init_64.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/system.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/dma.h>
  37. #include <asm/fixmap.h>
  38. #include <asm/e820.h>
  39. #include <asm/apic.h>
  40. #include <asm/tlb.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/proto.h>
  43. #include <asm/smp.h>
  44. #include <asm/sections.h>
  45. #include <asm/kdebug.h>
  46. #include <asm/numa.h>
  47. #include <asm/cacheflush.h>
  48. /*
  49. * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
  50. * The direct mapping extends to max_pfn_mapped, so that we can directly access
  51. * apertures, ACPI and other tables without having to play with fixmaps.
  52. */
  53. unsigned long max_low_pfn_mapped;
  54. unsigned long max_pfn_mapped;
  55. static unsigned long dma_reserve __initdata;
  56. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  57. int direct_gbpages __meminitdata
  58. #ifdef CONFIG_DIRECT_GBPAGES
  59. = 1
  60. #endif
  61. ;
  62. static int __init parse_direct_gbpages_off(char *arg)
  63. {
  64. direct_gbpages = 0;
  65. return 0;
  66. }
  67. early_param("nogbpages", parse_direct_gbpages_off);
  68. static int __init parse_direct_gbpages_on(char *arg)
  69. {
  70. direct_gbpages = 1;
  71. return 0;
  72. }
  73. early_param("gbpages", parse_direct_gbpages_on);
  74. /*
  75. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  76. * physical space so we can cache the place of the first one and move
  77. * around without checking the pgd every time.
  78. */
  79. int after_bootmem;
  80. static __init void *spp_getpage(void)
  81. {
  82. void *ptr;
  83. if (after_bootmem)
  84. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  85. else
  86. ptr = alloc_bootmem_pages(PAGE_SIZE);
  87. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  88. panic("set_pte_phys: cannot allocate page data %s\n",
  89. after_bootmem ? "after bootmem" : "");
  90. }
  91. pr_debug("spp_getpage %p\n", ptr);
  92. return ptr;
  93. }
  94. void
  95. set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  96. {
  97. pud_t *pud;
  98. pmd_t *pmd;
  99. pte_t *pte;
  100. pud = pud_page + pud_index(vaddr);
  101. if (pud_none(*pud)) {
  102. pmd = (pmd_t *) spp_getpage();
  103. pud_populate(&init_mm, pud, pmd);
  104. if (pmd != pmd_offset(pud, 0)) {
  105. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  106. pmd, pmd_offset(pud, 0));
  107. return;
  108. }
  109. }
  110. pmd = pmd_offset(pud, vaddr);
  111. if (pmd_none(*pmd)) {
  112. pte = (pte_t *) spp_getpage();
  113. pmd_populate_kernel(&init_mm, pmd, pte);
  114. if (pte != pte_offset_kernel(pmd, 0)) {
  115. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  116. return;
  117. }
  118. }
  119. pte = pte_offset_kernel(pmd, vaddr);
  120. if (!pte_none(*pte) && pte_val(new_pte) &&
  121. pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
  122. pte_ERROR(*pte);
  123. set_pte(pte, new_pte);
  124. /*
  125. * It's enough to flush this one mapping.
  126. * (PGE mappings get flushed as well)
  127. */
  128. __flush_tlb_one(vaddr);
  129. }
  130. void
  131. set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  132. {
  133. pgd_t *pgd;
  134. pud_t *pud_page;
  135. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  136. pgd = pgd_offset_k(vaddr);
  137. if (pgd_none(*pgd)) {
  138. printk(KERN_ERR
  139. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  140. return;
  141. }
  142. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  143. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  144. }
  145. /*
  146. * Create large page table mappings for a range of physical addresses.
