rtc.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440
  1. /*
  2. * Real Time Clock interface for Linux
  3. *
  4. * Copyright (C) 1996 Paul Gortmaker
  5. *
  6. * This driver allows use of the real time clock (built into
  7. * nearly all computers) from user space. It exports the /dev/rtc
  8. * interface supporting various ioctl() and also the
  9. * /proc/driver/rtc pseudo-file for status information.
  10. *
  11. * The ioctls can be used to set the interrupt behaviour and
  12. * generation rate from the RTC via IRQ 8. Then the /dev/rtc
  13. * interface can be used to make use of these timer interrupts,
  14. * be they interval or alarm based.
  15. *
  16. * The /dev/rtc interface will block on reads until an interrupt
  17. * has been received. If a RTC interrupt has already happened,
  18. * it will output an unsigned long and then block. The output value
  19. * contains the interrupt status in the low byte and the number of
  20. * interrupts since the last read in the remaining high bytes. The
  21. * /dev/rtc interface can also be used with the select(2) call.
  22. *
  23. * This program is free software; you can redistribute it and/or
  24. * modify it under the terms of the GNU General Public License
  25. * as published by the Free Software Foundation; either version
  26. * 2 of the License, or (at your option) any later version.
  27. *
  28. * Based on other minimal char device drivers, like Alan's
  29. * watchdog, Ted's random, etc. etc.
  30. *
  31. * 1.07 Paul Gortmaker.
  32. * 1.08 Miquel van Smoorenburg: disallow certain things on the
  33. * DEC Alpha as the CMOS clock is also used for other things.
  34. * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
  35. * 1.09a Pete Zaitcev: Sun SPARC
  36. * 1.09b Jeff Garzik: Modularize, init cleanup
  37. * 1.09c Jeff Garzik: SMP cleanup
  38. * 1.10 Paul Barton-Davis: add support for async I/O
  39. * 1.10a Andrea Arcangeli: Alpha updates
  40. * 1.10b Andrew Morton: SMP lock fix
  41. * 1.10c Cesar Barros: SMP locking fixes and cleanup
  42. * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
  43. * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
  44. * 1.11 Takashi Iwai: Kernel access functions
  45. * rtc_register/rtc_unregister/rtc_control
  46. * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
  47. * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
  48. * CONFIG_HPET_EMULATE_RTC
  49. * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
  50. * 1.12ac Alan Cox: Allow read access to the day of week register
  51. */
  52. #define RTC_VERSION "1.12ac"
  53. /*
  54. * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
  55. * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
  56. * design of the RTC, we don't want two different things trying to
  57. * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
  58. * this driver.)
  59. */
  60. #include <linux/interrupt.h>
  61. #include <linux/module.h>
  62. #include <linux/kernel.h>
  63. #include <linux/types.h>
  64. #include <linux/miscdevice.h>
  65. #include <linux/ioport.h>
  66. #include <linux/fcntl.h>
  67. #include <linux/mc146818rtc.h>
  68. #include <linux/init.h>
  69. #include <linux/poll.h>
  70. #include <linux/proc_fs.h>
  71. #include <linux/seq_file.h>
  72. #include <linux/spinlock.h>
  73. #include <linux/smp_lock.h>
  74. #include <linux/sysctl.h>
  75. #include <linux/wait.h>
  76. #include <linux/bcd.h>
  77. #include <linux/delay.h>
  78. #include <linux/smp_lock.h>
  79. #include <linux/uaccess.h>
  80. #include <asm/current.h>
  81. #include <asm/system.h>
  82. #ifdef CONFIG_X86
  83. #include <asm/hpet.h>
  84. #endif
  85. #ifdef CONFIG_SPARC32
  86. #include <linux/pci.h>
  87. #include <linux/jiffies.h>
  88. #include <asm/ebus.h>
  89. static unsigned long rtc_port;
  90. static int rtc_irq = PCI_IRQ_NONE;
  91. #endif
  92. #ifdef CONFIG_HPET_RTC_IRQ
  93. #undef RTC_IRQ
  94. #endif
  95. #ifdef RTC_IRQ
  96. static int rtc_has_irq = 1;
  97. #endif
  98. #ifndef CONFIG_HPET_EMULATE_RTC
  99. #define is_hpet_enabled() 0
  100. #define hpet_set_alarm_time(hrs, min, sec) 0
  101. #define hpet_set_periodic_freq(arg) 0
  102. #define hpet_mask_rtc_irq_bit(arg) 0
  103. #define hpet_set_rtc_irq_bit(arg) 0
  104. #define hpet_rtc_timer_init() do { } while (0)
  105. #define hpet_rtc_dropped_irq() 0
  106. #define hpet_register_irq_handler(h) ({ 0; })
  107. #define hpet_unregister_irq_handler(h) ({ 0; })
  108. #ifdef RTC_IRQ
  109. static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
  110. {
  111. return 0;
  112. }
  113. #endif
  114. #endif
  115. /*
  116. * We sponge a minor off of the misc major. No need slurping
  117. * up another valuable major dev number for this. If you add
  118. * an ioctl, make sure you don't conflict with SPARC's RTC
  119. * ioctls.
