smp.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version 2
  5. * of the License, or (at your option) any later version.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. *
  12. * You should have received a copy of the GNU General Public License
  13. * along with this program; if not, write to the Free Software
  14. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  15. *
  16. * Copyright (C) 2000, 2001 Kanoj Sarcar
  17. * Copyright (C) 2000, 2001 Ralf Baechle
  18. * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  19. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  20. */
  21. #include <linux/cache.h>
  22. #include <linux/delay.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/threads.h>
  27. #include <linux/module.h>
  28. #include <linux/time.h>
  29. #include <linux/timex.h>
  30. #include <linux/sched.h>
  31. #include <linux/cpumask.h>
  32. #include <linux/cpu.h>
  33. #include <linux/err.h>
  34. #include <asm/atomic.h>
  35. #include <asm/cpu.h>
  36. #include <asm/processor.h>
  37. #include <asm/r4k-timer.h>
  38. #include <asm/system.h>
  39. #include <asm/mmu_context.h>
  40. #include <asm/time.h>
  41. #ifdef CONFIG_MIPS_MT_SMTC
  42. #include <asm/mipsmtregs.h>
  43. #endif /* CONFIG_MIPS_MT_SMTC */
  44. cpumask_t phys_cpu_present_map; /* Bitmask of available CPUs */
  45. volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
  46. cpumask_t cpu_online_map; /* Bitmask of currently online CPUs */
  47. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  48. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  49. EXPORT_SYMBOL(phys_cpu_present_map);
  50. EXPORT_SYMBOL(cpu_online_map);
  51. extern void cpu_idle(void);
  52. /* Number of TCs (or siblings in Intel speak) per CPU core */
  53. int smp_num_siblings = 1;
  54. EXPORT_SYMBOL(smp_num_siblings);
  55. /* representing the TCs (or siblings in Intel speak) of each logical CPU */
  56. cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
  57. EXPORT_SYMBOL(cpu_sibling_map);
  58. /* representing cpus for which sibling maps can be computed */
  59. static cpumask_t cpu_sibling_setup_map;
  60. static inline void set_cpu_sibling_map(int cpu)
  61. {
  62. int i;
  63. cpu_set(cpu, cpu_sibling_setup_map);
  64. if (smp_num_siblings > 1) {
  65. for_each_cpu_mask(i, cpu_sibling_setup_map) {
  66. if (cpu_data[cpu].core == cpu_data[i].core) {
  67. cpu_set(i, cpu_sibling_map[cpu]);
  68. cpu_set(cpu, cpu_sibling_map[i]);
  69. }
  70. }
  71. } else
  72. cpu_set(cpu, cpu_sibling_map[cpu]);
  73. }
  74. struct plat_smp_ops *mp_ops;
  75. __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
  76. {
  77. if (mp_ops)
  78. printk(KERN_WARNING "Overriding previously set SMP ops\n");
  79. mp_ops = ops;
  80. }
  81. /*
  82. * First C code run on the secondary CPUs after being started up by
  83. * the master.