  147. */
  148. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  149. pgprot_t prot)
  150. {
  151. pgd_t *pgd;
  152. pud_t *pud;
  153. pmd_t *pmd;
  154. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  155. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  156. pgd = pgd_offset_k((unsigned long)__va(phys));
  157. if (pgd_none(*pgd)) {
  158. pud = (pud_t *) spp_getpage();
  159. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  160. _PAGE_USER));
  161. }
  162. pud = pud_offset(pgd, (unsigned long)__va(phys));
  163. if (pud_none(*pud)) {
  164. pmd = (pmd_t *) spp_getpage();
  165. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  166. _PAGE_USER));
  167. }
  168. pmd = pmd_offset(pud, phys);
  169. BUG_ON(!pmd_none(*pmd));
  170. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  171. }
  172. }
  173. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  174. {
  175. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  176. }
  177. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  178. {
  179. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  180. }
  181. /*
  182. * The head.S code sets up the kernel high mapping:
  183. *
  184. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  185. *
  186. * phys_addr holds the negative offset to the kernel, which is added
  187. * to the compile time generated pmds. This results in invalid pmds up
  188. * to the point where we hit the physaddr 0 mapping.
  189. *
  190. * We limit the mappings to the region from _text to _end. _end is
  191. * rounded up to the 2MB boundary. This catches the invalid pmds as
  192. * well, as they are located before _text:
  193. */
  194. void __init cleanup_highmap(void)
  195. {
  196. unsigned long vaddr = __START_KERNEL_map;
  197. unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
  198. pmd_t *pmd = level2_kernel_pgt;
  199. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  200. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  201. if (pmd_none(*pmd))
  202. continue;
  203. if (vaddr < (unsigned long) _text || vaddr > end)
  204. set_pmd(pmd, __pmd(0));
  205. }
  206. }
  207. static unsigned long __initdata table_start;
  208. static unsigned long __meminitdata table_end;
  209. static unsigned long __meminitdata table_top;
  210. static __meminit void *alloc_low_page(unsigned long *phys)
  211. {
  212. unsigned long pfn = table_end++;
  213. void *adr;
  214. if (after_bootmem) {
  215. adr = (void *)get_zeroed_page(GFP_ATOMIC);
  216. *phys = __pa(adr);
  217. return adr;
  218. }
  219. if (pfn >= table_top)
  220. panic("alloc_low_page: ran out of memory");
  221. adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
  222. memset(adr, 0, PAGE_SIZE);
  223. *phys = pfn * PAGE_SIZE;
  224. return adr;
  225. }
  226. static __meminit void unmap_low_page(void *adr)
  227. {
  228. if (after_bootmem)
  229. return;
  230. early_iounmap(adr, PAGE_SIZE);
  231. }
  232. static unsigned long __meminit
  233. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
  234. {
  235. unsigned pages = 0;
  236. unsigned long last_map_addr = end;
  237. int i;
  238. pte_t *pte = pte_page + pte_index(addr);
  239. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  240. if (addr >= end) {
  241. if (!after_bootmem) {
  242. for(; i < PTRS_PER_PTE; i++, pte++)
  243. set_pte(pte, __pte(0));
  244. }
  245. break;
  246. }
  247. if (pte_val(*pte))
  248. continue;
  249. if (0)
  250. printk(" pte=%p addr=%lx pte=%016lx\n",
  251. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  252. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
  253. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  254. pages++;
  255. }
  256. update_page_count(PG_LEVEL_4K, pages);
  257. return last_map_addr;
  258. }
  259. static unsigned long __meminit
  260. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
  261. {
  262. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  263. return phys_pte_init(pte, address, end);
  264. }
  265. static unsigned long __meminit
  266. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  267. unsigned long page_size_mask)
  268. {
  269. unsigned long pages = 0;
  270. unsigned long last_map_addr = end;
  271. int i = pmd_index(address);
  272. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  273. unsigned long pte_phys;
  274. pmd_t *pmd = pmd_page + pmd_index(address);
  275. pte_t *pte;
  276. if (address >= end) {
  277. if (!after_bootmem) {