  120. */
  121. static struct fasync_struct *rtc_async_queue;
  122. static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
  123. #ifdef RTC_IRQ
  124. static void rtc_dropped_irq(unsigned long data);
  125. static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
  126. #endif
  127. static ssize_t rtc_read(struct file *file, char __user *buf,
  128. size_t count, loff_t *ppos);
  129. static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
  130. static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
  131. #ifdef RTC_IRQ
  132. static unsigned int rtc_poll(struct file *file, poll_table *wait);
  133. #endif
  134. static void get_rtc_alm_time(struct rtc_time *alm_tm);
  135. #ifdef RTC_IRQ
  136. static void set_rtc_irq_bit_locked(unsigned char bit);
  137. static void mask_rtc_irq_bit_locked(unsigned char bit);
  138. static inline void set_rtc_irq_bit(unsigned char bit)
  139. {
  140. spin_lock_irq(&rtc_lock);
  141. set_rtc_irq_bit_locked(bit);
  142. spin_unlock_irq(&rtc_lock);
  143. }
  144. static void mask_rtc_irq_bit(unsigned char bit)
  145. {
  146. spin_lock_irq(&rtc_lock);
  147. mask_rtc_irq_bit_locked(bit);
  148. spin_unlock_irq(&rtc_lock);
  149. }
  150. #endif
  151. #ifdef CONFIG_PROC_FS
  152. static int rtc_proc_open(struct inode *inode, struct file *file);
  153. #endif
  154. /*
  155. * Bits in rtc_status. (6 bits of room for future expansion)
  156. */
  157. #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
  158. #define RTC_TIMER_ON 0x02 /* missed irq timer active */
  159. /*
  160. * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
  161. * protected by the big kernel lock. However, ioctl can still disable the timer
  162. * in rtc_status and then with del_timer after the interrupt has read
  163. * rtc_status but before mod_timer is called, which would then reenable the
  164. * timer (but you would need to have an awful timing before you'd trip on it)
  165. */
  166. static unsigned long rtc_status; /* bitmapped status byte. */
  167. static unsigned long rtc_freq; /* Current periodic IRQ rate */
  168. static unsigned long rtc_irq_data; /* our output to the world */
  169. static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
  170. #ifdef RTC_IRQ
  171. /*
  172. * rtc_task_lock nests inside rtc_lock.
  173. */
  174. static DEFINE_SPINLOCK(rtc_task_lock);
  175. static rtc_task_t *rtc_callback;
  176. #endif
  177. /*
  178. * If this driver ever becomes modularised, it will be really nice
  179. * to make the epoch retain its value across module reload...
  180. */
  181. static unsigned long epoch = 1900; /* year corresponding to 0x00 */
  182. static const unsigned char days_in_mo[] =
  183. {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
  184. /*
  185. * Returns true if a clock update is in progress
  186. */
  187. static inline unsigned char rtc_is_updating(void)
  188. {
  189. unsigned long flags;
  190. unsigned char uip;
  191. spin_lock_irqsave(&rtc_lock, flags);
  192. uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
  193. spin_unlock_irqrestore(&rtc_lock, flags);
  194. return uip;
  195. }
  196. #ifdef RTC_IRQ
  197. /*
  198. * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
  199. * but there is possibility of conflicting with the set_rtc_mmss()
  200. * call (the rtc irq and the timer irq can easily run at the same
  201. * time in two different CPUs). So we need to serialize
  202. * accesses to the chip with the rtc_lock spinlock that each
  203. * architecture should implement in the timer code.
  204. * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
  205. */
  206. static irqreturn_t rtc_interrupt(int irq, void *dev_id)
  207. {
  208. /*
  209. * Can be an alarm interrupt, update complete interrupt,
  210. * or a periodic interrupt. We store the status in the
  211. * low byte and the number of interrupts received since
  212. * the last read in the remainder of rtc_irq_data.
  213. */
  214. spin_lock(&rtc_lock);
  215. rtc_irq_data += 0x100;
  216. rtc_irq_data &= ~0xff;
  217. if (is_hpet_enabled()) {
  218. /*
  219. * In this case it is HPET RTC interrupt handler
  220. * calling us, with the interrupt information
  221. * passed as arg1, instead of irq.
  222. */
  223. rtc_irq_data |= (unsigned long)irq & 0xF0;
  224. } else {
  225. rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
  226. }
  227. if (rtc_status & RTC_TIMER_ON)
  228. mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
  229. spin_unlock(&rtc_lock);
  230. /* Now do the rest of the actions */
  231. spin_lock(&rtc_task_lock);
  232. if (rtc_callback)
  233. rtc_callback->func(rtc_callback->private_data);
  234. spin_unlock(&rtc_task_lock);
  235. wake_up_interruptible(&rtc_wait);
  236. kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
  237. return IRQ_HANDLED;
  238. }
  239. #endif
  240. /*
  241. * sysctl-tuning infrastructure.
  242. */
  243. static ctl_table rtc_table[] = {
  244. {
  245. .ctl_name = CTL_UNNUMBERED,
  246. .procname = "max-user-freq",
  247. .data = &rtc_max_user_freq,
  248. .maxlen = sizeof(int),
  249. .mode = 0644,
  250. .proc_handler = &proc_dointvec,
  251. },
  252. { .ctl_name = 0 }
  253. };
  254. static ctl_table rtc_root[] = {
  255. {
  256. .ctl_name = CTL_UNNUMBERED,
  257. .procname = "rtc",
  258. .mode = 0555,
  259. .child = rtc_table,
  260. },
  261. { .ctl_name = 0 }
  262. };
  263. static ctl_table dev_root[] = {
  264. {
  265. .ctl_name = CTL_DEV,
  266. .procname = "dev",
  267. .mode = 0555,
  268. .child = rtc_root,
  269. },
  270. { .ctl_name = 0 }
  271. };
  272. static struct ctl_table_header *sysctl_header;
  273. static int __init init_sysctl(void)
  274. {
  275. sysctl_header = register_sysctl_table(dev_root);
  276. return 0;
  277. }
  278. static void __exit cleanup_sysctl(void)
  279. {
  280. unregister_sysctl_table(sysctl_header);
  281. }
  282. /*
  283. * Now all the various file operations that we export.
  284. */
  285. static ssize_t rtc_read(struct file *file, char __user *buf,
  286. size_t count, loff_t *ppos)
  287. {
  288. #ifndef RTC_IRQ
  289. return -EIO;
  290. #else
  291. DECLARE_WAITQUEUE(wait, current);
  292. unsigned long data;
  293. ssize_t retval;
  294. if (rtc_has_irq == 0)
  295. return -EIO;
  296. /*
  297. * Historically this function used to assume that sizeof(unsigned long)
  298. * is the same in userspace and kernelspace. This lead to problems
  299. * for configurations with multiple ABIs such a the MIPS o32 and 64
  300. * ABIs supported on the same kernel. So now we support read of both
  301. * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
  302. * userspace ABI.
