exec.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846
  1. /*
  2. * linux/fs/exec.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * #!-checking implemented by tytso.
  8. */
  9. /*
  10. * Demand-loading implemented 01.12.91 - no need to read anything but
  11. * the header into memory. The inode of the executable is put into
  12. * "current->executable", and page faults do the actual loading. Clean.
  13. *
  14. * Once more I can proudly say that linux stood up to being changed: it
  15. * was less than 2 hours work to get demand-loading completely implemented.
  16. *
  17. * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
  18. * current->executable is only used by the procfs. This allows a dispatch
  19. * table to check for several different types of binary formats. We keep
  20. * trying until we recognize the file or we run out of supported binary
  21. * formats.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/file.h>
  25. #include <linux/fdtable.h>
  26. #include <linux/mm.h>
  27. #include <linux/stat.h>
  28. #include <linux/fcntl.h>
  29. #include <linux/smp_lock.h>
  30. #include <linux/swap.h>
  31. #include <linux/string.h>
  32. #include <linux/init.h>
  33. #include <linux/highmem.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/key.h>
  36. #include <linux/personality.h>
  37. #include <linux/binfmts.h>
  38. #include <linux/utsname.h>
  39. #include <linux/pid_namespace.h>
  40. #include <linux/module.h>
  41. #include <linux/namei.h>
  42. #include <linux/proc_fs.h>
  43. #include <linux/mount.h>
  44. #include <linux/security.h>
  45. #include <linux/syscalls.h>
  46. #include <linux/tsacct_kern.h>
  47. #include <linux/cn_proc.h>
  48. #include <linux/audit.h>
  49. #include <linux/tracehook.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/mmu_context.h>
  52. #include <asm/tlb.h>
  53. #ifdef CONFIG_KMOD
  54. #include <linux/kmod.h>
  55. #endif
  56. #ifdef __alpha__
  57. /* for /sbin/loader handling in search_binary_handler() */
  58. #include <linux/a.out.h>
  59. #endif
  60. int core_uses_pid;
  61. char core_pattern[CORENAME_MAX_SIZE] = "core";
  62. int suid_dumpable = 0;
  63. /* The maximal length of core_pattern is also specified in sysctl.c */
  64. static LIST_HEAD(formats);
  65. static DEFINE_RWLOCK(binfmt_lock);
  66. int register_binfmt(struct linux_binfmt * fmt)
  67. {
  68. if (!fmt)
  69. return -EINVAL;
  70. write_lock(&binfmt_lock);
  71. list_add(&fmt->lh, &formats);
  72. write_unlock(&binfmt_lock);
  73. return 0;
  74. }
  75. EXPORT_SYMBOL(register_binfmt);
  76. void unregister_binfmt(struct linux_binfmt * fmt)
  77. {
  78. write_lock(&binfmt_lock);
  79. list_del(&fmt->lh);
  80. write_unlock(&binfmt_lock);
  81. }
  82. EXPORT_SYMBOL(unregister_binfmt);
  83. static inline void put_binfmt(struct linux_binfmt * fmt)
  84. {
  85. module_put(fmt->module);
  86. }
  87. /*
  88. * Note that a shared library must be both readable and executable due to
  89. * security reasons.
  90. *
  91. * Also note that we take the address to load from from the file itself.
  92. */
  93. asmlinkage long sys_uselib(const char __user * library)
  94. {
  95. struct file *file;
  96. struct nameidata nd;
  97. char *tmp = getname(library);
  98. int error = PTR_ERR(tmp);
  99. if (!IS_ERR(tmp)) {
  100. error = path_lookup_open(AT_FDCWD, tmp,
  101. LOOKUP_FOLLOW, &nd,
  102. FMODE_READ|FMODE_EXEC);
  103. putname(tmp);
  104. }
  105. if (error)
  106. goto out;
  107. error = -EINVAL;
  108. if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
  109. goto exit;
  110. error = -EACCES;
  111. if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
  112. goto exit;
  113. error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
  114. if (error)
  115. goto exit;
  116. file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
  117. error = PTR_ERR(file);
  118. if (IS_ERR(file))
  119. goto out;
  120. error = -ENOEXEC;
  121. if(file->f_op) {
  122. struct linux_binfmt * fmt;
  123. read_lock(&binfmt_lock);
  124. list_for_each_entry(fmt, &formats, lh) {
  125. if (!fmt->load_shlib)
  126. continue;
  127. if (!try_module_get(fmt->module))
  128. continue;
  129. read_unlock(&binfmt_lock);
  130. error = fmt->load_shlib(file);
  131. read_lock(&binfmt_lock);
  132. put_binfmt(fmt);
  133. if (error != -ENOEXEC)
  134. break;
  135. }
  136. read_unlock(&binfmt_lock);
  137. }
  138. fput(file);
  139. out:
  140. return error;
  141. exit:
  142. release_open_intent(&nd);
  143. path_put(&nd.path);
  144. goto out;
  145. }
  146. #ifdef CONFIG_MMU
  147. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  148. int write)
  149. {
  150. struct page *page;
  151. int ret;
  152. #ifdef CONFIG_STACK_GROWSUP
  153. if (write) {
  154. ret = expand_stack_downwards(bprm->vma, pos);
  155. if (ret < 0)
  156. return NULL;
  157. }
  158. #endif
  159. ret = get_user_pages(current, bprm->mm, pos,
  160. 1, write, 1, &page, NULL);
  161. if (ret <= 0)
  162. return NULL;
  163. if (write) {
  164. unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
  165. struct rlimit *rlim;
  166. /*
  167. * We've historically supported up to 32 pages (ARG_MAX)
  168. * of argument strings even with small stacks
  169. */
  170. if (size <= ARG_MAX)
  171. return page;
  172. /*
  173. * Limit to 1/4-th the stack size for the argv+env strings.
  174. * This ensures that:
  175. * - the remaining binfmt code will not run out of stack space,
  176. * - the program will have a reasonable amount of stack left
  177. * to work from.
  178. */
  179. rlim = current->signal->rlim;
  180. if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
  181. put_page(page);
  182. return NULL;
  183. }
  184. }
  185. return page;
  186. }
  187. static void put_arg_page(struct page *page)
  188. {
  189. put_page(page);
  190. }
  191. static void free_arg_page(struct linux_binprm *bprm, int i)
  192. {
  193. }
  194. static void free_arg_pages(struct linux_binprm *bprm)
  195. {
  196. }
  197. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  198. struct page *page)
  199. {
  200. flush_cache_page(bprm->vma, pos, page_to_pfn(page));
  201. }
  202. static int __bprm_mm_init(struct linux_binprm *bprm)
  203. {
  204. int err = -ENOMEM;
  205. struct vm_area_struct *vma = NULL;
  206. struct mm_struct *mm = bprm->mm;
  207. bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  208. if (!vma)
  209. goto err;
  210. down_write(&mm->mmap_sem);
  211. vma->vm_mm = mm;
  212. /*
  213. * Place the stack at the largest stack address the architecture
  214. * supports. Later, we'll move this to an appropriate place. We don't
  215. * use STACK_TOP because that can depend on attributes which aren't
  216. * configured yet.