  278. for (; i < PTRS_PER_PMD; i++, pmd++)
  279. set_pmd(pmd, __pmd(0));
  280. }
  281. break;
  282. }
  283. if (pmd_val(*pmd)) {
  284. if (!pmd_large(*pmd))
  285. last_map_addr = phys_pte_update(pmd, address,
  286. end);
  287. continue;
  288. }
  289. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  290. pages++;
  291. set_pte((pte_t *)pmd,
  292. pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  293. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  294. continue;
  295. }
  296. pte = alloc_low_page(&pte_phys);
  297. last_map_addr = phys_pte_init(pte, address, end);
  298. unmap_low_page(pte);
  299. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  300. }
  301. update_page_count(PG_LEVEL_2M, pages);
  302. return last_map_addr;
  303. }
  304. static unsigned long __meminit
  305. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  306. unsigned long page_size_mask)
  307. {
  308. pmd_t *pmd = pmd_offset(pud, 0);
  309. unsigned long last_map_addr;
  310. spin_lock(&init_mm.page_table_lock);
  311. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
  312. spin_unlock(&init_mm.page_table_lock);
  313. __flush_tlb_all();
  314. return last_map_addr;
  315. }
  316. static unsigned long __meminit
  317. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  318. unsigned long page_size_mask)
  319. {
  320. unsigned long pages = 0;
  321. unsigned long last_map_addr = end;
  322. int i = pud_index(addr);
  323. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  324. unsigned long pmd_phys;
  325. pud_t *pud = pud_page + pud_index(addr);
  326. pmd_t *pmd;
  327. if (addr >= end)
  328. break;
  329. if (!after_bootmem &&
  330. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  331. set_pud(pud, __pud(0));
  332. continue;
  333. }
  334. if (pud_val(*pud)) {
  335. if (!pud_large(*pud))
  336. last_map_addr = phys_pmd_update(pud, addr, end,
  337. page_size_mask);
  338. continue;
  339. }
  340. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  341. pages++;
  342. set_pte((pte_t *)pud,
  343. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  344. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  345. continue;
  346. }
  347. pmd = alloc_low_page(&pmd_phys);
  348. spin_lock(&init_mm.page_table_lock);
  349. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
  350. unmap_low_page(pmd);
  351. pud_populate(&init_mm, pud, __va(pmd_phys));
  352. spin_unlock(&init_mm.page_table_lock);
  353. }
  354. __flush_tlb_all();
  355. update_page_count(PG_LEVEL_1G, pages);
  356. return last_map_addr;
  357. }
  358. static unsigned long __meminit
  359. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  360. unsigned long page_size_mask)
  361. {
  362. pud_t *pud;
  363. pud = (pud_t *)pgd_page_vaddr(*pgd);
  364. return phys_pud_init(pud, addr, end, page_size_mask);
  365. }
  366. static void __init find_early_table_space(unsigned long end)
  367. {
  368. unsigned long puds, pmds, ptes, tables, start;
  369. puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
  370. tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
  371. if (direct_gbpages) {
  372. unsigned long extra;
  373. extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
  374. pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
  375. } else
  376. pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
  377. tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
  378. if (cpu_has_pse) {
  379. unsigned long extra;
  380. extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
  381. ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
  382. } else
  383. ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
  384. tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
  385. /*
  386. * RED-PEN putting page tables only on node 0 could
  387. * cause a hotspot and fill up ZONE_DMA. The page tables
  388. * need roughly 0.5KB per GB.
  389. */
  390. start = 0x8000;
  391. table_start = find_e820_area(start, end, tables, PAGE_SIZE);
  392. if (table_start == -1UL)
  393. panic("Cannot find space for the kernel page tables");
  394. table_start >>= PAGE_SHIFT;
  395. table_end = table_start;
  396. table_top = table_start + (tables >> PAGE_SHIFT);
  397. printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
  398. end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
  399. }
  400. static void __init init_gbpages(void)
  401. {
  402. if (direct_gbpages && cpu_has_gbpages)