  303. */
  304. if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
  305. return -EINVAL;
  306. add_wait_queue(&rtc_wait, &wait);
  307. do {
  308. /* First make it right. Then make it fast. Putting this whole
  309. * block within the parentheses of a while would be too
  310. * confusing. And no, xchg() is not the answer. */
  311. __set_current_state(TASK_INTERRUPTIBLE);
  312. spin_lock_irq(&rtc_lock);
  313. data = rtc_irq_data;
  314. rtc_irq_data = 0;
  315. spin_unlock_irq(&rtc_lock);
  316. if (data != 0)
  317. break;
  318. if (file->f_flags & O_NONBLOCK) {
  319. retval = -EAGAIN;
  320. goto out;
  321. }
  322. if (signal_pending(current)) {
  323. retval = -ERESTARTSYS;
  324. goto out;
  325. }
  326. schedule();
  327. } while (1);
  328. if (count == sizeof(unsigned int)) {
  329. retval = put_user(data,
  330. (unsigned int __user *)buf) ?: sizeof(int);
  331. } else {
  332. retval = put_user(data,
  333. (unsigned long __user *)buf) ?: sizeof(long);
  334. }
  335. if (!retval)
  336. retval = count;
  337. out:
  338. __set_current_state(TASK_RUNNING);
  339. remove_wait_queue(&rtc_wait, &wait);
  340. return retval;
  341. #endif
  342. }
  343. static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
  344. {
  345. struct rtc_time wtime;
  346. #ifdef RTC_IRQ
  347. if (rtc_has_irq == 0) {
  348. switch (cmd) {
  349. case RTC_AIE_OFF:
  350. case RTC_AIE_ON:
  351. case RTC_PIE_OFF:
  352. case RTC_PIE_ON:
  353. case RTC_UIE_OFF:
  354. case RTC_UIE_ON:
  355. case RTC_IRQP_READ:
  356. case RTC_IRQP_SET:
  357. return -EINVAL;
  358. };
  359. }
  360. #endif
  361. switch (cmd) {
  362. #ifdef RTC_IRQ
  363. case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
  364. {
  365. mask_rtc_irq_bit(RTC_AIE);
  366. return 0;
  367. }
  368. case RTC_AIE_ON: /* Allow alarm interrupts. */
  369. {
  370. set_rtc_irq_bit(RTC_AIE);
  371. return 0;
  372. }
  373. case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
  374. {
  375. /* can be called from isr via rtc_control() */
  376. unsigned long flags;
  377. spin_lock_irqsave(&rtc_lock, flags);
  378. mask_rtc_irq_bit_locked(RTC_PIE);
  379. if (rtc_status & RTC_TIMER_ON) {
  380. rtc_status &= ~RTC_TIMER_ON;
  381. del_timer(&rtc_irq_timer);
  382. }
  383. spin_unlock_irqrestore(&rtc_lock, flags);
  384. return 0;
  385. }
  386. case RTC_PIE_ON: /* Allow periodic ints */
  387. {
  388. /* can be called from isr via rtc_control() */
  389. unsigned long flags;
  390. /*
  391. * We don't really want Joe User enabling more
  392. * than 64Hz of interrupts on a multi-user machine.
  393. */
  394. if (!kernel && (rtc_freq > rtc_max_user_freq) &&
  395. (!capable(CAP_SYS_RESOURCE)))
  396. return -EACCES;
  397. spin_lock_irqsave(&rtc_lock, flags);
  398. if (!(rtc_status & RTC_TIMER_ON)) {
  399. mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
  400. 2*HZ/100);
  401. rtc_status |= RTC_TIMER_ON;
  402. }
  403. set_rtc_irq_bit_locked(RTC_PIE);
  404. spin_unlock_irqrestore(&rtc_lock, flags);
  405. return 0;
  406. }
  407. case RTC_UIE_OFF: /* Mask ints from RTC updates. */
  408. {
  409. mask_rtc_irq_bit(RTC_UIE);
  410. return 0;
  411. }
  412. case RTC_UIE_ON: /* Allow ints for RTC updates. */
  413. {
  414. set_rtc_irq_bit(RTC_UIE);
  415. return 0;
  416. }
  417. #endif
  418. case RTC_ALM_READ: /* Read the present alarm time */
  419. {
  420. /*
  421. * This returns a struct rtc_time. Reading >= 0xc0
  422. * means "don't care" or "match all". Only the tm_hour,
  423. * tm_min, and tm_sec values are filled in.
  424. */
  425. memset(&wtime, 0, sizeof(struct rtc_time));
  426. get_rtc_alm_time(&wtime);
  427. break;
  428. }
  429. case RTC_ALM_SET: /* Store a time into the alarm */
  430. {
  431. /*
  432. * This expects a struct rtc_time. Writing 0xff means
  433. * "don't care" or "match all". Only the tm_hour,
  434. * tm_min and tm_sec are used.