  84. */
  85. asmlinkage __cpuinit void start_secondary(void)
  86. {
  87. unsigned int cpu;
  88. #ifdef CONFIG_MIPS_MT_SMTC
  89. /* Only do cpu_probe for first TC of CPU */
  90. if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
  91. #endif /* CONFIG_MIPS_MT_SMTC */
  92. cpu_probe();
  93. cpu_report();
  94. per_cpu_trap_init();
  95. mips_clockevent_init();
  96. mp_ops->init_secondary();
  97. /*
  98. * XXX parity protection should be folded in here when it's converted
  99. * to an option instead of something based on .cputype
  100. */
  101. calibrate_delay();
  102. preempt_disable();
  103. cpu = smp_processor_id();
  104. cpu_data[cpu].udelay_val = loops_per_jiffy;
  105. mp_ops->smp_finish();
  106. set_cpu_sibling_map(cpu);
  107. cpu_set(cpu, cpu_callin_map);
  108. synchronise_count_slave();
  109. cpu_idle();
  110. }
  111. void arch_send_call_function_ipi(cpumask_t mask)
  112. {
  113. mp_ops->send_ipi_mask(mask, SMP_CALL_FUNCTION);
  114. }
  115. /*
  116. * We reuse the same vector for the single IPI
  117. */
  118. void arch_send_call_function_single_ipi(int cpu)
  119. {
  120. mp_ops->send_ipi_mask(cpumask_of_cpu(cpu), SMP_CALL_FUNCTION);
  121. }
  122. /*
  123. * Call into both interrupt handlers, as we share the IPI for them
  124. */
  125. void smp_call_function_interrupt(void)
  126. {
  127. irq_enter();
  128. generic_smp_call_function_single_interrupt();
  129. generic_smp_call_function_interrupt();
  130. irq_exit();
  131. }
  132. static void stop_this_cpu(void *dummy)
  133. {
  134. /*
  135. * Remove this CPU:
  136. */
  137. cpu_clear(smp_processor_id(), cpu_online_map);
  138. local_irq_enable(); /* May need to service _machine_restart IPI */
  139. for (;;); /* Wait if available. */
  140. }
  141. void smp_send_stop(void)
  142. {
  143. smp_call_function(stop_this_cpu, NULL, 0);
  144. }
  145. void __init smp_cpus_done(unsigned int max_cpus)
  146. {
  147. mp_ops->cpus_done();
  148. synchronise_count_master();
  149. }
  150. /* called from main before smp_init() */
  151. void __init smp_prepare_cpus(unsigned int max_cpus)
  152. {
  153. init_new_context(current, &init_mm);
  154. current_thread_info()->cpu = 0;
  155. mp_ops->prepare_cpus(max_cpus);
  156. set_cpu_sibling_map(0);
  157. #ifndef CONFIG_HOTPLUG_CPU
  158. cpu_present_map = cpu_possible_map;
  159. #endif
  160. }
  161. /* preload SMP state for boot cpu */
  162. void __devinit smp_prepare_boot_cpu(void)
  163. {
  164. /*
  165. * This assumes that bootup is always handled by the processor
  166. * with the logic and physical number 0.
  167. */
  168. __cpu_number_map[0] = 0;
  169. __cpu_logical_map[0] = 0;
  170. cpu_set(0, phys_cpu_present_map);
  171. cpu_set(0, cpu_online_map);
  172. cpu_set(0, cpu_callin_map);
  173. }
  174. /*
  175. * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu
  176. * and keep control until "cpu_online(cpu)" is set. Note: cpu is
  177. * physical, not logical.
  178. */
  179. int __cpuinit __cpu_up(unsigned int cpu)
  180. {
  181. struct task_struct *idle;
  182. /*
  183. * Processor goes to start_secondary(), sets online flag
  184. * The following code is purely to make sure
  185. * Linux can schedule processes on this slave.
  186. */
  187. idle = fork_idle(cpu);
  188. if (IS_ERR(idle))
  189. panic(KERN_ERR "Fork failed for CPU %d", cpu);
  190. mp_ops->boot_secondary(cpu, idle);
  191. /*
  192. * Trust is futile. We should really have timeouts ...
  193. */
  194. while (!cpu_isset(cpu, cpu_callin_map))
  195. udelay(100);
  196. cpu_set(cpu, cpu_online_map);
  197. return 0;
  198. }
  199. /* Not really SMP stuff ... */
  200. int setup_profiling_timer(unsigned int multiplier)
  201. {
  202. return 0;
  203. }
  204. static void flush_tlb_all_ipi(void *info)
  205. {
  206. local_flush_tlb_all();
  207. }
  208. void flush_tlb_all(void)
  209. {
  210. on_each_cpu(flush_tlb_all_ipi, NULL, 1);
  211. }
  212. static void flush_tlb_mm_ipi(void *mm)
  213. {
  214. local_flush_tlb_mm((struct mm_struct *)mm);
  215. }
  216. /*
  217. * Special Variant of smp_call_function for use by TLB functions:
  218. *
  219. * o No return value
  220. * o collapses to normal function call on UP kernels
  221. * o collapses to normal function call on systems with a single shared
  222. * primary cache.