  217. */
  218. vma->vm_end = STACK_TOP_MAX;
  219. vma->vm_start = vma->vm_end - PAGE_SIZE;
  220. vma->vm_flags = VM_STACK_FLAGS;
  221. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  222. err = insert_vm_struct(mm, vma);
  223. if (err) {
  224. up_write(&mm->mmap_sem);
  225. goto err;
  226. }
  227. mm->stack_vm = mm->total_vm = 1;
  228. up_write(&mm->mmap_sem);
  229. bprm->p = vma->vm_end - sizeof(void *);
  230. return 0;
  231. err:
  232. if (vma) {
  233. bprm->vma = NULL;
  234. kmem_cache_free(vm_area_cachep, vma);
  235. }
  236. return err;
  237. }
  238. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  239. {
  240. return len <= MAX_ARG_STRLEN;
  241. }
  242. #else
  243. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  244. int write)
  245. {
  246. struct page *page;
  247. page = bprm->page[pos / PAGE_SIZE];
  248. if (!page && write) {
  249. page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
  250. if (!page)
  251. return NULL;
  252. bprm->page[pos / PAGE_SIZE] = page;
  253. }
  254. return page;
  255. }
  256. static void put_arg_page(struct page *page)
  257. {
  258. }
  259. static void free_arg_page(struct linux_binprm *bprm, int i)
  260. {
  261. if (bprm->page[i]) {
  262. __free_page(bprm->page[i]);
  263. bprm->page[i] = NULL;
  264. }
  265. }
  266. static void free_arg_pages(struct linux_binprm *bprm)
  267. {
  268. int i;
  269. for (i = 0; i < MAX_ARG_PAGES; i++)
  270. free_arg_page(bprm, i);
  271. }
  272. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  273. struct page *page)
  274. {
  275. }
  276. static int __bprm_mm_init(struct linux_binprm *bprm)
  277. {
  278. bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
  279. return 0;
  280. }
  281. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  282. {
  283. return len <= bprm->p;
  284. }
  285. #endif /* CONFIG_MMU */
  286. /*
  287. * Create a new mm_struct and populate it with a temporary stack
  288. * vm_area_struct. We don't have enough context at this point to set the stack
  289. * flags, permissions, and offset, so we use temporary values. We'll update
  290. * them later in setup_arg_pages().
  291. */
  292. int bprm_mm_init(struct linux_binprm *bprm)
  293. {
  294. int err;
  295. struct mm_struct *mm = NULL;
  296. bprm->mm = mm = mm_alloc();
  297. err = -ENOMEM;
  298. if (!mm)
  299. goto err;
  300. err = init_new_context(current, mm);
  301. if (err)
  302. goto err;
  303. err = __bprm_mm_init(bprm);
  304. if (err)
  305. goto err;
  306. return 0;
  307. err:
  308. if (mm) {
  309. bprm->mm = NULL;
  310. mmdrop(mm);
  311. }
  312. return err;
  313. }
  314. /*
  315. * count() counts the number of strings in array ARGV.
  316. */
  317. static int count(char __user * __user * argv, int max)
  318. {
  319. int i = 0;
  320. if (argv != NULL) {
  321. for (;;) {
  322. char __user * p;
  323. if (get_user(p, argv))
  324. return -EFAULT;
  325. if (!p)
  326. break;
  327. argv++;
  328. if(++i > max)
  329. return -E2BIG;
  330. cond_resched();
  331. }
  332. }
  333. return i;
  334. }
  335. /*
  336. * 'copy_strings()' copies argument/environment strings from the old
  337. * processes's memory to the new process's stack. The call to get_user_pages()
  338. * ensures the destination page is created and not swapped out.
  339. */
  340. static int copy_strings(int argc, char __user * __user * argv,
  341. struct linux_binprm *bprm)
  342. {
  343. struct page *kmapped_page = NULL;
  344. char *kaddr = NULL;
  345. unsigned long kpos = 0;
  346. int ret;
  347. while (argc-- > 0) {
  348. char __user *str;
  349. int len;
  350. unsigned long pos;
  351. if (get_user(str, argv+argc) ||
  352. !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
  353. ret = -EFAULT;
  354. goto out;
  355. }
  356. if (!valid_arg_len(bprm, len)) {
  357. ret = -E2BIG;
  358. goto out;
  359. }
  360. /* We're going to work our way backwords. */
  361. pos = bprm->p;
  362. str += len;
  363. bprm->p -= len;
  364. while (len > 0) {
  365. int offset, bytes_to_copy;
  366. offset = pos % PAGE_SIZE;
  367. if (offset == 0)
  368. offset = PAGE_SIZE;
  369. bytes_to_copy = offset;
  370. if (bytes_to_copy > len)
  371. bytes_to_copy = len;
  372. offset -= bytes_to_copy;
  373. pos -= bytes_to_copy;
  374. str -= bytes_to_copy;
  375. len -= bytes_to_copy;
  376. if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
  377. struct page *page;
  378. page = get_arg_page(bprm, pos, 1);
  379. if (!page) {
  380. ret = -E2BIG;
  381. goto out;
  382. }
  383. if (kmapped_page) {
  384. flush_kernel_dcache_page(kmapped_page);
  385. kunmap(kmapped_page);
  386. put_arg_page(kmapped_page);
  387. }
  388. kmapped_page = page;
  389. kaddr = kmap(kmapped_page);
  390. kpos = pos & PAGE_MASK;
  391. flush_arg_page(bprm, kpos, kmapped_page);
  392. }
  393. if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
  394. ret = -EFAULT;
  395. goto out;
  396. }
  397. }
  398. }
  399. ret = 0;
  400. out:
  401. if (kmapped_page) {
  402. flush_kernel_dcache_page(kmapped_page);
  403. kunmap(kmapped_page);
  404. put_arg_page(kmapped_page);
  405. }
  406. return ret;
  407. }
  408. /*
  409. * Like copy_strings, but get argv and its values from kernel memory.
  410. */
  411. int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
  412. {
  413. int r;
  414. mm_segment_t oldfs = get_fs();
  415. set_fs(KERNEL_DS);
  416. r = copy_strings(argc, (char __user * __user *)argv, bprm);
  417. set_fs(oldfs);
  418. return r;
  419. }
  420. EXPORT_SYMBOL(copy_strings_kernel);
  421. #ifdef CONFIG_MMU
  422. /*
  423. * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
  424. * the binfmt code determines where the new stack should reside, we shift it to
  425. * its final location. The process proceeds as follows:
  426. *
  427. * 1) Use shift to calculate the new vma endpoints.
  428. * 2) Extend vma to cover both the old and new ranges. This ensures the
  429. * arguments passed to subsequent functions are consistent.
  430. * 3) Move vma's page tables to the new range.
  431. * 4) Free up any cleared pgd range.
  432. * 5) Shrink the vma to cover only the new range.
  433. */
  434. static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
  435. {
  436. struct mm_struct *mm = vma->vm_mm;
  437. unsigned long old_start = vma->vm_start;
  438. unsigned long old_end = vma->vm_end;
  439. unsigned long length = old_end - old_start;
  440. unsigned long new_start = old_start - shift;
  441. unsigned long new_end = old_end - shift;
  442. struct mmu_gather *tlb;
  443. BUG_ON(new_start > new_end);
  444. /*
  445. * ensure there are no vmas between where we want to go
  446. * and where we are
  447. */
  448. if (vma != find_vma(mm, new_start))
  449. return -EFAULT;
  450. /*
  451. * cover the whole range: [new_start, old_end)
  452. */
  453. vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
  454. /*
  455. * move the page tables downwards, on failure we rely on
  456. * process cleanup to remove whatever mess we made.