  435. */
  436. unsigned char hrs, min, sec;
  437. struct rtc_time alm_tm;
  438. if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
  439. sizeof(struct rtc_time)))
  440. return -EFAULT;
  441. hrs = alm_tm.tm_hour;
  442. min = alm_tm.tm_min;
  443. sec = alm_tm.tm_sec;
  444. spin_lock_irq(&rtc_lock);
  445. if (hpet_set_alarm_time(hrs, min, sec)) {
  446. /*
  447. * Fallthru and set alarm time in CMOS too,
  448. * so that we will get proper value in RTC_ALM_READ
  449. */
  450. }
  451. if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
  452. RTC_ALWAYS_BCD) {
  453. if (sec < 60)
  454. BIN_TO_BCD(sec);
  455. else
  456. sec = 0xff;
  457. if (min < 60)
  458. BIN_TO_BCD(min);
  459. else
  460. min = 0xff;
  461. if (hrs < 24)
  462. BIN_TO_BCD(hrs);
  463. else
  464. hrs = 0xff;
  465. }
  466. CMOS_WRITE(hrs, RTC_HOURS_ALARM);
  467. CMOS_WRITE(min, RTC_MINUTES_ALARM);
  468. CMOS_WRITE(sec, RTC_SECONDS_ALARM);
  469. spin_unlock_irq(&rtc_lock);
  470. return 0;
  471. }
  472. case RTC_RD_TIME: /* Read the time/date from RTC */
  473. {
  474. memset(&wtime, 0, sizeof(struct rtc_time));
  475. rtc_get_rtc_time(&wtime);
  476. break;
  477. }
  478. case RTC_SET_TIME: /* Set the RTC */
  479. {
  480. struct rtc_time rtc_tm;
  481. unsigned char mon, day, hrs, min, sec, leap_yr;
  482. unsigned char save_control, save_freq_select;
  483. unsigned int yrs;
  484. #ifdef CONFIG_MACH_DECSTATION
  485. unsigned int real_yrs;
  486. #endif
  487. if (!capable(CAP_SYS_TIME))
  488. return -EACCES;
  489. if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
  490. sizeof(struct rtc_time)))
  491. return -EFAULT;
  492. yrs = rtc_tm.tm_year + 1900;
  493. mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
  494. day = rtc_tm.tm_mday;
  495. hrs = rtc_tm.tm_hour;
  496. min = rtc_tm.tm_min;
  497. sec = rtc_tm.tm_sec;
  498. if (yrs < 1970)
  499. return -EINVAL;
  500. leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
  501. if ((mon > 12) || (day == 0))
  502. return -EINVAL;
  503. if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
  504. return -EINVAL;
  505. if ((hrs >= 24) || (min >= 60) || (sec >= 60))
  506. return -EINVAL;
  507. yrs -= epoch;
  508. if (yrs > 255) /* They are unsigned */
  509. return -EINVAL;
  510. spin_lock_irq(&rtc_lock);
  511. #ifdef CONFIG_MACH_DECSTATION
  512. real_yrs = yrs;
  513. yrs = 72;
  514. /*
  515. * We want to keep the year set to 73 until March
  516. * for non-leap years, so that Feb, 29th is handled
  517. * correctly.
  518. */
  519. if (!leap_yr && mon < 3) {
  520. real_yrs--;
  521. yrs = 73;
  522. }
  523. #endif
  524. /* These limits and adjustments are independent of
  525. * whether the chip is in binary mode or not.
  526. */
  527. if (yrs > 169) {
  528. spin_unlock_irq(&rtc_lock);
  529. return -EINVAL;
  530. }
  531. if (yrs >= 100)
  532. yrs -= 100;
  533. if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
  534. || RTC_ALWAYS_BCD) {
  535. BIN_TO_BCD(sec);
  536. BIN_TO_BCD(min);
  537. BIN_TO_BCD(hrs);
  538. BIN_TO_BCD(day);
  539. BIN_TO_BCD(mon);
  540. BIN_TO_BCD(yrs);
  541. }
  542. save_control = CMOS_READ(RTC_CONTROL);
  543. CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
  544. save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
  545. CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
  546. #ifdef CONFIG_MACH_DECSTATION
  547. CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
  548. #endif
  549. CMOS_WRITE(yrs, RTC_YEAR);
  550. CMOS_WRITE(mon, RTC_MONTH);
  551. CMOS_WRITE(day, RTC_DAY_OF_MONTH);
  552. CMOS_WRITE(hrs, RTC_HOURS);
  553. CMOS_WRITE(min, RTC_MINUTES);
  554. CMOS_WRITE(sec, RTC_SECONDS);
  555. CMOS_WRITE(save_control, RTC_CONTROL);
  556. CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
  557. spin_unlock_irq(&rtc_lock);
  558. return 0;
  559. }
  560. #ifdef RTC_IRQ
  561. case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
  562. {
  563. return put_user(rtc_freq, (unsigned long __user *)arg);
  564. }
  565. case RTC_IRQP_SET: /* Set periodic IRQ rate. */
  566. {
  567. int tmp = 0;
  568. unsigned char val;
  569. /* can be called from isr via rtc_control() */
  570. unsigned long flags;
  571. /*
  572. * The max we can do is 8192Hz.
  573. */
  574. if ((arg < 2) || (arg > 8192))
  575. return -EINVAL;
  576. /*
  577. * We don't really want Joe User generating more
  578. * than 64Hz of interrupts on a multi-user machine.
  579. */
  580. if (!kernel && (arg > rtc_max_user_freq) &&
  581. !capable(CAP_SYS_RESOURCE))
  582. return -EACCES;
  583. while (arg > (1<<tmp))
  584. tmp++;
  585. /*
  586. * Check that the input was really a power of 2.
  587. */
  588. if (arg != (1<<tmp))
  589. return -EINVAL;
  590. rtc_freq = arg;
  591. spin_lock_irqsave(&rtc_lock, flags);
  592. if (hpet_set_periodic_freq(arg)) {
  593. spin_unlock_irqrestore(&rtc_lock, flags);
  594. return 0;
  595. }
  596. val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
  597. val |= (16 - tmp);
  598. CMOS_WRITE(val, RTC_FREQ_SELECT);
  599. spin_unlock_irqrestore(&rtc_lock, flags);
  600. return 0;
  601. }
  602. #endif
  603. case RTC_EPOCH_READ: /* Read the epoch. */
  604. {
  605. return put_user(epoch, (unsigned long __user *)arg);
  606. }
  607. case RTC_EPOCH_SET: /* Set the epoch. */
  608. {
  609. /*
  610. * There were no RTC clocks before 1900.
  611. */
  612. if (arg < 1900)
  613. return -EINVAL;
  614. if (!capable(CAP_SYS_TIME))
  615. return -EACCES;
  616. epoch = arg;
  617. return 0;
  618. }
  619. default:
  620. return -ENOTTY;
  621. }
  622. return copy_to_user((void __user *)arg,
  623. &wtime, sizeof wtime) ? -EFAULT : 0;
  624. }
  625. static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  626. {
  627. long ret;
  628. lock_kernel();
  629. ret = rtc_do_ioctl(cmd, arg, 0);
  630. unlock_kernel();
  631. return ret;
  632. }
  633. /*
  634. * We enforce only one user at a time here with the open/close.