  403. printk(KERN_INFO "Using GB pages for direct mapping\n");
  404. else
  405. direct_gbpages = 0;
  406. }
  407. static unsigned long __init kernel_physical_mapping_init(unsigned long start,
  408. unsigned long end,
  409. unsigned long page_size_mask)
  410. {
  411. unsigned long next, last_map_addr = end;
  412. start = (unsigned long)__va(start);
  413. end = (unsigned long)__va(end);
  414. for (; start < end; start = next) {
  415. pgd_t *pgd = pgd_offset_k(start);
  416. unsigned long pud_phys;
  417. pud_t *pud;
  418. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  419. if (next > end)
  420. next = end;
  421. if (pgd_val(*pgd)) {
  422. last_map_addr = phys_pud_update(pgd, __pa(start),
  423. __pa(end), page_size_mask);
  424. continue;
  425. }
  426. if (after_bootmem)
  427. pud = pud_offset(pgd, start & PGDIR_MASK);
  428. else
  429. pud = alloc_low_page(&pud_phys);
  430. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  431. page_size_mask);
  432. unmap_low_page(pud);
  433. pgd_populate(&init_mm, pgd_offset_k(start),
  434. __va(pud_phys));
  435. }
  436. return last_map_addr;
  437. }
  438. struct map_range {
  439. unsigned long start;
  440. unsigned long end;
  441. unsigned page_size_mask;
  442. };
  443. #define NR_RANGE_MR 5
  444. static int save_mr(struct map_range *mr, int nr_range,
  445. unsigned long start_pfn, unsigned long end_pfn,
  446. unsigned long page_size_mask)
  447. {
  448. if (start_pfn < end_pfn) {
  449. if (nr_range >= NR_RANGE_MR)
  450. panic("run out of range for init_memory_mapping\n");
  451. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  452. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  453. mr[nr_range].page_size_mask = page_size_mask;
  454. nr_range++;
  455. }
  456. return nr_range;
  457. }
  458. /*
  459. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  460. * This runs before bootmem is initialized and gets pages directly from
  461. * the physical memory. To access them they are temporarily mapped.
  462. */
  463. unsigned long __init_refok init_memory_mapping(unsigned long start,
  464. unsigned long end)
  465. {
  466. unsigned long last_map_addr = 0;
  467. unsigned long page_size_mask = 0;
  468. unsigned long start_pfn, end_pfn;
  469. struct map_range mr[NR_RANGE_MR];
  470. int nr_range, i;
  471. printk(KERN_INFO "init_memory_mapping\n");
  472. /*
  473. * Find space for the kernel direct mapping tables.
  474. *
  475. * Later we should allocate these tables in the local node of the
  476. * memory mapped. Unfortunately this is done currently before the
  477. * nodes are discovered.
  478. */
  479. if (!after_bootmem)
  480. init_gbpages();
  481. if (direct_gbpages)
  482. page_size_mask |= 1 << PG_LEVEL_1G;
  483. if (cpu_has_pse)
  484. page_size_mask |= 1 << PG_LEVEL_2M;
  485. memset(mr, 0, sizeof(mr));
  486. nr_range = 0;
  487. /* head if not big page alignment ?*/
  488. start_pfn = start >> PAGE_SHIFT;
  489. end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
  490. << (PMD_SHIFT - PAGE_SHIFT);
  491. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  492. /* big page (2M) range*/
  493. start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
  494. << (PMD_SHIFT - PAGE_SHIFT);
  495. end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
  496. << (PUD_SHIFT - PAGE_SHIFT);
  497. if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
  498. end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
  499. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  500. page_size_mask & (1<<PG_LEVEL_2M));
  501. /* big page (1G) range */
  502. start_pfn = end_pfn;
  503. end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
  504. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  505. page_size_mask &
  506. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  507. /* tail is not big page (1G) alignment */
  508. start_pfn = end_pfn;
  509. end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
  510. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  511. page_size_mask & (1<<PG_LEVEL_2M));
  512. /* tail is not big page (2M) alignment */
  513. start_pfn = end_pfn;
  514. end_pfn = end>>PAGE_SHIFT;
  515. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  516. /* try to merge same page size and continuous */
  517. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  518. unsigned long old_start;
  519. if (mr[i].end != mr[i+1].start ||
  520. mr[i].page_size_mask != mr[i+1].page_size_mask)