  457. */
  458. if (length != move_page_tables(vma, old_start,
  459. vma, new_start, length))
  460. return -ENOMEM;
  461. lru_add_drain();
  462. tlb = tlb_gather_mmu(mm, 0);
  463. if (new_end > old_start) {
  464. /*
  465. * when the old and new regions overlap clear from new_end.
  466. */
  467. free_pgd_range(tlb, new_end, old_end, new_end,
  468. vma->vm_next ? vma->vm_next->vm_start : 0);
  469. } else {
  470. /*
  471. * otherwise, clean from old_start; this is done to not touch
  472. * the address space in [new_end, old_start) some architectures
  473. * have constraints on va-space that make this illegal (IA64) -
  474. * for the others its just a little faster.
  475. */
  476. free_pgd_range(tlb, old_start, old_end, new_end,
  477. vma->vm_next ? vma->vm_next->vm_start : 0);
  478. }
  479. tlb_finish_mmu(tlb, new_end, old_end);
  480. /*
  481. * shrink the vma to just the new range.
  482. */
  483. vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
  484. return 0;
  485. }
  486. #define EXTRA_STACK_VM_PAGES 20 /* random */
  487. /*
  488. * Finalizes the stack vm_area_struct. The flags and permissions are updated,
  489. * the stack is optionally relocated, and some extra space is added.
  490. */
  491. int setup_arg_pages(struct linux_binprm *bprm,
  492. unsigned long stack_top,
  493. int executable_stack)
  494. {
  495. unsigned long ret;
  496. unsigned long stack_shift;
  497. struct mm_struct *mm = current->mm;
  498. struct vm_area_struct *vma = bprm->vma;
  499. struct vm_area_struct *prev = NULL;
  500. unsigned long vm_flags;
  501. unsigned long stack_base;
  502. #ifdef CONFIG_STACK_GROWSUP
  503. /* Limit stack size to 1GB */
  504. stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
  505. if (stack_base > (1 << 30))
  506. stack_base = 1 << 30;
  507. /* Make sure we didn't let the argument array grow too large. */
  508. if (vma->vm_end - vma->vm_start > stack_base)
  509. return -ENOMEM;
  510. stack_base = PAGE_ALIGN(stack_top - stack_base);
  511. stack_shift = vma->vm_start - stack_base;
  512. mm->arg_start = bprm->p - stack_shift;
  513. bprm->p = vma->vm_end - stack_shift;
  514. #else
  515. stack_top = arch_align_stack(stack_top);
  516. stack_top = PAGE_ALIGN(stack_top);
  517. stack_shift = vma->vm_end - stack_top;
  518. bprm->p -= stack_shift;
  519. mm->arg_start = bprm->p;
  520. #endif
  521. if (bprm->loader)
  522. bprm->loader -= stack_shift;
  523. bprm->exec -= stack_shift;
  524. down_write(&mm->mmap_sem);
  525. vm_flags = VM_STACK_FLAGS;
  526. /*
  527. * Adjust stack execute permissions; explicitly enable for
  528. * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
  529. * (arch default) otherwise.
  530. */
  531. if (unlikely(executable_stack == EXSTACK_ENABLE_X))
  532. vm_flags |= VM_EXEC;
  533. else if (executable_stack == EXSTACK_DISABLE_X)
  534. vm_flags &= ~VM_EXEC;
  535. vm_flags |= mm->def_flags;
  536. ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
  537. vm_flags);
  538. if (ret)
  539. goto out_unlock;
  540. BUG_ON(prev != vma);
  541. /* Move stack pages down in memory. */
  542. if (stack_shift) {
  543. ret = shift_arg_pages(vma, stack_shift);
  544. if (ret) {
  545. up_write(&mm->mmap_sem);
  546. return ret;
  547. }
  548. }
  549. #ifdef CONFIG_STACK_GROWSUP
  550. stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  551. #else
  552. stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  553. #endif
  554. ret = expand_stack(vma, stack_base);
  555. if (ret)
  556. ret = -EFAULT;
  557. out_unlock:
  558. up_write(&mm->mmap_sem);
  559. return 0;
  560. }
  561. EXPORT_SYMBOL(setup_arg_pages);
  562. #endif /* CONFIG_MMU */
  563. struct file *open_exec(const char *name)
  564. {
  565. struct nameidata nd;
  566. struct file *file;
  567. int err;
  568. err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
  569. FMODE_READ|FMODE_EXEC);
  570. if (err)
  571. goto out;
  572. err = -EACCES;
  573. if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
  574. goto out_path_put;
  575. if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
  576. goto out_path_put;
  577. err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
  578. if (err)
  579. goto out_path_put;
  580. file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
  581. if (IS_ERR(file))
  582. return file;
  583. err = deny_write_access(file);
  584. if (err) {
  585. fput(file);
  586. goto out;
  587. }
  588. return file;
  589. out_path_put:
  590. release_open_intent(&nd);
  591. path_put(&nd.path);
  592. out:
  593. return ERR_PTR(err);
  594. }
  595. EXPORT_SYMBOL(open_exec);
  596. int kernel_read(struct file *file, unsigned long offset,
  597. char *addr, unsigned long count)
  598. {
  599. mm_segment_t old_fs;
  600. loff_t pos = offset;
  601. int result;
  602. old_fs = get_fs();
  603. set_fs(get_ds());
  604. /* The cast to a user pointer is valid due to the set_fs() */
  605. result = vfs_read(file, (void __user *)addr, count, &pos);
  606. set_fs(old_fs);
  607. return result;
  608. }
  609. EXPORT_SYMBOL(kernel_read);
  610. static int exec_mmap(struct mm_struct *mm)
  611. {
  612. struct task_struct *tsk;
  613. struct mm_struct * old_mm, *active_mm;
  614. /* Notify parent that we're no longer interested in the old VM */
  615. tsk = current;
  616. old_mm = current->mm;
  617. mm_release(tsk, old_mm);
  618. if (old_mm) {
  619. /*
  620. * Make sure that if there is a core dump in progress
  621. * for the old mm, we get out and die instead of going
  622. * through with the exec. We must hold mmap_sem around
  623. * checking core_state and changing tsk->mm.
  624. */
  625. down_read(&old_mm->mmap_sem);
  626. if (unlikely(old_mm->core_state)) {
  627. up_read(&old_mm->mmap_sem);
  628. return -EINTR;
  629. }
  630. }
  631. task_lock(tsk);
  632. active_mm = tsk->active_mm;
  633. tsk->mm = mm;
  634. tsk->active_mm = mm;
  635. activate_mm(active_mm, mm);
  636. task_unlock(tsk);
  637. mm_update_next_owner(old_mm);
  638. arch_pick_mmap_layout(mm);
  639. if (old_mm) {
  640. up_read(&old_mm->mmap_sem);
  641. BUG_ON(active_mm != old_mm);
  642. mmput(old_mm);
  643. return 0;
  644. }
  645. mmdrop(active_mm);
  646. return 0;
  647. }
  648. /*
  649. * This function makes sure the current process has its own signal table,
  650. * so that flush_signal_handlers can later reset the handlers without
  651. * disturbing other processes. (Other processes might share the signal
  652. * table via the CLONE_SIGHAND option to clone().)