  635. * Also clear the previous interrupt data on an open, and clean
  636. * up things on a close.
  637. */
  638. /* We use rtc_lock to protect against concurrent opens. So the BKL is not
  639. * needed here. Or anywhere else in this driver. */
  640. static int rtc_open(struct inode *inode, struct file *file)
  641. {
  642. lock_kernel();
  643. spin_lock_irq(&rtc_lock);
  644. if (rtc_status & RTC_IS_OPEN)
  645. goto out_busy;
  646. rtc_status |= RTC_IS_OPEN;
  647. rtc_irq_data = 0;
  648. spin_unlock_irq(&rtc_lock);
  649. unlock_kernel();
  650. return 0;
  651. out_busy:
  652. spin_unlock_irq(&rtc_lock);
  653. unlock_kernel();
  654. return -EBUSY;
  655. }
  656. static int rtc_fasync(int fd, struct file *filp, int on)
  657. {
  658. return fasync_helper(fd, filp, on, &rtc_async_queue);
  659. }
  660. static int rtc_release(struct inode *inode, struct file *file)
  661. {
  662. #ifdef RTC_IRQ
  663. unsigned char tmp;
  664. if (rtc_has_irq == 0)
  665. goto no_irq;
  666. /*
  667. * Turn off all interrupts once the device is no longer
  668. * in use, and clear the data.
  669. */
  670. spin_lock_irq(&rtc_lock);
  671. if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
  672. tmp = CMOS_READ(RTC_CONTROL);
  673. tmp &= ~RTC_PIE;
  674. tmp &= ~RTC_AIE;
  675. tmp &= ~RTC_UIE;
  676. CMOS_WRITE(tmp, RTC_CONTROL);
  677. CMOS_READ(RTC_INTR_FLAGS);
  678. }
  679. if (rtc_status & RTC_TIMER_ON) {
  680. rtc_status &= ~RTC_TIMER_ON;
  681. del_timer(&rtc_irq_timer);
  682. }
  683. spin_unlock_irq(&rtc_lock);
  684. if (file->f_flags & FASYNC)
  685. rtc_fasync(-1, file, 0);
  686. no_irq:
  687. #endif
  688. spin_lock_irq(&rtc_lock);
  689. rtc_irq_data = 0;
  690. rtc_status &= ~RTC_IS_OPEN;
  691. spin_unlock_irq(&rtc_lock);
  692. return 0;
  693. }
  694. #ifdef RTC_IRQ
  695. /* Called without the kernel lock - fine */
  696. static unsigned int rtc_poll(struct file *file, poll_table *wait)
  697. {
  698. unsigned long l;
  699. if (rtc_has_irq == 0)
  700. return 0;
  701. poll_wait(file, &rtc_wait, wait);
  702. spin_lock_irq(&rtc_lock);
  703. l = rtc_irq_data;
  704. spin_unlock_irq(&rtc_lock);
  705. if (l != 0)
  706. return POLLIN | POLLRDNORM;
  707. return 0;
  708. }
  709. #endif
  710. int rtc_register(rtc_task_t *task)
  711. {
  712. #ifndef RTC_IRQ
  713. return -EIO;
  714. #else
  715. if (task == NULL || task->func == NULL)
  716. return -EINVAL;
  717. spin_lock_irq(&rtc_lock);
  718. if (rtc_status & RTC_IS_OPEN) {
  719. spin_unlock_irq(&rtc_lock);
  720. return -EBUSY;
  721. }
  722. spin_lock(&rtc_task_lock);
  723. if (rtc_callback) {
  724. spin_unlock(&rtc_task_lock);
  725. spin_unlock_irq(&rtc_lock);
  726. return -EBUSY;
  727. }
  728. rtc_status |= RTC_IS_OPEN;
  729. rtc_callback = task;
  730. spin_unlock(&rtc_task_lock);
  731. spin_unlock_irq(&rtc_lock);
  732. return 0;
  733. #endif
  734. }
  735. EXPORT_SYMBOL(rtc_register);
  736. int rtc_unregister(rtc_task_t *task)
  737. {
  738. #ifndef RTC_IRQ
  739. return -EIO;
  740. #else
  741. unsigned char tmp;
  742. spin_lock_irq(&rtc_lock);
  743. spin_lock(&rtc_task_lock);
  744. if (rtc_callback != task) {
  745. spin_unlock(&rtc_task_lock);
  746. spin_unlock_irq(&rtc_lock);
  747. return -ENXIO;
  748. }
  749. rtc_callback = NULL;
  750. /* disable controls */
  751. if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
  752. tmp = CMOS_READ(RTC_CONTROL);
  753. tmp &= ~RTC_PIE;
  754. tmp &= ~RTC_AIE;
  755. tmp &= ~RTC_UIE;
  756. CMOS_WRITE(tmp, RTC_CONTROL);
  757. CMOS_READ(RTC_INTR_FLAGS);
  758. }
  759. if (rtc_status & RTC_TIMER_ON) {
  760. rtc_status &= ~RTC_TIMER_ON;
  761. del_timer(&rtc_irq_timer);
  762. }
  763. rtc_status &= ~RTC_IS_OPEN;
  764. spin_unlock(&rtc_task_lock);
  765. spin_unlock_irq(&rtc_lock);
  766. return 0;
  767. #endif
  768. }
  769. EXPORT_SYMBOL(rtc_unregister);
  770. int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
  771. {
  772. #ifndef RTC_IRQ
  773. return -EIO;
  774. #else
  775. unsigned long flags;
  776. if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
  777. return -EINVAL;
  778. spin_lock_irqsave(&rtc_task_lock, flags);
  779. if (rtc_callback != task) {
  780. spin_unlock_irqrestore(&rtc_task_lock, flags);
  781. return -ENXIO;
  782. }
  783. spin_unlock_irqrestore(&rtc_task_lock, flags);
  784. return rtc_do_ioctl(cmd, arg, 1);
  785. #endif
  786. }
  787. EXPORT_SYMBOL(rtc_control);
  788. /*
  789. * The various file operations we support.
