_rx_pages(channel, rx_buf, n_frags);
  268. do {
  269. efx_free_rx_buffer(rx_buf);
  270. rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
  271. } while (--n_frags);
  272. }
  273. /**
  274. * efx_fast_push_rx_descriptors - push new RX descriptors quickly
  275. * @rx_queue: RX descriptor queue
  276. *
  277. * This will aim to fill the RX descriptor queue up to
  278. * @rx_queue->@max_fill. If there is insufficient atomic
  279. * memory to do so, a slow fill will be scheduled.
  280. *
  281. * The caller must provide serialisation (none is used here). In practise,
  282. * this means this function must run from the NAPI handler, or be called
  283. * when NAPI is disabled.
  284. */
  285. void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
  286. {
  287. struct efx_nic *efx = rx_queue->efx;
  288. unsigned int fill_level, batch_size;
  289. int space, rc = 0;
  290. /* Calculate current fill level, and exit if we don't need to fill */
  291. fill_level = (rx_queue->added_count - rx_queue->removed_count);
  292. EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
  293. if (fill_level >= rx_queue->fast_fill_trigger)
  294. goto out;
  295. /* Record minimum fill level */
  296. if (unlikely(fill_level < rx_queue->min_fill)) {
  297. if (fill_level)
  298. rx_queue->min_fill = fill_level;
  299. }
  300. batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
  301. space = rx_queue->max_fill - fill_level;
  302. EFX_BUG_ON_PARANOID(space < batch_size);
  303. netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
  304. "RX queue %d fast-filling descriptor ring from"
  305. " level %d to level %d\n",
  306. efx_rx_queue_index(rx_queue), fill_level,
  307. rx_queue->max_fill);
  308. do {
  309. rc = efx_init_rx_buffers(rx_queue);
  310. if (unlikely(rc)) {
  311. /* Ensure that we don't leave the rx queue empty */
  312. if (rx_queue->added_count == rx_queue->removed_count)
  313. efx_schedule_slow_fill(rx_queue);
  314. goto out;
  315. }
  316. } while ((space -= batch_size) >= batch_size);
  317. netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
  318. "RX queue %d fast-filled descriptor ring "
  319. "to level %d\n", efx_rx_queue_index(rx_queue),
  320. rx_queue->added_count - rx_queue->removed_count);
  321. out:
  322. if (rx_queue->notified_count != rx_queue->added_count)
  323. efx_nic_notify_rx_desc(rx_queue);
  324. }
  325. void efx_rx_slow_fill(unsigned long context)
  326. {
  327. struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
  328. /* Post an event to cause NAPI to run and refill the queue */
  329. efx_nic_generate_fill_event(rx_queue);
  330. ++rx_queue->slow_fill_count;
  331. }
  332. static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
  333. struct efx_rx_buffer *rx_buf,
  334. int len)
  335. {
  336. struct efx_nic *efx = rx_queue->efx;
  337. unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
  338. if (likely(len <= max_len))
  339. return;
  340. /* The packet must be discarded, but this is only a fatal error
  341. * if the caller indicated it was
  342. */
  343. rx_buf->flags |= EFX_RX_PKT_DISCARD;
  344. if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
  345. if (net_ratelimit())
  346. netif_err(efx, rx_err, efx->net_dev,
  347. " RX queue %d seriously overlength "
  348. "RX event (0x%x > 0x%x+0x%x). Leaking\n",
  349. efx_rx_queue_index(rx_queue), len, max_len,
  350. efx->type->rx_buffer_padding);
  351. efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
  352. } else {
  353. if (net_ratelimit())
  354. netif_err(efx, rx_err, efx->net_dev,
  355. " RX queue %d overlength RX event "
  356. "(0x%x > 0x%x)\n",
  357. efx_rx_queue_index(rx_queue), len, max_len);
  358. }
  359. efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
  360. }
  361. /* Pass a received packet up through GRO. GRO can handle pages
  362. * regardless of checksum state and skbs with a good checksum.