  653. */
  654. static int de_thread(struct task_struct *tsk)
  655. {
  656. struct signal_struct *sig = tsk->signal;
  657. struct sighand_struct *oldsighand = tsk->sighand;
  658. spinlock_t *lock = &oldsighand->siglock;
  659. struct task_struct *leader = NULL;
  660. int count;
  661. if (thread_group_empty(tsk))
  662. goto no_thread_group;
  663. /*
  664. * Kill all other threads in the thread group.
  665. */
  666. spin_lock_irq(lock);
  667. if (signal_group_exit(sig)) {
  668. /*
  669. * Another group action in progress, just
  670. * return so that the signal is processed.
  671. */
  672. spin_unlock_irq(lock);
  673. return -EAGAIN;
  674. }
  675. sig->group_exit_task = tsk;
  676. zap_other_threads(tsk);
  677. /* Account for the thread group leader hanging around: */
  678. count = thread_group_leader(tsk) ? 1 : 2;
  679. sig->notify_count = count;
  680. while (atomic_read(&sig->count) > count) {
  681. __set_current_state(TASK_UNINTERRUPTIBLE);
  682. spin_unlock_irq(lock);
  683. schedule();
  684. spin_lock_irq(lock);
  685. }
  686. spin_unlock_irq(lock);
  687. /*
  688. * At this point all other threads have exited, all we have to
  689. * do is to wait for the thread group leader to become inactive,
  690. * and to assume its PID:
  691. */
  692. if (!thread_group_leader(tsk)) {
  693. leader = tsk->group_leader;
  694. sig->notify_count = -1; /* for exit_notify() */
  695. for (;;) {
  696. write_lock_irq(&tasklist_lock);
  697. if (likely(leader->exit_state))
  698. break;
  699. __set_current_state(TASK_UNINTERRUPTIBLE);
  700. write_unlock_irq(&tasklist_lock);
  701. schedule();
  702. }
  703. if (unlikely(task_child_reaper(tsk) == leader))
  704. task_active_pid_ns(tsk)->child_reaper = tsk;
  705. /*
  706. * The only record we have of the real-time age of a
  707. * process, regardless of execs it's done, is start_time.
  708. * All the past CPU time is accumulated in signal_struct
  709. * from sister threads now dead. But in this non-leader
  710. * exec, nothing survives from the original leader thread,
  711. * whose birth marks the true age of this process now.
  712. * When we take on its identity by switching to its PID, we
  713. * also take its birthdate (always earlier than our own).
  714. */
  715. tsk->start_time = leader->start_time;
  716. BUG_ON(!same_thread_group(leader, tsk));
  717. BUG_ON(has_group_leader_pid(tsk));
  718. /*
  719. * An exec() starts a new thread group with the
  720. * TGID of the previous thread group. Rehash the
  721. * two threads with a switched PID, and release
  722. * the former thread group leader:
  723. */
  724. /* Become a process group leader with the old leader's pid.
  725. * The old leader becomes a thread of the this thread group.
  726. * Note: The old leader also uses this pid until release_task
  727. * is called. Odd but simple and correct.
  728. */
  729. detach_pid(tsk, PIDTYPE_PID);
  730. tsk->pid = leader->pid;
  731. attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
  732. transfer_pid(leader, tsk, PIDTYPE_PGID);
  733. transfer_pid(leader, tsk, PIDTYPE_SID);
  734. list_replace_rcu(&leader->tasks, &tsk->tasks);
  735. tsk->group_leader = tsk;
  736. leader->group_leader = tsk;
  737. tsk->exit_signal = SIGCHLD;
  738. BUG_ON(leader->exit_state != EXIT_ZOMBIE);
  739. leader->exit_state = EXIT_DEAD;
  740. write_unlock_irq(&tasklist_lock);
  741. }
  742. sig->group_exit_task = NULL;
  743. sig->notify_count = 0;
  744. no_thread_group:
  745. exit_itimers(sig);
  746. flush_itimer_signals();
  747. if (leader)
  748. release_task(leader);
  749. if (atomic_read(&oldsighand->count) != 1) {
  750. struct sighand_struct *newsighand;
  751. /*
  752. * This ->sighand is shared with the CLONE_SIGHAND
  753. * but not CLONE_THREAD task, switch to the new one.
  754. */
  755. newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  756. if (!newsighand)
  757. return -ENOMEM;
  758. atomic_set(&newsighand->count, 1);
  759. memcpy(newsighand->action, oldsighand->action,
  760. sizeof(newsighand->action));
  761. write_lock_irq(&tasklist_lock);
  762. spin_lock(&oldsighand->siglock);
  763. rcu_assign_pointer(tsk->sighand, newsighand);
  764. spin_unlock(&oldsighand->siglock);
  765. write_unlock_irq(&tasklist_lock);
  766. __cleanup_sighand(oldsighand);
  767. }
  768. BUG_ON(!thread_group_leader(tsk));
  769. return 0;
  770. }
  771. /*
  772. * These functions flushes out all traces of the currently running executable
  773. * so that a new one can be started
  774. */
  775. static void flush_old_files(struct files_struct * files)
  776. {
  777. long j = -1;
  778. struct fdtable *fdt;
  779. spin_lock(&files->file_lock);
  780. for (;;) {
  781. unsigned long set, i;
  782. j++;
  783. i = j * __NFDBITS;
  784. fdt = files_fdtable(files);
  785. if (i >= fdt->max_fds)
  786. break;
  787. set = fdt->close_on_exec->fds_bits[j];
  788. if (!set)
  789. continue;
  790. fdt->close_on_exec->fds_bits[j] = 0;
  791. spin_unlock(&files->file_lock);
  792. for ( ; set ; i++,set >>= 1) {
  793. if (set & 1) {
  794. sys_close(i);
  795. }
  796. }
  797. spin_lock(&files->file_lock);
  798. }
  799. spin_unlock(&files->file_lock);
  800. }
  801. char *get_task_comm(char *buf, struct task_struct *tsk)
  802. {
  803. /* buf must be at least sizeof(tsk->comm) in size */
  804. task_lock(tsk);
  805. strncpy(buf, tsk->comm, sizeof(tsk->comm));
  806. task_unlock(tsk);
  807. return buf;
  808. }
  809. void set_task_comm(struct task_struct *tsk, char *buf)
  810. {
  811. task_lock(tsk);
  812. strlcpy(tsk->comm, buf, sizeof(tsk->comm));
  813. task_unlock(tsk);
  814. }
  815. int flush_old_exec(struct linux_binprm * bprm)
  816. {
  817. char * name;
  818. int i, ch, retval;
  819. char tcomm[sizeof(current->comm)];
  820. /*
  821. * Make sure we have a private signal table and that
  822. * we are unassociated from the previous thread group.