  790. */
  791. static const struct file_operations rtc_fops = {
  792. .owner = THIS_MODULE,
  793. .llseek = no_llseek,
  794. .read = rtc_read,
  795. #ifdef RTC_IRQ
  796. .poll = rtc_poll,
  797. #endif
  798. .unlocked_ioctl = rtc_ioctl,
  799. .open = rtc_open,
  800. .release = rtc_release,
  801. .fasync = rtc_fasync,
  802. };
  803. static struct miscdevice rtc_dev = {
  804. .minor = RTC_MINOR,
  805. .name = "rtc",
  806. .fops = &rtc_fops,
  807. };
  808. #ifdef CONFIG_PROC_FS
  809. static const struct file_operations rtc_proc_fops = {
  810. .owner = THIS_MODULE,
  811. .open = rtc_proc_open,
  812. .read = seq_read,
  813. .llseek = seq_lseek,
  814. .release = single_release,
  815. };
  816. #endif
  817. static resource_size_t rtc_size;
  818. static struct resource * __init rtc_request_region(resource_size_t size)
  819. {
  820. struct resource *r;
  821. if (RTC_IOMAPPED)
  822. r = request_region(RTC_PORT(0), size, "rtc");
  823. else
  824. r = request_mem_region(RTC_PORT(0), size, "rtc");
  825. if (r)
  826. rtc_size = size;
  827. return r;
  828. }
  829. static void rtc_release_region(void)
  830. {
  831. if (RTC_IOMAPPED)
  832. release_region(RTC_PORT(0), rtc_size);
  833. else
  834. release_mem_region(RTC_PORT(0), rtc_size);
  835. }
  836. static int __init rtc_init(void)
  837. {
  838. #ifdef CONFIG_PROC_FS
  839. struct proc_dir_entry *ent;
  840. #endif
  841. #if defined(__alpha__) || defined(__mips__)
  842. unsigned int year, ctrl;
  843. char *guess = NULL;
  844. #endif
  845. #ifdef CONFIG_SPARC32
  846. struct linux_ebus *ebus;
  847. struct linux_ebus_device *edev;
  848. #else
  849. void *r;
  850. #ifdef RTC_IRQ
  851. irq_handler_t rtc_int_handler_ptr;
  852. #endif
  853. #endif
  854. #ifdef CONFIG_SPARC32
  855. for_each_ebus(ebus) {
  856. for_each_ebusdev(edev, ebus) {
  857. if (strcmp(edev->prom_node->name, "rtc") == 0) {
  858. rtc_port = edev->resource[0].start;
  859. rtc_irq = edev->irqs[0];
  860. goto found;
  861. }
  862. }
  863. }
  864. rtc_has_irq = 0;
  865. printk(KERN_ERR "rtc_init: no PC rtc found\n");
  866. return -EIO;
  867. found:
  868. if (rtc_irq == PCI_IRQ_NONE) {
  869. rtc_has_irq = 0;
  870. goto no_irq;
  871. }
  872. /*
  873. * XXX Interrupt pin #7 in Espresso is shared between RTC and
  874. * PCI Slot 2 INTA# (and some INTx# in Slot 1).
  875. */
  876. if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
  877. (void *)&rtc_port)) {
  878. rtc_has_irq = 0;
  879. printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
  880. return -EIO;
  881. }
  882. no_irq:
  883. #else
  884. r = rtc_request_region(RTC_IO_EXTENT);
  885. /*
  886. * If we've already requested a smaller range (for example, because
  887. * PNPBIOS or ACPI told us how the device is configured), the request
  888. * above might fail because it's too big.
  889. *
  890. * If so, request just the range we actually use.
  891. */
  892. if (!r)
  893. r = rtc_request_region(RTC_IO_EXTENT_USED);
  894. if (!r) {
  895. #ifdef RTC_IRQ
  896. rtc_has_irq = 0;
  897. #endif
  898. printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
  899. (long)(RTC_PORT(0)));
  900. return -EIO;
  901. }
  902. #ifdef RTC_IRQ
  903. if (is_hpet_enabled()) {
  904. int err;
  905. rtc_int_handler_ptr = hpet_rtc_interrupt;
  906. err = hpet_register_irq_handler(rtc_interrupt);
  907. if (err != 0) {
  908. printk(KERN_WARNING "hpet_register_irq_handler failed "
  909. "in rtc_init().");
  910. return err;
  911. }
  912. } else {
  913. rtc_int_handler_ptr = rtc_interrupt;
  914. }
  915. if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
  916. "rtc", NULL)) {
  917. /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
  918. rtc_has_irq = 0;
  919. printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
  920. rtc_release_region();
  921. return -EIO;
  922. }
  923. hpet_rtc_timer_init();
  924. #endif
  925. #endif /* CONFIG_SPARC32 vs. others */
  926. if (misc_register(&rtc_dev)) {
  927. #ifdef RTC_IRQ
  928. free_irq(RTC_IRQ, NULL);
  929. hpet_unregister_irq_handler(rtc_interrupt);
  930. rtc_has_irq = 0;
  931. #endif
  932. rtc_release_region();
  933. return -ENODEV;
  934. }
  935. #ifdef CONFIG_PROC_FS
  936. ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
  937. if (!ent)
  938. printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
  939. #endif
  940. #if defined(__alpha__) || defined(__mips__)
  941. rtc_freq = HZ;
  942. /* Each operating system on an Alpha uses its own epoch.