  521. continue;
  522. /* move it */
  523. old_start = mr[i].start;
  524. memmove(&mr[i], &mr[i+1],
  525. (nr_range - 1 - i) * sizeof (struct map_range));
  526. mr[i].start = old_start;
  527. nr_range--;
  528. }
  529. for (i = 0; i < nr_range; i++)
  530. printk(KERN_DEBUG " %010lx - %010lx page %s\n",
  531. mr[i].start, mr[i].end,
  532. (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
  533. (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
  534. if (!after_bootmem)
  535. find_early_table_space(end);
  536. for (i = 0; i < nr_range; i++)
  537. last_map_addr = kernel_physical_mapping_init(
  538. mr[i].start, mr[i].end,
  539. mr[i].page_size_mask);
  540. if (!after_bootmem)
  541. mmu_cr4_features = read_cr4();
  542. __flush_tlb_all();
  543. if (!after_bootmem && table_end > table_start)
  544. reserve_early(table_start << PAGE_SHIFT,
  545. table_end << PAGE_SHIFT, "PGTABLE");
  546. printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
  547. last_map_addr, end);
  548. if (!after_bootmem)
  549. early_memtest(start, end);
  550. return last_map_addr >> PAGE_SHIFT;
  551. }
  552. #ifndef CONFIG_NUMA
  553. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  554. {
  555. unsigned long bootmap_size, bootmap;
  556. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  557. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  558. PAGE_SIZE);
  559. if (bootmap == -1L)
  560. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  561. /* don't touch min_low_pfn */
  562. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  563. 0, end_pfn);
  564. e820_register_active_regions(0, start_pfn, end_pfn);
  565. free_bootmem_with_active_regions(0, end_pfn);
  566. early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
  567. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  568. }
  569. void __init paging_init(void)
  570. {
  571. unsigned long max_zone_pfns[MAX_NR_ZONES];
  572. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  573. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  574. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  575. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  576. memory_present(0, 0, max_pfn);
  577. sparse_init();
  578. free_area_init_nodes(max_zone_pfns);
  579. }
  580. #endif
  581. /*
  582. * Memory hotplug specific functions
  583. */
  584. #ifdef CONFIG_MEMORY_HOTPLUG
  585. /*
  586. * Memory is added always to NORMAL zone. This means you will never get
  587. * additional DMA/DMA32 memory.
  588. */
  589. int arch_add_memory(int nid, u64 start, u64 size)
  590. {
  591. struct pglist_data *pgdat = NODE_DATA(nid);
  592. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  593. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  594. unsigned long nr_pages = size >> PAGE_SHIFT;
  595. int ret;
  596. last_mapped_pfn = init_memory_mapping(start, start + size-1);
  597. if (last_mapped_pfn > max_pfn_mapped)
  598. max_pfn_mapped = last_mapped_pfn;
  599. ret = __add_pages(zone, start_pfn, nr_pages);
  600. WARN_ON(1);
  601. return ret;
  602. }
  603. EXPORT_SYMBOL_GPL(arch_add_memory);
  604. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  605. int memory_add_physaddr_to_nid(u64 start)
  606. {
  607. return 0;
  608. }
  609. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  610. #endif
  611. #endif /* CONFIG_MEMORY_HOTPLUG */
  612. /*
  613. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  614. * is valid. The argument is a physical page number.
  615. *
  616. *
  617. * On x86, access has to be given to the first megabyte of ram because that area
  618. * contains bios code and data regions used by X and dosemu and similar apps.
  619. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  620. * mmio resources as well as potential bios/acpi data regions.
  621. */
  622. int devmem_is_allowed(unsigned long pagenr)
  623. {
  624. if (pagenr <= 256)
  625. return 1;
  626. if (!page_is_ram(pagenr))
  627. return 1;
  628. return 0;
  629. }
  630. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  631. kcore_modules, kcore_vsyscall;
  632. void __init mem_init(void)
  633. {
  634. long codesize, reservedpages, datasize, initsize;
  635. pci_iommu_alloc();
  636. /* clear_bss() already clear the empty_zero_page */
  637. reservedpages = 0;
  638. /* this will put all low memory onto the freelists */
  639. #ifdef CONFIG_NUMA
  640. totalram_pages = numa_free_all_bootmem();
  641. #else
  642. totalram_pages = free_all_bootmem();