  823. */
  824. retval = de_thread(current);
  825. if (retval)
  826. goto out;
  827. set_mm_exe_file(bprm->mm, bprm->file);
  828. /*
  829. * Release all of the old mmap stuff
  830. */
  831. retval = exec_mmap(bprm->mm);
  832. if (retval)
  833. goto out;
  834. bprm->mm = NULL; /* We're using it now */
  835. /* This is the point of no return */
  836. current->sas_ss_sp = current->sas_ss_size = 0;
  837. if (current->euid == current->uid && current->egid == current->gid)
  838. set_dumpable(current->mm, 1);
  839. else
  840. set_dumpable(current->mm, suid_dumpable);
  841. name = bprm->filename;
  842. /* Copies the binary name from after last slash */
  843. for (i=0; (ch = *(name++)) != '\0';) {
  844. if (ch == '/')
  845. i = 0; /* overwrite what we wrote */
  846. else
  847. if (i < (sizeof(tcomm) - 1))
  848. tcomm[i++] = ch;
  849. }
  850. tcomm[i] = '\0';
  851. set_task_comm(current, tcomm);
  852. current->flags &= ~PF_RANDOMIZE;
  853. flush_thread();
  854. /* Set the new mm task size. We have to do that late because it may
  855. * depend on TIF_32BIT which is only updated in flush_thread() on
  856. * some architectures like powerpc
  857. */
  858. current->mm->task_size = TASK_SIZE;
  859. if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
  860. suid_keys(current);
  861. set_dumpable(current->mm, suid_dumpable);
  862. current->pdeath_signal = 0;
  863. } else if (file_permission(bprm->file, MAY_READ) ||
  864. (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
  865. suid_keys(current);
  866. set_dumpable(current->mm, suid_dumpable);
  867. }
  868. /* An exec changes our domain. We are no longer part of the thread
  869. group */
  870. current->self_exec_id++;
  871. flush_signal_handlers(current, 0);
  872. flush_old_files(current->files);
  873. return 0;
  874. out:
  875. return retval;
  876. }
  877. EXPORT_SYMBOL(flush_old_exec);
  878. /*
  879. * Fill the binprm structure from the inode.
  880. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
  881. */
  882. int prepare_binprm(struct linux_binprm *bprm)
  883. {
  884. int mode;
  885. struct inode * inode = bprm->file->f_path.dentry->d_inode;
  886. int retval;
  887. mode = inode->i_mode;
  888. if (bprm->file->f_op == NULL)
  889. return -EACCES;
  890. bprm->e_uid = current->euid;
  891. bprm->e_gid = current->egid;
  892. if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
  893. /* Set-uid? */
  894. if (mode & S_ISUID) {
  895. current->personality &= ~PER_CLEAR_ON_SETID;
  896. bprm->e_uid = inode->i_uid;
  897. }
  898. /* Set-gid? */
  899. /*
  900. * If setgid is set but no group execute bit then this
  901. * is a candidate for mandatory locking, not a setgid
  902. * executable.
  903. */
  904. if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
  905. current->personality &= ~PER_CLEAR_ON_SETID;
  906. bprm->e_gid = inode->i_gid;
  907. }
  908. }
  909. /* fill in binprm security blob */
  910. retval = security_bprm_set(bprm);
  911. if (retval)
  912. return retval;
  913. memset(bprm->buf,0,BINPRM_BUF_SIZE);
  914. return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
  915. }
  916. EXPORT_SYMBOL(prepare_binprm);
  917. static int unsafe_exec(struct task_struct *p)
  918. {
  919. int unsafe = tracehook_unsafe_exec(p);
  920. if (atomic_read(&p->fs->count) > 1 ||
  921. atomic_read(&p->files->count) > 1 ||
  922. atomic_read(&p->sighand->count) > 1)
  923. unsafe |= LSM_UNSAFE_SHARE;
  924. return unsafe;
  925. }
  926. void compute_creds(struct linux_binprm *bprm)
  927. {
  928. int unsafe;
  929. if (bprm->e_uid != current->uid) {
  930. suid_keys(current);
  931. current->pdeath_signal = 0;
  932. }
  933. exec_keys(current);
  934. task_lock(current);
  935. unsafe = unsafe_exec(current);
  936. security_bprm_apply_creds(bprm, unsafe);
  937. task_unlock(current);
  938. security_bprm_post_apply_creds(bprm);
  939. }
  940. EXPORT_SYMBOL(compute_creds);
  941. /*
  942. * Arguments are '\0' separated strings found at the location bprm->p
  943. * points to; chop off the first by relocating brpm->p to right after
  944. * the first '\0' encountered.
  945. */
  946. int remove_arg_zero(struct linux_binprm *bprm)
  947. {
  948. int ret = 0;
  949. unsigned long offset;
  950. char *kaddr;
  951. struct page *page;
  952. if (!bprm->argc)
  953. return 0;
  954. do {
  955. offset = bprm->p & ~PAGE_MASK;
  956. page = get_arg_page(bprm, bprm->p, 0);
  957. if (!page) {
  958. ret = -EFAULT;
  959. goto out;
  960. }
  961. kaddr = kmap_atomic(page, KM_USER0);
  962. for (; offset < PAGE_SIZE && kaddr[offset];
  963. offset++, bprm->p++)
  964. ;
  965. kunmap_atomic(kaddr, KM_USER0);
  966. put_arg_page(page);
  967. if (offset == PAGE_SIZE)
  968. free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
  969. } while (offset == PAGE_SIZE);
  970. bprm->p++;
  971. bprm->argc--;
  972. ret = 0;
  973. out:
  974. return ret;
  975. }
  976. EXPORT_SYMBOL(remove_arg_zero);
  977. /*
  978. * cycle the list of binary formats handler, until one recognizes the image
  979. */
  980. int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
  981. {
  982. int try,retval;
  983. struct linux_binfmt *fmt;
  984. #ifdef __alpha__
  985. /* handle /sbin/loader.. */
  986. {
  987. struct exec * eh = (struct exec *) bprm->buf;
  988. if (!bprm->loader && eh->fh.f_magic == 0x183 &&
  989. (eh->fh.f_flags & 0x3000) == 0x3000)
  990. {
  991. struct file * file;
  992. unsigned long loader;
  993. allow_write_access(bprm->file);
  994. fput(bprm->file);
  995. bprm->file = NULL;
  996. loader = bprm->vma->vm_end - sizeof(void *);
  997. file = open_exec("/sbin/loader");
  998. retval = PTR_ERR(file);
  999. if (IS_ERR(file))
  1000. return retval;
  1001. /* Remember if the application is TASO. */
  1002. bprm->sh_bang = eh->ah.entry < 0x100000000UL;
  1003. bprm->file = file;
  1004. bprm->loader = loader;
  1005. retval = prepare_binprm(bprm);
  1006. if (retval<0)
  1007. return retval;
  1008. /* should call search_binary_handler recursively here,
  1009. but it does not matter */
  1010. }
  1011. }
  1012. #endif
  1013. retval = security_bprm_check(bprm);
  1014. if (retval)
  1015. return retval;
  1016. /* kernel module loader fixup */
  1017. /* so we don't try to load run modprobe in kernel space. */
  1018. set_fs(USER_DS);
  1019. retval = audit_bprm(bprm);
  1020. if (retval)
  1021. return retval;
  1022. retval = -ENOENT;
  1023. for (try=0; try<2; try++) {
  1024. read_lock(&binfmt_lock);
  1025. list_for_each_entry(fmt, &formats, lh) {
  1026. int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
  1027. if (!fn)
  1028. continue;
  1029. if (!try_module_get(fmt->module))
  1030. continue;
  1031. read_unlock(&binfmt_lock);
  1032. retval = fn(bprm, regs);
  1033. if (retval >= 0) {
  1034. tracehook_report_exec(fmt, bprm, regs);
  1035. put_binfmt(fmt);
  1036. allow_write_access(bprm->file);
  1037. if (bprm->file)
  1038. fput(bprm->file);
  1039. bprm->file = NULL;
  1040. current->did_exec = 1;
  1041. proc_exec_connector(current);
  1042. return retval;
  1043. }
  1044. read_lock(&binfmt_lock);
  1045. put_binfmt(fmt);
  1046. if (retval != -ENOEXEC || bprm->mm == NULL)
  1047. break;
  1048. if (!bprm->file) {
  1049. read_unlock(&binfmt_lock);
  1050. return retval;
  1051. }
  1052. }
  1053. read_unlock(&binfmt_lock);
  1054. if (retval != -ENOEXEC || bprm->mm == NULL) {
  1055. break;
  1056. #ifdef CONFIG_KMOD
  1057. }else{
  1058. #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
  1059. if (printable(bprm->buf[0]) &&
  1060. printable(bprm->buf[1]) &&
  1061. printable(bprm->buf[2]) &&
  1062. printable(bprm->buf[3]))
  1063. break; /* -ENOEXEC */
  1064. request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
  1065. #endif
  1066. }
  1067. }
  1068. return retval;
  1069. }
  1070. EXPORT_SYMBOL(search_binary_handler);
  1071. void free_bprm(struct linux_binprm *bprm)
  1072. {
  1073. free_arg_pages(bprm);
  1074. kfree(bprm);
  1075. }
  1076. /*
  1077. * sys_execve() executes a new program.