  943. Let's try to guess which one we are using now. */
  944. if (rtc_is_updating() != 0)
  945. msleep(20);
  946. spin_lock_irq(&rtc_lock);
  947. year = CMOS_READ(RTC_YEAR);
  948. ctrl = CMOS_READ(RTC_CONTROL);
  949. spin_unlock_irq(&rtc_lock);
  950. if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
  951. BCD_TO_BIN(year); /* This should never happen... */
  952. if (year < 20) {
  953. epoch = 2000;
  954. guess = "SRM (post-2000)";
  955. } else if (year >= 20 && year < 48) {
  956. epoch = 1980;
  957. guess = "ARC console";
  958. } else if (year >= 48 && year < 72) {
  959. epoch = 1952;
  960. guess = "Digital UNIX";
  961. #if defined(__mips__)
  962. } else if (year >= 72 && year < 74) {
  963. epoch = 2000;
  964. guess = "Digital DECstation";
  965. #else
  966. } else if (year >= 70) {
  967. epoch = 1900;
  968. guess = "Standard PC (1900)";
  969. #endif
  970. }
  971. if (guess)
  972. printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
  973. guess, epoch);
  974. #endif
  975. #ifdef RTC_IRQ
  976. if (rtc_has_irq == 0)
  977. goto no_irq2;
  978. spin_lock_irq(&rtc_lock);
  979. rtc_freq = 1024;
  980. if (!hpet_set_periodic_freq(rtc_freq)) {
  981. /*
  982. * Initialize periodic frequency to CMOS reset default,
  983. * which is 1024Hz
  984. */
  985. CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
  986. RTC_FREQ_SELECT);
  987. }
  988. spin_unlock_irq(&rtc_lock);
  989. no_irq2:
  990. #endif
  991. (void) init_sysctl();
  992. printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
  993. return 0;
  994. }
  995. static void __exit rtc_exit(void)
  996. {
  997. cleanup_sysctl();
  998. remove_proc_entry("driver/rtc", NULL);
  999. misc_deregister(&rtc_dev);
  1000. #ifdef CONFIG_SPARC32
  1001. if (rtc_has_irq)
  1002. free_irq(rtc_irq, &rtc_port);
  1003. #else
  1004. rtc_release_region();
  1005. #ifdef RTC_IRQ
  1006. if (rtc_has_irq) {
  1007. free_irq(RTC_IRQ, NULL);
  1008. hpet_unregister_irq_handler(hpet_rtc_interrupt);
  1009. }
  1010. #endif
  1011. #endif /* CONFIG_SPARC32 */
  1012. }
  1013. module_init(rtc_init);
  1014. module_exit(rtc_exit);
  1015. #ifdef RTC_IRQ
  1016. /*
  1017. * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
  1018. * (usually during an IDE disk interrupt, with IRQ unmasking off)
  1019. * Since the interrupt handler doesn't get called, the IRQ status
  1020. * byte doesn't get read, and the RTC stops generating interrupts.
  1021. * A timer is set, and will call this function if/when that happens.
  1022. * To get it out of this stalled state, we just read the status.
  1023. * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
  1024. * (You *really* shouldn't be trying to use a non-realtime system
  1025. * for something that requires a steady > 1KHz signal anyways.)
  1026. */
  1027. static void rtc_dropped_irq(unsigned long data)
  1028. {
  1029. unsigned long freq;
  1030. spin_lock_irq(&rtc_lock);
  1031. if (hpet_rtc_dropped_irq()) {
  1032. spin_unlock_irq(&rtc_lock);
  1033. return;
  1034. }
  1035. /* Just in case someone disabled the timer from behind our back... */
  1036. if (rtc_status & RTC_TIMER_ON)
  1037. mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
  1038. rtc_irq_data += ((rtc_freq/HZ)<<8);
  1039. rtc_irq_data &= ~0xff;
  1040. rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
  1041. freq = rtc_freq;
  1042. spin_unlock_irq(&rtc_lock);
  1043. if (printk_ratelimit()) {
  1044. printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
  1045. freq);
  1046. }
  1047. /* Now we have new data */
  1048. wake_up_interruptible(&rtc_wait);
  1049. kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
  1050. }
  1051. #endif
  1052. #ifdef CONFIG_PROC_FS
  1053. /*
  1054. * Info exported via "/proc/driver/rtc".
  1055. */
  1056. static int rtc_proc_show(struct seq_file *seq, void *v)
  1057. {
  1058. #define YN(bit) ((ctrl & bit) ? "yes" : "no")
  1059. #define NY(bit) ((ctrl & bit) ? "no" : "yes")
  1060. struct rtc_time tm;
  1061. unsigned char batt, ctrl;
  1062. unsigned long freq;
  1063. spin_lock_irq(&rtc_lock);
  1064. batt = CMOS_READ(RTC_VALID) & RTC_VRT;
  1065. ctrl = CMOS_READ(RTC_CONTROL);
  1066. freq = rtc_freq;
  1067. spin_unlock_irq(&rtc_lock);
  1068. rtc_get_rtc_time(&tm);
  1069. /*
  1070. * There is no way to tell if the luser has the RTC set for local
  1071. * time or for Universal Standard Time (GMT). Probably local though.
  1072. */
  1073. seq_printf(seq,
  1074. "rtc_time\t: %02d:%02d:%02d\n"
  1075. "rtc_date\t: %04d-%02d-%02d\n"
  1076. "rtc_epoch\t: %04lu\n",
  1077. tm.tm_hour, tm.tm_min, tm.tm_sec,
  1078. tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
  1079. get_rtc_alm_time(&tm);
  1080. /*
  1081. * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
  1082. * match any value for that particular field. Values that are
  1083. * greater than a valid time, but less than 0xc0 shouldn't appear.