  363. */
  364. static void
  365. efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
  366. unsigned int n_frags, u8 *eh)
  367. {
  368. struct napi_struct *napi = &channel->napi_str;
  369. gro_result_t gro_result;
  370. struct efx_nic *efx = channel->efx;
  371. struct sk_buff *skb;
  372. skb = napi_get_frags(napi);
  373. if (unlikely(!skb)) {
  374. while (n_frags--) {
  375. put_page(rx_buf->page);
  376. rx_buf->page = NULL;
  377. rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
  378. }
  379. return;
  380. }
  381. if (efx->net_dev->features & NETIF_F_RXHASH)
  382. skb->rxhash = efx_rx_buf_hash(eh);
  383. skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
  384. CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
  385. for (;;) {
  386. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  387. rx_buf->page, rx_buf->page_offset,
  388. rx_buf->len);
  389. rx_buf->page = NULL;
  390. skb->len += rx_buf->len;
  391. if (skb_shinfo(skb)->nr_frags == n_frags)
  392. break;
  393. rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
  394. }
  395. skb->data_len = skb->len;
  396. skb->truesize += n_frags * efx->rx_buffer_truesize;
  397. skb_record_rx_queue(skb, channel->rx_queue.core_index);
  398. gro_result = napi_gro_frags(napi);
  399. if (gro_result != GRO_DROP)
  400. channel->irq_mod_score += 2;
  401. }
  402. /* Allocate and construct an SKB around page fragments */
  403. static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
  404. struct efx_rx_buffer *rx_buf,
  405. unsigned int n_frags,
  406. u8 *eh, int hdr_len)
  407. {
  408. struct efx_nic *efx = channel->efx;
  409. struct sk_buff *skb;
  410. /* Allocate an SKB to store the headers */
  411. skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
  412. if (unlikely(skb == NULL))
  413. return NULL;
  414. EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
  415. skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
  416. memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
  417. /* Append the remaining page(s) onto the frag list */
  418. if (rx_buf->len > hdr_len) {
  419. rx_buf->page_offset += hdr_len;
  420. rx_buf->len -= hdr_len;
  421. for (;;) {
  422. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  423. rx_buf->page, rx_buf->page_offset,
  424. rx_buf->len);
  425. rx_buf->page = NULL;
  426. skb->len += rx_buf->len;
  427. skb->data_len += rx_buf->len;
  428. if (skb_shinfo(skb)->nr_frags == n_frags)
  429. break;
  430. rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
  431. }
  432. } else {
  433. __free_pages(rx_buf->page, efx->rx_buffer_order);
  434. rx_buf->page = NULL;
  435. n_frags = 0;
  436. }
  437. skb->truesize += n_frags * efx->rx_buffer_truesize;
  438. /* Move past the ethernet header */
  439. skb->protocol = eth_type_trans(skb, efx->net_dev);
  440. return skb;
  441. }
  442. void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
  443. unsigned int n_frags, unsigned int len, u16 flags)
  444. {
  445. struct efx_nic *efx = rx_queue->efx;
  446. struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
  447. struct efx_rx_buffer *rx_buf;
  448. rx_buf = efx_rx_buffer(rx_queue, index);
  449. rx_buf->flags |= flags;
  450. /* Validate the number of fragments and completed length */
  451. if (n_frags == 1) {
  452. efx_rx_packet__check_len(rx_queue, rx_buf, len);
  453. } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
  454. unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) ||
  455. unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) ||
  456. unlikely(!efx->rx_scatter)) {
  457. /* If this isn't an explicit discard request, either
  458. * the hardware or the driver is broken.
  459. */
  460. WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
  461. rx_buf->flags |= EFX_RX_PKT_DISCARD;
  462. }
  463. netif_vdbg(efx, rx_status, efx->net_dev,
  464. "RX queue %d received ids %x-%x len %d %s%s\n",
  465. efx_rx_queue_index(rx_queue), index,
  466. (index + n_frags - 1) & rx_queue->ptr_mask, len,
  467. (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
  468. (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
  469. /* Discard packet, if instructed to do so. Process the
  470. * previous receive first.