  1078. */
  1079. int do_execve(char * filename,
  1080. char __user *__user *argv,
  1081. char __user *__user *envp,
  1082. struct pt_regs * regs)
  1083. {
  1084. struct linux_binprm *bprm;
  1085. struct file *file;
  1086. struct files_struct *displaced;
  1087. int retval;
  1088. retval = unshare_files(&displaced);
  1089. if (retval)
  1090. goto out_ret;
  1091. retval = -ENOMEM;
  1092. bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
  1093. if (!bprm)
  1094. goto out_files;
  1095. file = open_exec(filename);
  1096. retval = PTR_ERR(file);
  1097. if (IS_ERR(file))
  1098. goto out_kfree;
  1099. sched_exec();
  1100. bprm->file = file;
  1101. bprm->filename = filename;
  1102. bprm->interp = filename;
  1103. retval = bprm_mm_init(bprm);
  1104. if (retval)
  1105. goto out_file;
  1106. bprm->argc = count(argv, MAX_ARG_STRINGS);
  1107. if ((retval = bprm->argc) < 0)
  1108. goto out_mm;
  1109. bprm->envc = count(envp, MAX_ARG_STRINGS);
  1110. if ((retval = bprm->envc) < 0)
  1111. goto out_mm;
  1112. retval = security_bprm_alloc(bprm);
  1113. if (retval)
  1114. goto out;
  1115. retval = prepare_binprm(bprm);
  1116. if (retval < 0)
  1117. goto out;
  1118. retval = copy_strings_kernel(1, &bprm->filename, bprm);
  1119. if (retval < 0)
  1120. goto out;
  1121. bprm->exec = bprm->p;
  1122. retval = copy_strings(bprm->envc, envp, bprm);
  1123. if (retval < 0)
  1124. goto out;
  1125. retval = copy_strings(bprm->argc, argv, bprm);
  1126. if (retval < 0)
  1127. goto out;
  1128. current->flags &= ~PF_KTHREAD;
  1129. retval = search_binary_handler(bprm,regs);
  1130. if (retval >= 0) {
  1131. /* execve success */
  1132. security_bprm_free(bprm);
  1133. acct_update_integrals(current);
  1134. free_bprm(bprm);
  1135. if (displaced)
  1136. put_files_struct(displaced);
  1137. return retval;
  1138. }
  1139. out:
  1140. if (bprm->security)
  1141. security_bprm_free(bprm);
  1142. out_mm:
  1143. if (bprm->mm)
  1144. mmput (bprm->mm);
  1145. out_file:
  1146. if (bprm->file) {
  1147. allow_write_access(bprm->file);
  1148. fput(bprm->file);
  1149. }
  1150. out_kfree:
  1151. free_bprm(bprm);
  1152. out_files:
  1153. if (displaced)
  1154. reset_files_struct(displaced);
  1155. out_ret:
  1156. return retval;
  1157. }
  1158. int set_binfmt(struct linux_binfmt *new)
  1159. {
  1160. struct linux_binfmt *old = current->binfmt;
  1161. if (new) {
  1162. if (!try_module_get(new->module))
  1163. return -1;
  1164. }
  1165. current->binfmt = new;
  1166. if (old)
  1167. module_put(old->module);
  1168. return 0;
  1169. }
  1170. EXPORT_SYMBOL(set_binfmt);
  1171. /* format_corename will inspect the pattern parameter, and output a
  1172. * name into corename, which must have space for at least
  1173. * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
  1174. */
  1175. static int format_corename(char *corename, int nr_threads, long signr)
  1176. {
  1177. const char *pat_ptr = core_pattern;
  1178. int ispipe = (*pat_ptr == '|');
  1179. char *out_ptr = corename;
  1180. char *const out_end = corename + CORENAME_MAX_SIZE;
  1181. int rc;
  1182. int pid_in_pattern = 0;
  1183. /* Repeat as long as we have more pattern to process and more output
  1184. space */
  1185. while (*pat_ptr) {
  1186. if (*pat_ptr != '%') {
  1187. if (out_ptr == out_end)
  1188. goto out;
  1189. *out_ptr++ = *pat_ptr++;
  1190. } else {
  1191. switch (*++pat_ptr) {
  1192. case 0:
  1193. goto out;
  1194. /* Double percent, output one percent */
  1195. case '%':
  1196. if (out_ptr == out_end)
  1197. goto out;
  1198. *out_ptr++ = '%';
  1199. break;
  1200. /* pid */
  1201. case 'p':
  1202. pid_in_pattern = 1;
  1203. rc = snprintf(out_ptr, out_end - out_ptr,
  1204. "%d", task_tgid_vnr(current));
  1205. if (rc > out_end - out_ptr)
  1206. goto out;
  1207. out_ptr += rc;
  1208. break;
  1209. /* uid */
  1210. case 'u':
  1211. rc = snprintf(out_ptr, out_end - out_ptr,
  1212. "%d", current->uid);
  1213. if (rc > out_end - out_ptr)
  1214. goto out;
  1215. out_ptr += rc;
  1216. break;
  1217. /* gid */
  1218. case 'g':
  1219. rc = snprintf(out_ptr, out_end - out_ptr,
  1220. "%d", current->gid);
  1221. if (rc > out_end - out_ptr)
  1222. goto out;
  1223. out_ptr += rc;
  1224. break;
  1225. /* signal that caused the coredump */
  1226. case 's':
  1227. rc = snprintf(out_ptr, out_end - out_ptr,
  1228. "%ld", signr);
  1229. if (rc > out_end - out_ptr)
  1230. goto out;
  1231. out_ptr += rc;
  1232. break;
  1233. /* UNIX time of coredump */
  1234. case 't': {
  1235. struct timeval tv;
  1236. do_gettimeofday(&tv);
  1237. rc = snprintf(out_ptr, out_end - out_ptr,
  1238. "%lu", tv.tv_sec);
  1239. if (rc > out_end - out_ptr)
  1240. goto out;
  1241. out_ptr += rc;
  1242. break;
  1243. }
  1244. /* hostname */
  1245. case 'h':
  1246. down_read(&uts_sem);
  1247. rc = snprintf(out_ptr, out_end - out_ptr,
  1248. "%s", utsname()->nodename);
  1249. up_read(&uts_sem);
  1250. if (rc > out_end - out_ptr)
  1251. goto out;
  1252. out_ptr += rc;
  1253. break;
  1254. /* executable */
  1255. case 'e':
  1256. rc = snprintf(out_ptr, out_end - out_ptr,
  1257. "%s", current->comm);
  1258. if (rc > out_end - out_ptr)
  1259. goto out;