  1084. */
  1085. seq_puts(seq, "alarm\t\t: ");
  1086. if (tm.tm_hour <= 24)
  1087. seq_printf(seq, "%02d:", tm.tm_hour);
  1088. else
  1089. seq_puts(seq, "**:");
  1090. if (tm.tm_min <= 59)
  1091. seq_printf(seq, "%02d:", tm.tm_min);
  1092. else
  1093. seq_puts(seq, "**:");
  1094. if (tm.tm_sec <= 59)
  1095. seq_printf(seq, "%02d\n", tm.tm_sec);
  1096. else
  1097. seq_puts(seq, "**\n");
  1098. seq_printf(seq,
  1099. "DST_enable\t: %s\n"
  1100. "BCD\t\t: %s\n"
  1101. "24hr\t\t: %s\n"
  1102. "square_wave\t: %s\n"
  1103. "alarm_IRQ\t: %s\n"
  1104. "update_IRQ\t: %s\n"
  1105. "periodic_IRQ\t: %s\n"
  1106. "periodic_freq\t: %ld\n"
  1107. "batt_status\t: %s\n",
  1108. YN(RTC_DST_EN),
  1109. NY(RTC_DM_BINARY),
  1110. YN(RTC_24H),
  1111. YN(RTC_SQWE),
  1112. YN(RTC_AIE),
  1113. YN(RTC_UIE),
  1114. YN(RTC_PIE),
  1115. freq,
  1116. batt ? "okay" : "dead");
  1117. return 0;
  1118. #undef YN
  1119. #undef NY
  1120. }
  1121. static int rtc_proc_open(struct inode *inode, struct file *file)
  1122. {
  1123. return single_open(file, rtc_proc_show, NULL);
  1124. }
  1125. #endif
  1126. static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
  1127. {
  1128. unsigned long uip_watchdog = jiffies, flags;
  1129. unsigned char ctrl;
  1130. #ifdef CONFIG_MACH_DECSTATION
  1131. unsigned int real_year;
  1132. #endif
  1133. /*
  1134. * read RTC once any update in progress is done. The update
  1135. * can take just over 2ms. We wait 20ms. There is no need to
  1136. * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
  1137. * If you need to know *exactly* when a second has started, enable
  1138. * periodic update complete interrupts, (via ioctl) and then
  1139. * immediately read /dev/rtc which will block until you get the IRQ.
  1140. * Once the read clears, read the RTC time (again via ioctl). Easy.
  1141. */
  1142. while (rtc_is_updating() != 0 &&
  1143. time_before(jiffies, uip_watchdog + 2*HZ/100))
  1144. cpu_relax();
  1145. /*
  1146. * Only the values that we read from the RTC are set. We leave
  1147. * tm_wday, tm_yday and tm_isdst untouched. Note that while the
  1148. * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
  1149. * only updated by the RTC when initially set to a non-zero value.
  1150. */
  1151. spin_lock_irqsave(&rtc_lock, flags);
  1152. rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
  1153. rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
  1154. rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
  1155. rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
  1156. rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
  1157. rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
  1158. /* Only set from 2.6.16 onwards */
  1159. rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
  1160. #ifdef CONFIG_MACH_DECSTATION
  1161. real_year = CMOS_READ(RTC_DEC_YEAR);
  1162. #endif
  1163. ctrl = CMOS_READ(RTC_CONTROL);
  1164. spin_unlock_irqrestore(&rtc_lock, flags);
  1165. if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  1166. BCD_TO_BIN(rtc_tm->tm_sec);
  1167. BCD_TO_BIN(rtc_tm->tm_min);
  1168. BCD_TO_BIN(rtc_tm->tm_hour);
  1169. BCD_TO_BIN(rtc_tm->tm_mday);
  1170. BCD_TO_BIN(rtc_tm->tm_mon);
  1171. BCD_TO_BIN(rtc_tm->tm_year);
  1172. BCD_TO_BIN(rtc_tm->tm_wday);
  1173. }
  1174. #ifdef CONFIG_MACH_DECSTATION
  1175. rtc_tm->tm_year += real_year - 72;
  1176. #endif
  1177. /*
  1178. * Account for differences between how the RTC uses the values
  1179. * and how they are defined in a struct rtc_time;
  1180. */
  1181. rtc_tm->tm_year += epoch - 1900;
  1182. if (rtc_tm->tm_year <= 69)
  1183. rtc_tm->tm_year += 100;
  1184. rtc_tm->tm_mon--;
  1185. }
  1186. static void get_rtc_alm_time(struct rtc_time *alm_tm)
  1187. {
  1188. unsigned char ctrl;
  1189. /*
  1190. * Only the values that we read from the RTC are set. That
  1191. * means only tm_hour, tm_min, and tm_sec.
  1192. */
  1193. spin_lock_irq(&rtc_lock);
  1194. alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
  1195. alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
  1196. alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
  1197. ctrl = CMOS_READ(RTC_CONTROL);
  1198. spin_unlock_irq(&rtc_lock);
  1199. if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  1200. BCD_TO_BIN(alm_tm->tm_sec);
  1201. BCD_TO_BIN(alm_tm->tm_min);
  1202. BCD_TO_BIN(alm_tm->tm_hour);
  1203. }
  1204. }
  1205. #ifdef RTC_IRQ
  1206. /*
  1207. * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
  1208. * Rumour has it that if you frob the interrupt enable/disable
  1209. * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
  1210. * ensure you actually start getting interrupts. Probably for
  1211. * compatibility with older/broken chipset RTC implementations.
  1212. * We also clear out any old irq data after an ioctl() that
  1213. * meddles with the interrupt enable/disable bits.
  1214. */
  1215. static void mask_rtc_irq_bit_locked(unsigned char bit)
  1216. {
  1217. unsigned char val;
  1218. if (hpet_mask_rtc_irq_bit(bit))
  1219. return;
  1220. val = CMOS_READ(RTC_CONTROL);
  1221. val &= ~bit;
  1222. CMOS_WRITE(val, RTC_CONTROL);
  1223. CMOS_READ(RTC_INTR_FLAGS);
  1224. rtc_irq_data = 0;
  1225. }
  1226. static void set_rtc_irq_bit_locked(unsigned char bit)
  1227. {
  1228. unsigned char val;
  1229. if (hpet_set_rtc_irq_bit(bit))
  1230. return;
  1231. val = CMOS_READ(RTC_CONTROL);
  1232. val |= bit;
  1233. CMOS_WRITE(val, RTC_CONTROL);
  1234. CMOS_READ(RTC_INTR_FLAGS);
  1235. rtc_irq_data = 0;
  1236. }
  1237. #endif
  1238. MODULE_AUTHOR("Paul Gortmaker");
  1239. MODULE_LICENSE("GPL");
  1240. MODULE_ALIAS_MISCDEV(RTC_MINOR);