  471. */
  472. if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
  473. efx_rx_flush_packet(channel);
  474. efx_discard_rx_packet(channel, rx_buf, n_frags);
  475. return;
  476. }
  477. if (n_frags == 1)
  478. rx_buf->len = len;
  479. /* Release and/or sync the DMA mapping - assumes all RX buffers
  480. * consumed in-order per RX queue.
  481. */
  482. efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
  483. /* Prefetch nice and early so data will (hopefully) be in cache by
  484. * the time we look at it.
  485. */
  486. prefetch(efx_rx_buf_va(rx_buf));
  487. rx_buf->page_offset += efx->type->rx_buffer_hash_size;
  488. rx_buf->len -= efx->type->rx_buffer_hash_size;
  489. if (n_frags > 1) {
  490. /* Release/sync DMA mapping for additional fragments.
  491. * Fix length for last fragment.
  492. */
  493. unsigned int tail_frags = n_frags - 1;
  494. for (;;) {
  495. rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
  496. if (--tail_frags == 0)
  497. break;
  498. efx_sync_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE);
  499. }
  500. rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE;
  501. efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
  502. }
  503. /* All fragments have been DMA-synced, so recycle pages. */
  504. rx_buf = efx_rx_buffer(rx_queue, index);
  505. efx_recycle_rx_pages(channel, rx_buf, n_frags);
  506. /* Pipeline receives so that we give time for packet headers to be
  507. * prefetched into cache.
  508. */
  509. efx_rx_flush_packet(channel);
  510. channel->rx_pkt_n_frags = n_frags;
  511. channel->rx_pkt_index = index;
  512. }
  513. static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
  514. struct efx_rx_buffer *rx_buf,
  515. unsigned int n_frags)
  516. {
  517. struct sk_buff *skb;
  518. u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
  519. skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
  520. if (unlikely(skb == NULL)) {
  521. efx_free_rx_buffer(rx_buf);
  522. return;
  523. }
  524. skb_record_rx_queue(skb, channel->rx_queue.core_index);
  525. /* Set the SKB flags */
  526. skb_checksum_none_assert(skb);
  527. if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
  528. skb->ip_summed = CHECKSUM_UNNECESSARY;
  529. if (channel->type->receive_skb)
  530. if (channel->type->receive_skb(channel, skb))
  531. return;
  532. /* Pass the packet up */
  533. netif_receive_skb(skb);
  534. }
  535. /* Handle a received packet. Second half: Touches packet payload. */
  536. void __efx_rx_packet(struct efx_channel *channel)
  537. {
  538. struct efx_nic *efx = channel->efx;
  539. struct efx_rx_buffer *rx_buf =
  540. efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
  541. u8 *eh = efx_rx_buf_va(rx_buf);
  542. /* If we're in loopback test, then pass the packet directly to the
  543. * loopback layer, and free the rx_buf here
  544. */
  545. if (unlikely(efx->loopback_selftest)) {
  546. efx_loopback_rx_packet(efx, eh, rx_buf->len);
  547. efx_free_rx_buffer(rx_buf);
  548. goto out;
  549. }
  550. if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
  551. rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
  552. if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
  553. efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
  554. else
  555. efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
  556. out:
  557. channel->rx_pkt_n_frags = 0;
  558. }
  559. int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
  560. {
  561. struct efx_nic *efx = rx_queue->efx;
  562. unsigned int entries;
  563. int rc;
  564. /* Create the smallest power-of-two aligned ring */
  565. entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
  566. EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
  567. rx_queue->ptr_mask = entries - 1;
  568. netif_dbg(efx, probe, efx->net_dev,
  569. "creating RX queue %d size %#x mask %#x\n",
  570. efx_rx_queue_index(rx_queue), efx->rxq_entries,
  571. rx_queue->ptr_mask);
  572. /* Allocate RX buffers */
  573. rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
  574. GFP_KERNEL);
  575. if (!rx_queue->buffer)