  1260. out_ptr += rc;
  1261. break;
  1262. /* core limit size */
  1263. case 'c':
  1264. rc = snprintf(out_ptr, out_end - out_ptr,
  1265. "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
  1266. if (rc > out_end - out_ptr)
  1267. goto out;
  1268. out_ptr += rc;
  1269. break;
  1270. default:
  1271. break;
  1272. }
  1273. ++pat_ptr;
  1274. }
  1275. }
  1276. /* Backward compatibility with core_uses_pid:
  1277. *
  1278. * If core_pattern does not include a %p (as is the default)
  1279. * and core_uses_pid is set, then .%pid will be appended to
  1280. * the filename. Do not do this for piped commands. */
  1281. if (!ispipe && !pid_in_pattern
  1282. && (core_uses_pid || nr_threads)) {
  1283. rc = snprintf(out_ptr, out_end - out_ptr,
  1284. ".%d", task_tgid_vnr(current));
  1285. if (rc > out_end - out_ptr)
  1286. goto out;
  1287. out_ptr += rc;
  1288. }
  1289. out:
  1290. *out_ptr = 0;
  1291. return ispipe;
  1292. }
  1293. static int zap_process(struct task_struct *start)
  1294. {
  1295. struct task_struct *t;
  1296. int nr = 0;
  1297. start->signal->flags = SIGNAL_GROUP_EXIT;
  1298. start->signal->group_stop_count = 0;
  1299. t = start;
  1300. do {
  1301. if (t != current && t->mm) {
  1302. sigaddset(&t->pending.signal, SIGKILL);
  1303. signal_wake_up(t, 1);
  1304. nr++;
  1305. }
  1306. } while_each_thread(start, t);
  1307. return nr;
  1308. }
  1309. static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
  1310. struct core_state *core_state, int exit_code)
  1311. {
  1312. struct task_struct *g, *p;
  1313. unsigned long flags;
  1314. int nr = -EAGAIN;
  1315. spin_lock_irq(&tsk->sighand->siglock);
  1316. if (!signal_group_exit(tsk->signal)) {
  1317. mm->core_state = core_state;
  1318. tsk->signal->group_exit_code = exit_code;
  1319. nr = zap_process(tsk);
  1320. }
  1321. spin_unlock_irq(&tsk->sighand->siglock);
  1322. if (unlikely(nr < 0))
  1323. return nr;
  1324. if (atomic_read(&mm->mm_users) == nr + 1)
  1325. goto done;
  1326. /*
  1327. * We should find and kill all tasks which use this mm, and we should
  1328. * count them correctly into ->nr_threads. We don't take tasklist
  1329. * lock, but this is safe wrt:
  1330. *
  1331. * fork:
  1332. * None of sub-threads can fork after zap_process(leader). All
  1333. * processes which were created before this point should be
  1334. * visible to zap_threads() because copy_process() adds the new
  1335. * process to the tail of init_task.tasks list, and lock/unlock
  1336. * of ->siglock provides a memory barrier.
  1337. *
  1338. * do_exit:
  1339. * The caller holds mm->mmap_sem. This means that the task which
  1340. * uses this mm can't pass exit_mm(), so it can't exit or clear
  1341. * its ->mm.
  1342. *
  1343. * de_thread:
  1344. * It does list_replace_rcu(&leader->tasks, &current->tasks),
  1345. * we must see either old or new leader, this does not matter.
  1346. * However, it can change p->sighand, so lock_task_sighand(p)
  1347. * must be used. Since p->mm != NULL and we hold ->mmap_sem
  1348. * it can't fail.
  1349. *
  1350. * Note also that "g" can be the old leader with ->mm == NULL
  1351. * and already unhashed and thus removed from ->thread_group.
  1352. * This is OK, __unhash_process()->list_del_rcu() does not
  1353. * clear the ->next pointer, we will find the new leader via
  1354. * next_thread().
  1355. */
  1356. rcu_read_lock();
  1357. for_each_process(g) {
  1358. if (g == tsk->group_leader)
  1359. continue;
  1360. if (g->flags & PF_KTHREAD)
  1361. continue;
  1362. p = g;
  1363. do {
  1364. if (p->mm) {
  1365. if (unlikely(p->mm == mm)) {
  1366. lock_task_sighand(p, &flags);
  1367. nr += zap_process(p);
  1368. unlock_task_sighand(p, &flags);
  1369. }
  1370. break;
  1371. }
  1372. } while_each_thread(g, p);
  1373. }
  1374. rcu_read_unlock();
  1375. done:
  1376. atomic_set(&core_state->nr_threads, nr);
  1377. return nr;
  1378. }
  1379. static int coredump_wait(int exit_code, struct core_state *core_state)
  1380. {
  1381. struct task_struct *tsk = current;
  1382. struct mm_struct *mm = tsk->mm;
  1383. struct completion *vfork_done;
  1384. int core_waiters;
  1385. init_completion(&core_state->startup);
  1386. core_state->dumper.task = tsk;
  1387. core_state->dumper.next = NULL;
  1388. core_waiters = zap_threads(tsk, mm, core_state, exit_code);
  1389. up_write(&mm->mmap_sem);
  1390. if (unlikely(core_waiters < 0))
  1391. goto fail;
  1392. /*
  1393. * Make sure nobody is waiting for us to release the VM,
  1394. * otherwise we can deadlock when we wait on each other
  1395. */
  1396. vfork_done = tsk->vfork_done;
  1397. if (vfork_done) {
  1398. tsk->vfork_done = NULL;
  1399. complete(vfork_done);
  1400. }
  1401. if (core_waiters)
  1402. wait_for_completion(&core_state->startup);
  1403. fail:
  1404. return core_waiters;
  1405. }
  1406. static void coredump_finish(struct mm_struct *mm)
  1407. {
  1408. struct core_thread *curr, *next;
  1409. struct task_struct *task;
  1410. next = mm->core_state->dumper.next;
  1411. while ((curr = next) != NULL) {
  1412. next = curr->next;
  1413. task = curr->task;
  1414. /*
  1415. * see exit_mm(), curr->task must not see
  1416. * ->task == NULL before we read ->next.