  643. #endif
  644. reservedpages = max_pfn - totalram_pages -
  645. absent_pages_in_range(0, max_pfn);
  646. after_bootmem = 1;
  647. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  648. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  649. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  650. /* Register memory areas for /proc/kcore */
  651. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  652. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  653. VMALLOC_END-VMALLOC_START);
  654. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  655. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  656. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  657. VSYSCALL_END - VSYSCALL_START);
  658. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  659. "%ldk reserved, %ldk data, %ldk init)\n",
  660. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  661. max_pfn << (PAGE_SHIFT-10),
  662. codesize >> 10,
  663. reservedpages << (PAGE_SHIFT-10),
  664. datasize >> 10,
  665. initsize >> 10);
  666. cpa_init();
  667. }
  668. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  669. {
  670. unsigned long addr = begin;
  671. if (addr >= end)
  672. return;
  673. /*
  674. * If debugging page accesses then do not free this memory but
  675. * mark them not present - any buggy init-section access will
  676. * create a kernel page fault:
  677. */
  678. #ifdef CONFIG_DEBUG_PAGEALLOC
  679. printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
  680. begin, PAGE_ALIGN(end));
  681. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  682. #else
  683. printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
  684. for (; addr < end; addr += PAGE_SIZE) {
  685. ClearPageReserved(virt_to_page(addr));
  686. init_page_count(virt_to_page(addr));
  687. memset((void *)(addr & ~(PAGE_SIZE-1)),
  688. POISON_FREE_INITMEM, PAGE_SIZE);
  689. free_page(addr);
  690. totalram_pages++;
  691. }
  692. #endif
  693. }
  694. void free_initmem(void)
  695. {
  696. free_init_pages("unused kernel memory",
  697. (unsigned long)(&__init_begin),
  698. (unsigned long)(&__init_end));
  699. }
  700. #ifdef CONFIG_DEBUG_RODATA
  701. const int rodata_test_data = 0xC3;
  702. EXPORT_SYMBOL_GPL(rodata_test_data);
  703. void mark_rodata_ro(void)
  704. {
  705. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  706. unsigned long rodata_start =
  707. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  708. #ifdef CONFIG_DYNAMIC_FTRACE
  709. /* Dynamic tracing modifies the kernel text section */
  710. start = rodata_start;
  711. #endif
  712. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  713. (end - start) >> 10);
  714. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  715. /*
  716. * The rodata section (but not the kernel text!) should also be
  717. * not-executable.
  718. */
  719. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  720. rodata_test();
  721. #ifdef CONFIG_CPA_DEBUG
  722. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  723. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  724. printk(KERN_INFO "Testing CPA: again\n");
  725. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  726. #endif
  727. }
  728. #endif
  729. #ifdef CONFIG_BLK_DEV_INITRD
  730. void free_initrd_mem(unsigned long start, unsigned long end)
  731. {
  732. free_init_pages("initrd memory", start, end);
  733. }
  734. #endif
  735. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  736. int flags)
  737. {
  738. #ifdef CONFIG_NUMA
  739. int nid, next_nid;
  740. int ret;
  741. #endif
  742. unsigned long pfn = phys >> PAGE_SHIFT;
  743. if (pfn >= max_pfn) {
  744. /*
  745. * This can happen with kdump kernels when accessing
  746. * firmware tables:
  747. */
  748. if (pfn < max_pfn_mapped)
  749. return -EFAULT;
  750. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  751. phys, len);
  752. return -EFAULT;
  753. }
  754. /* Should check here against the e820 map to avoid double free */
  755. #ifdef CONFIG_NUMA
  756. nid = phys_to_nid(phys);
  757. next_nid = phys_to_nid(phys + len - 1);
  758. if (nid == next_nid)
  759. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  760. else
  761. ret = reserve_bootmem(phys, len, flags);
  762. if (ret != 0)
  763. return ret;
  764. #else
  765. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  766. #endif
  767. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  768. dma_reserve += len / PAGE_SIZE;