  223. * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
  224. */
  225. static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
  226. {
  227. #ifndef CONFIG_MIPS_MT_SMTC
  228. smp_call_function(func, info, 1);
  229. #endif
  230. }
  231. static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
  232. {
  233. preempt_disable();
  234. smp_on_other_tlbs(func, info);
  235. func(info);
  236. preempt_enable();
  237. }
  238. /*
  239. * The following tlb flush calls are invoked when old translations are
  240. * being torn down, or pte attributes are changing. For single threaded
  241. * address spaces, a new context is obtained on the current cpu, and tlb
  242. * context on other cpus are invalidated to force a new context allocation
  243. * at switch_mm time, should the mm ever be used on other cpus. For
  244. * multithreaded address spaces, intercpu interrupts have to be sent.
  245. * Another case where intercpu interrupts are required is when the target
  246. * mm might be active on another cpu (eg debuggers doing the flushes on
  247. * behalf of debugees, kswapd stealing pages from another process etc).
  248. * Kanoj 07/00.
  249. */
  250. void flush_tlb_mm(struct mm_struct *mm)
  251. {
  252. preempt_disable();
  253. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  254. smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
  255. } else {
  256. cpumask_t mask = cpu_online_map;
  257. unsigned int cpu;
  258. cpu_clear(smp_processor_id(), mask);
  259. for_each_cpu_mask(cpu, mask)
  260. if (cpu_context(cpu, mm))
  261. cpu_context(cpu, mm) = 0;
  262. }
  263. local_flush_tlb_mm(mm);
  264. preempt_enable();
  265. }
  266. struct flush_tlb_data {
  267. struct vm_area_struct *vma;
  268. unsigned long addr1;
  269. unsigned long addr2;
  270. };
  271. static void flush_tlb_range_ipi(void *info)
  272. {
  273. struct flush_tlb_data *fd = info;
  274. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  275. }
  276. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  277. {
  278. struct mm_struct *mm = vma->vm_mm;
  279. preempt_disable();
  280. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  281. struct flush_tlb_data fd = {
  282. .vma = vma,
  283. .addr1 = start,
  284. .addr2 = end,
  285. };
  286. smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
  287. } else {
  288. cpumask_t mask = cpu_online_map;
  289. unsigned int cpu;
  290. cpu_clear(smp_processor_id(), mask);
  291. for_each_cpu_mask(cpu, mask)
  292. if (cpu_context(cpu, mm))
  293. cpu_context(cpu, mm) = 0;
  294. }
  295. local_flush_tlb_range(vma, start, end);
  296. preempt_enable();
  297. }
  298. static void flush_tlb_kernel_range_ipi(void *info)
  299. {
  300. struct flush_tlb_data *fd = info;
  301. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  302. }
  303. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  304. {
  305. struct flush_tlb_data fd = {
  306. .addr1 = start,
  307. .addr2 = end,
  308. };
  309. on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
  310. }
  311. static void flush_tlb_page_ipi(void *info)
  312. {
  313. struct flush_tlb_data *fd = info;
  314. local_flush_tlb_page(fd->vma, fd->addr1);
  315. }
  316. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  317. {
  318. preempt_disable();
  319. if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
  320. struct flush_tlb_data fd = {
  321. .vma = vma,
  322. .addr1 = page,
  323. };
  324. smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
  325. } else {
  326. cpumask_t mask = cpu_online_map;
  327. unsigned int cpu;
  328. cpu_clear(smp_processor_id(), mask);
  329. for_each_cpu_mask(cpu, mask)
  330. if (cpu_context(cpu, vma->vm_mm))
  331. cpu_context(cpu, vma->vm_mm) = 0;
  332. }
  333. local_flush_tlb_page(vma, page);
  334. preempt_enable();
  335. }
  336. static void flush_tlb_one_ipi(void *info)
  337. {
  338. unsigned long vaddr = (unsigned long) info;
  339. local_flush_tlb_one(vaddr);
  340. }
  341. void flush_tlb_one(unsigned long vaddr)
  342. {
  343. smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
  344. }
  345. EXPORT_SYMBOL(flush_tlb_page);
  346. EXPORT_SYMBOL(flush_tlb_one);