  576. return -ENOMEM;
  577. rc = efx_nic_probe_rx(rx_queue);
  578. if (rc) {
  579. kfree(rx_queue->buffer);
  580. rx_queue->buffer = NULL;
  581. }
  582. return rc;
  583. }
  584. static void efx_init_rx_recycle_ring(struct efx_nic *efx,
  585. struct efx_rx_queue *rx_queue)
  586. {
  587. unsigned int bufs_in_recycle_ring, page_ring_size;
  588. /* Set the RX recycle ring size */
  589. #ifdef CONFIG_PPC64
  590. bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
  591. #else
  592. if (iommu_present(&pci_bus_type))
  593. bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
  594. else
  595. bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
  596. #endif /* CONFIG_PPC64 */
  597. page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
  598. efx->rx_bufs_per_page);
  599. rx_queue->page_ring = kcalloc(page_ring_size,
  600. sizeof(*rx_queue->page_ring), GFP_KERNEL);
  601. rx_queue->page_ptr_mask = page_ring_size - 1;
  602. }
  603. void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
  604. {
  605. struct efx_nic *efx = rx_queue->efx;
  606. unsigned int max_fill, trigger, max_trigger;
  607. netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
  608. "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
  609. /* Initialise ptr fields */
  610. rx_queue->added_count = 0;
  611. rx_queue->notified_count = 0;
  612. rx_queue->removed_count = 0;
  613. rx_queue->min_fill = -1U;
  614. efx_init_rx_recycle_ring(efx, rx_queue);
  615. rx_queue->page_remove = 0;
  616. rx_queue->page_add = rx_queue->page_ptr_mask + 1;
  617. rx_queue->page_recycle_count = 0;
  618. rx_queue->page_recycle_failed = 0;
  619. rx_queue->page_recycle_full = 0;
  620. /* Initialise limit fields */
  621. max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
  622. max_trigger =
  623. max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
  624. if (rx_refill_threshold != 0) {
  625. trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
  626. if (trigger > max_trigger)
  627. trigger = max_trigger;
  628. } else {
  629. trigger = max_trigger;
  630. }
  631. rx_queue->max_fill = max_fill;
  632. rx_queue->fast_fill_trigger = trigger;
  633. /* Set up RX descriptor ring */
  634. rx_queue->enabled = true;
  635. efx_nic_init_rx(rx_queue);
  636. }
  637. void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
  638. {
  639. int i;
  640. struct efx_nic *efx = rx_queue->efx;
  641. struct efx_rx_buffer *rx_buf;
  642. netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
  643. "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
  644. /* A flush failure might have left rx_queue->enabled */
  645. rx_queue->enabled = false;
  646. del_timer_sync(&rx_queue->slow_fill);
  647. efx_nic_fini_rx(rx_queue);
  648. /* Release RX buffers from the current read ptr to the write ptr */
  649. if (rx_queue->buffer) {
  650. for (i = rx_queue->removed_count; i < rx_queue->added_count;
  651. i++) {
  652. unsigned index = i & rx_queue->ptr_mask;
  653. rx_buf = efx_rx_buffer(rx_queue, index);
  654. efx_fini_rx_buffer(rx_queue, rx_buf);
  655. }
  656. }
  657. /* Unmap and release the pages in the recycle ring. Remove the ring. */
  658. for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
  659. struct page *page = rx_queue->page_ring[i];
  660. struct efx_rx_page_state *state;
  661. if (page == NULL)
  662. continue;
  663. state = page_address(page);
  664. dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
  665. PAGE_SIZE << efx->rx_buffer_order,
  666. DMA_FROM_DEVICE);
  667. put_page(page);
  668. }
  669. kfree(rx_queue->page_ring);
  670. rx_queue->page_ring = NULL;
  671. }
  672. void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
  673. {
  674. netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
  675. "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
  676. efx_nic_remove_rx(rx_queue);
  677. kfree(rx_queue->buffer);
  678. rx_queue->buffer = NULL;
  679. }
  680. module_param(rx_refill_threshold, uint, 0444);
  681. MODULE_PARM_DESC(rx_refill_threshold,
  682. "RX descriptor ring refill threshold (%)");