  769. set_dma_reserve(dma_reserve);
  770. }
  771. return 0;
  772. }
  773. int kern_addr_valid(unsigned long addr)
  774. {
  775. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  776. pgd_t *pgd;
  777. pud_t *pud;
  778. pmd_t *pmd;
  779. pte_t *pte;
  780. if (above != 0 && above != -1UL)
  781. return 0;
  782. pgd = pgd_offset_k(addr);
  783. if (pgd_none(*pgd))
  784. return 0;
  785. pud = pud_offset(pgd, addr);
  786. if (pud_none(*pud))
  787. return 0;
  788. pmd = pmd_offset(pud, addr);
  789. if (pmd_none(*pmd))
  790. return 0;
  791. if (pmd_large(*pmd))
  792. return pfn_valid(pmd_pfn(*pmd));
  793. pte = pte_offset_kernel(pmd, addr);
  794. if (pte_none(*pte))
  795. return 0;
  796. return pfn_valid(pte_pfn(*pte));
  797. }
  798. /*
  799. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  800. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  801. * not need special handling anymore:
  802. */
  803. static struct vm_area_struct gate_vma = {
  804. .vm_start = VSYSCALL_START,
  805. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  806. .vm_page_prot = PAGE_READONLY_EXEC,
  807. .vm_flags = VM_READ | VM_EXEC
  808. };
  809. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  810. {
  811. #ifdef CONFIG_IA32_EMULATION
  812. if (test_tsk_thread_flag(tsk, TIF_IA32))
  813. return NULL;
  814. #endif
  815. return &gate_vma;
  816. }
  817. int in_gate_area(struct task_struct *task, unsigned long addr)
  818. {
  819. struct vm_area_struct *vma = get_gate_vma(task);
  820. if (!vma)
  821. return 0;
  822. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  823. }
  824. /*
  825. * Use this when you have no reliable task/vma, typically from interrupt
  826. * context. It is less reliable than using the task's vma and may give
  827. * false positives:
  828. */
  829. int in_gate_area_no_task(unsigned long addr)
  830. {
  831. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  832. }
  833. const char *arch_vma_name(struct vm_area_struct *vma)
  834. {
  835. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  836. return "[vdso]";
  837. if (vma == &gate_vma)
  838. return "[vsyscall]";
  839. return NULL;
  840. }
  841. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  842. /*
  843. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  844. */
  845. static long __meminitdata addr_start, addr_end;
  846. static void __meminitdata *p_start, *p_end;
  847. static int __meminitdata node_start;
  848. int __meminit
  849. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  850. {
  851. unsigned long addr = (unsigned long)start_page;
  852. unsigned long end = (unsigned long)(start_page + size);
  853. unsigned long next;
  854. pgd_t *pgd;
  855. pud_t *pud;
  856. pmd_t *pmd;
  857. for (; addr < end; addr = next) {
  858. void *p = NULL;
  859. pgd = vmemmap_pgd_populate(addr, node);
  860. if (!pgd)
  861. return -ENOMEM;
  862. pud = vmemmap_pud_populate(pgd, addr, node);
  863. if (!pud)
  864. return -ENOMEM;
  865. if (!cpu_has_pse) {
  866. next = (addr + PAGE_SIZE) & PAGE_MASK;
  867. pmd = vmemmap_pmd_populate(pud, addr, node);
  868. if (!pmd)
  869. return -ENOMEM;
  870. p = vmemmap_pte_populate(pmd, addr, node);
  871. if (!p)
  872. return -ENOMEM;
  873. addr_end = addr + PAGE_SIZE;
  874. p_end = p + PAGE_SIZE;
  875. } else {
  876. next = pmd_addr_end(addr, end);
  877. pmd = pmd_offset(pud, addr);
  878. if (pmd_none(*pmd)) {
  879. pte_t entry;
  880. p = vmemmap_alloc_block(PMD_SIZE, node);
  881. if (!p)
  882. return -ENOMEM;
  883. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  884. PAGE_KERNEL_LARGE);
  885. set_pmd(pmd, __pmd(pte_val(entry)));
  886. /* check to see if we have contiguous blocks */
  887. if (p_end != p || node_start != node) {
  888. if (p_start)
  889. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  890. addr_start, addr_end-1, p_start, p_end-1, node_start);
  891. addr_start = addr;
  892. node_start = node;
  893. p_start = p;
  894. }
  895. addr_end = addr + PMD_SIZE;
  896. p_end = p + PMD_SIZE;
  897. } else
  898. vmemmap_verify((pte_t *)pmd, node, addr, next);
  899. }
  900. }
  901. return 0;
  902. }
  903. void __meminit vmemmap_populate_print_last(void)
  904. {
  905. if (p_start) {
  906. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  907. addr_start, addr_end-1, p_start, p_end-1, node_start);
  908. p_start = NULL;
  909. p_end = NULL;
  910. node_start = 0;
  911. }
  912. }
  913. #endif