  1417. */
  1418. smp_mb();
  1419. curr->task = NULL;
  1420. wake_up_process(task);
  1421. }
  1422. mm->core_state = NULL;
  1423. }
  1424. /*
  1425. * set_dumpable converts traditional three-value dumpable to two flags and
  1426. * stores them into mm->flags. It modifies lower two bits of mm->flags, but
  1427. * these bits are not changed atomically. So get_dumpable can observe the
  1428. * intermediate state. To avoid doing unexpected behavior, get get_dumpable
  1429. * return either old dumpable or new one by paying attention to the order of
  1430. * modifying the bits.
  1431. *
  1432. * dumpable | mm->flags (binary)
  1433. * old new | initial interim final
  1434. * ---------+-----------------------
  1435. * 0 1 | 00 01 01
  1436. * 0 2 | 00 10(*) 11
  1437. * 1 0 | 01 00 00
  1438. * 1 2 | 01 11 11
  1439. * 2 0 | 11 10(*) 00
  1440. * 2 1 | 11 11 01
  1441. *
  1442. * (*) get_dumpable regards interim value of 10 as 11.
  1443. */
  1444. void set_dumpable(struct mm_struct *mm, int value)
  1445. {
  1446. switch (value) {
  1447. case 0:
  1448. clear_bit(MMF_DUMPABLE, &mm->flags);
  1449. smp_wmb();
  1450. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1451. break;
  1452. case 1:
  1453. set_bit(MMF_DUMPABLE, &mm->flags);
  1454. smp_wmb();
  1455. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1456. break;
  1457. case 2:
  1458. set_bit(MMF_DUMP_SECURELY, &mm->flags);
  1459. smp_wmb();
  1460. set_bit(MMF_DUMPABLE, &mm->flags);
  1461. break;
  1462. }
  1463. }
  1464. int get_dumpable(struct mm_struct *mm)
  1465. {
  1466. int ret;
  1467. ret = mm->flags & 0x3;
  1468. return (ret >= 2) ? 2 : ret;
  1469. }
  1470. int do_coredump(long signr, int exit_code, struct pt_regs * regs)
  1471. {
  1472. struct core_state core_state;
  1473. char corename[CORENAME_MAX_SIZE + 1];
  1474. struct mm_struct *mm = current->mm;
  1475. struct linux_binfmt * binfmt;
  1476. struct inode * inode;
  1477. struct file * file;
  1478. int retval = 0;
  1479. int fsuid = current->fsuid;
  1480. int flag = 0;
  1481. int ispipe = 0;
  1482. unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
  1483. char **helper_argv = NULL;
  1484. int helper_argc = 0;
  1485. char *delimit;
  1486. audit_core_dumps(signr);
  1487. binfmt = current->binfmt;
  1488. if (!binfmt || !binfmt->core_dump)
  1489. goto fail;
  1490. down_write(&mm->mmap_sem);
  1491. /*
  1492. * If another thread got here first, or we are not dumpable, bail out.
  1493. */
  1494. if (mm->core_state || !get_dumpable(mm)) {
  1495. up_write(&mm->mmap_sem);
  1496. goto fail;
  1497. }
  1498. /*
  1499. * We cannot trust fsuid as being the "true" uid of the
  1500. * process nor do we know its entire history. We only know it
  1501. * was tainted so we dump it as root in mode 2.
  1502. */
  1503. if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
  1504. flag = O_EXCL; /* Stop rewrite attacks */
  1505. current->fsuid = 0; /* Dump root private */
  1506. }
  1507. retval = coredump_wait(exit_code, &core_state);
  1508. if (retval < 0)
  1509. goto fail;
  1510. /*
  1511. * Clear any false indication of pending signals that might
  1512. * be seen by the filesystem code called to write the core file.
  1513. */
  1514. clear_thread_flag(TIF_SIGPENDING);
  1515. /*
  1516. * lock_kernel() because format_corename() is controlled by sysctl, which
  1517. * uses lock_kernel()
  1518. */
  1519. lock_kernel();
  1520. ispipe = format_corename(corename, retval, signr);
  1521. unlock_kernel();
  1522. /*
  1523. * Don't bother to check the RLIMIT_CORE value if core_pattern points
  1524. * to a pipe. Since we're not writing directly to the filesystem
  1525. * RLIMIT_CORE doesn't really apply, as no actual core file will be
  1526. * created unless the pipe reader choses to write out the core file
  1527. * at which point file size limits and permissions will be imposed
  1528. * as it does with any other process
  1529. */
  1530. if ((!ispipe) && (core_limit < binfmt->min_coredump))
  1531. goto fail_unlock;
  1532. if (ispipe) {
  1533. helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
  1534. /* Terminate the string before the first option */
  1535. delimit = strchr(corename, ' ');
  1536. if (delimit)
  1537. *delimit = '\0';
  1538. delimit = strrchr(helper_argv[0], '/');
  1539. if (delimit)
  1540. delimit++;
  1541. else
  1542. delimit = helper_argv[0];
  1543. if (!strcmp(delimit, current->comm)) {
  1544. printk(KERN_NOTICE "Recursive core dump detected, "
  1545. "aborting\n");
  1546. goto fail_unlock;
  1547. }
  1548. core_limit = RLIM_INFINITY;
  1549. /* SIGPIPE can happen, but it's just never processed */
  1550. if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
  1551. &file)) {
  1552. printk(KERN_INFO "Core dump to %s pipe failed\n",
  1553. corename);
  1554. goto fail_unlock;
  1555. }
  1556. } else
  1557. file = filp_open(corename,
  1558. O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
  1559. 0600);
  1560. if (IS_ERR(file))
  1561. goto fail_unlock;
  1562. inode = file->f_path.dentry->d_inode;
  1563. if (inode->i_nlink > 1)
  1564. goto close_fail; /* multiple links - don't dump */
  1565. if (!ispipe && d_unhashed(file->f_path.dentry))
  1566. goto close_fail;
  1567. /* AK: actually i see no reason to not allow this for named pipes etc.,
  1568. but keep the previous behaviour for now. */
  1569. if (!ispipe && !S_ISREG(inode->i_mode))
  1570. goto close_fail;
  1571. /*
  1572. * Dont allow local users get cute and trick others to coredump
  1573. * into their pre-created files:
  1574. */
  1575. if (inode->i_uid != current->fsuid)
  1576. goto close_fail;
  1577. if (!file->f_op)
  1578. goto close_fail;
  1579. if (!file->f_op->write)
  1580. goto close_fail;
  1581. if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
  1582. goto close_fail;
  1583. retval = binfmt->core_dump(signr, regs, file, core_limit);
  1584. if (retval)
  1585. current->signal->group_exit_code |= 0x80;
  1586. close_fail:
  1587. filp_close(file, NULL);
  1588. fail_unlock:
  1589. if (helper_argv)
  1590. argv_free(helper_argv);
  1591. current->fsuid = fsuid;
  1592. coredump_finish(mm);
  1593. fail:
  1594. return retval;
  1595. }